Chair of Decentralized Systems Engineering m
Department of Informatics

Severity-analysis of data races in the
Linux kernel

General information

Advisor Dr. Marco Elver (Google) & Prof. Pramod Bhatotia (TUM)
Email elver@google.com, pramod.bhatotia@in.tum.de
Date 06.12.2021
Master / Bachelor [Guided Research
Description Shared-memory multiprocessors are ubiquitous today. Yet, writing

efficient parallel programs to exploit modern CPUs remains challenging.
Over the past decades, a plethora of work in programming languages,
compilers, and computer architecture aim to provide efficient
abstractions to best utilize our parallel hardware. One of the most
important abstractions is the memory consistency model, which formally

specifies the behavior of the memory system, and is used by
programmers to reason about concurrent programs. For instance, recent
versions of C/C++ have received a formal memory model since C11/C++11.

Crucially, such language-level memory models guarantee sequential
consistency for programs without data races. The presence of data races,
however, introduces undefined behaviour: data races occur when there
are concurrent conflicting accesses from multiple threads, at least one of
which is a plain (unmarked, non-atomic) access; accesses conflict if they
all access the same memory location and at least one performs a write.

Prof. Pramod Bhatotia in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
http://doi.ieeecomputersociety.org/10.1109/2.546611
https://www.hpl.hp.com/techreports/2008/HPL-2008-56.pdf
https://www.hpl.hp.com/techreports/2008/HPL-2008-56.pdf
https://www.in.tum.de/dse/home/

Chair of Decentralized Systems Engineering
Department of Informatics

Prof. Pramod Bhatotia

The main reason data races are undefined behaviour is so that compilers
can still apply optimizations to code that would not change its behaviour
in non-concurrent execution. Modern compilers, however, can apply a
plethora of optimizations that would break concurrent code in the

presence of data races.

For various reasons, certain programs contain deliberate data races,
often called "benign data races". Programmers must make several
assumptions in such cases, and reasoning properly about their code also
becomes significantly harder. For one, rather than undefined behaviour,
it must be assumed that the behaviour is implementation defined.
Second, the code must be tolerant to all possible values that data-racy
reads could return. In general, this approach should not be advocated,
but may be required for several reasons: one of the most frequently
stated reasons is performance, but usually due to a lack of suitable
abstractions and no reasonable way to introduce them. The Linux kernel
is one such project where this kind of reasoning is pervasive.

The Linux kernel also has its own memory model, the Linux-kernel
Memory Consistency Model (LKMM) (also see this paper), which defines

data races similarly to the C11/C++11 memory models. In the strictest
sense, the LKMM also makes no prediction about data races, i.e. they are
undefined.

Yet, data races are still pervasive throughout the Linux kernel. This was
first demonstrated by the introduction of the Kernel Concurrency
Sanitizer (KCSAN), a data race detector for the Linux kernel.
Development of KCSAN also highlighted that data races in the Linux
kernel are not going anywhere, by means of a new marking

"data_race(<expr>)", to indicate the data race is intentional.

Marking of all racy accesses with appropriate primitives—such as
READ_ONCE(), WRITE_ONCE(), or others, but also data_race()—is an
ongoing process. For the time being, however, KCSAN still finds
hundreds of data races in the Linux kernel.

in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://lwn.net/Articles/793253/
https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Boehm.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://hal.inria.fr/hal-01873636/document
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt#n1922
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt#n1922
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://www.in.tum.de/dse/home/

Chair of Decentralized Systems Engineering m
Department of Informatics

Prof. Pramod Bhatotia

To be more precise, often the existence of a data race is merely a
symptom of a bigger issue. The existence of a data race may point out
the following concurrency bugs:

A. Miscompilation may cause bugs, however, failure with current
compilers is unlikely—these are usually called "benign". Merely
marking the accesses appropriately is sufficient. Finding a failure
requires a miscompilation. Requires no fundamental changes in
program logic to fix.

