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Abstract

Nowadays, data is collected, stored, and processed on a large scale, necessitating fast and
persistent storage. Persistent Memory (PM) aims to meet this demand by bridging the gap
between main memory and storage. It combines the byte-addressability and low latency
of main memory with the persistence and density of storage. In order to fully exploit
its capabilities, developers have to adapt the novel concepts of persistent memory. The
de-facto standard library for developing persistent memory applications is the Persistent
Memory Development Kit (PMDK).

This thesis comprises a systematic in-depth performance evaluation of the PMDK,
examining its characteristics at the micro and macro level. We develop a versatile open-
source benchmarking suite using Docker and collect results representing approximately
570 hours of machine time on a server equipped with Intel Optane DC Persistent Memory
Modules.

At the micro level, we assess the performance of the PMDK’s core components and its
PM-optimized key-value store pmemkv across a range of data sizes and thread counts. This
approach provides valuable insights into the characteristics and synergies of the PMDK.
At the macro level, we employ the YCSB to investigate the real-world performance of
pmemkv and compare it with state-of-the-art database systems, illustrating the advantages
of persistent memory for future applications.

Our results show that the PMDK’s optimal data sizes are 64 B and 256 B. In addition,
we observe that, especially in write-dominated workloads, a small number of threads is
sufficient to achieve the maximum multithreaded throughput. The experiments further
demonstrate that the adaption of the PMDK’s concepts into the application design increases
performance by up to four times. However, the concepts of persistent memory have to
be integrated deep into the system architecture, otherwise the performance gain is only
marginal.
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1 Introduction

1.1 Motivation

For decades, computer systems have followed the two-level system stack (fast, volatile
primary memory and slow, persistent secondary storage). This architecture has influenced
the design of operating systems, file systems, software patterns, and their respective APIs.
With the ever-increasing importance of data in today’s digital society, the need for large and
fast storage is also growing. Driven by the advancing digitalization, the global datasphere
will exceed 180 zettabytes by 2025 [1]. Under this strain, the current two-level system stack
is reaching its limits, thus posing new challenges for hardware manufacturers, software
companies, and developers.

Non-volatile main memory (NVMM), commonly known as persistent memory (PM),
aims to tackle these challenges by combining the persistence and capacity of traditional
storage with the low latency and byte-addressability from conventional memory, bridging
the gap between storage and memory. Persistent memory is directly connected to the
memory bus alongside DRAM, allowing the CPU to use Load/Store instructions to access
it. Unlike conventional memory, the data on non-volatile memory survives a power failure
or system crash. The technology experienced a recent technological breakthrough with
the first commercially available non-volatile dual in-line memory modules (NVDIMMs),
the Intel Optane DC Persistent Memory Module (DCPMM) [2]. With the introduction
of non-volatile memory hardware, it is now up to the developers to adapt their software
design and architecture to realize the full potential of persistent memory.

There are two distinct approaches for utilizing persistent memory [3]: First, using the
persistent memory hardware as an accelerated storage device. For this purpose, the direct
access extension for file systems (DAX) allows the persistent memory to be mapped directly
into the user space of an application, eliminating the intermediate step of copying the data
into main memory. Second, utilizing libraries that can exploit the byte-addressability of
persistent memory, empowering developers to take advantage of the fine-grained non-volatile
memory access.

This thesis focuses on the latter approach with a performance evaluation of the Persistent
Memory Development Kit (PMDK) [4], a platform-independent collection of libraries
and tools for developers to fully exploit the capabilities of persistent memory. Among
other features, it includes a low-level library for performing atomic memory operations, a
higher-level API for transactional programming, and a persistent key-value store.
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1 Introduction

1.2 Research Questions

Currently used storage technologies have been available for years and are tailored to their
areas of application. Persistent memory has the potential to revolutionize most of these
areas. However, integrating and leveraging persistent memory poses new challenges to
developers. New concepts such as cache flushing and persistent transactions have to be
incorporated into the software architectures. For existing software, this may necessitate a
complete redesign of the core data structures.

The PMDK seeks to become the foundation for these redesigns as well as future persistent
memory applications. Investigating the characteristics and the overhead of the library can
assist developers in identifying, understanding, and resolving issues in their applications.
Consequently, we address the following research questions within the scope of this thesis:

• What is the amount of overhead associated with the usage of the PMDK? What is
the overhead incurred in comparison to existing volatile methods?

• What are the general recommendations when using the PMDK? Are there particular
synergies that should be exploited?

• How scalable are PMDK-supported applications? How do they compare to state-of-
the-art technologies?

1.3 Contributions

This thesis presents a systematic in-depth performance evaluation of the PMDK software
stack. We start by understanding the unique features of persistent memory. With this
background knowledge, we evaluate the individual components of the PMDK and explore
their performance characteristics as well as their scalability. Lastly, we examine the
persistent key-value-store pmemkv [5] to get a sense of the PMDK’s real-world performance.
Our contributions can be summarized as follows:

• We provide an introductory overview of the available persistent memory hardware
and the fundamentals of persistent memory programming. In order to use PMDK
optimally, it is critical to understand the peculiarities of its underlying layers and
concepts.

• We design and develop an open-source benchmarking suite for performance evaluation
of the PMDK, consisting of a containerized benchmarking environment, configurations
for various frameworks, and scripts for automatic execution.

• We provide a systematic in-depth evaluation of the PMDK’s core components,
resulting in a set of guidelines for developers.

• We present, to the best of our knowledge, the first detailed evaluation of the pmemkv
using the Yahoo! Cloud Serving Benchmark (YCSB) [6], including a comparison with
state-of-the-art database systems.
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1.4 Structure

1.4 Structure

The remainder of this thesis is organized as follows: Chapter 2 starts with an introduction to
the topic of non-volatile memory by shedding light on the functionality and characteristics
of available hardware, namely Intel Optane DCPMM. Then, the structure of the PMDK and
its available components is detailed. The design and implementation of our containerized
benchmark suite are covered in Chapter 3. Chapter 4 opens with Section 4.1 describing the
utilized experimental setup. Next, Section 4.2 evaluates the performance of fundamental
functionalities such as persisting data and allocating persistent memory. In this context,
the concepts of atomicity and transactions in the PMDK are explained as well. Using
pmemkv as an example, Section 4.3 demonstrates the capabilities of persistent memory
and its implications for future technologies. For this purpose, pmemkv is compared with
current database technologies to better assess and classify its real-world performance.
Afterwards, Chapter 5 portrays previous work done in the field of persistent memory,
including hardware and library evaluations. In addition to the evaluations, the chapter
further covers selected areas of application. Chapter 6 thoroughly examines our findings,
discusses current limitations and presents potential future work. Finally, Chapter 7
concludes the thesis by summarizing our contributions and results.
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2 Background

Before engaging in the topic of non-volatile memory, we want to define several essential
terms and concepts. This chapter provides an introductory overview of hardware and
software technologies. We start by presenting the characteristics of non-volatile hardware,
with the focus on the Intel Optane Persistent Memory Module. Then, we explain the key
concepts of persistent memory and how they differ from volatile ones. Finally, we introduce
the PMDK and outline its structure and components in order to better understand its
performance behavior later on.

2.1 Non-Volatile Memory

Typically, modern computer systems are designed for a strict bifurcation of devices into
memory and storage devices.

Storage devices offer the highest capacity and lowest cost-per-bit for persistent storage.
They are frequently implemented as block devices and thus cannot be accessed by the
CPU using Load/Store instructions. As a consequence, storage devices are too slow for
direct access and data has to be buffered into the main memory to accelerate application
execution. A common technique in this context is page caching [7, Chapter 16]. The goal
of page caching is to minimize data access to slower secondary storage devices by storing
recently used pages in unused main memory. Whenever data from secondary storage is
requested, the operating system first checks whether the requisite data is in the page cache.
If that is not the case, the page containing the requested data has to be read from the
slower storage device and is added to the page cache afterwards. When modifying data
residing in the page cache, the whole memory page is marked as dirty. Periodically, all
dirty marked pages are written back to disk. Therefore, small changes create a large I/O
overhead as the whole page has to be written back to secondary storage. For reference, the
typical Linux page size is 4 KiB [7].

Memory, on the other hand, is directly accessible by the CPU, but has a smaller capacity
and is more expensive than storage. Moreover, it only provides volatile storage, which
means that data stored in memory is lost in the event of a power outage or a system crash.

Non-volatile main memory (NVMM) aims to bridge the gap between memory and
storage by offering fast, persistent, byte-addressable memory. Various technologies can be
considered as persistent memory hardware, such as Phase Change Memory (PCM) [8], Spin-
Transfer Torque RAM (STT-RAM) [9], and 3D XPoint [10]. All of them have in common
that they offer a high density and low cost-per-bit while also being byte-addressable and
achieving latency close to DRAM. The updated storage hierarchy, which now includes
persistent memory, is depicted in Figure 2.1.
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Figure 2.1: Pyramid of the storage hierarchy with focus on latency, capacity, and cost. Persistent
memory closes the gap between non-volatile storage and volatile memory. Figure based on [11]

The first scalable, commercially available non-volatile memory hardware is the Intel
Optane DC Persistent Memory Module [2], which is based on the aforementioned 3D
XPoint technology. Throughout the thesis, we refer to it as DCPMM. The modules are
available in three different capacities: 128 GB, 256 GB, and 512 GB per module.

Like conventional memory, DCPMMs are directly connected to the CPU’s integrated
Memory Controller (iMC) via the memory bus. A single iMC can support up to three
DCPMMs. Hence, one processor can employ up to six DCPMMs across its two iMCs. The
iMC is located inside the asynchronous DRAM Refresh domain (ADR), which guarantees
that data reaching this domain will survive a power failure. Internally, the iMC maintains
read and write pending queues for each DCPMM, ensuring that data is flushed to media
on power failure. It should be emphasized that the ADR does not include the processor’s
caches. Stores are consequently only persistent once they reach the iMC [12]. However,
there is ongoing research in the area of enhanced ADR (eADR), which also includes the
CPU caches [13].

