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Abstract

Computation Storage Architectures (CSA) are increasingly adopted
in the cloud for near data processing, where the underlying stor-
age devices/servers are now equipped with heterogeneous cores
which enable computation offloading near to the data. While CSA is
a promising high-performance architecture for the cloud, in general
data analytics also presents significant data security and policy com-
pliance (e.g., GDPR) challenges in untrusted cloud environments.
In this paper, we present IronSafe, a secure and policy-compliant
query processing system for heterogeneous computational storage
architectures, while preserving the performance advantages of CSA
in untrusted cloud environments. To achieve these design properties
in a computing environment with heterogeneous host (x86) and stor-
age system (ARM), we design and implement the entire hardware
and software system stack from the ground-up leveraging hardware-
assisted Trusted Execution Environments (TEEs): namely, Intel SGX
and ARM TrustZone. More specifically, IronSafe builds on three core
contributions: (1) a heterogeneous confidential computing frame-
work for shielded execution with x86 and ARM TEEs and associated
secure storage system for the untrusted storage medium; (2) a policy
compliance monitor to provide a unified service for attestation and
policy compliance; and (3) a declarative policy language and asso-
ciated interpreter for concisely specifying and efficiently evaluating
arich set of polices. Our evaluation using the TPC-H SQL bench-
mark queries and GDPR anti-pattern use-cases shows that [ronSafe
is faster, on average by 2.3X than a host-only secure system, while
providing strong security and policy-compliance properties.

CCS Concepts

« Security and privacy — Trusted computing; Database and
storage security; Information accountability and usage con-
trol.
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1 Introduction

Today, companies are increasingly turning to cloud providers to run
their data management services with improved scalability, reliability,
and cost-effectiveness [21, 24, 56]. Consequently, the data stored in
cloud environments is growing at an ever-increasing rate [1, 2, 33].
To handle this data deluge, the cloud systems are advancing the
state of hardware [5] and software [3, 9] to enable high-performance
query processing on large volumes of data.

While scalability and performance have always been at the center-
stage in designing query processing engines, we are now increasingly
facing pressing challenges to ensure the security and policy compli-
ance of stored data and query processing in cloud environments [12,
68, 96, 115]. In particular, security has become a central priority as a
result of concerns about the untrusted nature of the cloud [104]. De-
spite the growing sophistication of defenses, the complexity of exist-
ing cloud computing and storage systems is staggering, which means
that the existence of vulnerabilities is inevitable. Attackers may at-
tempt to breach into the systems in various ways, either through an
external vector, e.g., by exploiting software bugs or, configuration er-
rors [7], or via an internal vector, e.g., through, malicious admins [8,
85], or employees victim of social engineering attacks [111]. These
threats are even more pronounced due to virtualization in the cloud,
where a co-located tenant [107] or even a malicious cloud adminis-
trator [106] can violate the confidentiality and integrity properties.

Likewise, policy compliance is the second major issue. Even con-
sidering the existence of a foolproof security infrastructure that
can protect the data and computations from intruders, the way data
can be collected, stored, processed, and shared by organizations is
today highly regulated by national and international laws. Some
notable examples of data protection regulations include GDPR in
the EU [101] and CCPA in the USA [38]. Failure to abide to these and
similar laws when processing personal data may lead to the payment
of high fees [53]. As aresult, query processing engines also need to in-
corporate built-in mechanisms that can help reduce the risks of non
compliance and give organizations the ability to tightly control how
they store, process, and share data in third-party cloud environments.

In light of the aforementioned considerations, in this paper we
focus on this question: How can we build a high-performance query
processing system that enables organizations to process and share high-
value data with strong security properties against powerful adversaries
and policy compliance guarantees in third-party cloud environments?
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To answer this question, our key idea is to leverage two prominent
advances in hardware technology, both of them now readily avail-
able on commodity cloud infrastructures: (a) Computational Storage
Architecture (CSA), and (b) Trusted Execution Environments (TEEs).

First, CSA helps us to reap the performance benefits of offloading
query processing jobs near the actual data location, aka, near data
processing [18, 87]. CSA platforms are increasingly heterogeneous:
with x86 hosts and storage systems mounting low-power ARM [28,
59, 63, 87], which can be exploited to move parts of query process-
ing (e.g., filter/select operations [28, 59]) or storage operations (e.g.,
checksum/deduplication [10, 33]) near to the data. By offloading
the computation directly onto the storage system, CSA strives for
increased performance since it minimizes the data movement across
multiple hardware and software layers [28, 29, 46, 63]. CSA is in-
creasingly adopted in cloud environments, both for server-class
and SSD devices storage systems. For example, Huawei Cloud [63]
and Microsoft Azure [78] are designing CSA storage-class servers
based on ARM. Two major startups are also offering ARM-based CSA
servers: NGD systems [87] and SoftIron [39]. For storage devices
Samsung [112] offers ARM-based/FPGA-based SSDs.

Second, TEEs help us build a security infrastructure that can pro-
tect data and computations against powerful adversaries. TEEs are
rooted in trusted hardware components and expose several basic
primitives that can be used for designing secure systems. One of
the fundamental primitives enables the creation of isolated mem-
ory regions and execution contexts (commonly known as enclaves)
where code and data are protected by the CPU, even against the
privileged code (e.g., OS, hypervisor). Based on this promise, TEE
technology is now being streamlined by all major CPU manufactur-
ers, e.g., Intel SGX [66], ARM TrustZone [20], Realms in ARM v9 [6],
AMD SEV [4], and Keystone in RISC-V [102]. Likewise, all major
cloud providers have started harnessing TEE technology to offer
confidential computing services (AliBaba, Azure, IBM, and Google).

Our approach is then to leverage both these techniques to build
a full-blown secure and policy compliant query processing system.
Achieving this goal, however, is not straightforward. Succinctly
stated, we have to overcome three main technical challenges. First,
CSA architectures are equipped with heterogeneous TEE technolo-
gies, such as host and storage device/server are equipped with Intel
SGX [66] and ARM TrustZone [20], respectively, which offer funda-
mentally different and thus incompatible protection mechanisms.
Therefore, we need to build an end-to-end security infrastructure
that can bridge these incompatibilities and be able to both (i) shield
the data computation involved in the various CSA query processing
stages, and (ii) secure the data at rest on persistent storage. Sec-
ond, to generate proofs of policy compliance, we can harness the
remote attestation primitives provided by TEE technology, but they
alone are insufficient to offer these proofs as they can only provide
guarantees of integrity and authenticity of a runtime environment.
They need to be complemented with additional semantically-richer
mechanisms customized for query processing, and capable of coping
with the dynamic and heterogeneous nature of cloud infrastructures.
Third, we need to provide a declarative language that combines (a)
simplicity in the specification (it must be simple to write and to
interpret by different parties, (b) expressive enough to cover relevant
regulatory-compliant use cases, and (c) efficient to evaluate.

Contributions. We present IronSafe, a secure and policy compliant
query processing system. It is the first system that combines two
emerging cloud technologies—CSA and TEE—for accelerating data
processing while ensuring end-to-end security of query processing
and data storage, respectively. IronSafe allows its users to specify
data processing policies via a declarative language and obtain proofs
of compliance. This service can be used, e.g., to enable different
organizations to share data while offering hard-evidence of regula-
tory compliance. By addressing the challenges stated above in our
IronSafe design, we make the following additional contributions:
(1) Heterogeneous confidential computing framework: To enable se-
cure execution across the host and storage system, we develop a
shielded execution framework across the CSA components that
overcomes the technical hurdles due to the heterogeneity of TEE
technologies. To protect data at rest, IronSafe includes a secure stor-
age framework that builds on ARM TrustZone hardware features
and ensures confidentiality, integrity, and freshness of stored data.
(2) Policy compliance monitor: We present the design of a policy
compliance infrastructure based on a unified abstraction for attesta-
tion and policy enforcement, wherein a remote user can efficiently
verify the authenticity of the host and storage systems to which
the computation is offloaded and ensure that the computations are
executed according to user-defined policies. Our design makes use of
a supervising entity named trusted monitor that verifies the integrity
and authenticity of IronSafe’s query processing infrastructure, and
coordinates the enforcement of policies across the system.

