
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Fast and Secure Networking for Remote
Direct Memory Access on Persistent

Memory Leveraging Trusted Execution
Environments

Philip Sändig

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Fast and Secure Networking for Remote
Direct Memory Access on Persistent

Memory Leveraging Trusted Execution
Environments

Schnelle und sichere
Netzwerk-Kommunikation für Remote
Direct Memory Access auf Persistent

Memory mithilfe von Trusted Execution
Environments

Author: Philip Sändig
Supervisor: Prof. Pramod Bhatotia
Advisor: Dimitrios Stavrakakis, Dimitra Giantsidi
Submission Date: 13/08/2021

ii

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 13/08/2021 Philip Sändig

Acknowledgments

First of all, I would like to express my sincere thanks to my supervisor, Professor
Pramod Bhatotia for offering me the thesis topic and for giving me the chance to
participate in the anchor project.

I especially want to thank my advisors Dimitra and Dimitrios who always supported
me when I needed their advice and helped me with many of my problems.

Lastly, I would like to thank my family and friends for supporting me throughout
the time in which I worked for my thesis. A special thanks goes out to Johanna, Maxi,
Simon and Simon for your support (not only) in our motivational Monday meetings.

Abstract

Since cloud environments gain popularity, new technologies for enhancing the security
and performance properties of hosted services are developed. Therefore, in the last few
years, research focused on using Trusted Execution Environments (TEEs) for protecting
against attacks of a host. Furthermore, as Persistent Memory (PM) finds its way into
data centers, the need for fast, low-latency userspace networking approaches like
RDMA increases. However, TEEs are neither designed for protecting PM, nor for
securing userspace networking.

In this thesis, we want to deliver answers to the question How can we build a secure,
high-performant network stack for use with PM under the assumption of an untrusted host?
Therefore, we will investigate two approaches: (i) an approach with one-sided RDMA
and (ii) an approach with two-sided networking in general. We find that only the second
approach lives up to our goals for performance, security, and generality. We, therefore,
implement a network stack for userspace networking that guarantees confidentiality,
integrity, and freshness. To reach these goals, we implement an encryption layer on top
of a library providing us with fast Remote Procedure Calls (RPCs). We will show that,
by making use of userspace networking, we get up to 60% better throughput compared
to kernel TCP. The latency of our implementation only increases by at most 4× when
running inside a TEE.

v

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

2 Background 3
2.1 Persistent Memory . 3
2.2 Trusted Execution Environments . 4
2.3 Userspace Networking . 4

2.3.1 Remote Direct Memory Access . 5
2.3.2 DPDK . 5
2.3.3 Remote Procedure Calls . 5

3 Design 7
3.1 Design Goals . 7
3.2 Design Challenges . 8
3.3 Design with one-sided RDMA on Persistent Memory 11

3.3.1 Environment and Assumptions . 11
3.3.2 Problems with secure one-sided RDMA 11
3.3.3 Design Approach . 13
3.3.4 Applicability . 14

3.4 Design with two-sided networking . 15
3.4.1 Problems with two-sided networking 16
3.4.2 Design Approach . 16
3.4.3 Applicability . 17

4 Implementation 19
4.1 Used tools . 19
4.2 Message format . 20
4.3 Client Implementation . 20
4.4 Server Implementation . 21

vi

Contents

5 Evaluation 22
5.1 Testbed . 22
5.2 Latency . 23

5.2.1 Single Operation Latency . 23
5.2.2 Latency with Request Stacking . 24

5.3 Networking Throughput . 25
5.3.1 Varying Number of Threads . 25
5.3.2 Bandwidth Throughput with SCONE and iperf 26

5.4 Operation Throughput with KV-store . 27
5.4.1 DPDK Networking . 27
5.4.2 RDMA Networking . 29

6 Related Work 31

7 Future Work 32

8 Conclusion 33

List of Figures 34

List of Tables 35

Bibliography 36

vii

1 Introduction

As there has been a massive growth in the use of cloud services in the last years that
does not seem to cease [38, 48, 50], protection of data becomes an issue. The main
problem is that cloud environments can neither be fully observed nor trusted by a client.
As a solution for this, Trusted Execution Environments (TEEs) have recently gained
popularity in systems research projects [2, 3, 4, 43, 44]. Since container environments
that transparently use TEEs exist [2], there is plenty of research work on trying to
leverage it for building secure systems in cloud environments [3, 4, 43, 44]. Another
emerging technology promising low latency and big memory capacities is Persistent
Memory (PM). It introduces new challenges for networking as well, as access latencies
with PM are shorter than network roundtrip times [24]. The need for fast, low-latency
networking resulted in the increasing popularity of userspace networking approaches
like RDMA that can also be applied to PM [17]. Recent work especially focuses on
making RDMA more efficient for use with PM [24, 25, 51]. There are also many
approaches trying to secure RDMA [37, 42], but neither of them deals with RDMA
on PM in untrusted environments. Hence, we aim to present a high-performant
networking approach that works on untrusted host systems and can be used by secure
PM architectures. This approach should result in a network stack that guarantees
confidentiality, integrity, and freshness. While designing the network stack, we face
three main challenges.

Firstly, TEEs are not trivially compatible with PM and Direct Memory Access
(DMA) [41] approaches. The security guarantees of TEEs are limited to small main
memory regions. Moreover, in TEEs, I/O devices, such as Network Interface Cards
(NICs) do not have access to protected memory regions.

For the one-sided approach, this can be resolved by storing all data inside PM
encrypted and authenticated. To solve this issue for the two-sided approach, we
encrypt messages inside the enclave and pass encrypted messages to untrusted host
memory where the NIC can access them. This approach was already successfully
applied in existing work [3].

Secondly, system calls in TEEs induce high performance overheads [2]. There-
fore, frequent system calls need to be avoided for reaching low latencies and high
throughputs.

To solve this issue, we make use of userspace networking, as it reduces the number

1

1 Introduction

of system calls. The performance gain from userspace I/O has already been shown in
several existing projects [3, 4, 43, 44].

Lastly, PM has a low latency compared to network roundtrip times [24]. Hence we
need to reduce overheads to lower the average roundtrip latency and to minimize the
number of roundtrips wherever possible.

The solution for this challenge is again userspace networking which grants us low-
latency message processing. Furthermore, we provide asynchronous operations. This
means, that a high number of messages can be enqueued without having received
a response. We will show that we can thus reach a high number of roundtrips in
a short time. Moreover, we provide the possibility to let our implementation run
multi-threaded which also improves the performance. Lastly, we assert that with a
two-sided approach, the number of network roundtrips can be reduced in comparison
to one-sided approaches, if the PM host takes care of all PM accesses.

In this thesis, after having an introductory background part (§ 2), we will discuss
further challenges for the two different secure networking approaches in detail (§ 3).
Here, we will also present the two approaches: a one-sided approach for RDMA and
a two-sided approach for userspace networking in general. After we see that the
one-sided approach is not suited to match our security guarantees while having a high
performance, we implement a two-sided network stack that protects against active
attackers from the network and the host operating system (§ 4). This implementation
is then benchmarked to prove that the design of our network stack lives up to our
performance requirements (§ 5). In the end, we will introduce related and possible
future work (§ 6, 7).

2

2 Background

2.1 Persistent Memory

Persistent Memory (PM), also called Non-volatile Main Memory (NVMM), is a recent
storage technology aiming to provide low latency (100-1000 ns) while having high
capacities. It thus closes the performance gap between SSDs and DRAM [49]. PM
shares many similarities with DRAM. It is connected to the main memory bus, can be
accessed with cache-line granularity, and is compatible with Direct Memory Access
(DMA), meaning that also devices other than the CPU can access it [36].

Novel Programming Model. Because of its persistence property, one key difference
to DRAM, a new programming model for PM has been introduced by the Storage
Networking Industry Association [29]. An implementation of this model is Intel’s
Persistent Memory Development Kit (PMDK) [18], which is a collection of different li-
braries for the use of PM. Multiple abstractions can be used for accessing PM. Therefore,
a couple of different libraries exist in PMDK [16]. One common approach supported
by the Programming Model is to map PM into DRAM, the same way as with files on
conventional background storage. This feature, called Direct Access (DAX), has the
advantage that after the mapping is set up, PM access is possible without further inter-
action with the kernel. Another significant aspect of the Programming Model is that
writes are not made persistent instantly. Instead, for ensuring better write-performance,
usually, only the CPU cache is updated and changes need to be flushed to persistency.
Write atomicity is only guaranteed for write sizes of up to 8 Bytes. This is especially
important for systems that aim to ensure crash-consistency guarantees. [36]

Security issues. Having persistent main memory comes with the problem that on a
system shutdown or crash, all data stored in PM is preserved. On the one hand, this is
can be beneficial. On reboot, data stored on PM can be reused without the need for
being reloaded. On the other hand, this implies that after a reboot, anyone could access
any data inside PM. While for volatile memory, paging and other security mechanisms
can protect memory regions from being accessed by unprivileged processes, this is not
the case for PM anymore. [36]

3

2 Background

2.2 Trusted Execution Environments

Since cloud computing becomes more and more popular, it is important to protect
data in the cloud. As cloud servers are often not accessible directly, this leaves us
with the question, what one could do to protect data even if the cloud environment
is not trusted. Processor manufacturers answer that issue with Trusted Execution
Environments (TEEs), for example Intel SGX [15], ARM TrustZone [46] and AMD
SEV [1].

