
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Shared Log with Persistent Memory and
eRPC

Vincent Picking

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Shared Log with Persistent Memory and
eRPC

Verteilter Log mit persistentem Speicher
und eRPC

Author: Vincent Picking
Supervisor: Prof. Dr. Pramod Bhatotia
Advisor: Dimitra Giantsidi
Submission Date: 15.11.2021

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.11.2021 Vincent Picking

V. Pishin

Acknowledgments

This thesis would not have been possible without the incredible support of my
surroundings. First and foremost, I would like to thank my advisor Dimitra Giantsidi
for her valuable advice and continuous support during the last months. Without her
expertise, guidance, patience during our numerous meetings this thesis would not have
been possible.

Further, I would like to thank Prof. Dr. Pramod Bhatotia who has put his trust in me
and always had an open ear regardless of the problem.

A special thanks goes to Helma Schneider and Sophia Adelmeier for their continu-
ously support throughout the years I have worked at the chair.

Most importantly, non of this would have been possible without the support of my
family and friends over the past years. Especially, I want to express my gratitude to my
parents Marion and Andreas for always having my back. Additionally, a special thanks
goes to Matthias Linhuber, Sandesh Sharma, Paul Heidekrüger, Robert Jandow, Nikolai
Madlener, Florian Angermeir, Daniel Bücheler and Marcel Ganß. Thank you for your
valuable discussion, laughs and friendship over the years.

Lastly, I’m beyond grateful for having a wonderful partner at my side, Raffaela
Böswald, who supported me anytime, anywhere, and kept me sane.

Abstract

Shared logs are one of the basic building blocks of distributed systems. They are used
in system like Kafka [1], Amazon Aurora [2] or LogDevice [3]. The increased popularity
of shared logs in the last decade is due to their offered simplicity and properties
like Strong Consistency. They order events received from multiple clients, replicate
them across multiple servers and make them accessible. Therefore, a shared log can
drastically decrease complexity for the system built on top. As it is a core building
block, the shared log needs to be as performant as possible. In recent years there have
been advancements in the fields of networking, Persistent Memory, and multi-core
processors. The open question is how these advancements can be leveraged in a
shared log system. We designed and implemented Ikaria, a highly parallelized shared
log with CRAQ as a replication algorithm. Ikaria makes use of asynchronous user-
space networking and builds upon Persistent Memory, which offers byte-addressable
access, persistent data storage, and performance close to volatile memory. Our results
show that Ikaria offers high throughput for read-heavy workloads. Furthermore, we
demonstrate that Ikaria scales well with an increasing number of servers, threads, and
different log entry sizes compared to the original Chain Replication protocol.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3
2.1 Persistent Memory . 3

2.1.1 Persistent Memory Development Kit 4
2.1.2 Emulating Persistent Memory . 4

2.2 Modern Networking . 5
2.2.1 Remote Direct Memory Access . 5
2.2.2 Data Plane Development Kit . 6
2.2.3 Remote Procedure Calls . 7

2.3 Replication Protocols . 7
2.3.1 Consistency Models . 7
2.3.2 Chain Replication . 8
2.3.3 Chain Replication with Apportioned Queries 9

3 Design 10
3.1 Ikaria API . 10
3.2 System Design . 10

3.2.1 Network Layer . 12
3.2.2 Replication Layer . 13
3.2.3 Log Layer . 19

3.3 Failure Recovery . 22

4 Implementation 24
4.1 Network Layer . 24
4.2 Replication Layer . 25
4.3 Log Layer . 26

4.3.1 PMDK . 26
4.3.2 Log Abstraction . 27

v

Contents

4.4 Bootstrap and Teardown . 28
4.5 Multi-Threading . 28

5 Evaluation 31
5.1 Experimental Setup . 31
5.2 Chain Saturation . 33
5.3 Operation Throughput . 35
5.4 Tail Reading . 39
5.5 Scalability . 41

6 Related Work 44

7 Conclusion 47
7.1 Summary . 47
7.2 Future Work . 48
7.3 Threats to Validity . 48

List of Figures 50

Bibliography 51

vi

1 Introduction

Nowadays, most modern computer systems consist of several independently running
servers that appear as a single service from the client’s perspective: a distributed
system [4, p. 2]. A distributed system can enable higher performance, scalability,
and availability compared to a single server system. Unfortunately, this comes at the
cost of increased complexity. The question arises of how to achieve a consistent state
on all servers within the system. Distributed systems like ZooKeeper or databases
implement individual solutions to generate a consensus between the different servers
and manage their distributed state [5]. However, this results in complex systems which
are challenging to instantiate and maintain.

A proposed solution for this problem is to build the system on top of a shared log
abstraction. A log is one of the most basic data structures since it is only an array of
entries consisting of several bytes. New entries are appended sequentially at the end of
the log, so already written entries cannot be updated. When the log is shared, multiple
clients can access it by reading and appending log entries [6]. Since the sequential
log entry number totally orders the log entries, it defines its own logical time, where
smaller entries occurred earlier than higher ones. Having such a logical time all servers
can refer to is essential for a distributed system [7]. Therefore, a shared log solves
the problem of ordering entries and replicating them across multiple machines. It
can be used to solve the consensus problem, where different machines try to reach an
agreement on certain values [6]. As a consequence, the log can be seen as a chain of
decisions.

The given properties provided by the shared log make it possible to simplify the
software running on top. Therefore, a shared log is at the core of available open-source
systems like Kafka [1] or BookKeeper [8]. Another example would be Facebook which
made an effort in the recent years to build Delos. This is a database which runs upon
a shared log abstraction [5, 9]. Furthermore, Balakrishnan et al. [10] showed in their
work that it is possible to implement existing systems like ZooKeeper [11] on top of
a shared log with only one thousand lines of code. This is a lot less than the original
implementation and drastically simplifies the system. Due to the rising popularity of
the shared log abstractions, an increasing amount of shared log services like Google
Pub/Sub [12] or AlibabaMQ [13] are offered by cloud providers [14].

1

1 Introduction

A vital performance boundary for any shared log is that the entries must be persistent
on a storage device. So in the case of a server failure, all entries are stored, and no entry
is lost. Developers only had access to two types of storage for the last decades: volatile,
fast memory, and solid, slow storage. Therefore, existing shared logs [6, 14, 15] are
build on top of Solid-Sate-Drives (SSDs). SSDs provide higher performance than the
older Hard-Disk-Drive (HDD), but they still suffer from a high I/O latency compared to
memory. Through the technological advancements in the field of Non-Volatile Memory
(NVM), mostly known as Persistent Memory (PM), there is now a third type of storage
that offers performance close to memory, but persistent data storage. The first actual
PM hardware module was released by intel [16] in 2019. The question comes up for
what kind of systems PM is relevant and could bring performance boosts. Besides
the long-awaited release of Persistent Memory hardware, interesting advancements in
the networking area have also been made. Namely, user-space networking is on the
advance and promises fast packet processing [17, 18]. This thesis, therefore, investigates
how to leverage these new advancements. To do so, two main research questions are
examined in the following chapters:

• How to design a shared log with the recent advancements in networking and
Persistent Memory?

• How to design a highly parallelized shared log that offers high throughput for
read-heavy workloads?

Our contributions are the design and evaluation of Ikaria, a highly parallelized shared
log system that makes use of modern networking and Persistent Memory, providing
Strong Consistency.

This thesis is organized into seven further chapters. In chapter 2 we give a short
overview of Persistent Memory, modern networking, and replication protocols. After-
ward, we describe the design of our shared log Ikaria in chapter 3, with its API, single
components, consistency models, and failure recovery. In chapter 4 the actual imple-
mentation of the shared log is presented and described in detail. We evaluate Ikaria in
chapter 5, where we describe the experimental setup and present benchmark results.
In chapter 6 other shared logs are presented and classified, CORFU, Scalog, Fuzzylog,
Delos and Tango. We conclude the thesis in chapter 7 and open up possibilities for
future work.

2

2 Background

This chapter describes hardware and software technologies that are referred to and
used in this thesis. Furthermore, important theoretical concepts are introduced. Besides
Persistent Memory and modern network technologies, we give a short overview of
replication protocols, particularly chain replication and CRAQ.

2.1 Persistent Memory

Persistent Memory, or Non-Volatile Memory, is a new hardware class that can be
classified between volatile memory and block-based storage (e.g. SSD, HDD). It
provides persistent storage, byte-addressability, and latency which is close to Dynamic
Random Access Memory (DRAM) while offering a lower cost-per-bit [19–21]. The byte-
addressability opens up an advantage, especially when reading/writing small amounts
of data. Compared to SSDs, for which commonly the smallest native read/write block
is 4 kB, this can give performance and latency boosts [22, p. 6]. Similar to DRAM,
PM is connected to the memory bus and therefore accessible for the CPU over its
memory controller [23]. The only commercial available PM at the moment is the Intel
Optane Persistent Memory module [16]. This Optane PM module can be used in two
different operation modes [24, 25]. When using the Memory Mode, it is transparent for
applications and can be used like standard volatile memory. Since this mode is not
of particular interest for shared log applications, this thesis will focus on the second
mode. In the App Direct Mode, the PM is accessed through a PM-aware file system (e.g.
ext4, xfs, NTFS) [26] with the direct access extension (DAX) [23, 27] enabled. Usually,
when accessing block-devices, the device pages are cached in the memory for faster
access. For PM, this would include an unnecessary copy from DRAM to PM. Since
PM offers a close to DRAM latency, the page cache should be avoided by enabling the
DAX feature. Another advantage of circumventing the page cache is to eliminate the
use of the kernel I/O system out of the data path [26]. There are two issues that have
to be taken into consideration when working with PM hardware currently available,
especially in the case of a system failure. First, the current hardware only supports
atomic updates for values up to 8 B [28, p. 56]. Second, when cache lines are written
back to the PM module, the correct write order is not guaranteed [23, p. 20]. When the
writing process is interrupted by a system failure, it could lead to an inconsistent state.

3

2 Background

2.1.1 Persistent Memory Development Kit

Intel introduced the Persistent Memory Development Kit (PMDK) in 2014, which is
a collection of libraries and tools to help developers leverage PM [29]. The PMDK
includes libraries for volatile and persistent use, but we are focusing on the persistent
libraries in this thesis. These libraries automatically detect whether the underlying
hardware is PM or another storage type and if the Operating System (OS) and CPU
support PM. They use the correct persistence methods and make use of other platform
depending optimizations (e.g. DAX, specific CPU operations) [23]. The libpmem library
[30] is the basis for all persistent PMDK libraries. It provides low-level access to PM
by abstracting away hardware tasks like cache flushing [31]. For this project especially
important is the libpmemlog library [32] which offers functionality for managing a
PM-resident log file namely PMEMlogpool is particularly relevant. This file consists of a
header for metadata and is mapped continuously in the application’s virtual address
space [32].

2.1.2 Emulating Persistent Memory

Up until now, obtaining PM hardware has been a problem. Hence, finding the best way
to do research and still have representative evaluations is a reoccurring question. There
have been attempts to emulate PM e.g. by adding artificial memory access latency
[33, 34] or by software emulations [35, 36]. As Yang et al. [25] show, there are several
specific hardware characteristics of the Optane PM module which make emulating quite
tricky. First, they confirm the Intel-provided bandwidth measurements [37]. They show
that the module performs very differently when accessing sequentially or randomly.
Intel states that for sequential/random read accesses the bandwidth is 7.6 GB/s and
2.4 GB/s, respectively, whereas for sequential/random write access the bandwidth is
2.3 GB/s and 0.5 GB/s, respectively [37, p. 350]. Second, the access granularity for the
Optane PM module is 256 B [16], which means that smaller random accesses are less
efficient. Furthermore, accesses which are a multiple of 256 B are more efficient. Like
SSDs or DRAM, the PM module has a controller which performs tasks like bad-block
management, wear-leveling, and write-buffering. Due to the internal controller’s write
buffer size of 16 kB, random writes which are having this access locality are performing
better. Another difference to DRAM is that accessing the Optane PM with multiple
concurrent threads leads to contention at the internal controller buffer and the memory
controller buffer, which leads to a performance drop. These hardware characteristics,
which Yang et al. [25] present in their work, have not been considered in the currently
used emulator techniques. [25]

4

2 Background

2.2 Modern Networking

Alongside the availability of low latency and high bandwidth PM, datacenter network-
ing evolved in the past decades. Possible network data rates experienced a rise to
up to 100 Gbit/s throughput nowadays and are assumed to reach 200 Gbit/s in the
foreseeable future [19, 38]. For providing and leveraging these theoretical possible net-
work speeds, there has been a focused development in specialized hardware-software
co-designed technology like Remote Direct Memory Access (RDMA) [38, 39], Field Pro-
grammable Gate Arrays (FPGAs) [40], or programmable switches [41]. The traditional
kernel-based TCP/IP network stack cannot provide the needed performance anymore
for several reasons. Firstly, context switches between user and kernel space are too
expensive [17, 18]. Secondly, there is a copy overhead since the received data must
be copied from the kernel buffer to the application buffer [18]. Cai et al. [18] recently
provided a detailed analysis of the network stack overheads. These problems are the
reason why user-space networking is on the advance with, for example, the previously
mentioned RDMA and the Data Plane Development Kit (DPDK) [42].