To communicate with the DCPMM, the iMC uses a proprietary DDR-T protocol [14],
which has a lot in common with the DDR4 standard but has been adapted to the peculiarities
of non-volatile applications. Just like DDR4 (with ECC), the interface for DDR-T uses
a 72-bit data bus and transfers data in cache line (64 B) granularity between iMC and
DCPMM [15]. Starting with the Cascade Lake processor family, Intel added CPU support
for the DDR-T protocol and consequently for DCPMM. Therefore, DCPMM support is
not available on prior Intel CPU generations [12, 16].
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2.1 Non-Volatile Memory

The DCPMM itself contains an onboard controller that coordinates the accesses to the
3D XPoint media by performing wear-leveling and bad-block management. As the physical
media access granularity of 3D XPoint is 256 B (XPLine) [12], the controller includes a
small write-combining buffer in the size of 256 B, coalescing adjacent 64 B DDR-T writes
into larger 256 B media writes. As a result, the optimal access size for DCPMM is 256 B [12,
15, 17]. The communication between iMC and DCPMM is illustrated in Figure 2.2.

Core

L3 Cache

Controller

Intel Optane DCPMM

ADR Domain

CPU

Buffer
64 B 64 B

64 B 64 B

3D-XPoint Media

iMC

Core

WPQ

DDR-T
Cache Line:

64 B
XPLine:
256 B

Figure 2.2: Communication structure between CPU and Intel Optane DCPMM with focus on the
components of the ADR domain

Latency and bandwidth are key memory technology parameters. Yang et al. [12]
demonstrate in their evaluation of the DCPMM that the average read latency is two
to three times higher than DRAM. Since both DRAM and DCPMM use the iMC to
commit data to media, they perform similarly in terms of write latency [12]. Regarding the
performance characteristics of a single Intel DCPMM DIMM, Intel specifies the sequential
bandwidth for reads with 7.6 GB/s and for writes with 2.3 GB/s. As for the random
bandwidth, Intel quantifies the bandwidth with 2.4 GB/s for reads and 0.5 GB/s for writes
[18, p.350]. Several publications verify these numbers [12, 15, 17].

When looking at the performance numbers, two things stand out: First, the random
bandwidth is significantly lower compared to sequential bandwidth. Second, the perfor-
mance of read and write operations is asymmetrical, with writes being the slower of the
two. From this, it can be deduced that data structures with primarily random writes and a
high write amplification should be avoided when working with DCPMMs. Before DCPMM
became available, researchers used emulation to validate and test their non-volatile memory
applications [19–22]. These emulations often add artificial latency to data accesses and
limit the overall bandwidth. However, the previously mentioned empirical analysis by Yang
et al. [12] indicates that these emulations have failed to reflect the distinctive properties
of DCPMM. Characteristics like the internal 256 B granularity and the asymmetrical
performance of read/write operations were not incorporated into the prior emulations,
resulting in less meaningful insights.

The DCPMM has two operation modes: Memory Mode and App Direct Mode [18, p.347].
In Memory Mode, the hardware acts as a larger volatile main memory. In this mode,
DCPMM is transparent to the operating system and applications. To hide the longer
latency and lower bandwidth, DRAM is used as a L4 cache [18]. Especially applications
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requiring larger DRAM capacity can benefit from this mode (e.g. scientific simulations [14]).
In App Direct Mode, the DCPMM is directly exposed as a non-volatile memory device

separated from DRAM. For the operating system, the DCPMM and the DRAM appear
as individual entities. Applications can now use the non-volatile memory either as an
accelerated block device (Storage over App Direct Mode) or access it directly using CPU
instructions on memory-mapped files (App Direct Mode). To utilize the full potential of
persistent memory, the DCPMM should be used in App Direct Mode in conjunction with
a PM-aware file system and the DAX (direct access) extension for file systems [23]. File
systems currently supporting DAX are xfs, ext2, and ext4. DAX enables direct access to
the files by bypassing the page cache. Consequently, neither an intermediate copy to main
memory nor synchronization to storage is required [3].

In this thesis, we solely use the DCPMM in the latter mode in combination with DAX
and memory-mapped files to fully exploit its persistent capabilities.

2.2 Concepts of Persistent Memory Programming

Most programmers are aware of the distinct properties of memory and storage. Conse-
quently, they think in terms of memory-based and storage-based data structures. Storage-
based data structures are usually intended to store data for extended periods of time and
across application and system restarts. However, a consistent state has also be maintained
in the event of a system crash. A common solution for ensuring consistency in storage-
based data structure is logging, which persists all operations before executing them. This
technique has proven itself in transactional systems [24, 25].

In contrast to storage, memory contents are typically cleared between application
runs. As a result, memory-based data structures only require developers to maintain
consistency at runtime. Techniques such as locking are frequently used to ensure this
runtime consistency [3].

In the matter of persistent memory, both storage and memory considerations apply. The
application is responsible for keeping states consistently not only during runtime but also
between runs and reboots. This poses new challenges to developers working with persistent
memory.

Each platform provides a power-fail protected domain, also called persistence domain [3].
Depending on the system’s hardware configuration, the power-fail protected domain may
include the persistent memory, the integrated memory controller (iMC), and the CPU
caches. Data entering this domain is presumed to be persistent and recoverable in case the
system is restarted. On Intel platforms, as seen in Section 2.1, this domain is also known
as asynchronous DRAM Refresh domain (ADR) and does not include the CPU’s caches [3].
As a result, data from the volatile cache may not have reached the power-fail protected
domain and therefore cannot be recovered with certainty in the event of a system crash.
To ensure persistence, the data in the processor’s cache has to be flushed continuously to
memory using the CLFLUSH, CLFLUSHOPT, and CLWB instructions of the Intel ISA [18]. All
those instructions serve the same purpose of flushing the volatile cache but differ in their
details.
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CLFLUSH, for example, triggers a cache line flush but at the same time invalidates the
cache line, resulting in performance degradation due to more cache misses [26]. To improve
performance, Intel introduced two additional instructions. CLFLUSHOPT is conceived as opti-
mized CLFLUSH by allowing concurrency when executing multiple CLFLUSHOPT instructions
back-to-back. CLWB behaves similarly to CLFLUSHOPT but does not invalidate the cache
line, increasing the likelihood of a cache hit. However, Kalia et al. [26] recently discovered
that on current processor generations, CLWB and CLFLUSHOPT behave identically. As they
point out, the documentation of CLWB states that “the line may be retained in the cache
hierarchy in a non-modified state” [26, p.12].

Another essential operation related to flushing the CPU cache is SFENCE [3]. The SFENCE
instruction creates a memory barrier by serializing all pending stores, preventing unwanted
reordering of flushes. Thus, when the aforementioned flushing operations are combined
with a subsequent SFENCE, the correct order of stores reaching the power-fail protected
domain can be guaranteed before resuming. Importantly, all these instructions can be
invoked from user space, enabling programs to control when and where data is flushed and
fenced.

2.3 Persistent Memory Development Kit (PMDK)

Introduced in 2014, the PMDK was originally named NVML [27]. It is a vendor and
platform independent collection of open source libraries and tools for persistent memory
developed by Intel. The PMDK libraries build on the SNIA NVM programming model [28].
They were developed alongside the advancement of operating system support for persistent
memory, allowing the libraries to take full advantage of the most recent features exposed
by the operating system [3].

The PMDK provides two categories of libraries: volatile and persistent ones. This
thesis focuses on the persistent components of the PMDK. The persistent libraries assist
developers in building applications that are consistent and fail-safe. To further facilitate
programming, the PMDK’s libraries can automatically detect platform optimizations and
select the appropriate durability semantics and memory transfer mechanisms for persistent
memory [3].

All of the PMDK’s persistent functionality builds on top of the two low-level C libraries,
libpmem [29] and its successor libpmem2 [30]. Both provide developers raw access to the
persistent memory devices and an easy-to-use interface for CPU instructions like CLWB and
SFENCE. Due to the direct access to persistent memory primitives, these libraries can be
utilized to implement low-level persistent data structures with complete control over the
memory management and the recovery logic. Furthermore, they can be used to migrate
existing applications that already employ memory-mapped files to persistent memory.

Besides the low-level functionality of libpmem, the PMDK also provides the higher-level
library libpmemobj [31]. libpmemobj builds upon libpmem to realize more advanced data
structures and programming concepts such as memory management and locking. With the
help of this library, the memory-mapped files of libpmem can be transformed into a versatile
object-store. libpmemobj further provides APIs for atomic operations, transactions, and
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reserve/publish with the guarantee of data integrity.
libpmemobj-cpp [32] is another library extending libpmemobj with the meta-programming

features of C++ (e.g. static type-system). It primarily addresses developers who want to
make their volatile projects compatible with persistent memory.

Lastly, pmemkv [5] should also be mentioned. This library implements a PM-optimized
embedded key-value store with put/get-interface. In addition to the C and C++ interfaces,
there are numerous bindings for other programming languages (e.g. Java, JavaScript) [33–
36].
There are, of course, more libraries and tools in the PMDK to choose from [4]:

• libpmemlog: PM-resident log file for frequently logging applications
• libpmemblk: PM-resident array of same-sized blocks that update atomically
• libvmmalloc: conversion of memory allocations into persistent memory allocations
• libpmempool: support for off-line pool management and diagnostics
• librpma: access to persistent memory over Remote Direct Memory Access (RDMA)
• libvmemcache: embeddable and lightweight in-memory caching solution

For the purpose of this thesis, we are going to focus on the major persistent libraries, whose
hierarchy is depicted in Figure 2.3.

libpmemobj

pmemkv

libpmemobj-cpp

libpmem libpmem2

NVDIMMHardware

Kernel

User Space

PMDK

PM-aware File System with DAX

Figure 2.3: Hierarchy of PMDK libraries evaluated in this thesis
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Having established the required background knowledge, this chapter explains the design
and implementation decisions involved in the development of our benchmarking suite.