Intel SGX. In the case of Intel Software Guard Extensions (SGX) [15], so-called
enclaves are provided as TEEs. These are environments that protect memory regions of
a process from access by other processes. These memory regions are called Processor
Reserved Memory (PRM). Inside this memory region, there is the Enclave Page Cache
(EPC), which is the collection of pages of a process protected by the enclave. Because
the EPC has a limited size, processes need to use it efficiently. A higher memory
usage leads to massive performance overheads [2]. For running untrusted code from
an enclave application, as for system calls that need to be executed by the host OS,
the CPU needs to exit the enclave. When exiting and entering, program data, such
as the CPU registers of the enclave process, need to be saved, encrypted, and stored.
Therefore, system calls induce a high overhead and need to be avoided in favor of
performance [2]. [7, 10]

Attestation. Another important concept for enclaves is attestation. After a remote
attestation process, a client of a service running remotely, for instance at a cloud
provider, can ensure that his code is running securely. This includes that he knows
attributes of the currently running enclave and measurements of his code so that he
knows that it is the expected code running unmodified inside an enclave. [7, 19, 32]

2.3 Userspace Networking

A modern approach for fast networking, often used in current research projects [3, 21, 26,
44], is to leverage userspace networking. The idea behind it is to use a userspace driver
for more direct interaction with the Network Interface Card (NIC) [11]. Furthermore,
by running the driver in userspace, fewer system calls and thus fewer transitions to the
kernel space need to be made. We will introduce RDMA and DPDK as two examples
for userspace networking libraries and then discuss the benefits of using a Remote
Procedure Call (RPC) abstraction for networking.

4

2 Background

2.3.1 Remote Direct Memory Access

The term Remote Direct Memory Access refers to the Direct Memory Access technique
made accessible remotely. With DMA [41], I/O operations are offloaded to a DMA
controller which provides instructions for the execution of the operation to a device.
The major benefit resulting from DMA is that devices, such as NICs, can directly
access the main memory without the intervention of the CPU. This makes so-called
one-sided approaches for networking possible. With one-sided RDMA, only one CPU
poses a read or write request that is sent over the network and triggers the respective
operation at the machine we are communicating with [41]. This happens without
any involvement of the other machine’s CPU. Because RDMA does not work with
the traditional kernel network stack, different protocols are needed for this purpose.
Accordingly, two protocols exist [34]. (i) The Internet Wide Area RDMA Protocol
(iWARP) and (ii) the RDMA over Converged Ethernet Protocol (RoCE) [28]. While
iWARP is used for compatibility with IP networks, RoCE builds on the ethernet link
layer [34].

Because of its high potential, there is a lot of research focusing on extending RDMA,
for example, by security [37, 42]. Further, compatibility for RDMA with PM comes
with challenges that are currently investigated in research and several projects [17, 39,
40]. As PM is an emerging technology, current CPUs and hardware configurations are
optimized for DRAM. Consequently, finding optimizations that make remote persistent
memory access faster is a hot research topic as well [25, 47, 51].

2.3.2 DPDK

The Data Plane Development Kit (DPDK) [14] is a project initially started by Intel for
accelerating network packet processing using userspace NIC drivers. Therefore it can
be seen and used as an alternative for kernel networking or RDMA. As well as RDMA
it is used for fast userspace networking in current research, especially in combination
with TEEs [3, 43, 44].

2.3.3 Remote Procedure Calls

Remote Procedure Calls (RPCs) are an abstraction that can be used in networking in
distributed systems. The idea is to make networking transparent so that a caller of a
procedure does not notice whether it is executed on a different machine. Using this
abstraction is easy for a developer who does not want to take care of the networking
implementation and is only interested in its performance. For providing efficient
RPCs, userspace networking approaches can be employed. One example of a library
that can be used on top of both, DPDK and RDMA, is eRPC [26]. By supporting

5

2 Background

both technologies, eRPC brings the benefit of providing portability between different
systems with different NICs. Furthermore, it shows that this gain of portability does
not cause any major performance overheads.

6

3 Design

3.1 Design Goals

Threat Model. As our system is designed for deployment in an untrusted cloud
environment, we need to be prepared for the case that the host Operating System is
compromised. Therefore, our threat model is similar to thread models from existing
work in this area [2, 3, 44]. We assume that an attacker can act as a superuser on
the host Operating System. Consequently, an attacker can read and manipulate any
memory region outside the ones protected by a TEE. Moreover, every other information
that is exchanged with the host OS, for example, through system calls, can be modified
by an attacker. For the networking threat model, we make the same assumptions,
because the potentially compromised host OS has control over the Network Interface
Card and could act as Man in the Middle. As well as an active attacker on the network,
an attacker having control over the host OS can also eavesdrop or change any message
that is sent or received.

Information Security Goals. For secure network communication, we must ensure
at least Confidentiality and Integrity. Additionally, we want to ensure Freshness for
Replay protection. Since a compromised host OS could, for example, deny all system
calls or overwrite all buffers in unprotected memory regions, we cannot protect against
Denial of Service attacks. Availability, therefore, cannot be guaranteed under these
conditions. Furthermore, we do not protect against side-channel attacks on Intel SGX [5,
22].

Performance Goals. Because the network stack should operate inside data center
networks, we strive for fast, high-throughput network communication. As we can
assume that we have access to modern high-performance Network Interface Cards
supporting throughputs of multiple Gbit/s, we need to fully leverage them. Especially
for big payload sizes, it is important to optimize for throughput. Our goal is for our
implementation to be more performant than current TCP socket implementations inside
a Trusted Execution Environment. Consequently, we will compare the throughput of
our network stack with the socket networking benchmark iperf [20] in the Evaluation

7

3 Design

section (§ 5.3.2). Low networking latency is also desirable to take advantage of the
low-latency accesses of Persistent Memory (PM). Networking became a bottleneck since
PM was introduced in data center networks [24], so we need to ensure that (i) the
roundtrip time of a single operation is short and (ii) the operation throughput is high.
It is especially important for our implementation to avoid system calls since these are
expensive when running inside Trusted Execution Environments [2].

Generality. Our network stack should make arbitrary operations on any software
possible remotely. A developer should ideally be free to design the layout of the data
stored in PM. The final goal is to provide operations that make access on a remote
persistent memory region as transparent as possible in the ways of performance and
API.

3.2 Design Challenges

Untrusted Host Operating System. Problem. Our threat model assumes a potentially
compromised host OS. Hence we need to assume that an attacker can interfere in every
interaction with the Operating System, for instance, at every syscall. The problem
here is that the system call itself is executed by the Operating System. Therefore we
need to make sure that private data passed inside syscalls is always encrypted and
authenticated. Another problem caused by syscalls is that transitions from the enclave
to the host OS are very expensive [2].

Approach. To be able to securely operate on an untrusted host OS, we need to rely on
TEEs implemented in processors. In particular, we use SCONE [2], a secure container
environment working with Intel SGX [15]. SCONE provides us with a transparent way
of using SGX. We simply need to run our application inside a SCONE container to run
it inside an enclave for protecting it against attacks from the host OS. For protecting
private data passed to the host OS in system calls, SCONE introduces shields. If,
for example, a File System Shield is enabled, the application can request SCONE to
transparently encrypt and/or authenticate Files. A networking shield exists as well.
However, it is only made for protecting sockets. As we investigate in the Evaluation
section, userspace networking is preferable over sockets, and for this case, we can not
use SCONE’s networking shield. To solve the aforementioned performance problem
induced by syscalls, SCONE buffers syscalls. This avoids frequent enclave exiting
and reentering. Even though this makes syscalls more efficient especially for multiple
threads, they still induce a high overhead. For this reason, we need to keep the number
of syscalls as low as possible. Therefore, as described later in this section, we use
userspace networking.