2.2.1 Remote Direct Memory Access

The general idea behind RDMA is to separate data movement overhead from data
processing and to relieve the strain on the CPU. As the name indicates, RDMA enables
a machine to manipulate data in another’s machine DRAM over the network while
bypassing the remote CPU [21]. RDMA provides lower latency and higher bandwidth
by keeping the connection state and coordination between the two (or more) machines
in the Network Interface Card (NIC). Due to this fact, RDMA can not only bypass the
remote CPU, but there is also no need for an application to use the OS kernel-based
network stack [21]. Since the connection state is kept in the NIC, special hardware
called RDMA network interface cards (RNICs) is required. At the moment, RDMA
is natively supported by fabrics like Infiniband or Cray Aries, which are commonly
used in high-performance data centers [43]. For the ethernet fabric, there is RDMA
over converged Ethernet (RoCE), which implements RDMA in existing Ethernet-based
data centers by wrapping an Infiniband packet in an ethernet packet [39]. There are
two classes of RDMA-Operations: one-sided and two-sided operations. When using
one-sided operations like read/write, the client process is handling everything and
manipulates the remote memory without the remote CPU involved. In two-sided
operations namely send/receive the CPUs of both machines are involved [43]. When
performing an RDMA-write request, the local RNIC copies the data to the remote RNIC
buffer. From there, the remote RNIC’s Direct Memory Access (DMA) engine will write
the data over the PCI bus to the L3 cache bus or directly to the memory controller,

5

2 Background

depending on the system [20]. Since RDMA has been designed for volatile memory
in the first place, several challenges arise, especially with data durability, when using
it with PM [19]. One problem occurs when data is sent to another machine, it is not
guaranteed that the data is persisted once the RDMA-write completes [19]. It could
still be in one of the buffers (e.g. RNIC-DMA engine buffer, L3 cache etc.) in the data
transport chain on the remote host. Proposed solutions for this problem are sending a
read-after-write request or performing an explicit cache flush when the data is in the
L3 cache. These approaches sacrifice latency and performance [19].

Figure 2.1: RDMA read/write data flow. This figure is inspired by the Intel RDMA PM
documentation [44].

2.2.2 Data Plane Development Kit

The DPDK is an open-source project started by Intel that provides several data plane
libraries and user-space poll-mode network drivers (PMDs). When the NIC receives
new data, it does not send an interrupt to inform the CPU as in the currently used
kernel network stack. Instead of this, it just copies the data directly via DMA into
the memory [42]. The PMDs must now poll to get the received data which is more
efficient than the interrupt-based approach [18, 42]. DPDK implements efficient data
structures to fulfill tasks that were usually done by the kernel network, like a zero-copy
and lock-free Rx/Tx ring buffer or hugepage-backed memory pools. Therefore DPDK
enables to perform the whole network processing asynchronously and efficiently in the
user-space [42, 45, 46].

6

2 Background

2.2.3 Remote Procedure Calls

With a Remote Procedure Call (RPC), a local process can trigger a procedure on a
remote host. Since this procedure may include any control flow, it is much more
versatile than a single RDMA request [43]. As an asynchronous general-purpose RPC
library, eRPC [47] tries to close the rising gap between sacrificing performance and
generality. It is a polling-based end-to-end solution that builds upon existing transport
layer protocols like RDMA, DPDK, or RoCE. Because these protocols do not offer
reliable packet I/O, eRPC comes with packet loss handling and congestion control.
Latencies are comparable to native RDMA. For example, an eRPC call has a median
latency of 2.1 µs compared to 1.9 µs with an RDMA-read on an Infiniband fabric [41].
When transferring large messages, eRPC sends with a bandwidth of up to 75 Gbit/s.
Every application thread creates an RPC object with a unique id, with which they can
establish one-to-one connections between each other and enqueue/receive requests. For
each request, a request and response hugepage-backed DMA-capable memory buffer,
called MsgBuffer, has to be allocated in which the data is written. These two buffers
belong to one request and cannot be reused in another request [41].

2.3 Replication Protocols

The high availability and performance of online services are critical requirements for
most companies. Since a single server can fail unexpectedly, data or full services are
replicated to stay available even when one server fails. After replication of the data,
every server can answer queries for this object in some replication protocols, increasing
the service’s overall performance. Gavrielatos et al. [48] differentiate replication proto-
cols whether they work in a centralized or decentralized manner. Centralized protocols
incorporate a dedicated leader node that serializes requests like in chain replication
(CR) [49]. For protocols working in a decentralized manner, all nodes need to reach an
agreement over the total order. Further, Gavrielatos et al. subdivide protocols if they
imply a total order over all requests for all keys, or in our case, multiple logs, (e.g. Raft
[50]) or only imply an order over the requests per-key, or a single log, like CR [49] [48].

2.3.1 Consistency Models

A consistency model specifies which guarantees and assumptions a system offers when
a user interacts with it through requests [51, p. 2]. It is essential to know for a user
if read data could be stale or is guaranteed to be up to date. Various consistency
models exist, which can be ranked by how strict the provided guarantees are. Strong
Consistency, namely Linearizability or Sequential Consistency, herby means that the

7

2 Background

replication system is transparent for an accessing application, so it cannot differentiate
between one server and a replicated multi-server system [51, p. 4]. All requests have to
be executed in a total order consistent with the clients’ request orders. Linearizability
is even more strict than Sequential Consistency by demanding that a request must
take effect before it completes [48]. Due to this offered transparency, even if Strong
Consistency is not needed explicitly, a storage layer that provides this consistency level
enables overlying layers a more straightforward way of working with the storage [49].
Implied by the CAP theorem [52] a stricter consistency model could mean a higher
latency for finishing a request, performance penalties and under certain system failures
lower availability guarantees [53] [51, p. 10]. For systems that prioritize high availability
or low latency, a weak consistency guarantee that does not assure returning the most
up-to-date value is sufficient. Eventual Consistency is a weak consistency guarantee,
but since it provides low latency and availability even in the case of network partitions,
applications are leveraging this approach (e.g. DynamoDB [54]) [51]. If the system
does not receive any new updates, Eventual Consistency assures that all replicas will
eventually converge to the same state. This is why queries can return stale data, or
messages can get lost due to a system failure or network partition. Eventual Consistency
is therefore more of a liveness guarantee instead of a safety one [53] [51, p. 12].

2.3.2 Chain Replication

Chain Replication (CR) is a simple replication protocol that provides Strong Consistency,
more specific Linearizability [48] while offering thread scalability and maintaining high
throughput and low latency [49]. It is a special case of the primary/backup replication
protocol (also known as passive replication) [55] in which the primary node sends
write-requests to all backup nodes, waits for their acknowledgments, and then returns
to the client while doing local reads for read-requests. In the CR protocol, all nodes are
connected in a chain of length c, in which the first node is the head node, and the last
node is the tail node. Compared to the primary/backup replication, not every node
has a connection with the leader (primary) node. Between head and tail, there can
be several middle nodes. Therefore, the replication factor depends on c. For a new
entry to be replicated, it must traverse the whole chain from head to tail. CR offers a
better load-balancing and throughput than the naive primary/backup replication since
read/write requests go to the head or tail node, respectively. Therefore the leader’s
node responsibilities are split between these two nodes. One limitation of the CR is
that only the tail node may answer read-requests [49].

8

2 Background

2.3.3 Chain Replication with Apportioned Queries

Chain Replication with Apportioned Queries (CRAQ) [56] tries to solve those previously
mentioned limitations of CR by enabling every node to do local reads. This is done by
adding a state to each entry which represents if the entry has already been committed.
In the case of CR, that is when the entry has been replicated on the tail node. The
tail node sends a message backward through the chain, so all nodes know that the
entry is committed and set the state, respectively. This enables the node to answer read
requests for this entry by reading locally. As Gavrielatos et al. [48] show, local reads do
improve the overall performance through load-balancing read-requests over all nodes in
the chain. In read-heavy workloads, most of the entries will be clean and served by
all nodes locally. Therefore, the throughput will increase linearly with the size of c. In
write-heavy workloads, the performance remains at least the same [56].

9

3 Design

In this chapter, we introduce Ikaria, an append-only shared log designed for read-heavy
workloads and intra-datacenter deployments which incorporates the CRAQ replication
protocol [56]. The system consists of multiple servers (referred to as nodes), where
the log is replicated. The actual log is stored on Persistent Memory on every server to
leverage the low latency and high bandwidth. Further, Ikaria makes use of user-space
networking by using the eRPC network library [47].

The following sections present the API of Ikaria, give an overview of the overall design,
describe the different system components in detail, explain the provided consistency
models and the failure recovery.

3.1 Ikaria API

A client can access Ikaria with the for logs essential operations:

• append(data) ! logPosition : The append-request adds new data to the end of
the log and returns the associated logPosition for later accessing the log entry
again.

• read(logPosition) ! data : The read-request returns for a given logPosition the
associated data.

Clients can interact with the log by sending read-requests to every node in the chain
and append-requests to the head node. The append operation only returns after the
data has been committed, which means the data has been replicated on all nodes
and therefore provides Strong Consistency. Ikaria offers two different consistency
levels for the read-request: Strong Consistency and Eventual Consistency. The provided
consistency models are described in more detail in subsection 3.2.2.

3.2 System Design

Our System is based on the layered architecture style [57]. Ikaria is divided into the
following three layers:

10

3 Design

• Log Layer

• Replication Layer

• Network Layer

We designed our log with a layered structure since flexibility and adaptability have
been a design goal. It makes it easy to use another replication algorithm or another
networking library on top of the application. In Figure 3.1 a system overview of Ikaria
is given. As a storage medium, we use Persistent Memory. We designed our log to use
continuous persistent address space to store and retrieve log entries. The Log Layer
offers an abstraction for persisting and retrieving such log entries. The Replication
Layer manages the log consistency and provides interfaces for the Network Layer and
the Log Layer. As we use CRAQ as a replication algorithm that is based on CR, all
nodes need to be connected in a chain. Therefore, the Network Layer establishes the
connection with the other nodes: the predecessor node, the successor node, and the tail
node. It is also responsible for receiving and sending messages via the network library
eRPC [47].

Figure 3.1: Ikaria System Overview

11

3 Design

A more detailed figure of the software architecture of Ikaria is shown in Figure 3.2.
As explained before, we incorporate a layered architecture for our software design.
The Network, Replication, and Log Layer and their components are grouped in the
LogStack component as shown in Figure 3.2. The LogStackManager manages the LogStack
by initializing and terminating it. It is also responsible for passing on requests of the
clients to the LogStack. Classes connected with a dashed arrow in Figure 3.2 imply a
dependency between them. For example, the LogStackManager class depends on the
Replication class for passing on requests. The design and functionality of the individual
components are described in the following sections in detail.

Figure 3.2: Ikaria Software Architecture (UML Component Diagram)

3.2.1 Network Layer

The Network Layer is responsible for establishing connections with other nodes and
for handling incoming and outgoing messages. For communication between the chain
nodes, we make use of the current advancements in network research. We design Ikaria
to function with asynchronous user-space networking. Therefore, we make use of eRPC

12

3 Design

[47] as an asynchronous network library. eRPC handles packet loss and, therefore,
provides reliable packet I/O which Ikaria relies on [41].

As shown in Figure 3.2 the Network Layer consists of three classes: the Inbound, the
Outbound, and the NetworkManager class. The Inbound class handles incoming messages
via the request handler and sends the associated responses. The Outbound class es-
tablishes a connection to another node and sends messages respectively receives the
responses via the continuation callback function. One instance of this class corresponds
to one open connection to another node. So for every needed connection, another
instance of the Outbound class has to be created. Since Ikaria is based on CRAQ, a
connection to the predecessor node, successor node, and the Tail node is needed. The
NetworkManager manages these connections and distributes incoming and outgoing
messages which it receives from the previously outlined classes or the Replication Layer.
The NetworkManager is, therefore, the interface between the Network and Replication
Layer.

All data which is sent between the nodes has a header attached to it. The in-flight
header is shown in Figure 3.3 and includes besides the messageType, the logPosition
of the logEntry struct (see subsection 3.2.3) which is sent as payload as well. The
messageType variable is used to differentiate between the different operations whereas
the logPosition variable is needed by the Replication Layer. In the following section,
we go over the Replication Layer and explain the workflow of the different operations.

Figure 3.3: In-flight data packet struct

3.2.2 Replication Layer

The Replication Layer incorporates the logic of the replication algorithm. As our goal is
to design Ikaria for read-heavy workloads, we use the CRAQ algorithm (described in
subsection 2.3.3). As CRAQ enables nodes to read locally, superior read load balancing
over the original CR protocol is archived [56]. Since local reads might violate the
consistency model each logEntry has a state attached to it (see logEntry header in

13

3 Design

Figure 3.9), which is either error, dirty or clean. The dirty state implies that an
entry is written but possibly not committed yet. The state clean marks an entry as
committed. All other logEntries are marked with the error state which is the default
state. This means that the entry has not been written yet. We outline our rationale
behind this design choice in subsection 3.2.3.

An entry is considered as committed as soon as it is replicated on the Tail node.
Additionally, we extend the CRAQ protocol by an uncommitted read-request. Com-
pared to the read-request offered by CRAQ, the uncommitted read-request offers only
Eventual Consistency. The different request types and their workflows are described in
the following sections.

The Replication Layer (see Figure 3.2) consists of the Replication class. As shown
in Figure 3.2, the Replication Layer is instantiated by the LogStackManager (visualized
through the dashed arrow). The Replication Layer instantiates the Network and
Log Layer classes as it is the core of the system. The Replication class offers two
functions for each messageType. One function for dealing with incoming requests (e.g.
append) and one for processing received responses for previously sent out requests
(e.g. append_response). We need two separate functions since we use asynchronous
networking and, therefore, a response is not directly received after the request is sent
out. The logic in these functions differs depending on the node type: Head, Middle, and
Tail. In the following sections, we describe for every message type how the message is
sent through the chain and the flow of the message through the node layers. After this,
we discuss the provided consistency properties.