3.1 Design

In literature, there are numerous ways to evaluate performance [37–40]. For our per-
formance analysis of the PMDK’s core components, we decide to use microbenchmarks.
Microbenchmarks are designed to investigate a specific aspect of a system [40]. We comple-
ment these benchmarks with selected parameters to capture the performance characteristics
of each component. This approach is subsequently also used to determine the performance
properties of the different operations in pmemkv. In addition, we employ macrobenchmarks
in the form of the Yahoo! Cloud Serving Benchmark (YCSB) [6] to quantify the overall
performance of pmemkv and compare its performance to other modern database systems.

pmembench The PMDK includes its own internal benchmark framework pmembench [41],
to allow developers and maintainers to measure, analyze, and optimize the performance of
each component individually. The framework consists of the main library, a set of support
modules handling the measuring and the output format, and the benchmark modules that
implement the actual functions to be examined. Each benchmark module adopts the same
structure consisting of an initialization, the actual execution, and the subsequent cleanup.
In addition to the predefined options, each benchmark can declare its own custom options
and flags. As a result, developers can implement a comparison of multiple operations and
alter operations depending on the selected option. Furthermore, they have the opportunity
to declare the properties of their benchmark scenarios individually. In particular, they can
specify whether their benchmark is designed to support multithreading and multi-operation
execution.

During execution, the pmembench measures a variety of execution parameters such as
latency, throughput, and the total duration of the workload. Additionally, the framework
features the calculation of important mathematical quantities such as standard deviation or
various percentiles. In order to simplify the creation of workloads, the framework provides
the ability to specify the benchmark options either via command-line arguments or as a
configuration file. The configuration file has the advantage of supporting the declaration of
value ranges. This feature is particularly useful when observing the progression across a
variety of values for one parameter, e.g. multithreaded scaling from 1 to 16 threads.

pmemkv-bench Benchmarking the individual operations of the pmemkv is done using
pmemkv-bench [42]. This framework is ported from LevelDB’s db_bench, a well-known
performance benchmark for databases [43]. The tool provides microbenchmarks for read,
write, and delete operations. Each operation can be executed with either random or
sequential key order. Aside from the fundamental benchmarks, pmemkv-bench also includes
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benchmarks addressing the multithreaded behavior of concurrent read and write operations.
This functionality enables developers to investigate the behavior of pmemkv for different
access patterns and operations.

Unlike the internal PMDK benchmarking framework, pmemkv-bench does not support
configuration files. Thus, all workloads have to be specified using command-line arguments
only. Mandatory arguments are the location of the database file and its size. Additionally,
one can specify the pmemkv engine, the number of entries and operations, the key and value
size, as well as the number of threads.

YCSB We use the Yahoo! Cloud Serving Benchmark (YCSB) [6] to evaluate the real-
world performance of pmemkv. The YCSB is a popular key-value store benchmarking
framework originally developed by Cooper et al. [44]. Its primary objective is to facilitate
the “performance comparisons of the new generation of cloud data serving systems” [44,
p.1].

The framework includes two components, the YCSB client and a set of workloads, called
the YCSB Core Package. The YCSB Client itself is a Java program containing two parts:
the extensible workload executer and the database interface layer. The workload executor
uses multiple threads to generate a series of operations and execute them by calling the
database interface layer. In general, a workload consists of two phases: the load phase to
fill the database and the transaction phase to execute the actual workload. In addition to
the YCSB client, Cooper et al. developed the YCSB Core Package, a set of workloads to
evaluate the different aspects of database performance. Each workload comprises a unique
mix of read/write operations, data size, and request distribution. A detailed list of the core
workloads is presented in Table 3.1. During the design of the YCSB, special attention was
paid to extensibility. Consequently, developers can easily implement custom workloads and
add database interfaces to the existing framework. Instead of developing new workloads,
one can also modify existing core workloads using command-line arguments or parameter
files. Important adjustable workload properties include the record count, the number of
operations, and the selected database interface.

Workload Operations Distribution
A (Update Heavy) Read: 50%

Update: 50%
Zipfian

B (Read Heavy) Read: 95%
Update: 5%

Zipfian

C (Read Only) Read: 100% Zipfian

D (Read Latest) Read: 95%
Insert: 5%

Latest

E (Short Ranges) Scan: 95%
Insert: 5%

Zipfian/Uniform

Table 3.1: The workloads of the YCSB Core Package based on [45]
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3.2 Implementation

As recommended by Ousterhout [39], we automate our experiments by building a complete
benchmark suite based on Docker containers. Docker provides a consistent benchmarking
environment while being versatile and easy to use. In an early analysis, Giles [46] examines
the current approaches for utilizing byte-addressable non-volatile memory in container-
based virtualization. The author details three methods to expose persistent memory to
containerized applications: Docker Storage, Docker Volume, and Docker Direct Device
Access. For our use case, Docker Storage and Volume are the least favorable options, as
they expose persistent memory to the container via a slower image layer and driver [46].
Due to the intermediate layers, applications inside the container cannot leverage the byte-
addressability of persistent memory. This fact makes them unsuitable for our performance
evaluation. With this knowledge in mind, we choose Docker Direct Device Access to ensure
that applications can still take advantage of the byte-addressability of non-volatile memory
while tolerating reduced application isolation and portability. Nevertheless, the behavior
of containerized persistent memory should be further investigated in future studies.

For better isolation and durability, each framework is located in its own Docker container.
An advantage of this structure is that the individual Docker containers are smaller and can
be rebuilt quickly in case of changes to experiments. Inside the container, we use one main
script as entry point for our benchmarks. Thus, a single command-line argument can be
used to execute individual experiments or all of them in succession. In the main script, the
general parameters for all experiments are defined, such as the path to the benchmarking
framework, the mounting point of the persistent memory, and the destination directory for
the results.

All benchmarks are invoked with the PMEM_IS_PMEM_FORCE=1 flag of the PMDK [29].
This option, as the name implies, instructs libpmem and libpmem2 to treat the given
memory-mapped file as persistent. Generally, this flag is not required, but it is unclear how
the Docker Direct Device Access would affect the persistent memory primitives exposed by
the host operating system. For this reason, we manually set the flag to ensure a consistent
behavior of the PMDK. Another benefit of using this flag in combination with Docker is
that it allows us to mount volatile devices into the Docker container and simulate their
persistent behavior. For example, one can easily mount DRAM via /dev/shm into the
container and mimic its persistent performance by replacing the host mounting point in
the Docker command.

To avoid fluctuations in our measurements, we repeat all experiments several times.
Each data point averages 100 consecutive runs for pmembench and 10 consecutive runs for
pmemkv-bench and the YCSB. With this approach, we minimize the impact of temporarily
occurring load peaks on the measurements. As an additional precaution, we manually
monitor the experiments to ensure that the results were not distorted by any background
processes.

All of our scripts, configurations, and Dockerfiles are open source to encourage other
researchers and developers to evaluate and verify our results [47].
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As part of our implementation, we use multiple libraries and tools to evaluate the
performance of the PMDK. Table 3.2 lists all of them with their corresponding version to
help comprehend and classify the findings of this work.

Name Version/Commit
PMDK [4] 1.11.0
libpmemobj-cpp [32] 1.12
pmemkv [5] 1.14
pmemkv-java [33] 1.0.1
pmemkv-bench [42] d26c3a1
memkind [48] 1.11
Docker [49] 20.10.2
PostgreSQL [50] 9e7dbe3
PMEM-Redis [51] 06c077a
MongoDB [52] 3.5.13
PMSE [53] 6ff2abc

Table 3.2: Overview of all employed libraries/tools with their corresponding version

pmembench The PMDK, as stated above, has its own extensible benchmarking frame-
work. The pre-existing benchmarks already cover a large part of the PMDK’s core
components. For these benchmarks, we create our own configuration files to highlight and
demonstrate the PMDK’s characteristics.

However, since not all of our areas of interest are covered, we create our own benchmarks
and complement the existing ones [54]. Our changes include:

• Implementing the additional operations pmem_flush() and pmem_deep_persist()
for the low-level benchmark pmem_flush

• Extending the pmem_memcpy and pmem_memset benchmark with a plain memcpy()
without persistence and memset() without persistence, respectively

• Adding a completely new benchmark for libpmem2, since it was not yet represented
in pmembench

pmemkv-bench Unlike the PMDK’s internal benchmarking tool, pmemkv-bench does
not support parameter declaration via configuration files. As a consequence, the scripts
for this section are more detailed since they have to serve additionally as configurations.
Furthermore, the convenient post-processing features of PMDK’s internal benchmarking
framework, such as generating value ranges and automatic average calculation, are not
present in pmemkv-bench. Hence, we rebuild those functionalities in our scripts. For
example, we use loops to execute each benchmark multiple times and automatically report
the mean.

While preparing the workloads for pmemkv-bench, we noticed that the figures for random
read operations from other papers were significantly higher than our measurements [12,
22]. The discrepancy is shown in Figure 3.1.

14



3.2 Implementation

Fill Seq Read Seq Fill Rand Read Rand

500

1,000
T

hr
ou

gh
pu

t
[M

B/
s]

Commit 43d842b
Commit 4640e19

Figure 3.1: pmemkv-bench: Comparison between pmemkv-bench commit 43d842b and commit
4640e19 (1 M entries and 10 M read operations).

After investigating the problem, we were able to identify a change in the key calculation,
resulting in a higher miss rate and consequently in an inferior performance. The error
occurs as soon as the number of read operations exceeds the number of entries, as depicted
in Figure 3.2.
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Figure 3.2: pmemkv-bench: Comparison between pmemkv-bench commit 43d842b and commit
4640e19 with respect to different ratios between entries (1 M) and read operations.