(3) Declarative policy specification language: IronSafe provides a
unified declarative policy language to efficiently express a wide
range of execution policies (e.g., GDPR) regarding data integrity,
confidentiality, access accounting, and many other workflows. The
declarative abstraction is imperative to minimize the complexity in
specifying and auditing policies via a single unified interface.

We have implemented these components in an end-to-end sys-
tem, from the ground-up (hardware and software). To show the
effectiveness of the IronSafe system architecture, we have built a
CSA database engine, which exposes a declarative (SQL) query and
associated execution policy interface for GDPR compliance. We
have evaluated the IronSafe database engine using the TPC-H bench-
mark [120], and a series of microbenchmarks to show the cost of
each individual system components. Further, we have implemented
and evaluated GDPR-antipatterns [116] using our declarative policy
language. Our evaluation shows that [ronSafe is faster, on average by
2.3% than a host only secure system, while achieving strong security
and policy-compliance properties.

2 Background
2.1 Data Security and Policy Compliance

Data security concerns are evermore present in online services lever-
aging cloud computing and storage. Due to the sensitive nature of
the data these services process and store (e.g., customer data), it is
imperative to preserve the confidentiality and integrity of data and
computation in untrusted cloud environments [35].

At the same time, recent legislative efforts for policy compliance
(e.g.,CCPA [38] and GDPR [101]) establish new rights and obligations
regarding the use of personal data. For instance, GPDR [101, 117]
describes four entities: (i) data owner, the person whose personal
data is collected (i.e., customer), (ii) controller, which performs data
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Figure 1: CSA deployment models: (a) device and (b) server
collection, (iii) processor, which processes personal data on behalf
of the controller, (iv) regulator, which represents the supervisory
authorities that oversee the compliance of rights and responsibilities
to GDPR. Data processing must follow a set of principles, including
storing data for a specific amount of time, or only using data for al-
lowed purposes. Rights of data owners allow people, e.g., to know the
purpose their data will serve, and for exactly how long it will be used.
Data controllers set up secure infrastructure, maintain records of
data processing, control the location of data, and establish interfaces
so that people can exercise their rights.

2.2 Computational Storage Architectures

Computational Storage Architectures (CSA) provide a flavour of Near
Data Processing (NDP) that splits a computation among two process-
ing systems: host or compute node—likely x86, and a storage device or
node, co-located with storage medium (see Figure 1). Storage systems
are increasingly include low-power CPUs, prominently ARM, such
as modern SSDs [60, 87] or storage servers [39, 63, 78]. Hence, a sys-
tem integrating CSA is likely a heterogeneous compute platform. By
splitting computation and offloading part of data processing to the
storage system, CSA minimizes data movements through the storage
interconnect, i.e., network or local bus (PCle) [28, 47]. Therefore,
CSAhave been adopted by the database community for a while, more
recently, pushing down part of a query to computational storage
servers [15, 93], or to computational storage devices [59, 69].

For CSAs based on a storage device, the processing units are lo-
cated on a storage device itself, like an SSD, physically attached to the
storage media (flash memory). In turn the storage device is accessed
by ahost engine via alocal bus, such as PCle [87, 88, 112], Figure 1 (a).
Another flavor of CSAs is based on a storage server where system
components execute in two different nodes: the host—running the
host engine, and the storage server—where the near data processing
takes place, atop a storage engine. See Figure 1 (b). This resembles a
cloud data-center deployment entailing compute and storage servers
interconnected by high-speed network (e.g., NVMe-oF [89], NFS).

2.3 Confidential Computing and TEE

The need to protect data while in use, gives rise to confidential com-
puting. Solutions for securing data while at rest and while moving,
exist and are often used (e.g., TLS, and File Disk Encryption), however
protecting data while in use requires the use of Trusted Execution
Environments (TEEs). TEE technology offers an environment which
is shielded from outside interference, and provides the necessary
mechanisms to build security-sensitive applications. Prominent ex-
amples include Intel SGX [66], ARM TrustZone [20] and ARM v9
Realms [6]. ARM v9 Realms, introduced recently, aims to provide
containerized execution environments that are protected against to
the privileged software layers, including the OS or the hypervisor.

In this work, we build on ARM TrustZone, and Intel SGX. Impor-
tantly, we need to consider that these TEEs provide starkly different
security properties, usage scenarios, implementation, and program-
ming models. TrustZone provides two hardware-assisted security
domains: the normal world, also referred to as Rich Execution En-
vironment (REE), where a general purpose OS operates, and the
secure world which typically hosts the TEE software comprising
a trusted OS and multiple trusted applications (TA) [20]. Security
features available to TAs include access to secure storage, monotonic
counters, true random generators, trusted device, among others
[118]. Secure boot allows for authentication of each software im-
age, and allows the system to be brought to a known secure state.
Intel SGX provides an abstraction of enclave—a memory region for
which the CPU guarantees confidentiality and integrity. Enclave
applications are protected against attacks launched by privileged
software (e.g., OS or hypervisor). By virtue of an on-chip memory
encryption engine, enclave memory is never stored in plain text to
main memory. Additionally, SGX provides the features required to
provided attestation of enclaves to third parties.

3 Overview
In this section, we describe the high-level architecture of IronSafe,
our threat model, and the key design challenges.

3.1 Architecture and Workflow
The IronSafe architecture consists of the following components, as
depicted in Figure 2: client, trusted monitor, host and storage system.
Client is a piece of software that provides a data query interface that
is used by different parties, including data producers and consumers.
This interface offers the ability to require the enforcement of specific
security policies when submitting queries to IronSafe’s query pro-
cessing infrastructure. The client interacts with the query processing
infrastructure thatin turn consists of two central components respon-
sible for query processing—host and storage system—and a supervis-
ing component—the monitor. The host features an untrusted OSand a
trusted host engine. The storage system includes the (trusted) storage
engine, which is executed in a processing unit either within a storage
device, or a storage server, and the (untrusted) storage medium where
data is stored. The storage engine handles processing to be done near
the data. The trusted monitor coordinates with the host engine and
storage system to execute the computation or data operationsina pol-
icy compliant manner. The trusted monitor ensures this by attesting
both the host and storage engine. The security of attestation is rooted
on trusted boot and several other hardware-backed mechanisms [16].
To illustrate the workflow of IronSafe, consider the scenario de-
picted in Figure 2. It represents two entities A and B that collaborate
with each other in processing data from a customer (C). Both these
entities play the GDPR role of controllers as they offer to customers
some specific service, e.g., A is an airline company and 8 is a hotel
chain. In GDPR, customers retain ownership of their data. In this
scenario, A collects data from its customers, e.g., when booking a
flight, and it is willing to allow B to issue certain external queries,
e.g., to consult the arrival time of a particular customer. IronSafe
provides a secure storage infrastructure that allows A to share data
with B in a secure and policy-compliant manner. In this sense, A
and B act as data producer and consumer, respectively. IronSafe
is deployed by a cloud provider who plays the role of GDPR data
processor, and it allows both A and B to submit different queries: A
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Figure 2: Architecture of IronSafe (TCB shown in green)

has full r/w access to the data being able to insert, update, or delete
records; B is allowed only to perform certain read-only queries. The
entire query processing workflow is determined by the compliance
policies attached to each query. These policies can be specified so as
to prevent violation of regulations such as the GDPR. Upon request,
IronSafe allows a designated regulatory authority (D) to obtain proof
of compliance by accessing an audit trail from the trusted monitor.
More specifically, the workflow of any given data processing
query is as follows. When instructed by A or B, the client submits
the query and an associated user-defined execution policy to the host
engine over an encrypted TLS channel (step (1)). Upon receiving
a client request (i.e., query and corresponding policy), the host re-
quests the assistance of the trusted monitor to verify that the client’s
request has the right permissions to access the data. This verification
is performed by validating the query and the identity of the client
against an access policy previously specified by the data producer.
This access policy is maintained by the trusted monitor and it is set
up by the time the data producer initializes the database on IronSafe.
Before authorizing the execution of the query, the monitor must also
check if the host and storage engine satisfy the constraints specified
in the client’s compliance policy. This is performed in step (2). If
the check succeeds, the query is partitioned in the host engine, and
offloaded to storage engine (step (3)). The storage engine accesses
users’ data on persistent storage, executes the offloaded query and
relays the results back to the host in step (4). The host engine process
the filtered out data by executing its query. Then it sends to the client
both the query results and proof of compliance with client’s security
policy (step (5)). In IronSafe, both execution policy and access policy
are specified in our own declarative policy specification language.