Append-Request

When a client wants to append to the log, it sends a message to the Head node, where
the appends get serialized by assigning a sequential and dedicated logPosition. Once
an append is serialized, there are only two outcomes: It will be committed, or it will
be lost due to a node failure, and the logPosition will be filled with a junk value (see
section 3.3). When a node receives an append-request, it writes the data to its local log
at the given logPosition and marks it as dirty. After this, it forwards the request
to its successor. Since every append-request gets a unique logPosition assigned at the
Head node, multiple threads can write on a node’s log concurrently without interfering
with each other. When the append-request reaches the Tail, it replicates the entry as well
and sets the state of the entry to clean. After this, the Tail sends an acknowledgment
(append-response in the following) reversely down the chain to its predecessor node.
When a node receives such an acknowledgment message, it marks the associated
entry as clean. The Head acknowledges the append-request since it already holds an

14

3 Design

established connection with the client. The Head replies directly to the client, even if
not all previous logPositions have been acknowledged yet. Figure 3.4 displays the
message flow of an append-request (black arrows) for some data A at logPosition x
as it propagates through the chain. In every figure, the Middle node is exemplary and
could consist of multiple Middle nodes.

Figure 3.4: Append-request Message Flow through the chain (UML Collaboration Dia-
gram)

Even if the Head or another node crashes, no already acknowledged message is
lost as described in section 3.3. How we deal with lost append-request due to node
failures is explained in section 3.3 as well. Since we are assuming that all messages
arrive at each node eventually (see subsection 3.2.1) the log will only contain holes
temporarily. Due to the serialization of append-requests at the beginning, the Head
replying directly to the client after receiving an acknowledgment and the fact that we
present an append-only log, we eliminate a requirement the original CR protocol had:
a FIFO link between the nodes. This way, we can send messages through the chain
concurrently regardless of the logPosition, which enables performant multi-threading.

When a node receives an append-request, a sequence of functions is called. The
sequence diagram in Figure 3.5 visualizes the message flow through the different
layers and classes. After the Inbound class receives the message via the request handler,
the NetworkManager calls the dedicated append function in the Replication class. The
Replication class delegates the message to the Log Layer, which writes the entry to the
log. After the message is persisted, the node forwards the request to its successor node,
which is done by the Outbound class. If the node is the Tail node, it does not forward it
to its successor but prepares the append-response message which includes the assigned
logPosition. It then sends the append-response via the Inbound class to its predecessor.

15

3 Design

Figure 3.5: Append-request Message Flow through a node (UML Sequence Diagram)

The sequence diagram of an append-response is shown in Figure 3.6. First, the con-
tinuation function is triggered by the eRPC library in the Outbound class. Then the
Replication class updates the state of the entry from dirty to clean by calling the
offered state update function of the Log Layer. Then the message is sent by the Inbound
class to the predecessor node by responding to the corresponding previous received
append-request.

Figure 3.6: Append-response Message Flow through a node (UML Sequence Diagram)

In Ikaria Strong Consistency guarantees that all append-requests are sequentially
ordered and not acknowledged until they are committed. The ordering is fulfilled since
all append-requests have to be sent to the Head node where they get a unique logPosition.
The second guarantee is fulfilled since the Head sends the acknowledgment to the client
only after the Tail node has replicated the entry. Therefore, the append-request guarantees
Strong Consistency. If the Head sends an acknowledgment for a committed append-
request for logPosition o to the client, it is not guaranteed that every logPosition
smaller than o has been acknowledged already. This is not a problem for keeping the
Strong Consistency guarantee since acknowledged entries will not be deleted from the
chain due to e.g. a node failure. The same assumption is made by other shared logs
(e.g. CORFU [6]) as well.

16

3 Design

Read-Request

When a client wants to read an entry from the log, it can send a read-request to every
node in the chain. This is possible because every node knows the state of a specific
logEntry. When the requested entry is marked as error or clean, the node can answer
the request directly as shown in Figure 3.4. In case the entry is marked as dirty, the
node sends a small state-request to the Tail to check if the entry has been committed by
now. This happens if either the append-request has not reached the Tail yet and/or the
acknowledgment message for this entry is still somewhere in the chain and has not
reached the node yet. The state-request only includes the logPosition of the requested
entry, therefore, it is relatively small. Ikaria does not wait for the response by the Tail
but continues to process further requests. When the Tail receives the state-request for
a logPosition, it checks if the corresponding logEntry has already been committed.
If this is the case the Tail returns clean to the requesting node. In the case of a log
entry’s specific append-request has not reached the Tail yet, the Tail answers with the
state error. An entry on the Tail node is never dirty as every entry is committed as
soon as the entry is persisted on the Tail. As explained in the following subsection 3.2.3,
we assume that the state of all not written entries is set to error which is how the
Tail can find out if the entry has already been written. Depending on the returned
state, the node either returns with its local read value since the requested entry has
been committed by now, or it answers with an error message for retaining the Strong
Consistency guarantee since the entry has not been fully replicated yet. This procedure
is visualized in Figure 3.7.

After discussing the message flow of the read-request through the chain, we present
the message flow through a node in the following paragraph. The sequence diagram of
a read-request is modeled in Figure 3.8. When such a request arrives, independently of
the node type, the Replication class asks the Log Layer for the requested entry. If the
state is error or clean, the node can directly answer the client since the message has not
arrived yet or is already committed. In the case of the state being dirty, the Replication
class creates a new state-request, for asking the Tail about the current state of the entry.
The Replication Layer forwards this request to the Network Layer, which transmits
the message. On the Tail, the state-request function asks the Log Layer for the specific
entry and returns as a state-response the current state to the requesting node. This is
not visualized in Figure 3.8 directly but the sequence of invoked functions is similar to
reading a clean entry. When the Replication class of the requesting node receives the
state-response it acts accordingly. If the state is clean the Replication class calls the Log
Layer to update the entry’s state and answers the previous receive read-request with its
local entry. Otherwise, the Replication Layer returns an error message, which means

17

3 Design

Figure 3.7: Read-request Message Flow through the chain (UML Collaboration Diagram)

that the entry does not exist yet or is not replicated on all nodes.

Strong Consistency for the read-request guarantees that every node is returning the
latest state known by the Tail. Since all append-requests are only committed when they
have reached the Tail it will never be the case that two read-requests to different nodes in
the chain return two different answers. This is ensured through the state-request, where
each node can request the current status of a specific logEntry, as mentioned before.
By asking the Tail node first if the entry has already been committed, it can be ensured
that the most up-to-date value is returned. Therefore, the read-request guarantees Strong
Consistency.

Uncommitted Read-Request

Besides the normal read-request, Ikaria offers an uncommitted read-request as well. This
read-request type only holds Eventual Consistency as some systems do not rely on
Strong Consistency [54]. When a node receives such a request, it checks locally if a
logEntry has been written for the requested logPosition, independently if the state is
dirty or clean. If this is the case, it directly returns the entry to the client. Otherwise,
it returns an error message. Compared to the Strong Consistency providing read-request,
the overall performance should improve by eliminating the need for state-requests to the
Tail. Therefore the latency for this request should be lower as well.

18

3 Design

Figure 3.8: Read-request Message Flow through a node (UML Sequence Diagram)

The message flow on a node is the same as a local read for a clean logEntry which is
shown in Figure 3.8. The message flow for the uncommitted read-request does not differ
between the three node types: It asks the Log Layer for the requested logPosition and
returns whatever the Log Layer returns to the client.

Eventual Consistency guarantees that a node which receives an uncommitted read-
request returns the logEntry regardless if its current state is dirty or clean. When the
entry’s state is dirty, the state-request is omitted, and the latency of the request is lower.
During a chain reconfiguration phase in the case of a Tail node failure (see section 3.3)
read-request can still be answered for entries with state dirty. Two read-requests sent to
two different nodes in the chain could return different results in the case the initial
append-request has not reached both nodes yet. Therefore, Monotonic-Read Consistency
is only satisfied if a client sends the read-requests to the same node [56]. It could also
happen that a client reads an entry from the Head node before the Head has forwarded
the request to its successor. In the case of a Head failure this entry would be lost, which
is in line with the definition of Eventual Consistency [48, 53].

3.2.3 Log Layer

The main task of the Log Layer is to persist data, and it offers functionality for reading,
writing, and updating entries to the Replication Layer. We introduce the dedicated Log

19

3 Design

class to achieve a clear separation between the storage library and our implementation
so that it can be easily exchanged. The main task of the Log class is therefore to provide
an abstraction of the storage library. Since we need to make sure that a logEntry is
persisted before forwarding the request, we need a persistent storage medium. Before
PM existed, flash drives have been used for this purpose [6]. Since we have to persist the
entries, any storage type which provides better access performance and latency should
provide better performance and latency for the shared log. That is why we design our
log for Persisting Memory as a storage medium. As storage library we are making
use of PMDK [29] (see subsection 2.1.1) for managing the PM. Due to our layered
approach, the Log Layer can be exchanged easily for another implementation if needed
e.g. an implementation based on the Storage Performance Development Kit (SPDK) [58].

The log itself resides on every node in the chain, and we assume that it lies contin-
uously in the address space. Each entry is persisted in the logEntry struct which is
shown in Figure 3.9. It includes the popcount value, the state of the entry, the length of
the data, and the actual data. Each logEntry has a fixed size of l bytes, which has to be
determined at the application start. This makes it possible to access a specific logEntry
in O(1) since the memory address of an entry can be calculated by multiplying the
logPosition with l.

We require the log file to be zero-filled before being used. This assumption is reason-
able since it is a common practice in database systems [59]. This enables every node
to check if an entry has already been written by just reading locally. If the value of
the state of the entry is zero, which is equal to the error state, the node knows that
this entry has not been written yet. Another reason for this requirement is that we use
the approach presented by Van Renen et al. [59] as logEntry design. By adding the
bit count of the header and the payload to the logEntry, the presented approach is a
way to persist an entry to PM by just flushing once. Normal procedures use a second
flush to add e.g. a checksum at the entry’s end to signal that the entry is consistent.
Van Renen et al. [59] show in their work that flushing an additional time to PM brings
significant performance penalties, which we want to avoid.

When appending an entry, the population count popcount value (number of set bits)
of the dataLength header entry and the data itself is calculated. The state is not part of
popcount calculation. The reasoning behind this is that we do not have to update the
popcount value when we update the state e.g. setting it from dirty to clean. Since
the state is updated atomically, and the state is checked by the Replication class it is
not necessary to include the state in the calculation. It is important to note that only
the actual size of the entry is written to the log and not the total fixed entry size. This

20

3 Design

ensures that even with the given fixed size Ikaria does not lose any performance when
variable size entries are persisted.

Since the log file is zeroed and the flush of the popcount value is atomic, a local read
can always verify if an entry has been completely written or not [59]. This is necessary
since a write of an entry to the log is not atomic and could be interrupted by read access
from a different thread. With the addition of the popcount value and the zeroing of the
log file before the system starts processing requests, we can assure the consistency of
the entries at all times. The Log class checks through the popcount value if the data
from an logEntry is consistent. The popcount value is correct when the entry is not
written yet since all bytes are zero as is the popcount value. In this case, the Replication
class can find out that the entry has not been written yet. Since the error state is equal
to the value zero, the Replication class can verify that the entry is empty and does not
need to ask the Tail for the state of the entry. This way, concurrent writes, due to the
distinct logPosition, and reads are possible and safe, and therefore the log can be
accessed concurrently.

Calculating the bit count value might be less efficient than flushing twice if the entry
sizes are getting bigger. Van Renen et al. [59] showed that it is faster up to at least an
entry size of 512 B, especially when the size is aligned to a multiple of the cache line
size. As we argued before, PM is well suited for smaller entry sizes than the standard
Linux page size of 4096 B because of the byte addressability. That is why we decided to
use the single flush approach.

Since the current PM hardware does not perform well when accessed by multiple
threads concurrently [25], multiple PM modules can be used. To not exhaust one PM
module, the log can be split over n PM modules with a simple round-robin scheduling.
Each module gets an identifier starting from 0, counting up which orders them in total
order. The responsible module for a specific logPosition o can be calculated by: o
(mod n). The memory address for the logEntry is therefore: bo/nc · l.

Figure 3.9: logEntry struct

21

3 Design

3.3 Failure Recovery

Providing local reads comes at a price. The premise for offering local reads is that it
has to be ensured that every append-request reaches every node and not just a quorum
of nodes [48]. If one node in the chain or a network link between two nodes fails, the
append-requests can not be processed until the chain has been reconfigured. Read-requests
for already replicated log entries can still be served by the other nodes in the chain.
Since a node which discovered that its predecessor/successor failed, does not know
the predecessor/successor of the failed node, some kind of coordination service [11,
60] for the node membership management is needed [49, 56]. The coordination service
keeps a connection with all chain nodes and reconfigures the chain when a node fails.
In the following, the chain recovery will be described and explained how the Strong
Consistency guarantee can be assured.

In Ikaria there are three types of possible failure scenarios:

• Head failure

• Middle failure

• Tail failure

Head failure: When the Head fails, it will be removed from the chain, and its suc-
cessor will become the new Head node. The new Head checks locally for holes in the
log and which entry has the highest logPosition regardless of the state. It could be
the case that the entry at logPosition o has been lost due to a network failure between
the old Head and the new one or has not been sent at all due to a node failure, but the
entry at position o + 1 is in the local log of the new Head. Since the old Head failed
it cannot resend the entry o. This means that this message is lost. Because the new
Head has not received o, no other node has received it either, especially not the Tail.
It, therefore, creates an append-request for all these missing log entries and fills them
with junk values. The new Head then sends these requests to its successor as usual.
This way, the log will not contain any holes due to lost messages. The new Head needs
to find the highest written logPosition o since it has to set its serialization counter
to o + 1 for assigning new incoming append-requests unique logPositions. Now the
new Head can start processing append-requests as normal. The client that has sent one
of the append-requests which have been lost cannot tell the difference if its message is
ignored or maybe just lost on the way to the Head node, so it will just retransmit it. This
complies with the Strong Consistency guarantee since no log entry is deleted, which
has already been committed (or could have been). Therefore, no read-request could have
been already answered for such an entry.