In earlier implementations, the key calculation is performed using the following function

rand() mod N ≡ key =⇒ key ∈ {0, . . . , N − 1}

where N is the number of entries and R is the number of reads. The formula indicates
that the miss rate is always 0% because the calculated key is definitely contained in the
database, which comprises N entries with sequential key values from 0 to N − 1. Starting
with commit 43d842b, the calculation changes to

rand() mod R ≡ key =⇒ key ∈ {0, . . . , N − 1, . . . , R-1}
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The miss rate now depends on the difference between the number of entries and the
number of operations. We express the miss rate as

missrate =

R−N
R , if R ≥ N

0, otherwise

To obtain a more realistic analysis of pmemkv’s reading performance, we modify the
implementation of random reads in pmemkv-bench [55]. With our changes, it is now possible
to set the desired miss rate for read operations and thus tailor it to different areas of
application. Our implementation is based on the earlier function, which provided a 0%
miss rate. We additionally add two counters, one for misses and one for hits, and alternate
randomly between miss and hit. Each counter is decremented when its associated method
is executed. When one counter becomes zero, the remaining opposing operations are
executed. With this approach, we ensure that the miss rate is achieved and the operations
are not executed in batches, e.g. first all hits and afterwards all misses.

YCSB The YCSB is a popular framework for evaluating the performance of key-value
stores. At the time of creating our benchmark suite, there was no database interface for
pmemkv available. As previously seen, the YCSB is easily extendable. We therefore decided
to implement our own corresponding database interface [56] by using the pmemkv Java
binding [33]. With our implementation, we were able to get a first overview of pmemkv’s
real-world performance and refine the YCSB core workloads to best demonstrate its benefits
and weaknesses. With the release of Intel’s own pmemkv YCSB implementation and its
slightly higher performance, we decided to migrate our experiments to this version.

To better classify the YCSB performance of pmemkv, our benchmark suite also includes
three PMDK-enabled databases. The first database is MongoDB. We employ it in combi-
nation with Intel’s persistent memory storage engine (PMSE) [53]. PMSE uses the PMDK
to manage MongoDB’s data transactionally and to eliminate the need for snapshot and/or
journal creation. Our second PMDK-enabled database is a modified version of Redis [51].
Typically, Redis operates as in-memory key-value store. To ensure persistence, Redis
logs all write operations to an append-only file (AOF). At regular intervals, Redis flushes
the AOF to persistent storage. Our employed version of Redis, however, uses PMDK’s
libpmemobj to ensure its persistent state and thus no longer requires an AOF [51]. The last
database we include is PostgreSQL. We use PostgreSQL in conjunction with patches pro-
posed by Menjo [57]. These patches accelerate PostgreSQL by using the PMDK’s libpmem
to optimize the Write-Ahead-Logging (WAL). More specifically, the patches replace the
POSIX system calls with libpmem functions. Instead of opening, reading, and writing files,
the modified version of PostgreSQL uses memory mapping, memory copying, and flushing.

Throughout all YCSB experiments, we use our scripts for post-processing of the mea-
surements and pre-processing of the database. Unlike pmemkv, most modern database
systems run independently as a standalone application in the background. Therefore, the
scripts have to initialize the databases before the YCSB workloads can be executed. The
initialization stage includes spawning of the database process, user management and, where
applicable, the creation of the necessary database tables.
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This chapter presents the results of the PMDK’s performance evaluation. First, we give an
overview of the used system specifications to conduct our experiments. We then evaluate
the performance of the PMDK’s core components and highlight important characteristics.
Lastly, the performance of pmemkv is examined and compared with other state-of-the-art
database systems using the YCSB.

4.1 Experimental Setup

We conduct our benchmarks on a server powered by a single 24-core Intel® Xeon® Gold
6212U processor. The CPU has two iMCs and a total of six memory channels (three
channels per iMC). Each memory channel is populated with a 32 GB DDR4 DIMM and a
128 GB Intel Optane DCPMM. Thus, the processor is backed by 192 GB of DRAM and
768 GB of persistent memory. The machine is running Ubuntu 20.04.2 with Linux kernel
version 5.4.0. A detailed server specification can be found in Table 4.1.

CPU Intel® Xeon® Gold 6212U
Frequency 2.4 GHz (Turbo 3.9 GHz)
# Cores 24 physical (48 virtual)
L1 Cache (per Core) 64 KiB (L1I + L1D)
L2 Cache (per Core) 1 MiB
L3 Cache (Shared) 35.75 MiB
DRAM 192 GB (6× 32 GB)
Persistent Memory 768 GB (6× 128 GB DCPMM)
Operating System Ubuntu 20.04.2 (Kernel v5.4.0)

Table 4.1: Specifications of the benchmarking server

As previously stated, we mainly focus on the persistent aspects of the PMDK. Therefore,
the Intel Optane DCPMM operates in the prior mentioned App Direct mode. In our system,
the persistent memory hardware is formatted with the ext4 file system and mounted with
enabled DAX (direct access) support [23].
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4.2 PMDK Component Benchmarks

The PMDK consists of several libraries and tools to help developers manage and utilize
persistent memory in their applications. In this chapter, we evaluate and assess the
performance of the PMDK’s core components. As mentioned previously, we primarily
focus on the persistent aspects of the PMDK, thus omitting libraries like libvmem and
libvmmalloc. For performance evaluation, we use the internal benchmarking framework
of the PMDK, called pmembench [41]. This framework lets us evaluate each aspect of the
PMDK individually. We complement the framework with our own scripts, configuration
files, and benchmarks, as detailed in Chapter 3.

4.2.1 Persisting Data (libpmem)

pmem_persist() and msync()

Background libpmem [29] provides a non-transactional interface for the low-level persis-
tent primitives such as cache flushing, file mapping, and raw access to persistent memory.

As discussed earlier in Section 2.3, the PMDK uses memory-mapped files to access
the persistent memory. In libpmem, mapping files is done using the pmem_map_file()
function. Depending on the capabilities of the system, libpmem automatically determines
the optimal method for memory-mapping files and the optimal set of CPU instructions for
cache flushing. After mapping a file into the application’s address space, the developer is
responsible for selecting the appropriate persisting mechanism. libpmem offers two basic
functions for persisting: pmem_persist() for persistent memory and msync() for both
persistent memory and traditional storage devices. In general, pmem_persist() should
always be used when dealing with persistent memory. Unlike msync(), pmem_persist()
does not call into kernel space resulting in less overhead and better performance.

Internally, pmem_persist() consists of two stages: First, pmem_flush() to flush the
processor’s caches. Second, pmem_drain() to ensure that the hardware buffers have drained
and the data has reached the actual media. On Intel platforms with persistent memory
support, data is considered persistent once it reaches the iMC, so draining the hardware
buffers is not required. Instead, pmem_drain() acts as an SFENCE operation to prevent
reordering and to ensure that all previous store instructions have been completed [58].

In addition to the aforementioned persisting methods, there is a third method called
pmem_deep_persist(). In order to increase the reliability, pmem_deep_persist() evicts
the data to “the most reliable domain available to software” [59] instead of only flushing it
to the write-pending queue of the CPU’s iMC, like pmem_persist().

Our objective in this section is to analyze and quantify the performance difference
between the three offered methods as well as the overhead introduced by more reliable
persisting mechanisms. To demonstrate the performance characteristics, we compute each
method on a single thread in sequential and random access patterns for varying data sizes
reaching from 8 B to 8 KiB. Furthermore, we examine the scalability of all operations with
different numbers of threads and a random access pattern. For this purpose, we choose three
distinct data sizes: 64 B (cache line size), 256 B (size of the DCPMM’s write-combining
buffer), and 4 KiB (default Linux page size). For all experiments, we set the number of
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operations per thread to 100,000 and perform a warmup beforehand to eliminate the effect
of page allocation on our measurements.

Evaluation Overall, we can observe two major tendencies: First, the additional step
of draining the hardware buffers results in reasonable overhead. Second, msync() and
pmem_deep_persist() are significantly slower than pmem_persist() in every scenario.
One reason for the slow behavior of msync() is the huge page support [60]. As Iwata [61]
points out, using msync() for persisting sets the dirty flag of an entire 2 MiB huge page,
which leads to its invalidation and consequently flushing of the whole page.

Looking at the figures in detail, we see two distinct behaviors for random and sequential
data access. The left plot in Figure 4.1 depicts the behavior for persisting data in random
order. The throughput remains at a constant level up to 256 B before it slowly starts to
decline. Based on this observation, we deduce that the data size is of secondary importance
for evicting data in random order as long as it remains smaller than 256 B.

For sequential flushing, shown in the right plot of Figure 4.1, the throughput progression
is not as even. We observe a sudden peak in throughput for both pmem_flush() and
pmem_persist() at 64 B. To verify this finding and exclude any side effects of the
containerized application, we reran these experiments outside of the Docker container
and obtained similar performance numbers, with 64 B being the optimal data size. This
behavior can be explained by the cache line size of 64 B. Hence, we infer that flushing a
single cache line is the most efficient approach for persisting data.

8 32 128 512 2048 8192

0

1

2

3

Data Size [B]

T
hr

ou
gh

pu
t

[o
ps

/s
×

10
6
]

Random

8 32 128 512 2048 8192

0

10

20

30

Data Size [B]

T
hr

ou
gh

pu
t

[o
ps

/s
×

10
6
]

Sequential

persist flush msync deep_persist

Figure 4.1: PMDK benchmark: Performance of persist operations for varying data sizes

Comparing pmem_flush() and pmem_persist() at the data size of 64 B, it can be seen
that pmem_flush() is approximately 3× faster than pmem_persist(). These measurements
illustrate the performance impact of SFENCE. On Intel platforms, like our experimental
server, the additional pmem_drain() in pmem_persist() only serves as an ordering barrier

19



4 Evaluation

using SFENCE. As visualized by our plots, this additional instruction has a significant
impact on the throughput, because the CPU cannot reorder stores to optimize performance.
However, it should be emphasized that these barriers are critical to guarantee the persistence
order of consecutive operations.