3.2 Hardware Building Blocks

Trusted execution environments. IronSafe requires TEE hard-
ware technology for securing the execution of query processing both
at the host and storage systems. We envision the host system to be an
x86 machine. Thus, confidential execution will be supported by SGX
enclaves [66]. As for the storage system, IronSafe benefits from bring-
ing query execution to processing units resident as close as possible to

the storage medium —where data is located. Given emerging compu-
tational storage devices are based on ARM CPUs, and storage servers
increasingly adopt or include ARM CPUs (§ 2.2), the storage system’s
confidential execution relies primarily on ARM TrustZone [20].
Trusted boot. IronSafe relies on trusted boot for establishing its root
of trust [19, 65]. Trusted boot validates the integrity and authenticity
of the software that implements the host engine and storage system.
In SGX, although the boot process is not part of the TCB, loading
and initializing an enclave includes the process of computing a hash
of the guest application code which allows remote parties to validate
the correct initialization of an enclave. In TrustZone, trusted boot
allows for authentication of each world’s images, thus allowing for
the system to be brought to a known secure state.

Remote attestation. IronSafe implements security protocols that
allow aremote client to obtain hard cryptographic evidence about the
correct deployment of all its components on a given cloud infrastruc-
ture. In SGX, remote attestation is supported by two hardware mech-
anisms which compute a hash of the enclave code upon initialization,
and issue digital signatures of that hash using on-chip keys certi-
fied by Intel. TrustZone does not provide built-in remote attestation
primitives apart from an on-chip key provided by the device man-
ufacturer. In this case, we assume that remote attestation primitives
are implemented by the device firmware running in the secure world.
Secure storage on the storage medium. lronSafe also relies on
specific hardware primitives to implement secure storage on the
storage medium. In TrustZone-based systems, it is common for flash
memories to be used as storage medium. These flash memories, are
often imbued with a partition which can only be access by an authen-
ticated agent (i.e., a TEE) [50, 91]. This partition is a replay protected
memory block (RPMB) and can then be used to hold security sensitive
data. Additionally, TAs can store larger amounts of data by storing
data in an encrypted form in the normal world file system [91].

3.3 Security Goals and Threat Model

We aim at designing IronSafe to provide end-to-end security for all
data queries submitted and processed by our system, especially by
host and storage system. Essentially, this protection entails preserv-
ing the confidentially, integrity, and freshness of all data at runtime
(i.e., at processing time), at rest (i.e., on persistent storage), and in
transit (i.e., exchanged over the network). In particular, we aim to
defend against an adversary that can launch the following attacks:

Attacks to volatile state. As shown in Figure 2, the host engine and
the storage engine need to process sensitive query-related data in
main memory. We aim to defend against attacks aimed to inspect or
tamper with the runtime state of these components. On the host, we
consider an attacker with the ability to control the operating system.
Targeting an x86 host equipped with SGX, the adversary will be able
to access the full memory state, except the memory pages allocated to
user-level enclaves; the attacker has no access to the enclave protect-
ing the host engine. On the storage system, the attacker may also at-
tempt to gain control of the storage engine runtime state (i.e., contain-
ing query processed data). Assuming that the storage system is de-
ployed on a TrustZone-featured ARM platform and that the firmware
(running in secure world) is trusted, the trusted boot mechanism will
bring the storage system into a state that the attacker will not be able
to control. This guarantee can also be extended to the REE OS (run-
ning in the normal world) aslong as the REE OS is a secure component



(e.g., ahardened kernel) and trusted boot also measures the integrity
ofthe REE OS. Nevertheless, the attacker may attempt to impersonate
a trusted device so as to convince the host engine to offload compu-
tations to an alternative storage system controlled by the adversary.
Attacks to persistent state.In IronSafe, the persistent state is main-
tained on untrusted storage medium by the storage system. The at-
tacker may attempt to bypass trusted boot by booting the storage sys-
teminto an OS under its control and then gain unlimited access to the
storage medium. At this point, the adversary may attempt to inspect
the content of persistent data, or modify persistent data without be-
ing detected. In particular, it may attempt to launch rollback attacks in
which the data on storage may be reverted to a stale version. Such an
attack could result in the suppression of recently committed storage
operations. We also consider forking attacks where the adversary can
attempt to fork the storage system, by running multiple replicas of it.
Attacks to communications. An adversary may intercept, inject,
or modify messages exchanged between all IronSafe’s actors. The
adversary’s goals include: impersonation of legitimate actors, inspec-
tion of communications, or tampering with exchanged messages.
Attacks out of scope. We do not protect against side-channel at-
tacks, such as exploiting cache timing, memory access patterns and
speculative execution [36, 61, 128]. We also do not consider denial of
service attacks as they are easy to defend with a trusted third party
operator controlling the underlying infrastructure [30]. It is also out
of scope physical attacks that involve tampering with the SGX or
TrustZone hardware. These components are part of our trusted com-
puting base. We also rule out sophisticated physical attacks to host
and storage system, e.g., unsoldering SoC/CPU/flash chips. Attacks
that exploit vulnerabilities in client applications and lead to data
breaches through crafted queries, such as SQL injection, are correctly
recorded into a tamper proof log by IronSafe. This logging process
cannot be circumvented by an attacker as we trust the underlying
hardware to protect the software responsible for logging(§ 4.3).
Due to the limitations of ARM TrustZone, we currently need to
consider the entire OS stack and query engine on the storage side
as part of our TCB. However, ARM v9 [6] aims to overcome this
limitation, which would allow us to not trust the OS stack anymore.

3.4 Design Challenges

#1. Heterogeneous TEE technology. In IronSafe, to build our end-
to-end security infrastructure, we rely on basic hardware primitives
offered by SGX and TrustZone, namely TEE-isolated environments
for securing in-memory state, and secure storage primitives for pro-
tection on-storage data (see § 3.2). However, the TEE primitives
implemented by these technologies have important differences. For
instance, SGX allows for seamlessly creating user-level enclaves,
but they limit the amount of memory that can be allocated by ap-
plications and impose considerable performance overheads due to
hardware-level memory encryption. On the other hand, TrustZone
imposes no strict memory size limits and adds negligible perfor-
mance overheads, but features a cumbersome protection model,
where TEE environments are typically not available for general use
by full-blown applications. Bringing together these two technologies
while preserving security and performance is not a trivial task in the
design of IronSafe. A second challenge involves the protection of
data at rest. Although SGX and TrustZone provide protection for in-
memory state, the mechanisms do not naturally extend to untrusted

storage medium. To address both these challenges, we developed a
heterogeneous confidential computing framework (see § 4.1).