22

3 Design

Middle failure: If a Middle node fails, it will be removed from the chain. The
predecessor and successor of the crashed node need to establish a connection to have
a connected chain again. This is handled by the previously mentioned coordination
service. As soon as the two nodes have an active connection, the predecessor has to
resent every log entry with the state dirty to its new successor. These are the messages
which are not fully replicated yet. Therefore, it could be the case that one of these
messages has not been forwarded by the failed node. Resending all these messages
can assure that no message is lost and they will be committed. As an optimization,
the successor could resend the last few acknowledgments for committed entries to
the predecessor. Since these messages could have been lost due to the node failure as
well, it would enable all nodes up to the Head to answer read-requests locally. This is
not necessarily needed because if the node receives a read-request for an entry that is
still marked dirty, it can always send the Tail node a state-request for finding out the
current state.

Tail failure: When the Tail fails, it will be removed from the chain, and its predecessor
becomes the new Tail node. The new Tail sets the state for every log entry which is
replicated in its local log and has currently the state dirty to the state clean. Since it is
the new Tail, the messages are automatically committed when they are replicated in its
local log. For all the new committed entries, it sends the acknowledgment messages
to its predecessor as usual. This has to be done since the Tail could have committed
new entries ocommitted + x = onew, answered read-requests for onew, but has not sent the
acknowledgment message for onew, which, therefore, has not reached the new Tail node
(the previous predecessor of the old Tail). No messages are lost, due to the implicit
requirement by CR, that every message which has reached the Tail must have reached
its predecessor before. This satisfies the Strong Consistency guarantee.

23

4 Implementation

After we presented our design for Ikaria in the last chapter, we now describe our
approach for the implementation. The application is written in C++ and is based on the
C++17 standard. We make use of three external libraries namely eRPC [47], PMDK [29]
and libpopcnt [61]. eRPC is the used network library, PMDK offers APIs for interacting
with persistent memory (see subsection 2.2.3 and subsection 2.1.1), and libpopcnt is
used for calculating the popcount value.

One general requirement for the implementation is high performance. Therefore we
reduce the need for copying and moving objects/data, reduce the number of expensive
system calls, and the use of virtual functions. Due to the lack of virtual functions, there
are no C++ interfaces in use. Therefore the layers do not provide actual services, making
them easier to replace, but an attempt was made to keep the interfacing functions as
similar and clean as possible. The client-side of the application is not a part of this
implementation. For the evaluation of our implementation, the messages are generated
in the Replication Layer itself, which is described in chapter 5. In the following sections,
we describe implementation-specific details and how we incorporated the associated
libraries.

4.1 Network Layer

As mentioned in the design chapter, we use eRPC [47] for transferring the messages
between the nodes. The eRPC library provides an abstraction for the lowest network
layers and offers a simple API for managing messages asynchronously. For initializing
eRPC and creating an RPC object, a Nexus object has to be created which is done in
the LogStackManager class (see Figure 3.2). The LogStackManager class is the first class
to be initialized, and this way, it is easier to distribute a reference of the Nexus object
to the other classes. The RPC object is then created in the NetworkManager class. As
mentioned in section 2.2, every application thread has to create an RPC object with a
unique eRPC-id. This object can then be used to establish connections and enqueue/re-
ceive requests. A user can create various request types by registering a request handler
for every message type as the next step. Although we need more than one message
type, we choose to only register one request handler with a generic message type in
the Inbound class. We choose this approach because the code for different incoming

24

4 Implementation

message types in the Inbound class is identical since it only creates the message struct
and passes it to the NetworkManager class. We avoid redundant code by not registering
a request handler for every message type but using only one for all message types.
After registering the request handler, the sessions with the other nodes are established
by creating multiple instances of the Outbound class which sets up the connections.

When a new message is received, the request handler of the Inbound class is called
by eRPC [47]. For every new arriving request, a message struct is created. This struct
includes all vital information like the messageType, a handle for the received request
for sending a response later on, and the request and response MsgBuffer with their
current fill sizes. The information in the message struct identifies a request. It is passed
between the different classes and layers and exists for the request’s lifetime, which is
until the response is sent. A response for a previously received message is sent via the
Inbound class.

When sending a message to another node via an Outbound class, we can pass a
context variable to eRPC [47]. This way, we can identify the message again when the
callback function is invoked when a response is received. As a context variable, the
previously mentioned message struct is used. As soon as a response for a previously
sent message is received, the continuation callback function is triggered by eRPC [47]
which is part of the Outbound class as well. In the callback function, the request can be
identified through the context variable, and the NetworkManager can act accordingly.

Since the eRPC library [47] is an asynchronous framework, we need to run an event
loop for sending and receiving messages. The event loop is called whenever a response
is received, or a message is sent to another node. This ensures that the messages are
sent out immediately, and the latency is kept as low as possible.

4.2 Replication Layer

We have implemented two different replication algorithms: Chain Replication and
CRAQ. These classes can be used interchangeably through the use of C++ templates
[62]. The uncommitted read-request is currently implemented in the CRAQ class. We
implemented the Chain Replication class for comparing it later in the evaluation with
Ikaria. Append-requests are working equally as the append-requests from Ikaria, besides
the fact that Chain Replication is not dependent on the state. Read-requests are only
send to the Tail node which answers either with the logEntry or with an error message.

25

4 Implementation

4.3 Log Layer

As explained in subsection 3.2.3, the Log Layer of Ikaria uses the PMDK library [29]
(see subsection 2.1.1) for managing the PM. In the following section, we describe what
libraries of PMDK we use and how we extend the libpmemlog library for our use case.

4.3.1 PMDK

The PMDK consists of several libraries for different use cases as explained in sub-
section 2.1.1. For our log, we make use of the libpmemlog library, which is written
in C. While the offered managing functionality of the PM module is convenient to
use, the libpmemlog library, unfortunately, does not allow for concurrent writing to
multiple logPositions. It does not offer a dedicated read method for accessing a
specific logEntry as well. That is why we extend the libpmemlog library by adding three
additional functions:

• pmemlog_write(PMEMlogpool, logEntry, logEntryLength, logPosition): Writes a
logEntry to a specific logPosition.

• pmemlog_read(PMEMlogpool, logPosition): Returns a pointer for a requested
entry which is associated with a specific logPosition.

• pmemlog_zeroing(PMEMlogpool): Writes zeros to the available log space.

The PMEMlogpool contains meta information like a pointer to the start offset of
the log, information if the storage medium is actual PM and if the PM is used in
DAX mode, and so forth. This object is returned when the log is initialized with the
pmemlog_create function of libpmemlog which is called by the Log class during its init
phase.

The two functions pmemlog_write and pmemlog_read are performing checks before
they are writing/reading an logEntry. The pmemlog_read function checks if the re-
quested logPosition is in bounds of the log and just returns a pointer to the logEntry.
The pmemlog_write function checks the logPosition for validity and persists the entry.
The function knows through the PMEMlogpool object, which is passed as a parameter,
if the storage medium is actual PM or not and uses different functions for copying the
data. To guarantee that the data is persisted, a cache-line flush must be performed after
every write to evict the data out of the L3 cache to the PM module [21]. This is ensured
by using the pmem_memcpy_persist function [63] from the libpmem library. We assume
that no append-requests overwrites an already written logEntry due to the serialization
counter assigning separate logPositions (see section 4.2). The third function we have
added is the pmemlog_zeroing function. It writes zeros to the available log address

26

4 Implementation

space before the log is used. As explained in subsection 3.2.3, this is needed for ensur-
ing consistency. How the PMDK library is integrated and how the consistency of the
entries is ensured are described in the following section.

4.3.2 Log Abstraction

The Log class initializes the PMDK library by creating a new log pool and managing
the PMEMlogpool object during its construction phase. Therefore the path where the
log should be created and the specific log size has to be passed as parameters. After
creating the log pool, the pmemlog_zeroing function is called for zeroing the entire log
address space. When the construction of the Log class is done, it is ready for reading or
writing entries. The pool is closed with the pmemlog_close function in the destructor
of the Log class.

The popcount value is managed in the Log class and not in the pmemlog_write and
pmemlog_read function of the PMDK library [29]. One reason is that for calculating the
value the function has to know the logEntry header Figure 3.9, to write the popcount
value at the correct place. This would mean that our PMDK extended functions would
not be very generic, which is not desirable. If another storage library is used in the
future, the popcount-feature would also have to be added, which is another reason to
place this functionality in the Log class.

The C++20 [64] standard introduced a popcount function in the standard library.
Since we based our implementation on the C++17 standard we use the open-source
library libpopcnt [61]. Another reason why we choose this library is that it calculates
the popcount of an array of a given size which is exactly what we need. This library
implements some improvements for the calculation of the popcount value which are
offered by modern processors [65]. After calculating the popcount value the extended
PMDK function pmemlog_write is called for persisting the logEntry.

The read operation of the Log class retrieves the pointer to the requested entry with
the pmemlog_read function. It then calculates the popcount value for the logEntry and
matches it with the popcount value in the header for checking the consistency. The
pointer and the actual length of the entry are returned to the calling function.

The last function offered by the Log class is the update state function. It sets a new
state with help of the pmemlog_write function by writing the new state to an existing
entry. Since the state is equal or smaller to the atomic size, which is supported by the
processor (in our case 8 B), the update happens atomically.

27

4 Implementation

If our approach for ensuring consistency is not desired, a two-step persisting system
could be added as future work. This can be achieved easily through the state in the
header. The state has to be set in the first flush to e.g. error and has to be changed in a
second flush from error to dirty or clean.

4.4 Bootstrap and Teardown

We have added two more requests besides the append-request, read-request and update-
request. The first is the setup-request which synchronizes the start of operation between
the chain nodes. The setup process is started by the Head node which sends a setup-
request to its successor. As soon as a node is finished with its initialization, it either
waits for the setup-request or, if already received, it forwards the message down the
chain. When the Head node receives the response, it knows that all nodes are ready and
starts processing incoming messages. The other nodes wait until they receive the first
request other than the setup-request before they start to be operational. If every node
would start processing incoming requests as soon as they send the setup-response to its
predecessor, other nodes would still wait for the setup-response and will not process any
incoming requests. The first request other than the setup-request can therefore be seen
as a kickoff for all chain nodes.

The second added request type is the terminate-request which works similar as the
setup-request. When a node receives a terminate-request it stops answering requests from
clients and only processes messages from other nodes in the chain. As soon as a node
receives the terminate-response it forwards the response to its predecessor and shuts
down. This way, it can be assured that every node receives the terminate-request.

The setup and termination process for the chain is the same for every replication
algorithm. These two message types have been added to synchronize the startup and
termination of the different nodes during a benchmark.

4.5 Multi-Threading

To leverage the existing hardware parallelism, our implementation can be initialized
with several worker threads. The threads are managed by the LogStackManager class
(see Figure 3.2). This class offers functionality for starting a desired amount of threads,
terminating them, and retrieving their current status. The shared resources between the
threads are the serialization counter in the Replication Layer, the PMEMlogpool object
in the Log Layer, and the Nexus object in the Network Layer. For simplicity, we create

28

4 Implementation

an instance of all layers, the complete LogStack, for every thread. Since the Replication
class initializes the other two layers, the LogStackManager class creates several instances
of the Replication class (see Figure 3.2).

In the constructor of the Replication class, a dedicated function is started in a thread
that initializes the other layers. We initialize the serialization counter as an atomic
integer variable [66] which synchronizes the access between the different threads
by design. Every thread accesses the counter with the fetch_add function, which
increments the atomic variable and returns the value before the incrementation. This
way, it is ensured that every new entry gets a unique logPosition independently of
running the application single or multi-threaded.

Since the Nexus object is created in the LogStackManager class, it is created exactly
once and then passed to the starting threads. The request handler function is registered
exactly once at the Nexus object in the Inbound class. This is ensured by using the
call_once function [67] which executes exactly one time. Each thread then uses the
Nexus object for creating the RPC object with a distinct eRPC-id. This object and the
associated eRPC-id are unique per thread. It does not matter which thread registers
the request handler. It just has to be registered once. Incoming requests specify the
eRPC-id they are sent to and therefore the eRPC library distributes the requests to the
thread which created the RPC object with the specific eRPC-id. Since each RPC object
has its own queues for transmitting and receiving messages multi-threaded operations
are not an issue [41]. As shown in Figure 4.1, the Outbound classes from the LogStack
instance connect to the LogStacks on the other nodes which have the same eRPC-id. This
way, we have the same amount of execution chains as we have threads running on a
single node. Every node in the chain must start the same amount of worker threads.
Otherwise, some threads can not start processing requests.

The PMEMlogpool object is created once by the first Log class which is initialized.
This is done the same way as registering the request handler by using the call_once
function [67]. Every application thread therefore writes/reads to/from the same log
file. Due to our design of distinct logPositions and the popcount consistency feature
concurrent accesses to the log are possible.

Through this multi-threaded design, we enable Ikaria to scale well with an increasing
amount of threads, as we show in the following chapter.

29

4 Implementation

Figure 4.1: Deployment of a three node chain with respectively three instances/threads
of the LogStack running (UML Deployment Diagram)

30

5 Evaluation

After presenting the design and the implementation, we now evaluate the throughput
and scalability of Ikaria.