Returning to the remaining sequential data sizes in Figure 4.1, we observe that those
larger than 64 B have a higher throughput than those below 64 B. Based on this observation,
we deduce that data should be at least in the size of a cache line (64 B) to ensure efficient
sequential flushing. To support and verify our finding, we further examine the latency
per cache line for the pmem_persist() operation. As seen in Figure 4.2, the latency per
cache line for sequential flushing remains steady for data sizes up to 256 B (size of the
DCPMM’s write-combining buffer). This finding corresponds with previous analyses of
DCPMM hardware, which show that data sizes smaller than 256 B do not imply faster
accesses [12, 15, 17].
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Figure 4.2: PMDK benchmark: Latency per cache line for random and sequential persist
operations on data sizes between 64 B and 8 KiB
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Figure 4.3: PMDK benchmark: Multithreaded performance of persist operations
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Concerning the multithreaded scaling, Figure 4.3 shows that all data sizes scale linearly
with an increasing number of threads. As with single-threaded performance, msync()
and pmem_deep_persist() provide significantly worse performance. pmem_persist() and
pmem_flush() offer a comparable performance overall, with differences becoming more
visible as the number of threads increases. Comparing the throughput of the individual
data size across the plots, we see that smaller data sizes tend to perform better.

Summary Based on our plots, we conclude that pmem_persist() and pmem_flush()
scale well across all data sizes and thread counts. Among all evaluated methods, the
best performance is achieved by sequential flushing in data sizes of 64 B. Consequently,
developers should make use of this knowledge when designing and developing data structures
and algorithms with libpmem. In addition to the data size, developers should also distinguish
between the different persisting methods of the PMDK. As seen by our results, the wrong
method can have a significant impact on the overall performance of the applications.
Therefore, we endorse the recommendation of the PMDK to primarily use pmem_persist()
on persistent memory. Alternatively, pmem_deep_persist() can be used for critical values
that require the highest reliability. However, this function should be handled with caution
since it involves a much larger overhead than pmem_persist().

libpmem2

Background libpmem2 is the successor of libpmem. According to the developers, it
offers “a more universal and platform-agnostic interface” [4]. Like libpmem, libpmem2
provides the same low-level primitives to access the persistent memory directly. However,
it enhances the existing mechanism with additional concepts.

One of the new concepts is granularity. With the concept of granularity, developers can
now distinguish between different levels of storage performance in terms of the power-fail
protected domain. Traditionally, block devices (e.g. SSD and HDD) preserve data by
flushing entire pages to the medium [7]. In libpmem2, this behavior can be achieved using
PMEM2_GRANULARITY_PAGE. For persistent memory, libpmem2 offers two granularity types:
If only the memory controller is covered by the power-fail protected domain, cache lines
have to be flushed to persistence by using CPU instructions such as CLWB, CLFLUSH, and
CLFLUSHOPT. In libpmem2, this granularity type is called PMEM2_GRANULARITY_CACHE_LINE.
In systems where both the memory controller and the CPU caches are covered by the
power-fail protected domain, developers can use the granularity PMEM2_GRANULARITY_BYTE.
On such systems, flushing of the CPU caches is no longer required as the CPU caches are
already considered persistent.

The concept of granularity enables developers to be more specific about required storage
patterns by declaring their minimum supported granularity [30]. For example, a database
storage engine may require the granularity PMEM2_GRANULARITY_CACHE_LINE. Depending
on the platform’s capabilities, libpmem2 creates the file mappings with granularity lower
or equal to the requested one. For our database engine, this means that files are mapped
with either PMEM2_GRANULARITY_BYTE or PMEM2_GRANULARITY_CACHE_LINE but not with
PMEM2_GRANULARITY_PAGE.
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In our benchmarks, we compare the performance differences between all three granularity
types for persisting data. Moreover, we examine if the second iteration of the low-level
API provides notable performance benefits compared to the initial version. Similar to the
previous section, we investigate the single-threaded performance for data sizes between
8 B and 8 KiB. To assess the multithreaded scalability, we select the three aforementioned
data sizes: 64 B (cache line size), 256 B (size of the DCPMM’s write-combining buffer), and
4 KiB (default Linux page size). All experiments are computed with 100,000 operations
per thread and a prior warmup.
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Figure 4.4: PMDK benchmark: Performance comparison of persist operations in libpmem and
libpmem2 for varying data sizes

Evaluation As depicted in Figure 4.4, each granularity type has distinctive performance
characteristics. Generally, PMEM2_GRANULARITY_BYTE offers the highest performance among
all tested mechanisms. Particularly for data sizes smaller than 64 B, we observe over 3×
better throughput for random data and 5× better throughput for sequential data compared
to the next best granularity. For larger-sized data, the performance is still superior, although
not as dominant. The reason for the overall better throughput is the omission of the cache
line flushing since PMEM2_GRANULARITY_BYTE presumes that the CPU caches are already
covered by the power-fail protected domain. As for the comparison with libpmem, we state
that the libpmem2 granularity PMEM2_GRANULARITY_CACHE_LINE is the closest in terms of
performance and characteristics. Both methods remain at a constant performance level for
data sizes below 256 B and then start gradually declining. Regarding the performance of
PMEM2_GRANULARITY_PAGE, we observe a significant performance disadvantage across all
data sizes. For sizes larger than 4 KiB, the other mechanisms converge towards the same
performance level. This performance progression is expected as PMEM2_GRANULARITY_PAGE
persists data in page granularity. As a reminder, Linux has a default page size of 4 KiB.
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Consequently, PMEM2_GRANULARITY_PAGE is best suited for applications that operate on
large logical pages and do not require finer-grained persistence.

For the multithreaded performance, depicted in Figure 4.5, the trends between the gran-
ularities remain the same, with PMEM2_GRANULARITY_BYTE delivering the best performance
followed by PMEM2_GRANULARITY_CACHE_LINE and PMEM2_GRANULARITY_PAGE. Taking a
closer look at the comparison between libpmem and libpmem2, we see that libpmem2 with
PMEM2_GRANULARITY_CACHE_LINE offers a slightly higher throughput than its predecessor
libpmem. This improvement is particularly apparent for 4 KiB.
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Figure 4.5: PMDK benchmark: Comparison of the multithreaded performance of persist
operations for libpmem and libpmem2

Summary As illustrated by our plots, libpmem2 is not only the successor of libpmem but
also an evolution in terms of performance. With the introduction of the granularity concept,
libpmem2 provides developers more freedom in their application design and implementation.
Depending on the use case and the platform, developers can now leverage different degrees
of persistence inside their application. With PMEM2_GRANULARITY_BYTE, libpmem2 is also
prepared for the next generation of CPUs which might expand their power-fail protected
domain to the CPU caches.

Regarding its performance, libpmem2 matches or even outperforms its predecessor
libpmem in almost every area. For PMDK’s higher-level libraries, which are currently
based on libpmem, switching to libpmem2 can therefore result in higher overall performance.
But also for other persistent memory applications currently employing libpmem, a migration
to libpmem2 can be worthwhile to improve their performance.

With the current technology, PMEM2_GRANULARITY_CACHE_LINE provides the best bal-
ance between persistence and performance for most applications. Fortunately, due to the
downward compatibility, applications implementing PMEM2_GRANULARITY_CACHE_LINE can
leverage the additional performance of PMEM2_GRANULARITY_BYTE without any modifica-
tions once the power-fail protected domain extends to the CPU caches.
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pmem_memcpy()

Background Copying memory is one of the fundamental operations frequently used
by developers. Instead of copying values to persistent memory using memcpy() with a
subsequent pmem_persist(), developers can leverage libpmem’s PM-optimized version,
called pmem_memcpy() [62]. pmem_memcpy() provides the same functionality as its name-
sake memcpy() but additionally ensures the data is persisted before returning. Another
benefit: where applicable, pmem_memcpy() utilizes non-temporal stores to bypass the
CPU caches, resulting in superior performance compared to memcpy() with a subsequent
pmem_persist(). One important detail to note here: libpmem ensures for its memory
functions 8 B-atomicity. More specifically, when the destination buffer address and length
are 8 B aligned, libpmem guarantees that all stores are performed using at least 8 B store
instructions. As a result, in the event of a crash, each 8-byte location has either the new
or the old memory content, but never a mix of the two [29]. Rudoff [63] indicates that
this behavior might improve in upcoming CPUs with the introduction of the MOVDIR64B
instruction, which enables 64 B atomic stores.

In order to give developers more freedom, libpmem features an additional function called
pmem_memcpy_nodrain() [62]. This function is similar to the earlier described function
pmem_memcpy() but skips the final step of draining the hardware buffers. Developers
can therefore optimize their applications by performing multiple copy operations with a
single ensuing call of pmem_drain(). However, as previously reported, the pmem_drain()
operation on Intel platforms only serves as SFENCE instruction because the power-fail
protected domain already covers the CPU hardware buffers.

In our experiments, we examine the performance differences between the various ap-
proaches of copying data to persistent memory. Furthermore, we quantify the overhead
of persisting data after it has been copied to persistent memory using memcpy(). As
with previous experiments, a single thread is used to perform various operations on data
sizes reaching from 8 B to 8 KiB. The selection of the data chunks is performed both in
sequential and random order. For the second experiment, all operations are computed
with a varying number of threads for data chunks in random order. As before, we perform
100,000 operations per thread and a warmup beforehand to prevent page allocation perfor-
mance from being measured. The used data sizes for multithreading remain the same as in
previous experiments: 64 B (cache line size), 256 B (size of the DCPMM’s write-combining
buffer), and 4 KiB (default Linux page size). Please note that in this case, the throughput
is measured in GiB/s instead of ops/s to take into account the data size of each memory
operation.

Evaluation Figure 4.6 depicts the progression of the different approaches over a range
of data sizes. We observe that the memcpy() operations perform better than libpmem
namesakes for sizes smaller than 256 B. For all data sizes onwards, the order is inverted,
with the libpmem functions leading. As expected, omitting the order barriers increases the
performance of memcpy() and pmem_memcpy().