#2: Policy compliance. In IronSafe, our approach to providing
proof of policy compliance is twofold. First, we need to offer guaran-
tees of full integrity and authenticity of all the components of Iron-
Safe’s TCB, which includes the host engine, the storage engine, and
the trusted monitor. This guarantees the integrity of all the protocols
responsible for policy enforcement and query processing. Second,
we need to tie that proof of integrity and authenticity to each specific
query. Only then we can offer guarantee that each specific query has
been processed in a fully compliant manner. To achieve this goal, our
starting point is to leverage the remote attestation primitives (see
§ 3.2) available on the core components of IronSafe’s infrastructure.
However, it is necessary to generate consistent attestation quotes
across multiple components, i.e., those responsible for evaluating the
security policy—the monitor—and those responsible for processing
the query— host and storage engine. Achieving this goal is prone
to security flaws, especially if we consider a cloud environment,
where migration across servers occurs often, and multiple software
versions and hardware generations co-exist. A second hurdle is due
to an incompatibility between attestation mechanisms provided by
TEE technologies. With SGX relying on IAS [16, 65], and TrustZone
relying on customized remote attestation protocols implemented by
secure world firmware and on manufacturer-dependent platform
keys. Our proposed solution is a policy compliance monitor (§ 4.2).
#3: Policy specification. In IronSafe, we need to provide a declar-
ative language for the specification of policies. These policies will al-
low data providers and data consumers to express their requirements
for the execution of data processing queries (see § 3.1). At the same
time, given the existence of important data protection regulations
such as GDPR and CCPA, our policy specification language should
be expressive enough to allow for the declaration of meaningful
regulatory guidelines. A central difficulty in designing this language
is to find a sweet spot between (i) expressiveness power, (ii) read-
ability, and (iii) evaluation performance. Given the extensiveness of
GDPR, for example, one temptation is to design a highly-expressive
and versatile language that can cover all the corner cases of the law.
However, this approach normally leads to complex policies, which
tend to be difficult to read and interpret by humans (and thus prone
to error), and can incur considerable performance overheads [81].
To strike a balance between these trade-offs, we explore a simple,
yet flexible-enough way to express policies that can address some
of the most important use-case scenarios w.r.t. GDPR compliance. In
cases where it is not necessary to enforce data usage policies such as
GDPR or CCPA, policy compliance is still necessary. Clients usually
verify the authenticity of nodes using attestation protocols, where
each node could have its own attestation mechanism. A policy lan-
guage allows a client to concisely specify the characteristics of the
nodes (in terms of firmware and location) and create an execution
environment for the processing of queries (see § 4.3). Our proposed
solution is a declarative policy specification language (§ 4.3) that is
expressive enough to satisfy real-world deployment constraints.

4 Design

We next present the detailed design of IronSafe based on addressing
the aforementioned three design challenges (§3.4).
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Figure 3: Internals of IronSafe, highlighting the heterogeneous confidential computing framework and trusted monitor

4.1 Heterogeneous Confidential Computing Framework

To address challenge #1, we present the design of a heterogeneous
confidential computing framework that allows to securely process
SQL queries across the host and storage. Figure 3 presents its com-
ponents. It consists of a distributed execution runtime that enables
secure data processing queries to run across heterogeneous TEE
technologies — Intel SGX or ARM TrustZone. The runtime provides
aunified interface to an application that intends to take advantage of
the CSA for performance speedups. Next, we present the core secu-
rity mechanisms of our framework intended to protect in-memory
query execution and persistent data on untrusted storage medium.
Protection for in-memory query execution. In the host, which
we assume to be an x86 server, the host engine runs inside a memory-
protected domain implemented by a single SGX enclave. Together
with two auxiliary components—the query engine and the query
partitioner—it is responsible for handling, partitioning, and dispatch-
ing query requests. These components execute within an enclave,
untrusted parties cannot inspect their memory or tamper with crit-
ical data and operations (e.g., query partitioning).

In contrast to the host, the storage system is based on ARM archi-
tecture where the only available TEE-enabling technology is Trust-
Zone (ARM v9 Realms [17] is not released yet). With a TrustZone-
based TEE, a strawman approach for securing the storage engine
would be to implement as a trusted application (TA) and run it inside
the secure world. However, to enable split queries to access persistent
data on the storage medium, the storage engine requires full-blown
OS support with all the necessary device drivers and file systems.
Typically, no such support is available in the secure world given that
the trusted OS responsible for managing TAs is bare minimal.

To overcome this problem, we adopt an architecture spanning
across both worlds. The secure world only runs certain security-
critical functions, including generation of remote attestation quotes,
secure storage primitives, and securely bootstrapping the system.
These functions are implemented as trusted applications (see Fig-
ure 3). The normal world houses a supporting OS stack along with the
storage engine’s query engine and secure storage system. To propa-
gate trust from the secure world to the normal world, at boot time, the
trusted OS performs a hash-based integrity measurement of the nor-
mal world software and hands over the control to the normal world
OS. Unless the hashes reflect IronSafe’s trusted software stack for the
normal world the trusted monitor will consider the storage system
unsafe and thus ineligible for handling query offloading requests.

Asaresult, the memory protection of the storage engine is assisted
by two mechanisms: i) the storage system’s TAs are protected by the

secure world’s trusted OS, and ii) the storage system’s components
that run in the normal world are supervised by a trusted OS stack.
The firmware is also trusted to provide isolation between offloaded
queries, and prevent them from reading and tampering with each
other’s code and data. Hence, we can guarantee the confidentiality
and integrity of offloaded queries and processed data.

Protection for on-storage data. To guarantee the confidentiality,
integrity, and freshness of data in the untrusted storage medium, Iron-
Safe relies on several components in the secure storage system (see
Figure 3). Some components live in the normal world, with the secure
storage TA running in the secure world. It allows the query engine to
read or write units of data (fixed at 4 KiB) stored on untrusted medium.
Data read or write operations can only be authorized (and thus exe-
cuted) as long as the trusted monitor has i) vouched for the authentic-
ity of the storage system, and ii) verified the compliance of this setup
with the security policy originally provisioned through the client.

The secure storage framework stores persistent state on both
untrusted medium (e.g., SSD) and RPMB-backed trusted medium.
On an untrusted medium, it reserves a data region for storing the
(encrypted) data units sequentially and a meta-data region that pre-
serves a streamlined Merkle tree for integrity protection. For sim-
plicity, IronSafe uses a single secret (symmetric) key to encrypt all
the data units, but other management schemes can be adopted (e.g.,
one key per unit). The secure storage TA generates this key during
the system initialization and shares it only with a trusted implemen-
tation of lronSafe’s storage system running in normal world. To
survive system reboots, the encryption key is stored in RPMB mem-
ory. For integrity protection, IronSafe generates an HMAC for each
data unit. It then recursively builds a Merkle tree also employing
HMAC:s to create the internal nodes and root of the tree. This tree
ensures that the data units cannot be silently displaced or suppressed
by an adversary with physical access to the untrusted medium.

To prevent rollback attacks and ensure that the Merkle tree itself
is fresh, we need to only ensure that the root of the tree is fresh. To
this end, we rely on the secure storage TA and on the RPMB region
present in an eMMC. First, the storage TA generates a new key de-
rived from a unique, device-specific hardware key, which bounds
the data to the CPU. The storage TA uses the new key to generate
a HMAC of the Merkle tree root and writes down this HMAC to the
RPMB. Freshness is preserved by verifying that the HMAC of the
root of the Merkel tree matches the version stored on RPMB.

4.2 Policy Compliance Monitor

To address challenge #2, we present the design of a policy com-
pliance infrastructure that enforces security policies in dynamic,
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heterogeneous cloud environments. The central component of this
infrastructure is the trusted monitor, which abstracts away the pro-
cess of remote attestation of host and storage nodes by acting as their
root of trust. Clients are only required to directly trust the monitor,
and submit queries and associated execution and data policies.

The trusted monitor service runs inside an SGX enclave, either
on the host or on a dedicated server (see Figure 3). To be able to
enforce client policies, the first essential step is to obtain hard proof
about the configuration of the host and storage system nodes. This
proof must ascertain the authenticity and integrity of the software
implementing the host engine and in the storage engine. Along with
the trusted monitor software they (host engine and storage engine)
form IronSafe’s TCB and therefore they cannot be tampered with.
To obtain such a proof, the trusted monitor runs independent remote
attestation protocols with host and storage nodes.

Attestation of the host. Figure 4.a describes the steps during which
the trusted monitor remotely attests the integrity and authenticity
of the software running in the host engine enclave. After establish-
ing a secure channel over TLS (step 1), the trusted monitor issues a
quote request to the host (step 2), who replies with a quote response
(step 3). Then, by checking the quote signature, the trusted monitor
decides whether the configuration of the host is trustworthy. If so,
it generates a public key pair where the public key is certified by
the trusted monitor, and sends this information to the host over the
secure channel (step 4). The public key certificate will be used by the
host to prove to the client that the host has been remotely attested.
If the quote verification fails, then the operation is aborted and the
host is not authorized to serve IronSafe client requests.