5.1 Experimental Setup

Our evaluation is performed on a cluster of five servers containing an Intel(R) Core(TM)
i9-9900K, with 8 physical cores (16 threads) each and 64 GiB dual-channel memory
with 2666 MT/s. Each server is equipped with an Intel Corporation Ethernet Controller
XL710 for 40GbE QSFP+ (rev 02). The servers are connected over a 40GbE QSFP+
network switch.

For the evaluation, we are adapting our existing implementation to process requests
and generate them. Therefore, every chain or worker thread is seen as a client and has
a maximum outstanding request window of 50 messages. This is a similar approach
as Terrace et al. [56] followed in their evaluation. Another reason we choose a request
window is that append-requests are a lot slower than read-requests. This is trivially true
for reading locally compared to replicating a entry on all nodes, but also for reading
from the Tail since a read-request is sent directly to the Tail. If we do not limit the
messages in-flight, each thread would keep generating messages and pile unfinished
append-requests since read-requests would finish quickly. This way, we would not be able
to comply with a targeted benchmark read workload, for example, 90% read messages,
since we finish our benchmark after a specific time. Another advantage of this low
outstanding request window is that messages are produced more balanced over all
participating threads on other nodes. If the request window is larger, the Head saturates
the other nodes with requests, so they cannot send messages out on their own. Since
Chain Replication can only be as fast as its slowest node, we want to split the message
generating load over all nodes, so no node becomes a bottleneck. The outstanding
request window does not influence forwarding messages from other nodes but just
the message generation of the individual threads. As we will show in section 5.2,
50 messages per thread seem enough to saturate the replication chain. Because each
worker thread is a client at the same time, every node has an additional connection
with the Head node since the clients need to send the append-requests there.

31

5 Evaluation

To generate append-requests and read-requests not just alternating but randomly while
keeping a certain ratio between the two operations (e.g. 90 % read-requests and 10 %
append-requests), we use a random function for generating equally distributed numbers.
By calculating module 100 of the generated number x (x (mod 100)) we can generate
message types according to different load patterns, for example, a 90 % read-workload.
Since the numbers are generated evenly distributed, it is ensured that we benchmark
with the targeted read-workload. These random numbers are generated with a Xorshift
random generator function [68]. We use this function because the system call rand [69]
leads to a bottleneck in our multi-threaded benchmark and slows the whole application
down. The requested logPosition for the individual read-requests are selected randomly
from an interval between the logPosition from the last seen append-request and the zeroth
logPosition. The interval grows continuously with every new append-request send. We
mostly circumvent caching on the nodes of previous read entries through this interval
since the interval quickly outgrows the cache size. The reasoning behind this is to
make the results of the different benchmarks comparable. We argue that this could
simulate an access pattern of a client who tries to catch up and reads sequentially
through older log entries. In the following benchmarks, this access pattern is used
besides the benchmark in section 5.4. One problem of reading entries in this huge
interval is that the probability decreases drastically for reading a logPosition which is
not yet acknowledged. Since another valid access pattern by a client could always be to
read the newest entries of the log, or in other words, the Tail of the log, we evaluate
this access pattern in section 5.4.

In the following experiments, we use the maximum number of available threads,
which in our case is 16. This is because we use DPDK as a transport layer for eRPC.
DPDK enforces only to run one DPDK worker thread per logical core for avoiding
costly context switches [70]. This is why the maximum number of threads in the
benchmarks is equal to the maximum number of logical cores. If not stated otherwise,
each experiment is run for 40 seconds which should marginalize any biases due to the
burn-in phase at the beginning. We assume the burn-in phase to be very short due to
the small outstanding message window. The benchmarking application can be started
at every chain node independently. The different nodes synchronize the beginning of
the benchmark with the previously described setup-request, so the benchmark start delay
is neglectable. After the benchmark finishes, the data from every thread is collected,
and the values for all nodes are added together to provide the measurements of the
total chain. Since Ikaria is designed for read-heavy workloads, we want to evaluate
how it performs under read-heavy workloads of 90 % and 95 % read-request share while
comparing it to a balanced 50 % read-workload. Further, we are interested in evaluating
the advantages of local reads for a shared log and how the log scales. Therefore we

32

5 Evaluation

compare our implementation with the original chain replication protocol (CR). Ikaria
with the uncommitted read-request is abbreviated as UCRAQ in the following whereas
Ikaria with the normal read-request is abbreviated as CRAQ.

As described in subsection 2.1.2, emulating Persistent Memory is complex and
previous attempts seem only to have provided unrepresentative results. Yang et al. [25]
showed that the emulating techniques used up today are not producing representative
results. Unfortunately, we do not have actual Persistent Memory modules at our hands
for benchmarking our application. This is why we use DRAM as a storage medium
instead and choose the benchmark parameter, which theoretically should leverage the
maximum possible access speeds of real Persistent Memory. We leave PM benchmarks
as future work. As length for logEntries, we choose 256 B since the current PM
hardware has the best throughput for this specific size [25]. Since we present an
append-only log, the writing of the entries should be sequential. Even if appends
arrive out-of-order in the typical case, they have a sufficient write locality because
their logPositions should not lie far apart from each other. Since the PM module’s
internal memory controller module contains a write-buffer, as explained in the previous
2.1.2, sufficient locality of the logPositions provides sequential write performance [25].
This assumes that the logEntries’ size does not exceed the write-buffer size so that
multiple writes fit into the buffer. According to Yang et al. the write buffer has a size
of 16 kB, which is another reason why we choose 256 B as logEntry size [25]. For the
experiments, we compile PMDK with the environment variable MEM_IS_PMEM_FORCE
set on true, which forces the library to use the dedicated methods for PM instead of
other storage types. This way, for persisting entries, the more performant flush is used
instead of msync. Each experiment is run 3 times, and the final result is obtained by
averaging the individual experiment results.

To summarize, the following benchmarks, if not stated otherwise, are measured
with each node running 16 threads where each has a 50 message outstanding request
window and each log entry a size of 256 B. In the following, we will evaluate the chain
saturation, the operation throughput, and the scalability of Ikaria.

5.2 Chain Saturation

Terrace et al. [56] used 50 outstanding messages per client in the original CRAQ paper.
Since they used external clients, we want to verify that 50 messages are saturating the
3-node, 4-node and 5-node chain setups. In Figure 5.1 and Figure 5.2 we compare
different outstanding request windows from 50 concurrent messages in-flight per thread
up to 500 messages over the different chain lengths.

33

5 Evaluation

50 100 200 300 400 500
0

0.2

0.4

0.6

0.8

outstanding request window per thread

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

3-node chain

50 100 200 300 400 500
0

0.2

0.4

0.6

0.8

outstanding request window per thread

4-node chain

50 100 200 300 400 500
0

0.2

0.4

0.6

0.8

outstanding request window per thread

5-node-chain

CR CRAQ

Figure 5.1: Comparison of different outstanding request window sizes for an append-
only workload with different plots for the 3-node, 4-node and 5-node chain
setup.

We first saturate the chain with an append-only workload (Figure 5.1) and compare
CR and CRAQ how the operations per second behave. We would assume that if
the chain is not saturated yet, the link between the server and the server itself does
not receive enough messages to process and therefore idles. The chain is saturated
when one of these two cannot process more messages and is, therefore, the bottleneck.
Having more outstanding messages per thread and therefore more messages in the
chain, the links between the servers and the servers themselves should process more
messages if they are not yet utilized to capacity. As we increase the outstanding request
window, we can observe that neither for CR nor CRAQ, the operations per second
increase significantly when sending more messages per thread. Therefore we argue
that 50 messages are enough for saturating the chain with append-requests. We assume
that the subtitle changes of the values in the plot are due to writing heavily to DRAM.
Since memory is used by the other processes on the servers, we assume that this is
why the values are not precisely the same. Another interesting observation is that
the operations per second vary for the different chain sizes. We explain this behavior
in section 5.3. In Figure 5.2 we perform the same benchmark but with an read-only
workload. We can observe the same behavior as before: The operations per second
do not change significantly during different outstanding request windows per chain
setup. Since all other workloads are a mix of append-requests and read-requests, we argue
that 50 messages are enough to saturate every read-workload. We, therefore, follow
the approach of the original CRAQ paper by choosing 50 messages per client as our
outstanding request window [56].

34

5 Evaluation

50 100 200 300 400 500
0

20

40

60

80

100

outstanding request window per thread

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

3-node chain

50 100 200 300 400 500
0

20

40

60

80

100

120

outstanding request window per thread

4-node chain

50 100 200 300 400 500
0

50

100

150

outstanding request window per thread

5-node-chain

CR CRAQ

Figure 5.2: Comparison of different outstanding request window sizes for a read-only
workload with different plots for the 3-node, 4-node and 5-node chain setup.

5.3 Operation Throughput

In this section, we evaluate the available operation throughput of Ikaria by comparing it
with the original CR protocol. First, we compare how the replication protocols perform
when processing only append-requests and only read-requests for setting a baseline.
These two workloads should be the upper and lower limit of the latter read-workload
benchmarks since they consist of mixed message types. In Figure 5.3 the results of an
append-only and read-only workload are shown. What we would expect to see for
the append-only plot is a subtle decline for the requests when more nodes are added
to the chain. This is because a single operation would need to be replicated on more
nodes, and therefore, the latency of the operations increases. Increased latency for the
operations means less operations per second. We can observe this subtle decline for
the 4-node and 5-node setup for all replication protocols as expected. One of the open
questions is why this subtle decline is not observable between the 3-node and 4-node
setup. Since we showed in the previous section that the chain should be saturated with
requests, this cannot explain the observed behavior. These results could be due to our
approach to generating messages in each thread on each node, so maybe messages are
not well distributed when passing through the chain. Due to the request window, every
thread only sends a new message when it receives a response for a previously sent-out
message. Since the other nodes need to send their append-requests to the Head node
first (and wait for the acknowledgment from the Head), this added delay could help to
generate a more evenly load on the Head when using a 4-node chain compared to a
3-node chain. We leave it as future work to evaluate the system with external clients

35

5 Evaluation

who are not incorporated into the system itself. With this separation of the benchmark
from the application, the evaluation could be more targeted, and the actual creation
of messages and benchmarking does not influence the system’s overall performance.
When comparing the different replication protocols with each other, it seems like that
the added access for setting the state of the entry in Ikaria does not influence the
maximum possible append operations per second (a op/s). We assume that due to
the actual writing and persisting of the entries when passing the chain from Head to
Tail, the minor state updates of 8 B (compared to 256 B logEntry size) do not carry
weight. This could be due to the usage of DRAM as a storage layer which is quite fast
in writing random entries and especially values that do not exceed a cache line size
which in our case is 64 B. Since PM is not as fast at writing small values, the log entries’
updates could mean a performance drop. To answer this question, the experiment has
to be repeated with actual PM hardware modules, but according to previously made
benchmarks, this seems likely [25, 59].

3 4 5
0

50

100

150

Nodes

Th
ro

ug
hp

ut
ap

pe
nd

[o
p/

s
⇥

10
6

] 100% Read Workload

3 4 5
0

0.2

0.4

0.6

0.8

Nodes

100% Append Workload

CR CRAQ

Figure 5.3: Comparison of the different protocols under 100% read-workload and 100%
append-workload.

The left plot in Figure 5.3 shows a read-request only benchmark and therefore the
maximum possible read-op/s (r op/s). Here we can observe a big difference between
the CR read-request and the Ikaria read-request. For a 3-node setup, CRAQ/UCRAQ
processes around 100⇥10 6 r op/s and every node added to the chain increases the total
requests for about 30⇥10 6 r op/s. The values of the CRAQ/UCRAQ are composed of

36

5 Evaluation

every node in the chain reading locally, so it shows the added up maximum possible
reads a single node can do. We can therefore conclude that a single node can process
30⇥10 6 r op/s when it does not have to process any other incoming requests. As we
can see the results scale linearly with the length of the chain, which is as expected.
Therefore Ikaria should perform excellently under read-heavy workloads.

In our setup the bottleneck for CR is around 12⇥10 6 r op/s for a 3-node setup and
decreases for a longer chain. Since in CR all read-requests have to be sent to the Tail node,
the natural bottleneck is how fast the Tail can read locally and answer the requests.
On top of processing requests which are generated on the Tail node, it has to process
incoming requests from the other nodes as well. Compared to the 30⇥10 6 r op/s a
node can process when using CRAQ/UCRAQ, the Tail node can only process less than
half the amount of requests. This shows the performance penalty of receiving and
transmitting read-requests from other nodes. The values are decreasing for an increased
size of chain nodes since the Tail node processes more external requests than locally
generated ones. We can therefore observe a clear bottleneck for the CR, which we will
investigate in the following sections.

3 4 5
0

0.5

1

1.5

2

2.5

Nodes

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

50% Read Workload

3 4 5
0

2

4

6

8

10

12

Nodes

90% Read Workload

3 4 5
0

5

10

15

Nodes

95% Read Workload

CR CRAQ UCRAQ

Figure 5.4: Throughput comparison for the 3-node, 4-node and 5-node chain with 50 %,
90 % and 95 % read-workloads.

As the next step, we evaluate the system under different workload patterns with
different chain sizes. As explained in section 5.1, we choose 50%, 90%, and 95% read
messages as workloads. In Figure 5.4 the throughput results of the different workloads
are shown. For CRAQ and UCRAQ, we can see that the curves look similar to the
append-only plot from Figure 5.3. The append operations per second are very similar
to the append-only plot, which means that the read-requests performed locally do not

37

5 Evaluation

restrict the processing of the append-requests. This is as expected since append-requests
have a much higher latency than read-requests because they need to traverse the chain
and be replicated on every node. Since we are binding the amount of processed
append-requests at the amount of processed read-requests by enforcing the read/append
distribution, the latency of the append-requests is the bottleneck of the benchmark. Even
if the node could process a lot more read-requests, it is waiting for previously sent-out
append messages since its outstanding request window is full. This applies to all
three plots in Figure 5.4. We can observe a reasonable throughput for CRAQ/UCRAQ.
For the 50 %-workload the throughput is around 1.7⇥10 6 op/s. For 90 % and 95 %,
the throughput scales up to 8.5⇥10 6 op/s and 17.5⇥10 6 op/s respectively. These are
promising results since we have designed Ikaria, especially for read-heavy workloads.