Looking at Figure 4.6 in more detail, we identify 256 B as a special point of interest.
Up to 128 B, memcpy() offers the highest throughput among all operations. From 256 B
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onwards, the libpmem variant has a superior performance. Especially for the libpmem
methods, we notice a steep increase from 128 B to 256 B. These characteristics coincide with
previously reported findings about the performance of the DCPMM [12, 15, 17]. As stated
in Section 2.1, the DCPMM has an internal write-combining buffer of 256 B. Consequently,
data accesses of 256 B achieve the best throughput. Another explanation for the higher
throughput is the non-temporal stores. As highlighted previously, pmem_memcpy(), unlike
memcpy(), uses non-temporal stores to optimize its efficiency. Particularly for large-sized
data, the ability to bypass the CPU caches can result in improved performance.
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Figure 4.6: PMDK benchmark: Performance of memcpy operations for different data sizes

As for the multithreaded performance depicted in Figure 4.7, the presented persistent
copying methods provide linear scaling in most cases. Only for large data sizes, an increase
in threads may result in a throughput degradation. But there are further interesting aspects
to highlight: First, with the increasing number of threads, the use of ordering barriers for
the store operations becomes more important. For example, for 4 KiB and 16 threads, we
see that the throughput of pmem_memcpy() is 1.3× higher than pmem_memcpy_nodrain().
We assume that the looser ordering of the pmem_memcpy_nodrain() operation creates
temporary bottlenecks as the data is not frequently evicted to persistent memory. Second,
for small data sizes, using memcpy() with a subsequent flushing operation leads to a higher
throughput compared to equivalent methods of libpmem. Nevertheless, this performance
advantage is only marginal and probably negligible in most applications. Last and most
interestingly, the multithreaded performance of memcpy() only increases up to a certain
limit. With growing data sizes, it requires fewer threads to reach this upper bound. For
example, for 256 B, it requires five threads to reach the limit, but for 4 KiB, the limit can be
reached with a second thread. Surprisingly, this limit does not seem to apply to memcpy()
followed by a flushing operation, as it outperforms the plain memcpy(). A similar behavior
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was documented by Kalia et al. [26]. Anuj Kalia’s explanation for our problem is that
“data evicts in near-random order [when using memcpy()], whereas [persistent memory] is
optimized for sequential writes. pmem_memcpy() ensures that the destination buffer cache
lines evict to [persistent memory] in sequential order (by issuing flushes)” [64].
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Figure 4.7: PMDK benchmark: Multithreaded performance of memcpy operations

Summary Our plots illustrated that various parameters affect the performance of copying
to persistent memory. Generally, developers should avoid memcpy() and use pmem_memcpy()
instead. In particular, for data sizes larger than 256 B, the libpmem namesakes provide
superior performance. To further optimize the efficiency, developers should consider using
pmem_memcpy_nodrain() with a manual subsequent pmem_drain(). However, they need
to be aware of the weaker persistence guarantees that are associated with this approach.
In terms of multithreading progression, we conclude that it scales linearly for the most
part. Only for large data sizes in combination with high thread counts, there seems to be
performance degradation. As a general rule: the smaller the data size, the more threads
can concurrently copy to persistent memory.

pmem_memset()

Background In addition to the previously mentioned pmem_memcpy(), libpmem also
offers a namesake for memset(), called pmem_memset() [62]. It provides the same basic
functionality as memset() but with the guarantee of persistence on returning. Compared
to pmem_memcpy(), pmem_memset() sets the contents of a memory range to a specific
value instead of copying them from one memory location to another. The behavior of
pmem_memset() can be represented as memset() with a following pmem_persist() com-
plemented with the ability to use non-temporal stores. In this regard, pmem_memset()
shares a lot of functionalities with its fellow memory operations pmem_memcpy() and
pmem_memmove(). One important aspect we want to re-emphasize here is the 8 B-atomicity.
As long as the destination buffer address and length are 8 B aligned, pmem_memset() uses
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at least 8 B atomic store instructions. Furthermore, pmem_memset() also offers a supplemen-
tary function without subsequent hardware buffer draining, named pmem_memset_nodrain().
This function enables developers to further optimize their algorithms and data structure.

For performance evaluation of pmem_memset(), we apply a similar benchmark pattern
as for pmem_memcpy(). First, examining the performance across a range of data sizes,
followed by an investigation of multithreaded performance. In order to assess the single-
threaded performance, we execute the experiments for data sizes between 8 B and 8 KiB.
The memory destination is selected both in sequential and in random order. As for the
multithreaded performance, we select the memory destination randomly and vary the
number of threads. The inspected data sizes are 64 B (cache line size), 256 B (size of the
DCPMM’s write-combining buffer), and 4 KiB (default Linux page size). Throughout
all experiments, each thread executes 100,000 operations. It is worth noting that the
throughput of these experiments is also measured in GiB/s as opposed to ops/s.

Evaluation Overall, we recognize similar characteristics as for pmem_memcpy(). Below
256 B, the memset() variants achieve higher throughput. Starting with 256 B, the libpmem
namesakes pass the memset() versions for both random and sequential order. The same
holds true for multithreaded performance with pmem_memcpy() providing better throughput
for the data sizes 256 B and 4 KiB, but falls short of memcpy() for 64 B.
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Figure 4.8: PMDK benchmark: Performance of memset operations for different Data Sizes

Taking a closer look at the throughput progression over various data sizes in Figure 4.8,
we identify two distinct parts. The first part contains all data sizes between 8 B and 128 B,
and the second the remaining data sizes from 256 B to 8 KiB. For the first part, we observe
that all operations involving memset() outperform their pmem_memset() namesakes. The
second part is inverted, with pmem_memset() operations coming out on top.

27



4 Evaluation

This behavior is particularly apparent for the plain memset() operation, which steadily
increases up to 128 B and then abruptly decreases. With this progression, the general
performance characteristics are comparable to those of pmem_memcpy(). As pointed out
earlier, this behavior is most likely related to the DCPMM’s internal write-combining
buffer in the size of 256 B. Another important aspect that should not be overlooked in this
context is the use of non-temporal stores in libpmem. In Section 4.2.1, we have seen that
flushing larger data sizes can negatively affect the performance. In this case, bypassing the
CPU cache can significantly increase the throughput.

To further improve the performance, one can omit the ordering barriers by using
pmem_memset_nodrain(). As depicted by the plots, using pmem_memset_nodrain() can
especially accelerate applications which are dealing with data sizes between 256 B and
4 KiB. However, as the number of threads and data size increases, the advantage fades and
eventually becomes a disadvantage. We observed a similar behavior for pmem_memcpy().
Consequently, it is only recommended to skip draining when dealing with small data sizes
and a low number of threads.

Regarding the progression of the multithreaded throughput depicted in Figure 4.9, there
is another aspect we want to highlight. Analogous to pmem_memcpy(), we observe an upper
bound for the throughput. With increasing data size, it takes fewer threads to reach this
limit. From this observation, we deduce that the bandwidth of the DCPMM becomes a
limiting factor for multithreaded applications. This finding is in line with multiple works
indicating that a small number of threads is sufficient to saturate the write bandwidth of
the DCPMM [12, 15, 17].
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Figure 4.9: PMDK benchmark: Multithreaded Performance of memset operations

Summary Together, the plots indicate that pmem_memset() provides the best perfor-
mance among all evaluated operations. Especially for larger data sizes, libpmem’s operations
can outperform the memset()-based methods. As visualized by our plots, data sizes smaller
than 256 B should generally be avoided. To get the best balance between granularity
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and throughput, future algorithms and data structures should be optimized for the data
size of 256 B. For performance sensitive applications, developers should consider using
pmem_memset_nodrain() for larger memory ranges followed by a manual pmem_drain().
Depending on the data size, this can significantly increase the throughput but at the
same time weakens the persistence as it cannot be guaranteed that the data reaches the
media in the anticipated order. As far as multithreading performance is concerned, we
see that the performance scales linearly up to a certain limit before throttling. Therefore,
applications with larger data sizes should limit the number of concurrent operations to
avoid performance degradation. It should be noted that some of the peculiarities seen
throughout this section appear to be related to the DCPMM’s performance properties.

4.2.2 Transactions (libpmemobj)

Background libpmemobj [31] was designed to facilitate persistent memory programming
for developers by providing a more convenient API with additional features. It builds
upon the previously explained libpmem library to implement a transactional object store
based on memory-mapped files. In addition to the transactional object store, libpmemobj
also provides higher-level functionality like memory management, locking, and application
recovery [31].

In libpmemobj, memory-mapped files are represented as pools. The library hides the
complexity and details of directly mapping the files and synchronizing data. Instead, it
provides a more intuitive API for creating and managing these pools. Due to the address
space layout randomization (ASLR) feature in many operating systems, the memory
location of the pool may vary between system and application restarts. To address
this issue, libpmemobj attaches metadata to each pool, allowing for identification across
restarts [31]. One important value in this metadata is the offset to the root object. The
pool’s root object serves as an entry point for finding all other objects. To locate the root
object itself, an application uses the pool object pointer (POP), which is created at each
program execution and then stored in volatile memory [3, p.87]. The conjunction of POP
and root object allows applications to access any object inside the pool. The developers
of libpmem, however, realized that accessing objects via untyped direct pointers is very
error-prone and hard to debug. To address this issue, they introduced typed persistent
pointers, also called typed object identifiers (TOIDs). These typed persistent pointers are
based on named unions and enable static type enforcement for persistent pointers through
macros, catching potential errors at compile time [65].

Based on those described features, libpmemobj provides a transactional API. The basic
idea of transactions is the consolidation of multiple operations into one single operation.
Imagine making a bank transfer from one account to another: The money should be debited
from one account and credited to the other simultaneously. Both operations should act as
a single atomic operation, either the money was transferred or not. A common solution to
guarantee this atomicity in transactions is logging [24, 25]. In this approach, all planned
changes are persisted in a log before they are executed. In the event of a system failure,
the log is used to recreate a consistent state by rolling back the changes or reapplying
them. For its transactions, libpmemobj uses a hybrid undo/redo logging technique [66].
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Before a variable is written, it has to be added to the transaction. In libpmemobj, this
can be achieved by calling pmemobj_tx_add_range(). This function creates a snapshot of
the given memory block and saves it to the undo log. In case of a failure or abort, the
changes to this memory block are reverted. To function probably, the memory block has
to be contained within the transaction’s pool [31].