B. Race-condition bugs where the bug manifests as a data race.
Simply marking the accesses does not fix the problem. The fix
requires more invasive changes to program logic (for example
adding required locking).

The Linux kernel has too much of type (A), which means bugs of type (B)
are drowned out by (A). By default, kernel developers consider bugs of
type (A) very low priority, which means the status quo only changes very
slowly.

Which data races should developers focus on? One outcome of this
project is a tool to help developers prioritize data races as reported by
KCSAN, or even those already marked data_race(), if the tool determines
a data race can lead to a misbehaving kernel. One data race may be more
severe than another, and appropriate severity signals need to be
identified (for example a kernel crash).

One notable related work is SyzScope, which analyses severity of certain
bug reports of Linux kernels fuzzed by Syzkaller. Unfortunately, they
acknowledge that they "[...] exclude the ones detected by KCSAN [...]
because they [...] do not have any valid reproducers".

As far as we are aware, no tools exist to analyze the severity of data
races, which in part is due to most development communities
acknowledging that the mere existence of a data race is a bug. Certain
projects, however, have requirements that mean data races can be

in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://www.usenix.org/system/files/sec22summer_zou.pdf
https://github.com/google/syzkaller
https://www.in.tum.de/dse/home/

Chair of Decentralized Systems Engineering
Department of Informatics

tolerated. This philosophy is a double-edged sword, as developers are
too easily blinded by how a simple data race points out a much bigger
issue. Having a tool to demonstrate the severity of data races would
help developers focus on high-impact issues, rather than ignoring all of
them.

Possible approaches (from easiest to hardest):

1. Simulate miscompilations dynamically: inserting instrumentation
that changes the values read or written on an observed data race
(with help from KCSAN). Subsequently, being able to attribute
kernel errors to that data race to determine severity.

2. Simulate miscompilations symbolically: given a concrete system
state on a data race, turn a subset of that state most likely
affected by the data race into symbolic values, and symbolically
execute. Error conditions need to be identified, so that a solver
can identify path-conditions leading to such errors.

3. Otherwise statically analyze the severity of a data race from
existing KCSAN reports only.

Keywords concurrency, memory consistency models, formal methods, compilers,
operating systems, open source, Linux, software engineering

Concrete outcomes
1. Analysis of potential solutions, together with survey of relevant
literature.
2. Definition of failure states following data races, used to classify
data races "high-severity" (or additional levels of severity).
3. Design & implementation of a tool that can automatically classify
data races.
4. Evaluation.
Bonus points
5. Reporting "enhanced" (vs. what KCSAN provides) data race
reports to upstream developers.
6. Preparation (with intent to publish) of a paper resulting from this
work.

Prerequisites Compulsory

Prof. Pramod Bhatotia in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://www.in.tum.de/dse/home/

Chair of Decentralized Systems Engineering m
Department of Informatics

Knowledge of C or C++.
Familiar with basic concurrency concepts in C11 or C++11.

e Taken a course on formal methods or programming language
semantics.

Preferred

e Knowledge of compiler-based dynamic analysis tools.

e Knowledge of static analysis techniques.

e Linux-kernel development.

References 1. https://lwn.net/Articles/816850
2. h :/lwww.kernel.or html/l v-tools/kcsan.html

3. https://www.usenix.org/system/files/sec22summer_zou.pdf

Application process Please send an email to the advisor including the following:

e Email subject: “Thesis application (DSE)”

o (CV

e A copy of your transcript(s)

e A motivation statement, please include samples of your work
that you are proud of (e.g., major projects, open-source
contributions, Github page, etc.) and/or writing samples (e.g.,
your technical blog, project reports, etc.)

Prof. Pramod Bhatotia in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://lwn.net/Articles/816850/
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.usenix.org/system/files/sec22summer_zou.pdf
https://www.in.tum.de/dse/home/