When comparing the CR with CRAQ/UCRAQ in the three plots in Figure 5.4 we
can observe that CR outperforms the other two replication protocols, especially for
the 3-node setup. While the CRAQ append operations per second stay at the same
rates measured in the right plot of Figure 5.3, the append operations per second for
CR exceed these values. Since in CR there are read-requests in flight as well as append-
requests compared to CRAQ where only append-requests are in flight while read-requests
are finishing in an instant. As explained before, one reason for this behavior could be
the better distribution of the append-requests. This would explain why the performance
of the chain is only so drastically better when using a 3-chain since the Tail does not
get overloaded by the read-requests from the other chain nodes. Since each node only
sends further messages when they receive acknowledgments due to their outstanding
request window, it could be that the write load shifts from one node to the next. So
some nodes may be idle at certain times while others are saturated. If this is the case,
then CRAQ/UCRAQ should perform similarly when benchmarked with outstanding
clients, since the clients have to send read-requests and append-requests to the different
nodes when using CRAQ as well. CR can process around 0.5⇥10 6 a op/s more with
1.3⇥10 6 a op/s for the 50 % read-workload compared to 0.85⇥10 6 a op/s in Figure 5.3.
It is hard to find an explanation for this behavior that aligns with the other benchmarks
besides the ones given before. For the 90 % and 95 % workloads we can observe that
CR is at its bottleneck at around 12⇥10 6 r op/s for the 3-node setup. The read-requests
become the bottleneck, and CRAQ/UCRAQ starts to outperform CR.

In Figure 5.5 we want to compare the different replication protocols under read-
workloads between 50 % and 100 % for the same chain length. It is essential to mention
that the values on the x-axis are logarithmically scaled. Here we can observe how
CRAQ and UCRAQ begin to outperform CR at read-workloads which are higher than
90 % as we assumed before. The plots show that the bottleneck of CR starts around
this read-workload. As seen before, CR outperforms CRAQ/UCRAQ in the 3-node
setup for read-workloads smaller than 90 %. Compared to the 3-node setup, in the

38

5 Evaluation

50 60 70 80 90 100

107

108

Read Workload Percentage

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

3-node chain

50 60 70 80 90 100

107

108

Read Workload Percentage

4-node chain

50 60 70 80 90 100

107

108

Read Workload Percentage

5-node chain

CR CRAQ UCRAQ

Figure 5.5: Comparison between the replication algorithms for the 3-node, 4-node and
5-node chain and different read-workloads.

4-node and 5-node chain, CR performs similarly as CRAQ/UCRAQ for read-workloads
smaller than 90 %. The a op/s are growing exponentially for CRAQ/UCRAQ with
increasing workloads. Since we logarithmically scaled the x-axis, this means that the
a op/s are growing by magnitudes for increasing read-workloads. These are promising
results for the CRAQ/UCRAQ replication protocols.

5.4 Tail Reading

As mentioned in section 5.1 we use a random read access pattern for most of our
benchmarks. In this section, we want to examine how CRAQ and CR behave when
the nodes read a range of the newest log entries. In Figure 5.6 we, therefore, compare
the CRAQ/UCRAQ replication protocol with the CR replication protocol in a 3-node
chain setup with a 50 % read-workload. We denote the size of the read-window as
w. When defining the newest seen logPosition in an append-request on a node as o, the
read-interval can be defined as: (o � w) x o, where x is the requested logPosition.
We only read a range of the w newest written log entries. Figure 5.6 shows the measured
throughput over the read-window size w. The size of the interval is shown on the
x-axis of Figure 5.6 whereas, on the y-axis, the throughput is shown. We compare the
op/s of CR, CRAQ and UCRAQ. Additionally, the plot shows the CRAQ r op/s and
the amount of CRAQ state-requests sent.

Since the nodes are always sending a read-request to the Tail node when using CR, the
op/s are linear and not changing for different interval diameters. The same applies

39

5 Evaluation

to UCRAQ, where a read-request is never sent to a different node. We can observe that
up to an interval diameter of at least 256 a node has to send a state-request for almost
every read-request when using the CRAQ replication algorithm. The reason why the
state-op/s are not equal to the r op/s can be explained because of the Tail node not
sending any state-requests but reading locally. Another interesting observation is that
CRAQ suddenly performs a lot better than UCRAQ for an interval size smaller than
4096, and the op/s are closer to the op/s of the CR. It looks like that our assumption
made in the previous section is correct. We can conclude that CR performs better
than CRAQ due to their additional in-flight read-requests. This is also confirmed when
looking at reading intervals bigger than 1024. We can see how the performance of
CRAQ starts to decrease until the op/s are equally to the op/s of UCRAQ again.

1 16 256 4096 65536
0

1

2

3

size of logPosition range

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

50% Read Workload

CR op/s UCRAQ op/s CRAQ op/s
CRAQ r op/s CRAQ state op/s

Figure 5.6: Comparison of CR, CRAQ and UCRAQ when reading only recently added
logPositions. Additionally, the plot shows the amount of r op/s and state-
op/s for CRAQ.

To explain why the amount of state-requests are staying constant to an interval size of
256, we have to look at the total amount of in-flight messages. We have set the messages
in-flight per thread to 50, running 16 threads on a node. So there is a maximum of 800
messages in-flight per node. As described before, we assume that the append-requests
fill the in-flight message window because they take a lot longer to complete compared
to the read-requests. From the maximum possible messages per node, a high percentage
should be append-requests. The total possible unacknowledged append-requests in the

40

5 Evaluation

chain are therefore the 800 messages in-flight per node multiplied by the number of
nodes besides the Tail node: 1600 append-requests. The decline of the op/s for CRAQ
at an interval size of 1024 supports our argumentation. For interval sizes bigger than
1024, the chance for reading a logPosition which has already been acknowledged grows,
and therefore the amount of state-requests declines. We can conclude that when mostly
the newer entries are read CRAQ performs similar to CR and we can therefore confirm
the findings of Terrace et al. [56].

5.5 Scalability

In this section, we focus on the scalability of Ikaria. As already mentioned in previous
sections, Ikaria scales well with more nodes added to the chain. In the following
experiments, we use a 4-node chain setup.

Since one goal of Ikaria is to build a highly parallelized shared log, we evaluate
how well the application scales with an increasing amount of threads per node and
therefore show the importance of good thread scalability for replication protocols. In
Figure 5.7 we evaluate the protocols while using different amounts of threads during
a 50 % and 95 % workload. For the 50 % workload, we can observe that for all three
protocols, the performance scales linearly with an increasing amount of threads. As
discussed in section 5.3, the append-requests are the bottleneck for the 50 % workload.
When viewing at the right plot of Figure 5.7 which shows the 95 % workload, we can
see that for a lower amount of threads, CR outperforms CRAQ. We assume that the
reason for this is the same as discussed in the section 5.3. For a lower amount of threads,
it seems like that the append-requests are still the bottleneck. When looking at higher
amounts of threads, the bottleneck of CR, due to the Tail handling all read-requests,
becomes evident. It is not as scaleable as CRAQ, which scales linearly as for the 50 %
workload. We, therefore, confirm the findings of Gavrielatos et al. [48] that CRAQ
provides good thread scaleability. Through the concurrent design, Ikaria can leverage
multi-core processors efficiently. The thread scaleability is, among other things (e.g.
efficient access of shared data), dependent on how well the underlying hardware can
perform concurrent writes and reads. As mentioned in subsection 2.1.2, the current PM
hardware does not perform very well under concurrent access. This is why we propose
to make use of multiple PM hardware modules instead of writing the log to a single
PM stick (see Section subsection 3.2.3). By following this design, a good multi-thread
performance for the log is to be expected.

Another important aspect of a shared log is how well the application performs with
different logEntry sizes. Up until now, we measured the performance with a 256 B log

41

5 Evaluation

1 4 8 12 16
0

0.5

1

1.5

Threads per Node

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

50% Read Workload

1 4 8 12 16
0

5

10

15

Threads per Node

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

95% Read Workload

CR CRAQ UCRAQ

Figure 5.7: Performance of Ikaria for different multi-threaded configurations from one
thread up to 16 threads on a 4-node chain.

entry size. In Figure 5.8 we compare the performance between values starting from
cache line size 64 B, PM most performant value size 256 B up to the standard linux
page size 4096 B. Due to hardware limitation of the DRAM we could only run the
experiments for 4096 B for around 5 s and respectively the experiments for 1024 B and
2048 B. We, therefore, let these experiments run 12 times in total. Since the values varied
not more than 20⇥10 3 op/s after removing outliers before calculating the average, we
argue that our values are representative.

For the 50 % read-workload, the append-requests are the bottleneck as described before,
and therefore all protocols perform nearly the same. As expected, we observe that the
graphs decline drastically with bigger-sized logEntries. From 3⇥10 3op/s for an entry
size of 64 B down to 160⇥10 3 op/s for 4096 B. Since the entries have to be replicated
on every node, a bigger entry size takes longer to persist than a smaller one. For the
95 % read-workload, we can see CRAQ/UCRAQ outperforming CR up to an entry
size of 256 B. CRAQ/UCRAQ are able to process around 30⇥10 6op/s for an entry
size of 64 B whereas CR can’t process more then 12⇥10 6 op/s which is CR’s op/s
bottleneck. Since the graph course for CRAQ/UCRAQ with 50 % workload, where
the append-requests are the bottleneck, runs similarly to the 95 % workload plot, we
assume that the append-requests are the bottleneck for this workload as well. CR and
CRAQ/UCRAQ are only able to handle 1.5⇥10 6op/s in total with an append share

42

5 Evaluation

64 256 1024 4096
0

1

2

3

Entry Size [B]

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

50% Read Workload

64 256 1024 4096
0

10

20

30

Entry Size [B]

Th
ro

ug
hp

ut
[o

p/
s
⇥

10
6

]

95% Read Workload

CR CRAQ UCRAQ

Figure 5.8: Evaluation of the scaleability of Ikaria on a 4-node chain for different log
entry sizes from cache line 64 B up to the standard Linux page cache 4096 B.

of 85⇥10 3 op/s for a log entry size of 4096 B. This is probably due to the append-
requests and therefore the bottleneck for CR are the append-requests again and not the
read-requests as for smaller entry sizes. As we mentioned in section 2.1 one advantage
of PM is the byte-addressability and therefore the possibility to persist data which is
smaller than 4096 B compared to SSDs where 4096 B is typically the smallest block size.
Since we could observe that CRAQ/UCRAQ performed well for entry sizes smaller
than 1024 B we argue that PM could perform great together with CRAQ/UCRAQ. This
assumption should be validated in future work.

43

6 Related Work

In this section, we present an overview of previous work on shared logs. We focus on
the general design and the workflow of write/read-requests for the specific shared logs
since these are the most essential.

CORFU [6] has been presented in 2012 and is still the state-of-the-art shared log
that provides strong consistency guarantees. CORFU has been designed as an intra-
datacenter shared log. It builds upon the idea to decouple the ordering from the actual
writing of the entries to storage. Instead of relying on storage servers, they directly
use the network-attached clusters of flash units which is made possible through their
client-centric design. Contrary to the server handling the mapping of log positions
to flash pages, the clients do the mapping. The mapping, called projection, contains
per log position multiple flash pages, depending on the desired replication factor.
Through this mapping are the log accesses spread over all flash clusters. This, therefore,
implements distributed wear-leveling since not one specific flash drive is accessed
a lot and therefore has a shorter lifetime. To append a new entry, theoretically, the
client could aggressively try to write to entries counting up until they find a free log
entry. Since this would provoke heavy contention between the clients, CORFU offers as
an optimization a dedicated sequencer, which returns for every request a dedicated
logPosition (called token). After a client got the logPosition for its new entry, he then
looks up in their local mapping which flash pages on which flash clusters correspond
to the specific logPosition. For replication, CORFU uses a client-driven chain replication.
Therefore the client now writes the new entry to every flash page, one after another.
With the mapping, each client can perform read-requests by reading from the responsible
flash drive. If a client received a logPosition but fails before actually writing the entry,
the log will have a hole at this position. The paper suggests that other clients write junk
values aggressively to empty log positions, which again provokes contention for the
entry, especially when the failed client recovers. The maximum throughput of the log is,
therefore, not dependent on the I/O bandwidth of a single storage server, but just how
fast the sequencer can answer requests/distribute logPosition. One downside of CORFU
is that in case of a flash cluster failure, the whole process pauses, the current projection
has to be sealed, and every client has to recalculate the new mapping. CORFU has
shifted the previous bottleneck of the storage server to the sequencer, which is now the
limiting factor. [6]