8

3 Design

Secure networking. Problem. For networking, we can not simply assume a Dolev-
Yao Attacker Model [8] which assumes that an active attacker can only manipulate
messages from the network. Since we assume that the host is potentially compromised,
we also have to take measures against attacks from the host. However, if we find a
way for protecting our whole system from attacks from the host OS, the Dolev-Yao
Model is suiting. In general, a secure connection for sending and receiving messages
confidentially needs to be established. Therefore, we need an initial handshake for
establishing a key between two communicating parties.

Approach. For protecting our implementation against attacks from the host, we use
SCONE [2], as mentioned before. As our code will then run inside an enclave, we only
need to protect the communication against attacks from the network. However, note
that even though our code is protected by a TEE, a compromised host Operating System
can still act as an attacker. Because the NIC can not access enclave memory, we need to
consider it a part of the untrusted host. To make data accessible for the NIC at all, we
need to copy all messages from the enclave memory to the untrusted host memory. In
this case, the measures against network attackers are also effective against attackers
on the host. That is because they have the same capabilities as active attackers in the
network, namely eavesdropping, modifying, and dropping messages. Because the NIC
is not trusted, approaches like using the NIC for encryption and authentication [37]
do not work for us. That is why we need to encrypt messages and add a tag for
checking integrity inside the enclave. This is done before data is moved to untrusted
host memory from where the data is accessible by the NIC. An easy-to-use class of
encryption algorithms that provides both, confidentiality and integrity, is Authenticated
Encryption with Associated Data (AEAD) [27].

Bootstrapping Trust. Problem. When using TEEs, an important question arises: How
can we be sure that it is our unmodified code that is running and that it is running
inside a TEE? All our effort securing our application would be in vain if we did not
have an answer to that. A host would always tell us that our application is running
securely inside a TEE, no matter if it is compromised or not. Hence, we need formal
cryptographically secured proof for that. Furthermore, in our case, before the actual
network communication for transferring data can start, a secure key needs to be
established between two communicating parties. We also need to make sure that
this key is only accessible from within the enclave. Lastly, to make sure our security
guarantees are not violated, we also need to recall our Trusted Computing Base (TCB),
which consists of the code and the hardware components we have to trust.

Approach. For bootstrapping trust remotely, we can use a remote attestation mech-
anism which is provided, for example, by the Intel SGX implementation [19]. The

9

3 Design

idea of remote attestation is to take measurements with the help of a Trusted Platform
Module (TPM) [45] on the attestor and report them to a verifier over the network. In
detail, on an attestation request from the verifier, the attestor requests a Quote from
the TPM, which is a fresh cryptographic signature of measurements. The verifier can
check the attestation reply, consisting of the TPM quote and the list of measurements.
This requires, that he knows the public key of the keypair the TPM used to sign the
Quote, in advance. [12] describes, how a secure channel can then be linked to the
attestation process. This tunnel can then be used for exchanging initial information.
The aforementioned list of measurements can consist of, for example, the running code
and the libraries needed. In general, we should make sure that the whole code we want
to trust is in a state that we expect. [32]

In the attestation process provided by Intel SGX, enclave code and data, technical
details about the enclave, and its current attributes are among the measurements.
Instead of a TPM, a dedicated Quoting Enclave is used for generating the Quote. The
SGX attestation implementation can also establish a secure channel. We can use it for
exchanging a key later used by our implementation. [7, 19]

In the end, let us recall the software and hardware components that we need to trust.
Of course, we need to trust the processor and the implementation of the enclave, in
hardware and software. Furthermore, evaluating technical details about the enclave
provided by the attestation response is crucial. For example, Intel recommends not
to trust enclaves in debug mode [19]. Lastly, we need to trust the TCB of SCONE [2]
and the libraries we are using. As described later in chapter 4, these will include
OpenSSL [30], eRPC [26] and the library for userspace networking on the link layer (i.e.
either DPDK [14] or RDMA [33]).

Fast networking with Persistent Memory. Problem. As PM finds its way into data
centers, new challenges regarding fast networking are coming up [24]. The key prob-
lem is that a network roundtrip takes more time than writing data to PM [24, 36],
which was not the case with SSDs. Therefore, the low latency of PM is only fully
leveraged if networking is optimized for latency. Kernel networking tends to have high
latency for small package sizes as expensive syscalls need to be issued for reads and
writes. Especially in TEEs, where syscalls are expensive, traditional kernel networking
implementations, such as TCP or UDP, lead to high latency and throughput overheads.

Approach. The general approach to avoid syscalls is to use userspace networking
libraries, such as DPDK [14] or RDMA [33]. Lower latencies are achieved by using
dedicated drivers in userspace. These only provide low-level access leading to bad
portability. When we have a look at two different approaches in the following sections,
we use higher-level libraries to solve that problem. The first approach is to use one-

10

3 Design

sided RDMA. This technology makes it possible to access memory regions on a server
without the involvement of its CPU, which means that the NIC directly accesses the
PM. This can be implemented with librpma [17] from PMDK [16]. In section 3.3 we
will conclude that this approach is only compatible with our security goals under
special circumstances and induces a high overhead. Hence, we focus on a second,
two-sided approach with a Remote Procedure Call (RPC) abstraction providing us with
the possibility to use either two-sided RDMA [33] or DPDK [14].

3.3 Design with one-sided RDMA on Persistent Memory

Because PM supports Direct Memory Access (DMA) [36, 41], the Network Interface
Card (NIC) can access it. The word "one-sided" already implies that only one side,
i.e. one CPU, of two communicating machines is involved. Therefore, only one party
needs to perform a networking operation, so at the other party, work is offloaded to
the NIC. Furthermore, RDMA is a userspace networking technology, so it fulfills our
requirement to reduce the number of system calls. In the following, we will illustrate a
Design approach and analyze the problems induced by the use of one-sided verbs in
general.

3.3.1 Environment and Assumptions

We assume a scenario in which there is a central server offering access to data in a PM
region registered for one-sided RDMA. The server code and sensitive data reside inside
a TEE, while the PM region registered for RDMA is untrusted. Multiple clients can
connect to the server and access the registered region. We assume that trust between
the server and each client was already established through attestation and that each
client shares a separate symmetric key for encryption with the server. To access the
data provided by the server by its address, each client needs to be informed about the
structuring of the data. This information can be exchanged in an initial handshake.

3.3.2 Problems with secure one-sided RDMA

The main issue with secure one-sided RDMA is that any adversary could potentially
access all data in the shared memory region. However, as our threat model assumes an
attacker having access to all memory regions, including the one provided for RDMA,
we need to have security measures against these attacks anyway. Provided that we
manage to protect against simple tampering and modification attacks, there are two
more types of attacks that we additionally need to be aware of: (i) replay attacks where
data is re-inserted to a fixed position at a later time and (ii) copy attacks where data

11

3 Design

inside the memory region is copied to a different location where it doesn’t belong to.
For protecting against replay attacks, we need to make sure that the entry is valid at
the current time, while against copy attacks, we need to be sure that an entry is at the
space it belongs to.

Another question that arises when using RDMA on PM is: How are changes written
by a remote client made persistent? In librpma [17], a library for remote persistent
memory access on PM by PMDK [18], this is solved by executing a read for accessing
the remote host’s PM region which implicitly forces flushing. Other solutions [39, 40]
suggest a dedicated asynchronous flush operation. Both approaches need an additional
networking roundtrip, which we want to avoid.

RDMA

Trusted enclave memory

Untrusted host memory

Trusted PM
application

Secure distributed Sequence number
KV-store

PM Management

Untrusted PM

Application
Memory

Secure network stack

Figure 3.1: Design for one peer with one-sided networking. The PM Management
is responsible for encryption and decryption. It also checks the sequence
numbers. A local PM application can access the PM region via this Unit.
Each peer needs this Management Unit and a copy of the distributed KV-
store for sequence numbers in order to directly access the PM region

12 B 8 B 16 BFixed size

Initialization
Vector

Sequence
Number Payload Authentication

Tag

Figure 3.2: Entry format for one-sided networking

12

3 Design

3.3.3 Design Approach

The design of the one-sided networking approach is shown in figure 3.1. In this
section, we describe, what the PM Management Unit’s tasks would be with this kind of
approach.