Transactions in libpmemobj consist of multiple stages, which are defined via macros.
The mandatory macros are TX_BEGIN and TX_END, which set the start and the end of the
transaction. In addition, there are three optional stages: TX_ONCOMMIT, TX_ONABORT, and
TX_FINALLY. These stages can be used to execute additional code depending on the result
of the transaction. To create more complex algorithms, transactions can also be nested.
Note that if one nested transaction aborts, the entire transaction aborts as well [31].

The experiments in this section aim to quantify and examine the performance of the
pmemobj_tx_add_range(). As explained earlier, this function is frequently used in transac-
tions to ensure recoverability. Due to this importance, we investigate its performance across
various data sizes and threads. Similar to previous sections, we measure the single-threaded
performance for data sizes between 8 B and 8 KiB. The multithreaded performance is
evaluated with the previously used data sizes: 64 B (cache line size), 256 B (size of the
DCPMM’s write-combining buffer), and 4 KiB (default Linux page size). Each experiment
is conducted with 100,000 operations per thread.

Evaluation Figure 4.10 depicts the results of our experiments. In the left plot, we see the
throughput progression over varying data sizes. For data sizes up to 64 B, the throughput
remains on a consistent level. From this observation, we infer that logging memory ranges
smaller than 64 B does not yield any additional performance. Thus, applications cannot
exploit finer-grained logging to improve their efficiency. For data sizes larger than 64 B, we
identify a sudden drop in throughput, almost halving the performance from 64 B to 128 B.
Because logging is an essential aspect of transactions, applications that frequently modify
data should avoid using data sizes larger than 64 B.
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When scaling with multiple threads, we observe an upward sloping asymptotical curve
for all data sizes. Depending on these sizes, the upper bound is reached with a smaller
number of threads. We have already noticed a similar behavior earlier with pmem_memcpy()
and pmem_memset(). Hence, we suspect that this characteristic is caused by the DCPMM’s
limited write bandwidth too. From this throughput progression, we can infer that multi-
threaded applications should avoid the combination of larger data sizes and higher thread
counts not to saturate the bandwidth of the DCPMM.

Summary Based on the results, we deduce that pmemobj_tx_add_range() is better
suited for smaller data sizes. We were able to identify that 64 B has the optimal balance
between performance and size. Data sizes smaller than 64 B offer the same performance level,
whereas larger data sizes are considerably slower. In terms of multithreaded performance,
we notice that even a small number of threads is sufficient to reach the maximum throughput.
Therefore, applications should only use up to 8 concurrent threads when writing data to
the log.

Taking everything into account, our general recommendation for developers is to use
smaller data sizes and log the value right before modifying it. Following this approach, the
logging operations are better distributed, ensuring a more even utilization of the available
bandwidth.

4.2.3 Persistent Memory Allocation/Deallocation (libpmemobj)

Background As explained earlier, libpmemobj provides higher-level functionalities for
persistent memory. One functionality we want to detail in this section is the dynamic
memory management of persistent memory. The concept of dynamic memory management
is an essential part of C and other programming languages. Dynamic memory management
allows applications to request memory at run-time and release it when it is no longer
needed. In volatile memory, those memory requests are satisfied by allocating unused
memory from a large memory pool known as Heap.

With persistent memory, there are some additional challenges in allocating and deallo-
cating memory. An important term in this context is a persistent leak. A persistent leak
occurs if a persistent memory region is marked as allocated, but no longer in use. Unlike
volatile memory leaks, persistent leaks cannot be resolved by a system reboot. As a result,
the amount of available persistent memory continuously shrinks, which can negatively
impact the performance of other applications. One source of persistent leaks may be that
the allocation operation was interrupted after marking the region as allocated, but before
writing the corresponding data. In this case, the memory region cannot be used even
though it is still marked as allocated.

The opposite problem is overwriting allocated memory regions. This issue occurs if the
interruption happens after the data was written, but before the region was marked as
allocated. When the application restarts, the allocator assumes that this region is unused
and may overwrite it.

Due to these problems, a persistent memory allocator has to atomically allocate memory,
preserve allocations and locate objects across application and system restart.
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To fulfill those requirements, libpmemobj includes its own PM-optimized memory allocator
inspired by the well-known volatile Hoard allocator [67, 68]. It supports the known dynamic
memory management interfaces for allocating, resizing, and freeing objects.

All memory operations of the libpmemobj can be divided into two steps [3, p.324]: The
first step is the reservation step. For allocation, this step involves retrieving a memory
block, marking it as reserved, and initializing the object’s content. The second step is the
publication of the executed reservation. This bifurcation allows multiple reservations to be
combined and published together.

To leverage this functionality, libpmemobj offers two separate APIs for persistent memory
management: transactional allocations and fail-safe atomic allocations [31].

Starting with transactional allocations, this is the approach most similar to the standard
POSIX methods. The main transactional operations for dynamic memory management
are pmemobj_tx_alloc() and pmemobj_tx_free(). To ensure consistency of the memory
operations, the transactional allocator uses a redo-log to track all executed operations.
Within the transaction, the reservation step is performed for each memory operation. At
the time of the transaction commit, the reservation actions are published, and the redo-log
is created. If the transaction is aborted before its commit, all reservation actions are
canceled and discarded.

The second available allocation API is the fail-safe atomic allocation. Since these
operations do not use logging, they tend to have lower overhead. As the name implies, all
methods of this API are atomic with respect to other threads and possible power failures.
To ensure this atomicity, the functions reserve the object in a temporary state, call the
object’s constructor, and mark the allocation as persistent, all in a single atomic action.
The available methods are in the format of pmemobj_alloc() and pmemobj_free().

An important detail to note is that the actual size of the persistent allocation differs
from the request size by at least 64 B due to internal padding and object metadata. For
this reason, the PMDK’s developers state that “making allocations of a size less than 64
bytes is extremely inefficient and discouraged” [69].

To quantify the performance difference between the two APIs for dynamic memory man-
agement, we compare them using various object sizes and number of threads. Our testing
focuses on the two core functions: allocation and deallocation of persistent memory. For
object sizes, similar to the data sizes in previous experiments, we evaluate the performance
between 8 B and 8 KiB. Concerning the multithreaded scalability, we select the following
object sizes: 64 B (cache line size and, according to the developers, the smallest efficient
object size), 256 B (size of the DCPMM’s write-combining buffer), and 4 KiB (default Linux
page size). Each thread computes 100,000 operations, same as in the previous experiments.

Evaluation We can deduce some general characteristics from the presented plots: First,
deallocations are faster than allocations for both APIs. Second, the transactional memory
operations introduce a measurable overhead compared to the atomic operations. However,
this overhead becomes negligible with increasing object size. Third, as pointed out by
the PMDK’s developers, object sizes smaller than 64 B do not provide any additional
performance. These observations also apply to multithreaded performance.
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Figure 4.11 depicts the performance progression across various object sizes. Up to 64 B,
the performance of each function remains on a steady level, with the atomic operations
being around 20% faster than their transactional counterparts. From 64 B to 1024 B, the
throughput of all operations decreases linearly with a small outlier at 512 B. In the same
range, the performance of the allocation and deallocation operations converges for both
APIs. Starting from 1024 B onwards, the throughput of both deallocation operations
remains on a constant level, whereas both allocation operations continue their linear
decrease, resulting in a notable performance difference.

From this throughput progression, we deduce that the aforementioned statement written
by the PMDK’s developers is justified. Applications should be designed and implemented
in such a way that allocations of less than 64 B are avoided. For allocations greater than
64 B, developers can expect a linear decrease in performance.
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Figure 4.11: PMDK benchmark: Performance of libpmemobj’s allocation and deallocation
mechanisms for differently sized objects

Proceeding with the multithreaded performance visualized in Figure 4.12, we notice a
linear throughput increase for both deallocation operations across all examined object sizes.
In contrast, the allocation operations only scale linearly up to a certain upper bound. This
characteristic is particularly apparent for 4 KiB. It only requires four threads to reach the
throughput limit, with throughput dropping further after eight threads. This phenomenon
is already known from volatile memory allocators and is caused by lock contention. To
prevent concurrent modifications of allocation data structures, allocators use locks to
coordinate the access and ensure consistency [70]. The longer the allocation takes, the
longer the locks are acquired, blocking the allocations of other threads. As deduced from
our plots, this is especially problematic for larger allocations.
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Figure 4.12: PMDK benchmark: Multithreaded performance of transactional and atomic
deallocation and allocation

Summary Our experiments examined the performance characteristics of the libpmemobj’s
dynamic memory management APIs. As demonstrated by our plots and stated by the
PMDK’s developers, allocation of objects smaller than 64 B should generally be avoided [69].
For objects larger than 64 B, we observed a mostly linear performance decrease. Across all
evaluated object sizes, the atomic operations outperformed their transactional counterparts.
Performance-oriented developers should therefore utilize the atomic operations for critical
sections of their applications. For all other developers, we recommend the transactional
API as it offers a similar functionality and interface to the POSIX-API with reasonable
overhead. The same recommendation also applies to multithreaded applications. Here, it is
important to add that the combination of large-sized objects and a high number of threads
can result in reduced throughput. Consequently, developers should avoid large concurrent
allocations or utilize multithreaded-optimized persistent memory allocators [71, 72].

4.2.4 Persistent Locks (libpmemobj)

Background Applications often require multiple concurrent threads to leverage the
capabilities of modern multi-core machines. Sometimes, these threads have to access
the same data simultaneously. However, concurrent unrestricted access to shared data
also entails risks. To illustrate the problem, we refer to the previous banking example
of transferring money from one account to another. Consider multiple threads crediting
received money to the account. In this scenario, both threads simultaneously read the
current account balance and start their process. When finished, both threads write back
their calculated values. During this process, the later ending thread might quietly overwrite
the value of the first. As a result, only one calculation is included in the total balance.

As the example indicates, the access of multiple threads to shared data has to be
synchronized in order to not depend on accidents of timing. One synchronization technique
for coordinating the access to the shared data is locking. The concept of locking is that
before a thread can access shared data, it must acquire a lock. If the thread attempts to
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acquire a lock already owned by another thread, it has to wait until the lock is released
again. Despite being an established approach, using locks on persistent memory poses new
challenges.