Attestation of the storage system. This operation involves the
interaction between the trusted monitor and the attestation TA run-
ning in secure world (see Figure 3). As mentioned in § 4.1, we rely on
a secure boot process to check the storage engine software. The root
of trust for this process is a device-specific, unique key called the root
of trust public key (ROTPK), and the initial boot firmware is present
in tamper proof ROM. This mechanism ensures that only integrity-
protected firmware, signed by trusted parties, will run. The attes-
tation TA leverages this mechanism during the remote attestation
protocol. Figure 4.b describes the steps of this protocol. The trusted
monitor in step (1) requests the certificates from the storage node
and challenges the node to prove its authenticity. In step (2) the TA
obtains the measurement of the software running in normal world,
and step (3) generates a response to the challenge by signing the chal-
lenge with a unique key, derived from the ROTPK. In step (4) the TA
sends the challenge response, the normal world firmware hash, and
the certificate chain generated during secure boot of the storage node.
The trusted monitor then verifies the response to the challenge to de-
termine the authenticity of the storage system. The certificate chain
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is also verified, and on success, the storage node configuration is de-
rived from the certificate chain. Both the configuration data and the
certificate chain are used for policy enforcement as explained next.
Policy-compliant query partitioning. To execute a query while
complying with a user-defined security policy, the client first con-
nects to and attests the host. Once authenticated (by presenting a TLS
certificate), a mutually encrypted channel is created to exchange data
and commands between the actor and IronSafe. The host then sub-
mits the query and associated execution policy to the trusted monitor
service as shown in Figure 5. The policy compliance infrastructure
from Figure 5 shows the host engine working in collaboration with
the trusted monitor to ensure policy compliant query processing.
The host forwards the query and identity of the connecting client to
the monitor, which then checks which of the host and storage nodes
comply with the execution policy. The trusted monitor then checks if
the connected actor has permissions to read and write data by execut-
ing queries. If successful, it sends the list of compliant storage nodes
to a compliant host node, along with a session key that allows the
host to connect securely to the storage node and process the query
as explained in the sections above. The trusted monitor rewrites the
client query to be policy compliant based on the results of the policy
checks. The host decides whether the query is processed across both
the host and storage nodes, or only on the host node or not processed
at all. For the first case, it needs to partition the query into portions
that run on the host and storage nodes respectively, as shown in Fig-
ure 5. If none of the storage nodes comply with the client’s execution
policy then the entire query may be processed on the host node itself.
Once the client request has been completed, the monitor initiates a
session cleanup protocol. This deletes any sensitive information that
is generated during query processing on the host and storage node,
such as temporary tables that are generated by the query engine.
Key management. Once the trusted monitor verifies the authen-
ticity of the hardware and software running on the host and storage
nodes, it provides key management services to the nodes. Specifically,
it manages and distributes the session keys between the host and
storage nodes that is used to create a secure channel for exchanging
queries and data between them. After query processing, the trusted
monitor revokes the session key and initiates the session cleanup.
Proofs of integrity and authenticity. To provide per query proofs
of integrity and authenticity to the client, the trusted monitor signs
the execution environment requirements, as specified in the client’s
execution policy, using its private key provided all nodes in the setup
used for query execution satisfy the requirements. The client verifies
the signed response with the public key of the trusted monitor.
Separation between the host engine and trusted monitor. The
trusted monitor and the host engine run in separate, hardware pro-
tected memory regions. More specifically, the trusted monitor is a
separate entity for scalability, performance and architectural inde-
pendence reasons. However, in practice, the trusted monitor can be



run on the same node as the host engine, but inside a separate en-
clave. We allow the client to connect to the host, instead of the trusted
monitor, to differentiate between operations in the control and data
paths. The client uses the trusted monitor, indirectly via the host,
for control path operations like attestation and policy compliance. It
then connects to the host, in the data path, to exchange queries and
data. By doing so, we clearly divide the functionality between the
host and trusted monitor, and avoid overloading the trusted monitor,
thereby ensuring better scalability and performance.

4.3 Declarative Policy Specification Language

To address challenge #3, we present a declarative policy language that
can be used to specify data access and execution policies concisely.
Policy language predicates. [ronSafe’s policy language allows a
client to concisely specify the execution context associated with the
execution of a query in a split manner, across the host and storage. A
policy in IronSafe is a combination of predicates described in Table 1.
A policy evaluates to true, if and only if all the predicates specified in
the policy evaluate to true. In IronSafe we have two kinds of policies:
data access and data execution policies. Data execution policies are
specified by the client when executing queries. They can be any com-
bination of location and firmware predicates. Data access policies are
created (or updated) by the client that creates the database and tables
in that database. These policies are associated with permissions for
reading or writing on the database or its tables. They are of the form
perm :condition. The condition is a combination of predicates and
evaluates to true only if all predicates evaluate to true. The predi-
cates are joined using either a ’|’, which evaluates to true if any of the
predicates are true, or a’&’, which evaluates to true if and only if both
predicates evaluate to true. An example data access policy is shown
below in which user A can read and user B can write to the database.

read :— sessionKeyIs(Ky)
write :— sessionKeyIs(Kg)
exec :— fwVersionStorage(latest)&fwVersionHost(latest)

More complex policies, that can be used in the real world to adhere
to GDPR rules are described below. The table describes four kinds of
predicates that can be used to compose policies. sessionKeyls enables
a client to derive policies to restrict access, by reading or writing, to
data, only to certain users based on their identity key K. The second
kind of predicates enable a client to run data processing operations on
nodes, host or storage, only if they are located in a region or regions.
The client uses the storageLocls predicate to enforce the offloading of
queries only to storage nodes located in region [. If no nodes satisfy
this property then, as described before, the entire query may be run
on the host node itself. The client uses the hostLocIs predicate to
enforce the running of queries only on host nodes that are located in
a specific region [. Similarly, the client uses the firmware predicates
to enforce processing of queries on nodes that are running software
greater than or equal to a certain version v. The final two predicates
enable a client to specify how their data can be used by an external
entity and record all operations that are performed by that entity.
GDPR anti-pattern use-cases. To show the effectiveness of our
language, we describe GDPR anti-patterns use-cases [109, 116].

(1) Timely deletion of data: GDPR allows data owners to force their
data to be deleted after a certain period of time. However, fast dele-
tion is a hard problem to solve due to data replication across various

Predicate Meaning

Relational predicates
X=y,Xx<y,x<y
X2Yy,X>y

Session predicates

eq(x.y), le(xy), lt(x.y)
ge(x.y), gtxy)

sessionKeyIs(K) Client is authenticated with key K
Location predicates
storageLocIs(l) storage device is located in location 1
hostLocls(l) host is located in location 1
Firmware predicates
fwVersionStorage(v) storage device is running software version v
fwVersionHost(v) host is running software version v

Data predicates
Appends log [ with content ¢
Bitmap bm indicating services with whom data
can be shared

logUpdate(l, c)
reuseMap(bm)

Table 1: IronSafe policy language predicates

storage systems [55]. Hence, IronSafe’s policy language allows provi-
sioning a timestamp, after which data cannot be accessed. As shown
in the data access policy below, only actors A and B, represented by
their respective identity keys, may access the data in the database.
Also, they can access records only if the access time (T) is before
the expiry time (TIMESTAMP) of the record. To enforce this, the
trusted monitor performs two tasks. First, during data creation it
rewrites the insert queries to include an extra column that represents
the expiry time of the record. Secondly, during query processing it
rewrites the query to filter out the expired records i.e., whose expiry
time (TIMESTAMP) is lesser than the access time (T).

read:—sessionKeyls(Kp) | sessionKeyls(Kg) & le(T,TIMESTAMP)