Protecting an entire PM region as a whole would be impractical because on every
access all data would need to be sent, en-/decrypted, and integrity-checked at once.
This is why the PM Management Unit must handle the data blockwise. For networking,
it is beneficial to fit the block size to the network’s Maximum Transmission Unit (MTU)
to fill the packet size. Note, that this implies a big intervention for operations on the
data as each operation needs to be aware of this structure and the data size. We can
think of the storing of data as preparing whole encrypted and authenticated messages
before they are sent. Therefore, an entry in the data structure would look like the one
shown in Figure 3.2. We need a unique Initialization Vector (IV) for the encryption
algorithm. The encrypted data can have an arbitrary but fixed size. As mentioned
before, fitting the block size to the MTU is beneficial. We further need a Message
Authentication Tag for providing integrity. As we are using an AEAD cipher [27], we
can leverage the concept of Additional Authenticated Data (AAD) [9] to save memory.
Therefore, the address or offset of a block, which has to be sent in plaintext for the
NIC to know where it needs to access the data, can be included as AAD and thus
authenticated. This ensures that, from the response, the client can check if the data was
stored in the place where it was expected and accessed. Finally, we need a sequence
number for providing freshness. However, there is a problem with that, which we
illustrate in a short example. Therefore, let’s assume we want to perform a read as a
client. We issue an RDMA read call and get as a response a message according to the
format in Figure 3.2. We successfully decrypt the message and verify the authentication
tag, thus we know, the data was encrypted with the key only known by the server and
the client. As we also include the address of the data during the decryption process as
AAD, we can be sure that at some point in time the data we got was at the specified
address. In the last step, we want to check the sequence number to make sure that the
data is at the specified address now. But how do we know which sequence number is
the correct one? We could have stored the sequence number in advance to know what
sequence number we expect. But what if the data, and thus also the sequence number,
has been changed once or multiple times by one-sided write operations? Even worse:
What if the sequence numbers match, but the data was updated and now has a newer
sequence number on the server? In this case, we would think the data was fresh, even
though it is already outdated. This violates our freshness guarantee. The only solution
for that problem is to notify all clients in case a data block is updated. This involves
the server’s CPU and causes one additional networking roundtrip per client per write

13

3 Design

– something we want to avoid by all means. This approach is only beneficial with a
very high read-to-write ratio, as in this case the communication overhead induced
by two-sided write-operations only occurs rarely. Moreover, a low number of clients
is beneficial because, in the case of a write, fewer sequence number updates need to
be sent. Each client also needs a mapping from the address he wants to access to
the sequence number he expects. As the EPC size is limited, we need a distributed
key-value store in untrusted host memory or PM. Even though efficient solutions for
this exist [3], it induces an overhead and adds a second networking channel, which we
want to avoid for design reasons. However, we have seen that a one-sided approach
can guarantee our security goals, even though only with a high effort.

3.3.4 Applicability

We want to investigate if there is a scenario where one-sided network communication is
practical. Therefore, we consider the question: Does it make sense, in general, to access
a remote persistent memory region as it was a local one? Consider, for example, that
we have a tree data structure in the host’s PM and clients accessing it. For a lookup,
ideally O(log n) accesses are needed. The problem is that, in general, these accesses
are not serial, so each access needs a networking roundtrip. As discussed in section 3.1,
we want to avoid networking roundtrips as they are far slower than PM accesses. So, in
this case, it would be more efficient to let the server hosting the PM region access it for
looking up an element in the tree data structure. An alternative solution would be to
let the clients store internal information about the tree locally. However, if changes are
applied to the data structure, all clients would need to be notified. They would have to
update their information about the tree structure as well. In any case, this approach is
a waste of resources. This simple example shows that the one-sided approach violates
our aim for performance and generality.

To sum it up, the main problems about this approach are (i) that each client needs to
keep track of sequence numbers and update them at each write inducing overheads
and (ii) that we lose generality by having a fixed-size block structure in PM and we get
significant overheads in case an operation includes multiple roundtrips. Therefore, we
will not further investigate the one-sided approach, neither in the Implementation nor
in the Evaluation section.

14

3 Design

RPCs

Trusted enclave memory

Untrusted host memory

Trusted PM
application

Network message buffers
Msg buffer

Userspace I/O driver

Network encryption layer

eRPC

Untrusted PM

Msg bufferMsg buffer
Application

Memory

Secure network stack

Figure 3.3: Design of a server for two-sided networking. Access to PM is made transpar-
ent by using RPCs. The network stack based on RPCs handles requests by
fetching them from buffers in the untrusted host memory, decrypting them,
and passing them to the PM application. After it has processed the request,
a response is sent back over the network stack. It encrypts the response and
passes it to untrusted host memory, from where it is sent to the client.

12 B 8 B 16 BVariably sized

Initialization
Vector

Sequence
Number Payload Authentication

Tag

Figure 3.4: Message format for two-sided communication

3.4 Design with two-sided networking

As we have investigated that a pure one-sided networking design is not fully compatible
with our design goals, we make use of a two-sided approach. Luckily, there is a variety
of different technologies working with this approach, such as kernel TCP, as well as
DPDK [14] and a two-sided variant of RDMA. As we focus on userspace networking,
we will only make use of the latter two technologies. In this section, we will illustrate
our design approach and see that it meets our security and design requirements.

15

3 Design

3.4.1 Problems with two-sided networking

The main disadvantage of two-sided networking compared to one-sided RDMA is that
two CPUs need to be involved. Therefore, for each send-operation, there needs to be
a corresponding receive-operation processing the message. In our case, we need to
implement busy waiting to process requests effectively, which induces an overhead.

Another issue is that we need to communicate with the untrusted NIC from inside
the enclave. As the NIC can not access buffers inside enclave memory, we need to write
the encrypted messages which we want to send to buffers in untrusted host memory.

Further, the Application working on PM needs to be aware of the enclave and secure
its PM accesses. As our two-sided variant of the network stack has no access to PM
anymore, it does not need to deal with untrusted PM.

3.4.2 Design Approach

The basic design of our network stack at the server side is shown in figure 3.3. The
whole networking code runs inside the enclave. We provide an encryption layer that
encrypts all messages sent over the network with the network key exchanged in the
attestation process. The encryption key is kept inside trusted enclave memory. It should
differ from the key used to encrypt data inside PM. This ensures, that, in case a key
between the server and a single client leaks, data kept in PM is still safe. Confidentiality
and Integrity are provided by the AEAD encryption mechanism, so let us consider
freshness. A client sends a request to a server with a unique sequence number. The
server checks if the sequence number is matching. If it is, the server performs the
requested operation and sends a response with the incremented sequence number back
to the client. The client knows that the server’s response matches its request if the
sequence number is correct. Since networking sequence numbers are treated separately
from the implementation of the application at the server, a user of our network stack
can implement any method for guaranteeing freshness in his implementation. Hereby
we have proved in an informal way that our two-sided implementation can guarantee
our information security goals from section 3.1.

Below the encryption layer, we use eRPC [26], a library providing us with an RPC
abstraction for accessing userspace drivers. This also ensures portability, as it can be
used on top of DPDK as well as RDMA. We expose an asynchronous RPC interface to
clients that can call functions registered on the server. A client sends a message, drains
it and a callback is called on the arrival of the server response. This has the advantage,
that multiple requests can be issued at once, improving average operation latency
and operation throughput. We will also refer to this as request stacking. Function
arguments need to be marshaled and unmarshaled, and return values need to be passed

16

3 Design

to our network stack in enclave memory. The memory regions with the arguments in
plaintext need to reside in enclave memory as well. Then, we encrypt them and put
them into message buffers residing in untrusted memory in the format shown in figure
3.4. Note, that this format is very similar to the data entry format we would have had
with onesided RDMA, except for one difference: the payload size can be variable. As
we had fixed-size blocks with the one-sided design, there could have been cases where
resources would have been wasted for encrypting and sending such a block, while in
this approach, there is no more overhead than necessary in any case. The message
format in figure 3.4 results from our security goals. For keeping data confidential,
we need encryption. Therefore, we need an IV and, because we use AEAD, we get
a MAC for checking integrity. For guaranteeing freshness, we use unique sequence
numbers. The lowest layer consists of a userspace driver communicating with the NIC
and performing the networking operations. The driver itself runs inside the enclave,
while it communicates with the NIC via untrusted host memory.

3.4.3 Applicability

As we provide RPCs, a user of the two-sided network stack can simply use it to
transparently enqueue requests. To prove that this approach is indeed more beneficial
than the one-sided one, we will consider the scenario described in section 3.3.4.

We consider the example of the tree data structure hosted at the server. Any operation
on the data structure is performed by the server itself. A client only needs to enqueue
a request that is then handled by the server who performs all accesses on the PM
region. Only the response, which is everything the client needs, is sent back. This saves
networking roundtrips compared to the one-sided approach.