44

6 Related Work

Scalog [14] tries to solve some of the problems CORFU has. They use the same
principle as CORFU, to decouple global ordering of all entries from actually persisting
them. In contrast to CORFU, Scalog follows the idea of persisting all entries first and
then assigning them a position. Therefore Scalog distinguishes between a data layer,
which is responsible for storing and replicating the log, and an ordering layer, which
assigns the logPositions to the individual entries. For enabling scalability, the data layer
consists of multiple shards and each shard of multiple storage servers. When a client
wants to append a new entry, it sends an append-request to a storage server in a shard of
its choice, which enables data locality. The storage server stores the entry and replicates
it via primary/backup replication in the specific shard to all other storage servers. It
is essential to mention that each storage server has a dedicated segment for the log
entries of the other storage servers. Each server periodically reports the number of
persisted entries for all segments to the ordering layer. The ordering layer consists of a
fault-tolerant replicated Paxos-based sequencer and aggregators as an optimization for
collecting the persistent entry reports. It periodically sends a vector to every storage
server in every shard, calculated from the shard reports. It includes the logPositions
for the previous replicated entries for each server. The storage servers then assign
the received positions and answer to the client. While offering good scalability, no
reconfiguration timeout, and append speed, it does not support a general read-request.
Scalog only offers a shard-specific read-request, where only logPositions can be read,
which are replicated in this shard, and a subscribe-request where the client needs to
keep connections to a storage server in every single chard. While this is sufficient for
analytics applications, it could lead to problems when the use case has replicated state
machines running on top of the log. The periodical waiting and reporting of the two
layers adds up to higher latency, making Scalog not usable for applications requiring
very low latency. [14]

Fuzzylog [15] is a globally distributed shared log which only offers partial-order in-
stead of total-order over all entries. They assume that a system-wide total order is often
unnecessary since updates to different chunks of data do not need to be totally ordered.
Fuzzylog organizes updates in a directed acyclic graph (DAG) with happens-before
relationships between the updates. Updates that originate in the same geographical
region and access the same data are clustered together in totally ordered chains, and
all chains are cumulated as a color. Therefore a color includes all updates for the same
data, with updates from the same geographical regions totally ordered. The color
is replicated at every client, but chains from elsewhere are only lazily synchronized
between the locations and could therefore be stale. If a client wants to append a new
log entry, he appends the update to the associated color’s local, regional chain. Then he

45

6 Related Work

adds the causality paths to the last seen update of every other chain in the same color.
The updates in a chain are arranged in reverse order, therefore is the newest update the
last entry. The whole DAG is ordered in a reverse topological sort A synchronize call
is provided for updating a color, which gets all updates from the other chains, with
the causality relationships between the different chains. The updates are then applied
in the reverse topological sort order of the DAG. Read-Requests can just be done on
the local copy, but as mentioned before, the returned data could be stale. Fuzzylog
is, therefore, a good choice when a partial-order over the entries is sufficient for the
application, and the log should be deployed globally. If this is the case, it offers linear
scaling for throughput and availability in the case of network partitions. [15]

Delos [5, 9] has been presented in 2020 by Balakrishnan et al. Delos, in general,
is a database that runs as a Replicated State Machine (RSM) on top of a shared log.
Instead of having a specific shared log implementation that is directly accessed by
the database, they virtualize the shared log. They propose to virtualize consensus
by offering a virtualized shared log API called VirtualLog. The VirtualLog exposes
an append-only and strongly consistent log to the clients. Internally, it maps the log
entries to underlying Loglets. The Loglets can be distinct shared log implementation
like for example the previous mentioned CORFU [6] or Scalog [14]. If a Loglet fails
or another shared log implementation should be used, the VirtualLog seals the old
Loglet and maps all new entries to the new Loglet. This makes it possible to foster
new advancements in consensus research and swap out the underlying shared log
implementation without any downtime. Therefore, the consensus is split up into the
VirtualLog, which supports a reconfiguration capability for switching between the
Loglets, and the Loglets that provide the ordering capability. [5, 9]

Tango [10] builds upon a shared log by offering replicated, in-memory data structures.
For the data structures, it supports transactions as well. When a client wants to modify
a Tango object in its memory, it sends a new log entry to the shared log with the desired
changes. As soon as the entry is appended at the log, the client applies these changes to
its in-memory data structure. Therefore, a Tango Object exists in the shared log as the
history of changes and the client’s memory. One advantage of the underlying shared
log is that it can just replay the log entries when it comes back up in case of a client
failure. Another advantage is that the single operations provide Strong Consistency
guarantees. With Tango it is possible to build a general, highly available metadata
service similar to Zookeeper [11]. Balakrishnan et al. show with their work how simple
applications above a shared log can be implemented [10].

46

7 Conclusion

In the last chapter, we summarize our work and open up possibilities for future work.
We also note our concerns and possible pitfalls regarding our evaluation.

7.1 Summary

We presented Ikaria, a shared log that is designed for read-heavy workloads with the
recent advancements in networking and persistent memory. Therefore we make use
of the asynchronous user-space networking library eRPC [47] for enabling fast and
low-latency packet transmission. We consider the hardware characteristics of current
available Persistent Memory modules and designed Ikaria in a way to leverage those
at the best. One aspect where we consider the Persistent Memory hardware is the
single-flush log design [59] for providing consistency instead of a two-flush design
which proved less performant. For managing the Persistent Memory we make use
of PMDK, which is a collection of libraries and tools to help developers leverage
PM provided by Intel [29]. Ikaria supports Strong Consistency as well as Eventual
Consistency by offering two different read operations. The two consistency levels open
up greater flexibility for the clients in accessing log entries. As a replication protocol
Ikaria incorporates CRAQ [56] which is based on Chain Replication but enables the
possibility for reading locally on all nodes. This way Ikaria can run highly parallelized
and offers high throughput for read-heavy workloads. Our implementation is based on
a layered software architecture that makes it easy to, for example, exchange the used
network library. In our evaluation, we show that CRAQ provides superior throughput
for read-heavy workloads compared to Chain Replication. This proves the importance
of a replication protocol that performs well when it is deployed with multiple threads.
Furthermore, we demonstrate that CRAQ scales well with additional nodes compared
to the original Chain Replication protocol. In conclusion, Ikaria is a modern shared
log system that enables applications to leverage the performance gains of Persistent
Memory and user-space networking.

47

7 Conclusion

7.2 Future Work

We have set a baseline with our design and implementation for Ikaria, but there are
still some open tasks and questions which have to be addressed in the future. Some
of those questions are regarding the evaluation of Ikaria. In the previous chapter 5 we
could observe some behavior of CR and CRAQ which are hard to explain. Especially
the question of why CR outperforms CRAQ in specific scenarios has to be further
investigated. Another aspect we could not evaluate and has to be addressed by future
work is how Ikaria performs with PM hardware. Due to our hardware limitations, we
could only make assumptions about the performance, but evaluating our system with
PM hardware is an important future task. The latency of the request types in Ikaria has
not been evaluated in this work. Since the latency of the different request types is an
important question, this should be evaluated in the future. As we make use of eRPC
[47] in our implementation, which supports various transport layer protocols, another
interesting question would be how Ikaria performs with RDMA instead of DPDK. Since
there is an open discussion going on in the scientific community about RDMA and
RPC, comparing these two with Ikaria could give valuable insights.

Besides the open work regarding the evaluation, Ikaria could be extended by some
features in the future. Currently, Ikaria does not support any garbage collection for
old log entries, so the log grows infinitely. Therefore, a trim command is needed for
keeping the log at a manageable size. As we have seen in section 5.4 does tail reading
of the log imply additional state-requests to the Tail node. To circumvent these additional
messages, a streaming-read operation could be introduced. To avoid users trying to
read new log entries aggressively, they can register themselves at a chain node. These
registrations should be distributed over all chain nodes for good load balancing. Every
time a chain node receives an acknowledgment message from the Tail for some newly
committed log entry, it updates the state of the entry and sends a message to every
client who registered itself. This request type could be a valuable extension since Ikaria
is specially designed for read-heavy workloads.

7.3 Threats to Validity

In this section, we shortly want to state aspects we think could have influenced the
benchmarks. As discussed in section 5.1 we are generating the workload in the
application itself on the same machines. One problem herby could be that generating
many messages on the same servers where the application runs is that it limits the
available resources for the application under test. Generated append-requests by the
clients on the Head node can be directly processed and forwarded to the Head’s successor.

48

7 Conclusion

Therefore there is not any added network latency for these messages compared to
the append-requests from other nodes which have to send them to the Head. The same
problem applies for generated read-requests on the tail node for CR. Another aspect to
consider is other processes that run on the servers simultaneously while we perform
the benchmarks. Since Ikaria is writing many data to DRAM, the benchmarks could
have been influenced by other active processes which are accessing the memory.

49

List of Figures

2.1 RDMA Read/Write Data Flow . 6

3.1 Ikaria System Overview . 11
3.2 Ikaria Software Architecture (UML Component Diagram) 12
3.3 logEntry in-flight struct . 13
3.4 Append-request Message Flow (UML Collaboration Diagram) 15
3.5 Append-request Message Flow (UML Sequence Diagram) 16
3.6 Append-response Message Flow (UML Sequence Diagram) 16
3.7 Read-request Message Flow (UML Collaboration Diagram) 18
3.8 Read-request Message Flow (UML Sequence Diagram) 19
3.9 logEntry struct . 21

4.1 Ikaria Deployment (UML Deployment Diagram) 30

5.1 Evaluation Operations Append-only In-Flight Messages 34
5.2 Evaluation Operations Read-only In-Flight Messages 35
5.3 Evaluation Operations read/append-only workload 36
5.4 Evaluation Operations Chain Sizes . 37
5.5 Evaluation Operations Read-Workload 39
5.6 Evaluation Operations Interval . 40
5.7 Evaluation Operations Threads . 42
5.8 Evaluation Operations Data Sizes . 43

50

Bibliography

[1] Apache Kafka. [Online]. Available: https : / / kafka . apache . org/ (visited on
08/30/2021).

[2] Amazon Aurora: Design Considerations for High Throughput Cloud-native Relational
Databases. [Online]. Available: https://www.amazon.science/publications/
amazon-aurora-design-considerations-for-high-throughput-cloud-native-
relational-databases (visited on 11/08/2021).

[3] LogDevice · Distributed storage for sequential data. [Online]. Available: https://
logdevice.io/index.html (visited on 11/08/2021).

[4] M. Van Steen and A Tanenbaum, “Distributed systems principles and paradigms,”
Network, vol. 2, p. 28, 2002.

[5] M. Balakrishnan, J. Flinn, C. Shen, M. Dharamshi, A. Jafri, X. Shi, S. Ghosh,
H. Hassan, A. Sagar, R. Shi, J. Liu, F. Gruszczynski, X. Zhang, H. Hoang, A.
Yossef, F. Richard, and Y. J. Song, “Virtual Consensus in Delos,” in 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20), 2020,
pp. 617–632, isbn: 978-1-939133-19-9. [Online]. Available: https://www.usenix.
org/conference/osdi20/presentation/balakrishnan (visited on 05/02/2021).

[6] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei, and J. D.
Davis, “{CORFU}: A Shared Log Design for Flash Clusters,” in 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 12), 2012,
pp. 1–14. [Online]. Available: https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/balakrishnan (visited on 04/04/2021).

[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
in Concurrency: The Works of Leslie Lamport, New York, NY, USA: Association for
Computing Machinery, Oct. 2019, pp. 179–196, isbn: 978-1-4503-7270-1. [Online].
Available: https://doi.org/10.1145/3335772.3335934 (visited on 08/30/2021).

[8] Apache BookKeeper™ - Home. [Online]. Available: https://bookkeeper.apache.
org/ (visited on 08/30/2021).

51

Bibliography

[9] M. Balakrishnan, C. Shen, A. Jafri, S. Mapara, D. Geraghty, J. Flinn, V. Venkat,
I. Nedelchev, S. Ghosh, M. Dharamshi, J. Liu, F. Gruszczynski, J. Li, R. Tibre-
wal, A. Zaveri, R. Nagar, A. Yossef, F. Richard, and Y. J. Song, “Log-structured
Protocols in Delos,” in Proceedings of the ACM SIGOPS 28th Symposium on Op-
erating Systems Principles, ser. SOSP ’21, New York, NY, USA: Association for
Computing Machinery, Oct. 2021, pp. 538–552, isbn: 978-1-4503-8709-5. doi:
10.1145/3477132.3483544.

[10] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D.
Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed data structures over
a shared log,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, ser. SOSP ’13, New York, NY, USA: Association for Comput-
ing Machinery, Nov. 2013, pp. 325–340, isbn: 978-1-4503-2388-8. doi: 10.1145/
2517349.2522732.

[11] Apache ZooKeeper. [Online]. Available: https://zookeeper.apache.org/ (visited
on 08/26/2021).

[12] Pub/Sub for Streaming Analytics. [Online]. Available: https://cloud.google.com/
pubsub (visited on 11/09/2021).

[13] AlibabaMQ for Apache RocketMQ: Distributed Message Queue. [Online]. Available:
https://www.alibabacloud.com/product/mq (visited on 11/09/2021).

[14] C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and R. van Renesse, “Scalog: Seamless
Reconfiguration and Total Order in a Scalable Shared Log,” in 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 20), 2020,
pp. 325–338, isbn: 978-1-939133-13-7. [Online]. Available: https://www.usenix.
org/conference/nsdi20/presentation/ding (visited on 05/02/2021).

[15] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J. Abadi, J. Aspnes, S. Sen,
and M. Balakrishnan, “The FuzzyLog: A Partially Ordered Shared Log,” in 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18), 2018, pp. 357–372, isbn: 978-1-939133-08-3. [Online]. Available: https://
www.usenix.org/conference/osdi18/presentation/lockerman (visited on
04/29/2021).

[16] Intel® Optane™ Persistent Memory. [Online]. Available: https://www.intel.com/
content/www/us/en/architecture-and-technology/optane-dc-persistent-
memory.html (visited on 08/16/2021).

[17] M. Bailleu, D. Giantsidi, V. Gavrielatos, D. L. Quoc, V. Nagarajan, and P. Bhatotia,
“Avocado: A Secure In-Memory Distributed Storage System,” in 2021 {USENIX}
Annual Technical Conference ({USENIX} {ATC} 21), 2021, pp. 65–79, isbn: 978-1-

52

Bibliography

939133-23-6. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation/bailleu (visited on 08/16/2021).