(2) Prevent indiscriminate use of data: GDPR specifies that personal
data collected for a specific purpose cannot be used for anything
else, such as to avoid past violations [53]. To allow this, we introduce
a new predicate, called reuseMap, that allows for opting-in/out to
letting certain data being used for each service individually, as shown
in the example below. The reuseMap predicate stores a bitmap m
that represents the list of services allowed to access the data. The
trusted monitor performs two tasks. First, during insertion of data, it
rewrites the insertion query to include a new column that represents
the reuse map. Secondly, during query processing it converts the
connecting client’s identity into a bitmap, by referring to an internal
database containing mappings between identity keys and positions
in the bitmap. It then rewrites the query to filter out records that do
not want to be included in the processing of the request.

read:—reuseMap(m)

(3) Transparent sharing and reselling of data: GDPR specifies that
data owners have a right to obtain a copy of all personal data that a
controller has collected and has shared with an external party. To
enforce this, IronSafe’s policy language provides a logging predicate
that can be specified on data creation, along with the format of
the data to be logged. For example, in the policy shown below, the
data producer may request that the identity key K and the query
Q submitted by a data consumer, be logged. The trusted monitor is
responsible for logging this information into log 1. At a later point in
time, it is possible to audit whom the data has been shared with by
requesting the trusted monitor for the logged data.

read: —logUpdate(l,(K,Q))



(4) Risk agnostic data processing: Article 5 of GDPR mandates that
personal data should be processed in a fair, lawful and transparent
manner. The controller is responsible for enforcing these require-
ments and demonstrate compliance with all the features. We design
our system to handle secure processing of external queries. To pro-
vide an extra layer of assurances and combat this anti-pattern, the
data producer can combine access policies with access logging. A
data consumer, who has restricted access to the data, can further
specify an execution environment for processing queries using the
exec operation as shown below. In the example policy shown below,
query processing can be performed on the data only by actors A and
B. Moreover, client A or B can specify the execution environment
for processing of queries with the help of location and firmware
predicates. Requests will also be logged by the trusted monitor.

read: —sessionKeyls(Ky) | sessionKeyls(Kg) & logUpdate(l,(K,Q))
exec:—storageLocIs("uk”) | storageLocIs("us”) &
fwVersionHost("latest”) & fwVersionStorage(”latest”)

(5) Data breaches: Article 5 from GDPR requires that the controller
should notify the data owner of any data breaches within 72 hours,
after becoming aware of it. To enforce this property, one can specify
that all requests be logged to a secure, confidentiality and integrity
protected log. The trusted monitor is trusted to operate correctly and
only allows clients with correct permissions to access data. Since
we trust the underlying hardware and rely on the integrity of the
hardware-assisted enclave, we assume that the software running
inside the enclave, query engine and trusted monitor, is protected.
Hence, the logging mechanism cannot be circumvented.

read:—sessionKeyls(Ka) & logU pdate(l,(K,Q))

Enforcement of execution environment. The policy language
is also used by the client to describe and enforce the execution en-
vironment for query processing. This is useful in cases where it is
not necessary to enforce data protection and usage policies such
as GDPR, but it is required to enforce processing of the query in a
secure environment. A client, for example, specifies that the query
must be processed on nodes that are located in a particular region
and running the most up-to-date firmware, as shown below.

exec:—fwVersionHost("latest”) & fwVersionStorage("latest”) &
storageLocIs("uk”) | storageLocIs("us”)

Attribute-based access control. Our example use-cases consider
access control methods that restrict access to the entire database.
However, our query rewriting mechanism also supports attribute-
based access control. In fact, our rewriting mechanism is compatible
with previous work [81] that enforces attribute-based policies based
on a combination of the individual columns in the database.

5 Implementation

We next describe a proof-of-concept implementation of IronSafe.

Query processing system. To showcase the effectiveness of our
approach, we built a CSA-aware query processing system for secure
SQL query processing. The database portion of our system is based
on SQLCipher [114], which is based on SQLite (v 3.31.0) [113]. We
establish two SQLite instances, on the host and on a storage server.
The x86 host query processing system includes an in-memory SQLite
instance, that is kept entirely in the host enclave memory. This in-
memory database operates on a single table, containing records that

are filtered out by the storage system. The storage query process-
ing system runs an on-disk SQLite instance, which executes the
offloaded query (e.g., filtering of records) on the database residing in
the untrusted persistent storage and ships the output (e.g., filtered
outrecords) to the in-memory instance running on the host. The host
query processing system is responsible for splitting an SQL query
into queries that run on the host and the storage system. On the stor-
age system side queries include filters to remove unwanted records,
while the host side queries perform further operations, including
group-bys and aggregations, on the filtered out records.
Heterogeneous confidential computing framework. Regard-
ing protection of volatile state, on the host we use SCONE [22] for
shielding in-memory processing of queries on x86. The trusted mon-
itor, and the host engine runs inside SGX enclaves. SCONE is run
in its default mode with 4 syscall queues and 250 entries per queue.
However, we increase the heap size to its maximum addressable
size, 4 GiB, which is limited by the SGX hardware. On the storage
system, we use OP-TEE [92] version 3.4, a trusted OS for ARM Trust-
Zone, to manage the secure world, alongside ARM Trusted Firmware
(ATF) [19]. These software components along with a few trusted
applications implement the key functionality of secure boot, remote
attestation, and secure storage. The normal world is used for the CSA
runtime and on-disk SQLite instance. Thereby, offloaded queries are
processed in the normal world itself after secure boot. Host and
storage system communicate via a secure TCP connection.
Regarding on-storage data protection, our current implementa-
tion of the secure storage system is tightly coupled with SQLite’s VFS
and page layers. Specifically, it is dependant on the SQLite codec API
to insert a callback at the paging layer, which is invoked whenever
a page is read and written from/to the storage system. We rely on
SQLCipher [114], which depends on OpenSSL version 3.0.0, to en-
crypt each page (4 KiB) in the database individually, using the 256-bit
AES encryption algorithm in the CBC mode. Each page also stores a
random initialization vector (IV) and a message authentication code
(HMAC-SHA512), which is derived from the encrypted page data
and the random IV. We use a Merkle tree containing the hashes of
all pages in the database. We leverage the storage TA to write to the
RPMB region of the eMMC. It uses a 128 bit TA storage key (TASK),
derived from the hardware unique key, present on the device.
Trusted monitor. The trusted monitor provides a unified inter-
face for attestation, key management, and policy compliance. The
trusted monitor internally handles the two heterogeneous (x86 and
ARM) domains via different interfaces. For the host (x86), we lever-
age SCONE’s configuration and attestation service using which the
client can verify the authenticity of the hardware and the software
running inside an enclave on the host. For the storage system we
rely on a trusted application running in the secure world to generate
the integrity signature of the firmware running in the normal world.
Before delivering a query, the trusted monitor runs a policy inter-
preter that is responsible for interpreting client execution policies
and enforcing owner’s access policies. The policy interpreter is im-
plemented entirely in python. The policy is parsed into a python
dictionary that is then used by the monitor to authenticate requests
and enforce data owner defined access policies.
Networking layer. To secure communication between the monitor
and the storage (server or device) along the untrusted channel, we im-
plement a trusted networking layer. Depending on the deployment
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Abbrv. System Split execution
hons Host-only-non-secure No
hos Host-only-secure No
ves Vanilla-CS Yes
scs IronSafe Yes
S0 Storage-only-secure No

Table 2: System configurations and their naming schemes

model, the layer can be configured as: NVMe/PCle, NVMe over fab-
rics (NVMe-oF), or a TCP. For our evaluation, we use TLS over TCP/IP.
The TLS session is created each time a new client request is made, and
is torn down once the client request is complete. A new session key is
used for each session. The monitor and storage system participateina
symmetric key exchange process, to create an encrypted TLS channel.
The sender is responsible for serializing records and the receiver dese-
rializes these records to be added to the in-memory table on the host.