To have a fair comparison, we also need to consider the case of simple reads and
writes on PM. For a direct read, in case the client knows where to read from, a one-sided
client would need to look up the sequence number for the corresponding block. After
that, only one network roundtrip is required. The server’s CPU is never involved. For
the two-sided approach, a client would need to enqueue a request specifying the PM
address. This causes the server to copy the contents of the requested PM region in a
buffer and send the data. The overhead is only caused by the server’s busy waiting
for requests, the copying of the data in PM to the message buffer, and the freshness
check at the server. Additionally, the data is decrypted and encrypted once more if
different keys are used for networking than for storing. However, this is more secure
than using a shared storage key for networking, as it needs to be the case for one-sided
approaches. For writes with one-sided RDMA, the sequence number KV-stores of all
clients need to be updated. Therefore, one message per client needs to be sent, causing
a higher overhead than the two-sided variant.

17

3 Design

To sum it up, in almost any case the two-sided networking variant causes lower
overheads in practice. It is not only less complicated to implement, but also less
complicated to use. Moreover, it provides users the flexibility to manage data in
untrusted PM according to their needs and makes synchronization easier. By using
different keys for storage and network, the two-sided variant is also more secure than
a one-sided one can be. As using one-sided RDMA has no advantages under the
given circumstances, we will only focus on and implement a two-sided network stack
supporting both, RDMA and DPDK.

18

4 Implementation

In this chapter, we describe the implementation of a secure two-sided network stack
that is aware of Trusted Execution Environments and leverages userspace networking.
Therefore, we have a look at the tools used (§4.1), then we will look at some details
of the implementation (§4.2, 4.3, 4.4) and provide short guides on the usage of the
network stack.

4.1 Used tools

OpenSSL. For providing the aforementioned security guarantees, OpenSSL [30] is
used as a library for cryptographic operations. As an encryption mechanism, the
OpenSSL implementation of AES-128-GCM [9] is used. The cryptographically secure
pseudo-random number generator provided by OpenSSL [31] serves for generating
random initial sequence numbers and Initialization Vectors.

eRPC. A library that provides fast network communication with support for RDMA
is eRPC [23, 26]. It provides an API for issuing Remote Procedure calls and can be used,
for example, on top of DPDK and RDMA. The compatibility of eRPC with both RDMA
and DPDK offers the chance to directly compare the performance of the network stack
with RDMA against DPDK. eRPC implements reliable UDP-based communication
and is designed for lossy networks. Therefore, requests are guaranteed to arrive at a
server that can reply to incoming requests. Arguments for an RPC are transferred via
DMA-capable Message Buffers residing in untrusted host memory. In these buffers,
we place messages of the format described in section 4.2, which are encrypted and
integrity-protected. [26]

We are using eRPC along with SCONE [2] and DPDK [14] or RDMA. As DPDK and
eRPC are not trivially compatible with SCONE, we make use of adapted DPDK and
eRPC versions from Avocado [3].

19

4 Implementation

4.2 Message format

A message from the network stack includes four important fields. First of all, a
12-Byte Initialization Vector is used for secure encryption with AES128-GCM [9].
For guaranteeing freshness, an 8-Byte Sequence number is used. The next field is
the encrypted message. Its size depends on the message size that a user wants to
transmit. By using the Galois-Counter-Mode, which is an AES stream cipher mode
[9], the ciphertext size is the same as the plaintext size. Lastly, the 16-Byte GMAC-Tag
generated throughout the encryption process is appended. On decryption, the Tag is
checked to make sure that the ciphertext remained unchanged during the transmission
process.

4.3 Client Implementation

A user of the network stack can register types of requests and respective callbacks
that are called when the response arrives. If a request is created, all arguments for
the according RPC are added one by one, and then encrypted and authenticated as
described in section 4.2. An alternative to this approach would have been to copy all
arguments to a buffer and encrypt it. But since that causes copy overhead, we directly
encrypt it and store it in a message buffer.

We also provide the option to move the data without encryption. This can be
beneficial to avoid double encryption and decryption, in case the payload is already
encrypted and authenticated. Note, that a shared key for data storage and network can
lead to severe security vulnerabilities in case it leaks.

The message buffer with the encrypted payload resides in the untrusted host’s
hugepages memory. The buffers are provided by eRPC [26] and are DMA-capable.
When finishing a request, the message can be drained and thus sent to the server.

We provide an asynchronous RPC interface, so a call to an issued request does not
block until the response arrives. Instead, the client decides when he wants to process
the response of the server. However, as eRPC does not provide a guarantee that a
callback is called, we implement a queue where we store the requests for which a
response is missing. This has the advantage, that we can guarantee that the response
handler is called exactly once, even if no response arrives. Therefore, if, for example,
memory needs to be deallocated on the arrival of the response, there are no memory
leaks. Furthermore, we reduce memory usage and allocation overhead, if the size of
the queue is constant since each allocated message buffer is bound to a fixed queue
position. Lastly, we store the sequence number of the request in the queue, helping us
to check if the response sequence number matches the one from the request.

20

4 Implementation

Concluding, the workflow for using our network stack at a client is as follows:

1. Establish a connection.

2. Enqueue requests and specify respective response handlers.

3. Drain requests.

4. The response handler is called as soon as a response arrives and the user checks
if responses arrived

4.4 Server Implementation

When a server is set up, request types with according handlers need to be registered.
Then, a user-defined number of threads are spawned, each for one client. For bench-
marks, this guarantees us a high performance. However, in real use cases, having
a server thread handling more than one client might be more beneficial. When the
threads are spawned, the server can then perform busy waiting and call the previously
registered handlers on incoming requests by clients.

After the request of a client is decrypted and integrity-checked it is placed into
a buffer in enclave memory. Next, the sequence number is checked. We start at a
previously exchanged sequence number and increment it with every message sent.
However, as eRPC works in lossy networks, messages may be dropped and we can
not keep a strict message ordering for the sake of performance. Therefore, we accept
all sequence numbers in a fixed range, based on the previously received sequence
numbers. To avoid replays, we additionally need to check that in this range, every
sequence number is unique. This way of sequence number handling implies a tradeoff
between performance and security. Accepting 2n sequence numbers is equivalent to
using a sequence number that has n fewer bits.

After the sequence number has been checked, the registered handler is called with
the respective arguments from the client. Inside this handler, a response for the client
needs to be enqueued. This response is then encrypted and then needs to be drained
so that it is sent.

To sum it up, the workflow for running a server is the following:

1. Register possible request types and handlers.

2. Perform busy waiting for connections and incoming requests.

3. As soon as a request arrived, the respective registered handler is called.

4. Enqueue and drain a response matching the request

21

5 Evaluation

In the evaluation, we want to find out, whether our implementation of the network
stack lives up to our design goals from section 3.1.

First, we will test if the network stack’s operations have low latency, especially
for small payloads, and how latency is influenced by SCONE (§ 5.2). Further, we
investigate how our approach for request stacking (see section 3.4.2) improves the
average operation latency.

Second, we check the networking throughput performance in two experiments. At
first, we will investigate the performance with different numbers of threads (§ 5.3.1).
Finally, we compare our implementation with the network benchmarking tool iperf [20]
to verify that our userspace networking approach is beneficial when working with TEEs
(§ 5.3.2).

Lastly, we want to test the performance of our implementation under real workloads
in an environment for which we designed our network stack. Therefore, we implement
an encryption layer on top of the C++ standard library map which contains values
in untrusted host memory. We test its performance with and without networking
(§ 5.4). Furthermore, to prove that our implementation provides portability, we run this
benchmark in two setups. One with DPDK (§ 5.4.1) and one with RDMA (§ 5.4.2).

5.1 Testbed

We evaluate the performance of our network stack using two setups. We perform all
benchmarks (§ 5.2 - 5.4) on a pair of 2 SGX-capable servers with a NIC supported by
DPDK, that both have the following specifications: CPU: Intel(R) Core(TM) i9-9900K
with 8 physical, 16 logical cores. Memory: 64GiB. Caches: L1: 256 KiB instructions +
256 KiB data, L2: 2 MiB, L3: 16 MiB. NIC: Intel(R) XL710 40GbE.

The second setup is only used for the application benchmark with RDMA (§ 5.4.2).
The two servers both have RDMA NICs, but they do not support SGX which is why
we can not run any tests with SCONE on them. These servers have the following
specifications: CPU: Intel(R) Core(TM) i9-10900K with 10 physical, 20 logical cores.
Memory: 128 GiB. Caches: L1: 320 KiB instructions + 320 KiB data, L2: 2.5 MiB, L3: 20
MiB. NIC: Mellanox Technologies(R) MT27710 Family [ConnectX-4 Lx].

22

5 Evaluation

64 256 1024 4096
Payload Size (bytes)

30

40

50

60

70

80

90

100

La
te

nc
y

(u
s)

Networking Latency (50% Write, 1 Thread)

native w/o enc native w/ enc DPDK + SCONE

Figure 5.1: Single-Operation latency of our network stack with DPDK

5.2 Latency

We have two latency benchmarks. At first, we benchmark the latency of single opera-
tions. Subsequently, we observe, how the performance improves as soon as we send
multiple requests at once with multiple threads.