[18] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal, “Under-
standing host network stack overheads,” in Proceedings of the 2021 ACM SIG-
COMM 2021 Conference, ser. SIGCOMM ’21, New York, NY, USA: Association
for Computing Machinery, Aug. 2021, pp. 65–77, isbn: 978-1-4503-8383-7. doi:
10.1145/3452296.3472888.

[19] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and solutions for fast
remote persistent memory access,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, ser. SoCC ’20, New York, NY, USA: Association for Computing
Machinery, Oct. 2020, pp. 105–119, isbn: 978-1-4503-8137-6. doi: 10.1145/3419111.
3421294.

[20] S. Scargall, “Introducing the Persistent Memory Development Kit,” in Program-
ming Persistent Memory: A Comprehensive Guide for Developers, S. Scargall, Ed.,
Berkeley, CA: Apress, 2020, pp. 63–72, isbn: 978-1-4842-4932-1. doi: 10.1007/978-
1-4842-4932-1_5.

[21] J. Yang, J. Izraelevitz, and S. Swanson, “FileMR: Rethinking {RDMA} Networking
for Scalable Persistent Memory,” in 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20), 2020, pp. 111–125, isbn: 978-1-
939133-13-7. [Online]. Available: https://www.usenix.org/conference/nsdi20/
presentation/yang (visited on 03/12/2021).

[22] S. Scargall, “Introduction to Persistent Memory Programming,” in Programming
Persistent Memory: A Comprehensive Guide for Developers, S. Scargall, Ed., Berkeley,
CA: Apress, 2020, pp. 1–10, isbn: 978-1-4842-4932-1. doi: 10.1007/978-1-4842-
4932-1_1.

[23] S. Scargall, “Persistent Memory Architecture,” in Programming Persistent Memory:
A Comprehensive Guide for Developers, S. Scargall, Ed., Berkeley, CA: Apress, 2020,
pp. 11–30, isbn: 978-1-4842-4932-1. doi: 10.1007/978-1-4842-4932-1_2.

[24] I. O. p. m. r. a. g. t. i. D. w. t. n.-g. n. G. I. X. S. processors, T. W. O. T. W. H. B. E. M. A. I. f. D.-f.
Cloud, databases, T. in Memory Analytics, and C. D. Networks, Intel® Optane™
Persistent Memory Product Brief. [Online]. Available: https://www.intel.com/
content/www/us/en/products/docs/memory-storage/optane-persistent-
memory/optane-dc-persistent-memory-brief.html (visited on 08/16/2021).

[25] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory,” in 18th {USENIX}
Conference on File and Storage Technologies ({FAST} 20), 2020, pp. 169–182, isbn:

53

Bibliography

978-1-939133-12-0. [Online]. Available: https://www.usenix.org/conference/
fast20/presentation/yang (visited on 08/16/2021).

[26] S. Scargall, “Operating System Support for Persistent Memory,” in Programming
Persistent Memory: A Comprehensive Guide for Developers, S. Scargall, Ed., Berkeley,
CA: Apress, 2020, pp. 31–54, isbn: 978-1-4842-4932-1. doi: 10.1007/978-1-4842-
4932-1_3.

[27] DAX. [Online]. Available: https : / / www . kernel . org / doc / Documentation /
filesystems/dax.txt (visited on 08/16/2021).

[28] S. Scargall, “Fundamental Concepts of Persistent Memory Programming,” in
Programming Persistent Memory: A Comprehensive Guide for Developers, S. Scargall,
Ed., Berkeley, CA: Apress, 2020, pp. 55–61, isbn: 978-1-4842-4932-1. doi: 10.1007/
978-1-4842-4932-1_4.

[29] PMDK: Persistent Memory Development Kit, Persistent Memory Programming,
Aug. 2021. [Online]. Available: https://github.com/pmem/pmdk (visited on
08/16/2021).

[30] Pmem.io: Libpmem. [Online]. Available: https://pmem.io/pmdk/manpages/linux/
master/libpmem/libpmem.7.html (visited on 10/04/2021).

[31] S. Scargall, “Libpmem: Low-Level Persistent Memory Support,” in Programming
Persistent Memory: A Comprehensive Guide for Developers, S. Scargall, Ed., Berkeley,
CA: Apress, 2020, pp. 73–79, isbn: 978-1-4842-4932-1. doi: 10.1007/978-1-4842-
4932-1_6.

[32] Pmem.io: Libpmemlog. [Online]. Available: https://pmem.io/pmdk/manpages/
windows/master/libpmemlog/libpmemlog.7.html (visited on 08/16/2021).

[33] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan, and N.
Binkert, “Consistent, durable, and safe memory management for byte-addressable
non volatile main memory,” in Proceedings of the First ACM SIGOPS Conference
on Timely Results in Operating Systems, ser. TRIOS ’13, New York, NY, USA:
Association for Computing Machinery, Nov. 2013, pp. 1–17, isbn: 978-1-4503-
2463-2. doi: 10.1145/2524211.2524216.

[34] Strata | Proceedings of the 26th Symposium on Operating Systems Principles. [Online].
Available: https://dl.acm.org/doi/10.1145/3132747.3132770 (visited on
08/16/2021).

[35] Quartz | Proceedings of the 16th Annual Middleware Conference. [Online]. Available:
https://dl.acm.org/doi/10.1145/2814576.2814806 (visited on 08/16/2021).

54

Bibliography

[36] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-Atomic Slotted
Paging for Persistent Memory,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’17, New York, NY, USA: Association for Computing Machinery,
Apr. 2017, pp. 91–104, isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.3037737.

[37] Intel® 64 and IA-32 Architectures Optimization Reference Manual. [Online]. Available:
https://www.intel.com/content/www/us/en/develop/download/intel-64-
and-ia-32-architectures-optimization-reference-manual.html (visited on
08/21/2021).

[38] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S.
Raindel, M. H. Yahia, and M. Zhang, “Congestion Control for Large-Scale RDMA
Deployments,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4,
pp. 523–536, Aug. 2015, issn: 0146-4833. doi: 10.1145/2829988.2787484.

[39] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn, “RDMA
over Commodity Ethernet at Scale,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16, New York, NY, USA: Association for Comput-
ing Machinery, Aug. 2016, pp. 202–215, isbn: 978-1-4503-4193-6. doi: 10.1145/
2934872.2934908.

[40] Z. Istvan, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a Box: Inexpensive
Coordination in Hardware,” in 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), 2016, pp. 425–438, isbn: 978-1-931971-29-4.
[Online]. Available: https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/istvan (visited on 08/13/2021).

[41] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be General and
Fast,” in 16th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 19), 2019, pp. 1–16, isbn: 978-1-931971-49-2. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/kalia (visited on
05/16/2021).

[42] DPDK. [Online]. Available: https://www.dpdk.org/ (visited on 08/16/2021).

[43] B. Brock, Y. Chen, J. Yan, J. D. Owens, A. Buluç, and K. Yelick, “RDMA vs. RPC
for Implementing Distributed Data Structures,” arXiv:1910.02158 [cs], Oct. 2019.
arXiv: 1910.02158 [cs]. [Online]. Available: http://arxiv.org/abs/1910.02158
(visited on 05/15/2021).

[44] Persistent Memory Replication Over Traditional RDMA Part 1:... [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/articles/
technical/persistent-memory-replication-over-traditional-rdma-part-
1-understanding-remote-persistent.html (visited on 10/20/2021).

55

Bibliography

[45] H. Bi and Z.-H. Wang, “DPDK-based Improvement of Packet Forwarding,” ITM
Web of Conferences, vol. 7, p. 01 009, Jan. 2016. doi: 10.1051/itmconf/20160701009.

[46] W. Zhu, P. Li, B. Luo, H. Xu, and Y. Zhang, “Research and Implementation of High
Performance Traffic Processing Based on Intel DPDK,” in 2018 9th International
Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Dec. 2018,
pp. 62–68. doi: 10.1109/PAAP.2018.00018.

[47] eRPC. [Online]. Available: https://erpc.io/ (visited on 08/16/2021).

[48] V. Gavrielatos, A. Katsarakis, and V. Nagarajan, “Odyssey: The Impact of Modern
Hardware on Strongly-Consistent Replication Protocols,” in PRoceedings of the
16th European Conference on Computer Systems 2021, Association for Computing
Machinery (ACM), Jan. 2021. [Online]. Available: https://www.research.ed.
ac.uk/en/publications/odyssey- the- impact- of- modern- hardware- on-
strongly-consistent-repl (visited on 05/05/2021).

[49] R. Van Renesse and F. Schneider, “Chain Replication for Supporting High
Throughput and Availability.,” Jan. 2004, pp. 91–104.

[50] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algo-
rithm,” in 2014 {USENIX} Annual Technical Conference ({USENIX} {ATC} 14), 2014,
pp. 305–319, isbn: 978-1-931971-10-2. [Online]. Available: https://www.usenix.
org/conference/atc14/technical-sessions/presentation/ongaro (visited on
09/23/2021).

[51] A. D. Fekete and K. Ramamritham, “Consistency Models for Replicated Data,”
in Replication: Theory and Practice, ser. Lecture Notes in Computer Science, B.
Charron-Bost, F. Pedone, and A. Schiper, Eds., Berlin, Heidelberg: Springer, 2010,
pp. 1–17, isbn: 978-3-642-11294-2. doi: 10.1007/978-3-642-11294-2_1.

[52] E. A. Brewer, “Towards robust distributed systems (abstract),” in Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
ser. PODC ’00, New York, NY, USA: Association for Computing Machinery, Jul.
2000, p. 7, isbn: 978-1-58113-183-3. doi: 10.1145/343477.343502.

[53] W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1,
pp. 40–44, Jan. 2009, issn: 0001-0782. doi: 10.1145/1435417.1435432.

[54] AWS | Amazon DynamoDB – NoSQL Online Datenbank Service. [Online]. Available:
https://aws.amazon.com/de/dynamodb/ (visited on 09/23/2021).

[55] P. A. Alsberg and J. D. Day, “A principle for resilient sharing of distributed
resources,” in Proceedings of the 2nd International Conference on Software Engineering,
ser. ICSE ’76, Washington, DC, USA: IEEE Computer Society Press, Oct. 1976,
pp. 562–570.

56

Bibliography

[56] J. Terrace and M. J. Freedman, “Object Storage on {CRAQ}: High-Throughput
Chain Replication for Read-Mostly Workloads,” in 2009 {USENIX} Annual Tech-
nical Conference ({USENIX} {ATC} 09), 2009. [Online]. Available: https://www.
usenix.org/conference/usenix-09/object-storage-craq-high-throughput-
chain-replication-read-mostly-workloads (visited on 05/05/2021).

[57] M. Richards, Software Architecture Patterns. O’Reilly Media, Incorporated 1005
Gravenstein Highway North, Sebastopol, CA~. . ., 2015, vol. 4.

[58] Storage Performance Development Kit. [Online]. Available: https : / / spdk . io/
(visited on 09/30/2021).

[59] A. Van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper, “Persistent Mem-
ory I/O Primitives,” in Proceedings of the 15th International Workshop on Data
Management on New Hardware, ser. DaMoN’19, New York, NY, USA: Associa-
tion for Computing Machinery, Jul. 2019, pp. 1–7, isbn: 978-1-4503-6801-8. doi:
10.1145/3329785.3329930.

[60] R. Schiekofer, J. Behl, and T. Distler, “Agora: A Dependable High-Performance
Coordination Service for Multi-cores,” in 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Jun. 2017, pp. 333–344. doi:
10.1109/DSN.2017.23.

[61] K. Walisch, Libpopcnt, Sep. 2021. [Online]. Available: https://github.com/
kimwalisch/libpopcnt (visited on 10/01/2021).

[62] Templates - cppreference.com. [Online]. Available: https://en.cppreference.com/
w/cpp/language/templates (visited on 09/29/2021).

[63] Pmem.io: PMDK man page. [Online]. Available: https://pmem.io/pmdk/manpages/
linux/master/libpmem/pmem_memmove_persist.3 (visited on 10/22/2021).

[64] Std::popcount - cppreference.com. [Online]. Available: https://en.cppreference.
com/w/cpp/numeric/popcount (visited on 10/01/2021).

[65] W. Muła, N. Kurz, and D. Lemire, “Faster Population Counts Using AVX2
Instructions,” The Computer Journal, vol. 61, no. 1, pp. 111–120, Jan. 2018, issn:
0010-4620, 1460-2067. doi: 10.1093/comjnl/bxx046. arXiv: 1611.07612.

[66] Std::atomic – cppreference.com. [Online]. Available: https://de.cppreference.
com/w/cpp/atomic/atomic (visited on 09/29/2021).

[67] Std::call_once - cppreference.com. [Online]. Available: https://en.cppreference.
com/w/cpp/thread/call_once (visited on 09/30/2021).

[68] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, vol. 08, Jan. 2003.
doi: 10.18637/jss.v008.i14.

57

Bibliography

[69] Rand(3) - Linux manual page. [Online]. Available: https://man7.org/linux/man-
pages/man3/srand.3.html (visited on 09/02/2021).

[70] 3. Environment Abstraction Layer — Data Plane Development Kit 21.08.0 documen-
tation. [Online]. Available: http://webcache.googleusercontent.com/search?
q=cache:aRHiFOjZu6AJ:https://doc.dpdk.org/guides/prog_guide/env_
abstraction_layer.html&client=firefox-b-d&hl=de&gl=de&strip=1&vwsrc=
0 (visited on 08/21/2021).

58