6 Evaluation

6.1 Experimental Setup

Since there is no commercially available CSA platform supporting
fully programmable hardware stack, we build our own CS hardware
infrastructure that includes an SGX-enabled x86 host connected
to a TrustZone-enabled ARM storage server. Specifically, the host
features an Intel CPU with SGX, i.e., Intel Core 19-10900K CPU with
10 cores at 3.7GHz (caches: 32 KiB L1; 256 KiB L2; 20 MiB L3), and
64 GiB of RAM. The I/O devices on the host include an Intel XL710
Ethernet controller dual 40 GbE. The ARM-based storage server is
the Solidrun Clearfog CX LX2K board [43], which supports ARM
TrustZone thanks to the NXP Layerscape LX2160A SoC, a 16-core
ARM Cortex A72 at 2.2GHz (caches: 32 KiB L1; 8 MiB L2), and 32 GiB
of RAM. The I/O devices include a 40 GbE network interface, split into
4x 10 GbE ports at the physical-level, and a Samsung 970 EVO Plus
1 TB NVMe drive (sequential reads up to 3329 MB/s measured with
fio). The host and storage server are connected via a 40 GbE switch.
The host OS is NixOS (kernel 5.11.21), while the storage server runs
a patched version of the Linux kernel, version 5.4.3, with the same
Ubuntu 18.04 —Arm distribution. The storage server additionally
runs the OP-TEE secure OS version 3.4 in the ARM secure-world.

We evaluate our system using 16 out of 22 SQL queries from the
TPC-H benchmark suite [120]. This is because even if queries are
automatically partitioned, the resulting split queries are not suitable
for offloading, similarly to [37, 60, 71].

We run all benchmarks in the five configurations described in Ta-
ble 2. The table describes a total of three baseline configurations: hons
and hos, which run the entire software on the host machine while
connecting via NFS to the storage server, and sos, which runs entirely
on the storage node (with direct attached storage). Note that for fair

comparison we choose NFS among other NAS or SAN technologies
because we measured the same single-thread network bandwidth
(850MB/s) achievable with our IronSafe. The other two configura-
tions run queries among both the host and the storage server (vcs,
scs), using IronSafe without security and with security enabled. For
every benchmark in each configuration we run 10 experiments, we
report the average of the execution time.

6.2 End-to-End System Performance

Methodology. To assess the performance improvements brought
by the NDP execution as well as the possible overheads introduced
by IronSafe we focus on the following experimental configurations:
hons, hos, ves, scs. Specifically, we measure each query execution time
in every configuration, as well as how much data is transferred be-
tween host and storage servers, and the cost of IronSafe’s component.
Results. Figure 6 shows the relative end-to-end performance of
running TPC-H queries in both the non-secure and secure cases.
Similarly to previous works [37, 60, 71], we realized that not all
queries take advantage from vanilla CS processing. Although we
observed up to 11.2X speedup when running a query with vanilla CS
versus host only (hons/vcs), few queries (#6, #13, #16, #18 and #21),
run slower with CS. When switching to secure execution (hos/scs), a
similar trend is observed, up to 23.9x faster, with an average of speed
of 2.3x. In this case #13 shows a slowdown during secure execution.
Next, we analyze our results.

Data movements. Figure 7 shows the reduction in the data ex-
changed between host and storage server when using CSA, this is
calculated as the ratio of the number of pages processed in host
only versus the computational storage— the same graph applies for
the secure and non-secure case. We observe that query speedup is
almost directly correlated with the IO reduction for both secure and
non-secure cases. However, this doesn’t apply to query #21 because
manual partitioning produces a computationally intensive query,
which is not suitable to run on the storage CPU.

Reduced data movements are advantageous in IronSafe, as the
host side application has to exit and enter the enclave fewer times to
fetch data for processing. Entering into and exiting from the enclave
are costly operations. This is the case of query #21 that shows a
slowdown with vanilla CS but a great speedup with IronSafe: the
cost of exiting and entering the enclave is more than the cost of
offloading the compute intensive query to the storage server.
Security overheads. Figure 8 shows the relative cost breakdown
of running each selected TPC-H query with IronSafe. The "ndp"
component in the Figure is equivalent to the cost of Vanilla CS (ves)—
i.e., the non-secure version of CSA. "Other" overhead includes the
cost for channel encryption and instantiation of storage side CS
service, which are negligible. We note that most of the overhead
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Figure 9: Heterogeneous TEE and secure storage overheads.

comes from guaranteeing the freshness of pages read from untrusted
storage. Data transfer of filtered records takes no extra time, as data
is transferred asynchronously between the storage server and host.
Hence, despite the high overheads, mostly due to maintaining data
freshness, IronSafe still performs better than when the application
is run purely on the host in a secure manner.

6.3 Heterogeneous Confidential Computing Framework

To assess the performance impact of running queries using our con-
fidential computing framework, we use three configurations: hos,
scs, and sos, with different input size (databases) and selectivity (fil-
ter). For each of the three configurations, we focus on query 1 from
TPC-H whose filter was tweaked to change selectivity.

o Input size: Figure 9a shows the impact of processing a query, with
a single filter predicate, by varying the data size while keeping the
filter selectivity constant.

o Query selectivity: Figure 9b shows the impact on processing a
query, with a single filter predicate, by varying the filter selectivity
from 10 % to 20 % with a constant data size at a scale factor of 3.

As expected, Figures 9a and 9b, show that the performance of Iron-
Safe (scs) is better than hos and sosin all cases—in these graphs, lower
is better. For hos running in the secure mode, performance drops
due to multiple enclave exit/enter to fetch data from disk and EPC
paging caused due to the limited size of the enclave memory in Intel
SGX, which equals 96 MiB in our setup. The space is taken up by the
Merkle tree required to maintain freshness of data read in from stor-
age medium. Data with scale factors (i.e database size) 3, 4, and 5 take
up 59 MiB, 78 MiB and 98 MiB of the enclave memory. This causes
EPC paging and reduces performance, which is depicted clearly in
Figure 9a. Whereas, in the sos configuration, performance drops

because we need to run complex query operations such as group-by
and aggregations on the storage server itself—with a weaker CPU.

These problems do not arise in IronSafe because of three reasons.
First, the Merkle tree is used to verify the data on the storage sys-
tem itself; this is not limited by the memory size. Secondly, data is
read into the host TEE, after filtering them out, into a single table
in memory. Pages belonging to the table are accessed in a sequential
manner, as the host portion of the query performs a full table scan.
Moreover, the number of pages in memory on the host, on which
the query operates, is less compared to the pure host case, due to
the initial filtering out of data. Hence, the effect of EPC paging is
minimal in IronSafe. Finally, the host in IronSafe is responsible for
running the most compute intensive parts of a query.

6.4 Constrained Resource Evaluation at CSA

To evaluate the constrained resources on the CSA side, we performad-
ditional experiments across the following dimensions using TPC-H
queries: (a) compute cores, (b) memory, (c) storage engine scalability.
(a) Limited compute cores. To understand the effectiveness of
IronSafe when run across a storage server with less compute cores,
we hotplug CPUs on the storage server and run the TPC-H queries for
the following configurations: hos, scs. We vary the number of CPUs
on the storage server with 1, 2, 4, 8 and 16 CPUs. We then measure
the end-to-end query execution time for both the configurations. Fig-
ure 10 shows the relative end-to-end performance of running TPC-H
queries in the secure case(hos and scs) against an increasing number
of CPUs. As shown in the figure, the relative performance generally
improves with increasing number of CPUs on the storage server.
Multiple queries (#2, #3, #4, #5, #7, #10) show speedups even when
there is only 1 CPU available on the storage server as the offloaded
query is not very computationally intensive, i.e., it completes in a
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short period of time compared to the hos configuration. Generally,
as the number of cpus increases from 1 to 4, the performance of the
query execution also increases. This is because the application on the
storage server that is running the offloaded queries is multi-threaded,
and contention for CPU cores between the application threads and
OS services (network and filesystem) reduces as the number of CPU
cores is increased. As expected, query #13 does not perform well as
its offloaded portion does not reduce data movements.