5.2.1 Single Operation Latency

Setup. We measure latency by enqueueing single operations and waiting for the
server response before enqueueing new requests. This way, we measure the latency
of a single operation in case synchronous operations are required. As the network is
not saturated in this scenario, there is hardly any congestion and it does not make a
notable difference, with how many threads we are sending requests. That is why, for
simplicity, we use one thread. We perform these operations with payload sizes from
64 to 4096 Bytes. Here, an operation is a transfer of a request and a response each
of the same size. We compare native (i.e. unencrypted), encrypted networking, and
encrypted networking inside SCONE. Note that in this scenario only the server runs
inside SCONE. This is due to the fact that SCONE issues a system call for each time
measurement. Since each operation latency time is measured separately at the client,

23

5 Evaluation

for a SCONE client there would be a too high system call overhead to deliver sensible
results.

Result. From the results in figure 5.1, we see that the encryption hardly causes any
overheads, especially for low payload sizes. For higher sizes, the TEE, as well as the
encryption, cause overheads. This is not surprising because encryption causes overhead
proportional to the payload size. We notice that the latency abruptly increases from 256
to 1024 Bytes. This is because multiple packets need to be sent for one request with
higher payload sizes, so the latency increases accordingly. Compared to the latency of
PM, which is at about 100-1000 ns [49], the networking latency is causing a considerable
overhead. However, consider that by enqueueing multiple requests at once, the average
latency of a single operation is again reduced. We will show the performance benefit
of it in subsection 5.2.2. Concluding, we can say that our network stack reaches our
goals for low single-operation latency. Especially our userspace networking approach
leads to a low latency overhead (at most 15%) inside TEEs compared to encrypted
networking.

5.2.2 Latency with Request Stacking

Setup. For showing that asynchronous RPCs lead to low average latency and high
operation throughput, we send payloads of sizes from 64 to 4096 Bytes. Again, each
operation consists of a request and a response, each of the respective payload size.
However, in this benchmark we don’t wait for the response to arrive, instead, we send
as many requests as fit inside the client request queue mentioned in sections 4.3 and
4.4 at once. In our case, these are 1024 requests. We use 4 client threads (i) to provide
a realistic use case with multiple clients & high network load and (ii) to have data
comparable with the throughput tests in section 5.3.

Result. From figure 5.2 we can derive that the average latency has indeed decreased
compared to the latency for synchronous operations before. We even reach average
latencies of under 1 ns for small value sizes if the client is running natively. Of course,
we need to multiply the latency by the number of threads, to have a per-thread average
latency for comparison with PM. We get no more than 4 µs, which means that we
reached our goal of having comparable latency to PM. Furthermore, figure 5.2 shows
that the latency with SCONE is at most 4× higher than natively, which is still acceptable.
If the client is running natively, the overhead is not more than 2× as high. Another
observation is, that if server and client both run in SCONE, for high payload sizes the
performance is better than if only the server runs in SCONE. This behavior is subject to
further investigation.

24

5 Evaluation

64 256 1024 4096
Payload Size (bytes)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(u
s)

Networking Latency with Stacked Operations (50% Write, 4 Threads)

native w/o enc native w/ enc SCONE server SCONE server + client

Figure 5.2: Latency with stacked requests

These two experiments show us that latency can be effectively reduced by using
asynchronous RPCs.

5.3 Networking Throughput

The throughput of our implementation is tested in two benchmarks. At first, we look at
the influence of multiple threads on networking. In the second benchmark, we simulate
the behavior of iperf in our implementation for comparison with kernel networking
approaches.

5.3.1 Varying Number of Threads

Setup. We want to consider the impact of using multiple threads on the networking
throughput. Therefore, we keep the payload size fixed to 2048 and perform operations
with a read/write ratio of 50%. This means, that we send and receive messages of
equal size. As a result, we use the sum of the downlink and uplink throughput. The
high payload size permits us to saturate the network with a sufficiently high number
of threads. Again, we perform the tests without encryption, with encryption, and with
encryption & a server running inside a TEE.

25

5 Evaluation

1 2 4 6 8
Payload Size (bytes)

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

bi
t/s

)

Network Throughput (50% Write, 512B payload)

native w/o enc native w/ enc SCONE server SCONE server + client

Figure 5.3: Throughput with varying number of threads

Results. From figure 5.3 we can see that, as expected, a higher number of threads
leads to a higher throughput. We observe, that with a value size of 2048B and 6 threads
the maximum throughput of our implementation can be reached in our testbed. The
overhead caused by SCONE gets higher the more threads we use. This is also not
surprising as there are more system calls and expensive operations inside the enclave
if the workload is more intensive. Note that our implementation currently doesn’t
support 8 threads. SCONE only supports 8 threads and we observed that eRPC needs
a background thread, so we can at most run 7 threads.

5.3.2 Bandwidth Throughput with SCONE and iperf

Setup. To make sure that our userspace networking approach is suited better than
an approach that uses kernel TCP, we compare our network stack with iperf [20]. We
need to simulate the behavior of the iperf benchmark. Therefore, we send requests of a
certain size from the client to the server and at the server, we count how many of these
arrive in a certain timespan. Note, that we still send responses without payload from
the server to the client. These can be seen as equivalent to TCP ACK messages. The
benchmark is run with different payload sizes and 4 threads. We use 4 processes for
iperf to be able to use 4 ports in parallel for having a fair comparison.

26

5 Evaluation

64 256 1024 2048 4096
Payload Size (bytes)

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

bi
t/s

)

Network Throughput (100% Write, 4 Threads)

native w/o enc native w/ enc iperf DPDK + SCONE iperf + SCONE

Figure 5.4: Bandwidth Throughput of our Network Stack compared with iperf

Results. From figure 5.4 we notice that iperf outperforms our implementation when
not running inside the enclave. The throughput of iperf is at most 30% higher than
the one of our network stack. However, our implementation was designed for running
inside an enclave. In SCONE, the throughput of our implementation is higher than
iperf’s throughput for each payload size. This also confirms existing observations [3].
To sum it up, our choice for userspace networking is supported by this benchmark,
as it shows that a kernel networking approach is less performant than our userspace
network stack.

5.4 Operation Throughput with KV-store

5.4.1 DPDK Networking

Setup. For testing whether our implementation is suited for use in a real-world
example, we use it with the C++ standard library’s std::map implementation. On
top of the std::map, we implement an encryption layer that encrypts values that are
stored in untrusted host memory. Furthermore, we synchronize access to the map for
being able to test with multiple threads. We simulate the higher latency of PM writes
by adding overhead to the write operation. This implementation is tested natively
without networking at first to have a baseline to compare with. Then, we test it with

27

5 Evaluation

64 256 1024 4096
Value Size (bytes)

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (K

Op
s/

s)

Operation Throughput (50% Write, 4 Threads, 8B Key size)

no network w/o enc network w/o enc no network w/ enc network w/ enc

Figure 5.5: Operation Throughput with underlying KV-store with DPDK

networking. These tests are performed inside SCONE as well. We use value sizes from
64 to 4096 Bytes and 4 threads. This setup is tested with YCSB workloads [6] provided
by PMDK [16]. The ratio of put operations to get operations amounts to 50%.

Results. From figure 5.5, we see that in the native case our implementation causes a
low overhead, especially for small value sizes. The reason for the significantly lower
throughput with bigger values is that, as already mentioned in section 5.2, multiple
packets need to be sent for requests and responses. As the operation throughput equals
the reciprocal of the average operation latency, its performance degrades the same way
as the average latency increases. In this benchmark, the average latency per operation
is between 0.5 µs and 2 µs in the native case.

Figure 5.6 shows the overhead caused by SCONE. Compared to native encrypted
networking, the case in which only the server runs inside SCONE always causes less
than 50% overhead. A remarkable characteristic of the case with a SCONE server and
client is that the performance overhead does not decrease significantly with higher
value sizes. The difference of the throughput with 64 Bytes value size to 4096 Bytes
size is only 40 %. This can be explained by the fact that the networking latency is
low in comparison to the time needed for the map operations. However, note that for
value sizes of 4096 Bytes, the SCONE setup performs better than the setup without
SCONE. We already observed this behavior in section 5.2. This issue needs to be further

28

5 Evaluation

64 256 1024 4096
Value Size (bytes)

0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (K

Op
s/

s)

Operation Throughput (50% Write, 4 Threads, 8B Key size)

no network w/ enc
network w/ enc

no network, w/ SCONE
network w/ SCONE server

network w/ SCONE server + client

Figure 5.6: Operation Throughput with underlying KV-store with DPDK. Results with
with SCONE

investigated.
All in all, the performance overheads caused by SCONE and our networking are low

enough for us to claim that our implementation lives up to our performance goals.

5.4.2 RDMA Networking

Setup. To show that our implementation is portable, we perform the same benchmark
as in the previous subsection with RDMA. Because we need to use a different setup
that does not support SGX, we can not use a TEE here.

Results. The results shown in figure 5.7 are similar to the ones from the previous
benchmark shown in figure 5.5. The relative performance loss for bigger value sizes is
higher than with DPDK. This is most probably caused by the fact that the RDMA NIC
only supports bandwidths of up to 10 Gbit/s, while the DPDK NIC reaches 40 Gbit/s.

29

5 Evaluation

64 256 1024 4096
Value Size (bytes)

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (K

Op
s/

s)

Operation Throughput (50% Write, 4 Threads, 8B Key size)

no network w/o enc network w/o enc no network w/ enc network w/ enc

Figure 5.7: Operation Throughput with underlying KV-store with RDMA

30

6 Related Work

Securing RDMA. As secure RDMA is often required in datacenter networks, there
was the need for work analyzing security issues of RDMA implementations [35, 37].
Also, a lot of papers that propose efficient and effective solutions for securing RDMA
exist, such as sRDMA, which uses the NIC for fast encryption and authentication
mechanisms without overheads caused for the CPU [42]. Note, that this approach
can not be applied by our network stack, as we need to consider the NIC part of the
untrusted host. Projects such as Avocado [3] consider the same threat model as we do
and follow the same userspace networking approach. However, the Avocado network
stack is specialized in key-value-store operations and does not use PM.

Userspace drivers in TEEs. There is plenty of work leveraging userspace drivers in
TEEs for gaining performance by avoiding system calls [3, 4, 43, 44]. Each of these
projects shares the same threat model of a potentially compromised host with our
network stack. However, our network stack also considers the use of PM.

RDMA on PM A lot of work on extending RDMA for compatibility with PM exists,
for example implementing a flush operation [39, 40]. To leverage the advantages of PM,
new programming models have been introduced for RDMA on PM [13, 17].

One existing problem with RDMA on PM is that current RDMA implementations are
optimized for DRAM. Recent work finds that caching optimizations for DRAM make
RDMA on PM slower [25, 47]. [25] additionally suggests using Remote Procedure Calls
for increasing write bandwidth which is something we considered in our network stack
design. FileMR [51] eliminates overheads arising from incompatibilities of RDMA and
Persistent Memory. Furthermore, it introduces a new address translation mechanism
for improving the NIC’s translation cache hit rate. However, many improvements
mainly apply to one-sided RDMA which, as we found, is not suited for protecting
against attacks in our threat model.

31

7 Future Work

Extending eRPC. During our work, we found that implementing a secure encryption
layer on top of eRPC [26] introduces overheads at a few points because of duplicates.
One problem is, for example, the request ID that should be kept confidential. In our
implementation, we use a unique eRPC request ID for eRPC and add the encrypted
request ID in an additional field. We could modify the eRPC message format so that
only one ID is sent. This is only one example of a few possible optimizations that could
be introduced when implementing a secure layer inside eRPC instead on top of it.

One-sided networking. We showed that one-sided networking in theory can not
ensure our security guarantees while being performant, in general. However, future
work could investigate special scenarios in which one-sided networking would be
beneficial for our attacker model.

Benchmarks with PM- and TEE-aware systems. As soon as there are published
implementations aware of systems using PM working in TEEs, our network stack
can be used with these. Then, more realistic benchmarks can be performed to get
more realistic data about the performance of our network stack and to find potential
optimizations. Also, even though we tried to simulate PM by introducing artificial
delays, benchmarks on real hardware PM would be beneficial to see whether our ideas
work out in practice.

Different Threading Approach. Our approach is to have exactly one server thread
per client thread. This is ideal for benchmarking, but may be inefficient in deployment,
as a server thread is in a spinlock waiting for requests. Therefore, a new approach
could allow handling multiple clients on one server thread. The actual overhead of this
method would be an interesting question that could be answered with benchmarks on
a respective implementation.

32

8 Conclusion

This thesis discusses two approaches for fast and secure networking in untrusted data
center environments. We also consider the influence of the use of PM on networking,
performance, and security aspects. In particular, we discuss solutions for three major
problems: (i) The incompatibility of TEEs with PM and DMA, (ii) the performance
overhead induced by TEEs and (iii) the low access latency of PM compared to net-
working roundtrip times. After discussing further challenges and our solutions, we
introduce two possible designs for a network stack: (i) a one-sided variant without
interaction of a host’s CPU and (ii) a two-sided variant with userspace networking. We
conclude that a one-sided design has too many disadvantages and causes too high
overheads. Therefore, we only implement a two-sided network stack and provide an
RPC interface. Further, we perform benchmarks with our implementation and conclude
that our design for a two-sided networking approach performs well under the given
conditions. In particular, we learn that our userspace networking approach is up to
60% faster than kernel TCP and that inside TEEs, the latency is at most 4× higher.
Furthermore, we see that our network stack can be used efficiently on top of a map
implementation.

33

List of Figures

3.1 Design for one peer with one-sided networking 12
3.2 Entry format for one-sided networking 12
3.3 Design of a server for two-sided networking 15
3.4 Message format for two-sided communication 15

5.1 Single-Operation latency of our network stack with DPDK 23
5.2 Latency with stacked requests . 25
5.3 Throughput with varying number of threads 26
5.4 Bandwidth Throughput of our Network Stack compared with iperf . . 27
5.5 Operation Throughput with underlying KV-store with DPDK 28
5.6 Operation Throughput with underlying KV-store with DPDK. Results

with with SCONE . 29
5.7 Operation Throughput with underlying KV-store with RDMA 30

34

List of Tables

35

Bibliography

[1] AMD Secure Encrypted Virtualization (SEV). AMD Incorporated. url: https://
developer.amd.com/sev/ (visited on 07/24/2021).

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.
Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer. “SCONE: Secure Linux Containers with Intel SGX.” In:
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). Savannah, GA: USENIX Association, Nov. 2016, pp. 689–703. isbn: 978-1-
931971-33-1.

[3] M. Bailleu, D. Giantsidi, V. Gavrielatos, D. L. Quoc, V. Nagarajan, and P. Bhatotia.
“Avocado: A Secure In-Memory Distributed Storage System.” In: 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association, July 2021,
pp. 65–79. isbn: 978-1-939133-23-6.

[4] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani. “SPE-
ICHER: Securing LSM-based Key-Value Stores using Shielded Execution.” In:
17th USENIX Conference on File and Storage Technologies (FAST 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 173–190. isbn: 978-1-939133-09-0.

[5] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi.
“Software Grand Exposure: SGX Cache Attacks Are Practical.” In: 11th USENIX
Workshop on Offensive Technologies (WOOT 17). Vancouver, BC: USENIX Associa-
tion, Aug. 2017.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Bench-
marking Cloud Serving Systems with YCSB.” In: Proceedings of the 1st ACM
Symposium on Cloud Computing. SoCC ’10. Indianapolis, Indiana, USA: Associ-
ation for Computing Machinery, 2010, pp. 143–154. isbn: 9781450300360. doi:
10.1145/1807128.1807152.

[7] V. Costan and S. Devadas. Intel SGX Explained. Cryptology ePrint Archive, Report
2016/086. 2016.

[8] D. Dolev and A. Yao. “On the security of public key protocols.” In: IEEE Trans-
actions on Information Theory 29.2 (1983), pp. 198–208. doi: 10.1109/TIT.1983.
1056650.

36

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650

Bibliography

[9] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. National Institute of Standards and Technology, Nov.
2007.

[10] D. Ehnes. “The Magic of Intel’s SGX - A Tutorial on Programming a Secure
Enclave.” In: Medium (Nov. 21, 2018).

[11] P. Emmerich, M. Pudelko, S. Bauer, S. Huber, T. Zwickl, and G. Carle. “User
Space Network Drivers.” In: ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS 2019). Sept. 2019.

[12] K. Goldman, R. Perez, and R. Sailer. “Linking Remote Attestation to Secure Tunnel
Endpoints.” In: Proceedings of the First ACM Workshop on Scalable Trusted Computing.
STC ’06. Alexandria, Virginia, USA: Association for Computing Machinery, 2006,
pp. 21–24. isbn: 1595935487. doi: 10.1145/1179474.1179481.

[13] M. Honda, G. Lettieri, L. Eggert, and D. Santry. “PASTE: A Network Program-
ming Interface for Non-Volatile Main Memory.” In: 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 17–33. isbn: 978-1-939133-01-4.