(b) Restricted physical memory. To understand the effectiveness
of IronSafe when run across a storage server with restricted physical
memory, we vary the amount of memory that can be utilised by
the query engine on the storage server from 128 MiB to 2 GiB using
cgroups [40]. We then measure the query execution time of offloaded
TPC-H queries. Figure 11 shows the speedups of each TPC-H query
normalised w.r.t. to query execution on a storage side application
running with only 128 MiB of memory on the storage server. We see
that many offloaded queries (#2, #4, #6, #12, #16, #18) are not memory
intensive and can be run within only 128 MiB of memory. Other
queries (#3, #5, #7, #8, #9, #10, #14, #19, #21) speedup when the mem-
ory available to the storage side application increases to 256 MiB with
no further improvements when the available memory is increased
to 2 GiB. Query #13 offloaded portion performs a memory intensive
join; hence, the performance improves as more memory is available.
(c) Storage side scalability. To assess the query engine scalabil-
ity on the storage server, we run multiple instances of SQLite in
different threads, each operating on its own copy of an encrypted,
integrity and freshness protected database of scale factor 3. We vary
the number of instances as: 1, 2, 4, 8, 16. We then measure the of-
floaded query’s execution time of each instance for TPC-H queries.
Figure 12 shows the cumulative execution times of all queries across
all instances, normalized to a single instance. All queries, except for
query 13, scale linearly with increasing number of instances.

6.5 Secure Storage

To measure the storage system’s security overheads, we run queries
entirely on the storage server (sos configuration). For brevity, we
only show the results for query #2 and #9 in Figure 9c. Query #2
and #9 spend about 70% and 80%, respectively, of their total time
verifying freshness of database pages and about 15% of total time for
decryption of these pages.

The overheads observed are due to the implementation of secure
storage primitives. The responsibility of maintaining confidentiality,
integrity and freshness lies with the database engine running on the
storage server. The database engine decrypts a page each time a page
is read from the untrusted storage. It also checks whether that page
is fresh by traversing the Merkle tree for each read request. Query #9
and #2 request pages for processing, approximately 23M and 200K
times respectively, which account for the high overheads.

Component  Breakdown Time(ms)
Host CAS response 140
TEE 453
Storage server REE 54
Interconnect 42
Total 689

Table 3: Host and storage system attestation breakdown.

GDPR Anti-pattern  Non-secure IronSafe Overhead

#1: Timely deletion 2.3ms 12.8 ms 5.6X
#2: Indiscrimination 1.9 ms 14.8 ms 7.8%
#3: Transparency 3.5ms 16 ms 4.6X
#4: Risk agnostic 7.2 ms 34.9 ms 4.8%
#5: Data breaches 7.1 ms 38.1 ms 5.4%x

Table 4: Policy evaluation overheads for GDPR anti-patterns.

6.6 Policy Compliance Monitor

We consider two scenarios to explain the effectiveness of the trusted
monitor (§ 4.2). In the first scenario, the client has to individually
attest the host and storage node before submitting queries for execu-
tion. In the second, the client attests only the host, running the attes-
tation service, and submits queries as described in section 4.2. In both
scenarios the client executes on the same node as the trusted monitor.

Table 3 shows that when the client attests both the host and the
storage server, it has to spend approximately 690ms, before it can
submit requests to the host. However, using the attestation protocol
described in Section 4.2, by using the trusted monitor to attest the
storage node, the client only needs to authenticate the host, and can
submit a request in 80% less time (140 ms).

6.7 GDPR Anti-Pattern Use-Cases

To gauge the overheads of policy enforcement, we evaluate the GDPR
use cases described in § 4.3. We run the policy interpreter inside
the SGX enclave using SCONE. The log file is stored encrypted and
integrity protected, on untrusted storage, using SCONE fileshield,
which provides transparent file encryption and decryption.

Table 4 shows the absolute execution times of all use cases when
run in a secure and non-secure manner. The table also shows the rel-
ative overheads between the two setups. Use cases #1, #2 and #3 are
relatively faster compared to others, as they only interpret policies
and check them against access and execution constraints. However,
use cases #4 and #5, in addition to interpreting and checking policies,
update the log with the query, identity and time it was issued. The
log’s integrity and confidentiality is protected by SCONE fileshield.

6.8 Summary of Results

IronSafe enables a 2.3% speedup on average for query execution of
most TPC-H queries, while also ensuring that the confidentiality,
integrity and freshness of query execution is preserved. It does so by
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run within a secure environment.

ensuring that the reduction in IO between the host and storage node
isreduced by 2.1X on average, while incurring reasonable overheads
as shown in Figure 8. Additionally, we also show that IronSafe can be
run, with speedup in query execution, across storage nodes with less
compute and memory as shown in Figures 10 and 11 respectively.

7 Related Work

Confidential computing. We mainly focus on ARM TrustZone
and Intel SGX TEE:s for confidential computing [14, 25, 57, 64]. Trust-
Zone is used in several workflows [95], including monitoring kernel
integrity [23], maintaining secrets [129], managing cryptographic
material [79], trusted language runtimes [105], or remote hardware
management [34]. Likewise, Intel SGX has been extensively used to
support many applications [22, 30, 42], including Web search [83],
storage systems [26, 119], distributed systems [121], FaaS [123], net-
working [97, 119, 122], machine learning [90, 100], and data analytics
systems [76, 108, 130]. Similarly, IronSafe enables heterogeneous
TEEs to interoperate, such as HETEE [131] and Graviton [127]. In
contrast, we present the first heterogeneous confidential computing
framework for CSA.
Secure query processing systems. Multiple secure storage and
query processing systems have been proposed based on different
TEEs, varying security guarantees, and storage interfaces [12, 12,
27, 32, 70, 73]. Secure query processing systems [94, 98, 124] de-
scribe approaches to execute queries directly on encrypted data,
and propose various encryption schemes to make this possible. En-
claveDB [99] presents the design of an in-memory database running
inside an SGX enclave. There exist work in secure query processing
on privacy-preserving analytics [49, 72, 80, 86], oblivious query pro-
cessing [45, 83, 96], secure MPC [126]. In contrast, lronSafe strives
to ensure the security of data in transit, at rest, and processing across
heterogeneous computational domains, enforcing access policies.
Database access control prevents access from unauthorized par-
ties to the database, and is essential. In [11, 77] data access control is
enforced by the data owner, at the granularity of a tuple, by introduc-
ing access policies at the data cell-level. Other methods include query
rewriting techniques [62, 84], extensions to SQL language [41], use
authorization views [103], and query control [110]. Similarly, in Iron-
Safe we let the user specify data access policies which are enforced,
later, by rewriting queries to restrict access to data on a per tuple basis.

Policy language and compliance. Several policy languages can
be used to restrict access to data and execution of queries [31, 51,
52,73, 81, 81]. IronSafe presents a new declarative policy language
that allows users to describe data access and execution policies. Re-
cent efforts [48, 54, 67, 73-75, 81, 82, 125] enable clients to describe
policies in a declarative language, a thin software layer at the object,
file or query level ensures policy compliance data access. Further,
attestation systems [58, 107] provide for fast and scalable attestation.
IronSafe builds upon prior work to create a unified abstraction to
attest and policy compliance across the heterogeneous CSA.

8 Conclusion

We present IronSafe, a design approach for building a secure, policy-
compliant, and high-performance query processing infrastructure
for untrusted clouds. To achieve these goals, our work underpins on
three main contributions: (1) a heterogeneous confidential comput-
ing framework and associated secure storage; (2) a policy compliance
monitor to provide a unified attestation and enforcement interface;
and (3) a declarative policy compliance language to concisely express
arich set of polices. We have built the end-to-end query analytics
infrastructure that exposes a declarative (SQL) query and associ-
ated execution policy interface. Our evaluation using the GDPR
anti-patterns and TPC-H SQL benchmark queries shows reasonable
overheads, while providing strong security and policy-compliance.
Limitations. While we rely on a simple query partitioning strategy
by adapting the MySQL partitioner with simple heuristics, a generic
query partitioning framework for CSA is beyond the scope of this
work and been actively investigated. As part of the future work, we
plan to build on the advancements in databases [13, 60] to design a
compiler that automatically partitions queries between the host and
storage systems, while considering TEEs’ architectural limitations.
Software artifact. Werelease IronSafe as an open-source project [44].
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