[14] Intel Corporation. DPDK - Data Plane Development Kit. DPDK Project. url: https:
//www.dpdk.org/ (visited on 07/30/2021).

[15] Intel Corporation. Intel(R) Software Guard Extensions (Intel(R) SGX). Intel Corpora-
tion. url: https://www.intel.co.uk/content/www/uk/en/architecture-and-
technology/software-guard-extensions.html (visited on 07/24/2021).

[16] Intel Corporation. Persistent Memory Development Kit. url: https://pmem.io/
pmdk/ (visited on 07/31/2021).

[17] Intel Corporation. PMDK - Remote Persistent Memory Access. url: https://pmem.
io/rpma/ (visited on 07/30/2021).

[18] Intel Corporation. pmem.io - Persistent Memory Programming. url: https://pmem.
io/ (visited on 07/30/2021).

[19] Intel Corporation. Remote (Inter-Platform) Attestation. Intel Corporation. Apr. 9,
2016. url: https : / / software . intel . com / content / www / us / en / develop /
documentation/sgx-developer-guide/top/attestation/remote-interplatform-
attestation.html (visited on 07/30/2021).

[20] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. url: https://iperf.fr/
(visited on 07/24/2021).

37

https://doi.org/10.1145/1179474.1179481
https://www.dpdk.org/
https://www.dpdk.org/
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://pmem.io/rpma/
https://pmem.io/rpma/
https://pmem.io/
https://pmem.io/
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top/attestation/remote-interplatform-attestation.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top/attestation/remote-interplatform-attestation.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top/attestation/remote-interplatform-attestation.html
https://iperf.fr/

Bibliography

[21] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. “mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems.” In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14). Seattle, WA:
USENIX Association, Apr. 2014, pp. 489–502. isbn: 978-1-931971-09-6.

[22] S. P. Johnson. Intel(R) SGX and Side-Channels. Intel Corporation. Feb. 27, 2018. url:
https://software.intel.com/content/www/us/en/develop/articles/intel-
sgx-and-side-channels.html (visited on 07/04/2021).

[23] A. Kalia. eRPC: Efficient RPCs for datacenter networks. url: https://github.com/
erpc-io/eRPC (visited on 06/28/2021).

[24] A. Kalia, D. Andersen, and M. Kaminsky. “Challenges and Solutions for Fast
Remote Persistent Memory Access.” In: Proceedings of the 11th ACM Symposium
on Cloud Computing. SoCC ’20. Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 105–119. isbn: 9781450381376. doi: 10.1145/3419111.
3421294.

[25] A. Kalia, D. Andersen, and M. Kaminsky. “Challenges and Solutions for Fast
Remote Persistent Memory Access.” In: Proceedings of the 11th ACM Symposium
on Cloud Computing. SoCC ’20. Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 105–119. isbn: 9781450381376. doi: 10.1145/3419111.
3421294.

[26] A. Kalia, M. Kaminsky, and D. Andersen. “Datacenter RPCs can be General and
Fast.” In: 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). Boston, MA: USENIX Association, Feb. 2019, pp. 1–16. isbn: 978-1-
931971-49-2.

[27] D. McGrew. An Interface and Algorithms for Authenticated Encryption. RFC 5116.
Jan. 2008. doi: 10.17487/RFC5116.

[28] NVDIA Corporation. RDMA over Converged Ethernet (RoCE). Features Overview
and Configuration – Ethernet Network. NVDIA Corporation.

[29] NVM Programming Model (NPM) Version 1.2. Storage Networking Industry Asso-
ciation, June 19, 2017.

[30] OpenSSL Software Foundation. OpenSSL - Cryptography and SSL/TLS Toolkit.
OpenSSL Software Foundation. url: https://www.openssl.org/ (visited on
06/28/2021).

[31] OpenSSL Software Foundation. RAND - the OpenSSL random generator. OpenSSL
Software Foundation.

38

https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://github.com/erpc-io/eRPC
https://github.com/erpc-io/eRPC
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.17487/RFC5116
https://www.openssl.org/

Bibliography

[32] B. Parno, J. M. McCune, and A. Perrig. “Bootstrapping Trust in Commodity
Computers.” In: 2010 IEEE Symposium on Security and Privacy. 2010, pp. 414–429.
doi: 10.1109/SP.2010.32.

[33] RDMA Core Userspace Libraries and Daemons. Linux RDMA. url: https://github.
com/linux-rdma/rdma-core (visited on 07/30/2021).

[34] Red Hat Incorporated. Configure Infiniband and RDMA Networks. Red Hat Enter-
prise Linux – Networking Guide. Red Hat Incorporated.

[35] B. Rothenberger, K. Taranov, A. Perrig, and T. Hoefler. “ReDMArk: Bypassing
RDMA Security Mechanisms.” In: 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 4277–4292. isbn: 978-1-939133-
24-3.

[36] A. Rudoff. “Persistent Memory Programming.” In: ;login: (Summer 2017, Vol. 42,
No. 2), pp. 34–40.

[37] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang. “Securing RDMA for High-
Performance Datacenter Storage Systems.” In: 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). USENIX Association, July 2020.

[38] V. Sumina. “26 Cloud Computing Statistics, Facts & Trends for 2021.” In: (July 23,
2021).

[39] T. Talpey. Remote Persistent Memory Extensions. Mar. 20, 2019.

[40] T. Talpey and A. Bumgarner. Nonvolatile Memory Programming TWG – Remote
Persistent Memory.

[41] A. Tanenbaum and H. Bos. “5. Input/Output.” In: Modern Operating Systems.
Vol. 4. Pearson Education, Limited, Sept. 18, 2014, pp. 337–434.

[42] K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler. “sRDMA – Efficient NIC-
based Authentication and Encryption for Remote Direct Memory Access.” In:
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
July 2020, pp. 691–704. isbn: 978-1-939133-14-4.

[43] J. Thalheim, H. Unnibhavi, C. Priebe, P. Bhatotia, and P. Pietzuch. “Rkt-Io: A
Direct I/O Stack for Shielded Execution.” In: Proceedings of the Sixteenth European
Conference on Computer Systems. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 490–506. isbn: 9781450383349.

[44] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer. “Shield-
Box: Secure Middleboxes Using Shielded Execution.” In: Proceedings of the Sympo-
sium on SDN Research. SOSR ’18. Los Angeles, CA, USA: Association for Comput-
ing Machinery, 2018. isbn: 9781450356640. doi: 10.1145/3185467.3185469.

39

https://doi.org/10.1109/SP.2010.32
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://doi.org/10.1145/3185467.3185469

Bibliography

[45] Trusted Platform Module Library Specification, Family “2.0”, Level 00, Revision 01.59.
Trusted Computing Group. Nov. 2019.

[46] TrustZone. ARM Limited. url: https://developer.arm.com/ip- products/
security-ip/trustzone (visited on 07/24/2021).

[47] X. Wei, X. Xie, R. Chen, H. Chen, and B. Zang. “Characterizing and Optimizing
Remote Persistent Memory with RDMA and NVM.” In: 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, July 2021, pp. 523–
536. isbn: 978-1-939133-23-6.

[48] K. Weise. “Amazon’s quarterly profit jumps to $7.8 billion.” In: Ney York Times
(July 29, 2021).

[49] What is Persistent Memory? url: https://www.snia.org/education/what-is-
persistent-memory (visited on 07/30/2021).

[50] J. C. Wong. “Microsoft revenue exceeds $100bn boosted by cloud services.” In:
The Guardian (July 20, 2018).

[51] J. Yang, J. Izraelevitz, and S. Swanson. “FileMR: Rethinking RDMA Networking
for Scalable Persistent Memory.” In: 17th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 111–125. isbn: 978-1-939133-13-7.

40

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.snia.org/education/what-is-persistent-memory
https://www.snia.org/education/what-is-persistent-memory

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Persistent Memory
	Trusted Execution Environments
	Userspace Networking
	Remote Direct Memory Access
	DPDK
	Remote Procedure Calls

	Design
	Design Goals
	Design Challenges
	Design with one-sided RDMA on Persistent Memory
	Environment and Assumptions
	Problems with secure one-sided RDMA
	Design Approach
	Applicability

	Design with two-sided networking
	Problems with two-sided networking
	Design Approach
	Applicability

	Implementation
	Used tools
	Message format
	Client Implementation
	Server Implementation

	Evaluation
	Testbed
	Latency
	Single Operation Latency
	Latency with Request Stacking

	Networking Throughput
	Varying Number of Threads
	Bandwidth Throughput with SCONE and iperf

	Operation Throughput with KV-store
	DPDK Networking
	RDMA Networking

	Related Work
	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