An important term in this context is a persistent deadlock [3]. A persistent deadlock
happens when an application crashes while holding a lock. When the application does not
release the lock after recovery, other threads might wait indefinitely to acquire the lock.
In order to avoid persistent deadlocks, libpmemobj provides POSIX-like synchronization
primitives for persistent memory [31]. These synchronization primitives prevent persistent
deadlock by reinitializing themselves each time the persistent pool is opened. Consequently,
all synchronizations primitives are considered unlocked after the pool is opened, regard-
less of their previous state. libpmemobj’s synchronization primitives consist of mutexes
(PMEMmutex), read-write locks (PMEMrwlock), and condition variables (PMEMcond) [31].

For the following benchmarks, we focus on mutexes, read-locks, and write-locks. In order
to understand the results more clearly, we briefly explain the functional difference between
read-locks and write-locks. With the acquisition of a read-lock, the thread indicates that it
only wants to read the data. Thus, other threads are able to access the data for reading as
well. On the other hand, threads can acquire write-locks when they want to modify data.
Consequently, no other threads are able to read or write the data.

For performance evaluation of these synchronization primitives, we measure the single-
threaded throughput from 10 to 500 operations per thread. The thread consecutively locks
and unlocks a single object to represent the raw performance of the operation. The goal of
these experiments is to quantify the overhead of libpmemobj’s mechanisms compared to
the known volatile POSIX ones.

Evaluation Starting with the mutexes, depicted in the left plot of Figure 4.13, both
variants have a similar overall performance progression. The throughput increases sharply
up to 100 operations per thread. After 100 operations per thread, the performance only
increases gradually, remaining in a similar order of magnitude. Comparing POSIX and
libpmemobj mutexes, we observe that the POSIX mutex is consistently faster than the
libpmemobj equivalent. Across all data points, the overhead of the PMEMmutex is around
12%.

The general characteristics of the read-write locks are similar to those of mutexes, with
an upward sloping asymptotical throughput curve. Compared to the mutexes’ performance,
the average throughput of read-write locks is slightly slower. The upper bound for read-
write locks is around 13% lower than for mutexes. Looking at the two variants of locks, the
performance difference between read-locks and write-locks is around 25% for both POSIX
and libpmemobj. The overhead of the PMEMrwlock, compared to the POSIX’s mechanisms,
is only approximately 9%.
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Figure 4.13: PMDK benchmark: Performance comparison between POSIX and libpmemobj
mutexes/locks

Summary From the findings reported in Figure 4.13, we deduce that the libpmemobj’s
persistent synchronization mechanisms provide similar performance characteristics as the
known POSIX mechanisms. For both variants it is generally recommended to differentiate
between the available mechanism to improve performance, e.g. by using read-locks instead
of mutexes in applicable data structures and algorithms. Overall, the additional overhead
of the libpmemobj’s primitives, compared to the native POSIX variants, is only around
9% to 12%.

In addition to libpmemobj’s synchronization primitives, there are other recoverable mutex
algorithms for persistent memory, namely the Golab and Hendler (GH) algorithm and
Jayanti, Jayanti and Joshi (JJJ) algorithm. Xiao et al. implemented those algorithms using
the PMDK and assessed their performance on persistent memory. In their experiments,
they discover that the performance properties of Intel’s DCPMM can have a significant
impact on the performance of those algorithms [73].

Besides the mentioned synchronization primitives, developers should also consider lock-
free algorithms and data structures for their multithreaded applications. Lock-free algo-
rithms and structures use atomic transitions between consistent states to ensure isolation
between different threads. In terms of persistent memory, lock-free algorithms provide an
appealing approach because they efficiently circumvent the issue of persistent deadlocks.
To accomplish this, lock-free algorithms have to be carefully designed to ensure that the
data is persisted in the correct order. Otherwise, modifications of subsequent threads are
persisted too early, resulting in inconsistencies like in the aforementioned banking example.
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4.3 Realworld Benchmarks

After having evaluated the performance characteristics of the PMDK’s core components,
this section focuses on the evaluation of the pmemkv. pmemkv is PMDK’s persistent memory
optimized key-value store. It provides an easy-to-use and familiar interface for programmers
who want to take advantage of persistent memory [3]. To establish a baseline and scrutinize
the distinct performance properties of pmemkv, we first analyze and assess the performance
using the microbenchmark pmemkv-bench. Afterwards, we validate our findings with the
YCSB and compare pmemkv with other PMDK-enabled modern database systems such as
MongoDB, PostgreSQL, and Redis.

4.3.1 PMDK Key-Value Store (pmemkv)

Background The PMDK contains several libraries across various areas of application.
The main goal of these libraries is to allow developers and applications to leverage the
novel characteristics of persistent memory. Therefore, the libraries should be flexible and
easy to use at the same time. Two requirements that are inherently contradictory: more
flexibility usually implies more complexity. A data structure attempting to deliver both is a
key-value store. There are several key-value stores available, but the most popular ones are
Redis, LevelDB, and RocksDB [74]. Although these systems differ in their features, they
all share the same basic interface, consisting of put, get, remove, and exists operations.

With pmemkv, PMDK offers its own PM-optimized key-value store with the aforemen-
tioned basic interface, allowing developers to easily migrate and leverage persistent memory.
The native API of pmemkv is C with additional headers for C++. However, there are
multiple language bindings available, including Java [33], JavaScript [34], Python [35],
and Ruby [36]. To grant further degrees of flexibility and functionality, pmemkv provides
multiple storage engines. All engines can be differentiated by three main characteristics [3]:

• Persistence: persistent engines retain their data and are power-fail safe, volatile
engines are faster but only keep their content until the database is closed

• Concurrency: provide multithreaded scaling with thread-safe methods (e.g., get()
and put())

• Keys’ ordering: “sorted” engines support range query methods (e.g., get_above() )
A detailed overview of the provided stable engines and their characteristics can be found
in Table 4.2.

Engine Description Persistent Concurrent Sorted
cmap Concurrent hash map Yes Yes No
vcmap Volatile concurrent hash

map
No Yes No

vsmap Volatile sorted hash map No No Yes
blackhole Accepts everything, re-

turns nothing (Testing)
No Yes No

Table 4.2: List of the stable pmemkv engines and their properties [5]
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Throughout this section, we solely focus on the cmap engine, as it is currently the only
stable persistent engine. Internally, the cmap engine utilizes the concurrent hash map and
persistent string from the libpmem-cpp library. Since cmap is implemented as a concurrent
engine, multiple threads can simultaneously call the essential methods get, put, and
remove.

For the performance evaluation of the individual methods, we employ pmemkv-bench.
As explained in Chapter 3, pmemkv-bench is based on LevelDB’s db_bench. The goal
of our benchmarks is to identify general performance characteristics and investigate the
multithreading performance of pmemkv. Therefore, we vary the key (8 B to 512 B) and
value size (1 KiB to 8 KiB) for our single-threaded experiments. When the size of the key
or the value is not varied by an experiment, we set the keysize to 16 B and the value size to
1 KiB, respectively. In our multithreaded benchmarks, we also use these values to evaluate
the performance in the range of 1 to 32 threads.

In addition to the individual behavior of each method, we further examine the real-world
scenario where multiple threads concurrently read and write to the key-value store. Hence,
we study the performance progression over different read-percentage and number of threads.

Each data point presents the average of 10 consecutive runs. Between each run, the
database is emptied to prevent previous executions from affecting subsequent measurements.
In the write experiments, we load the database with 1 M write operations per thread,
both in sequential and random order. The same number of entries (1 M) is also used
in the read experiments. To establish a uniform baseline for reading performance, all
keys are inserted in ascending order in advance. After all keys are inserted, we start the
measurement for 10 M read operations per thread. We intentionally set the number of read
operations higher than the number of entries to account for pmemkv’s caching behavior.
With our pmemkv-bench adjustments, explained in Chapter 3, we can set the miss rate to
10%, resulting in a more realistic experimental setup.

Evaluation Starting with the writing performance of pmemkv, illustrated in Figure 4.14,
we identify three unique characteristics. First, the throughput of inserting entries with
random keys is around 16% higher than the throughput of sequential keys. The most likely
explanation for this behavior is pmemkv-bench itself. When generating random numbers,
these numbers are usually generated according to a certain distribution. In the case of
pmemkv-bench, this distribution partially regenerates already inserted keys. Consequently,
these already existing keys are not inserted again, instead, the previous value is overwritten.
As no new entry has to be created and allocated when overwriting, the performance is
significantly improved. Our testing revealed that approximately 30% of the keys were
already present in the database. As a result, the throughput of sequential key order, which
inserts truly unique keys with each operation, is significantly lower.

The second characteristic we want to highlight is the throughput progression for varying
key sizes. For the key sizes of 8 B and 16 B, we observe the same performance level. After
16 B, the throughput gradually decreases, with a steeper drop after 256 B. Based on this
progression, we infer that developers should use smaller key sizes, if applicable, to optimize
the throughput of pmemkv. However, it should be noted that this statement does not apply
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to value sizes. As seen from the middle plot, the throughput for value sizes decreases
linearly.

The last examined characteristic for writing is the multithreaded performance. As
depicted in the rightmost plot, the throughput increases steeply until it peaks at 16 threads
for random insertion and at 18 threads for sequential insertion. Further increasing the
number of threads has the opposite effect of reducing the performance. Like in previous
sections, this behavior can be attributed to Intel’s DCPMM. Especially, the limited write
bandwidth of the DCPMM throttles the throughput of write operations for larger number
of threads.
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Figure 4.14: pmemkv-bench: Performance of random/sequential fill operations for varying key
size (Left) and value size (Middle) along with multithreaded performance (Right)

In the experiments for reads, the throughput order is reversed between sequential and
random. Read operations with consecutive keys are now up to 50% faster, as depicted in
Figure 4.15. Due to our modifications, detailed in Chapter 3, we can ensure that both
random and sequential key order find and read the same number of entries. However,
the performance gap is larger than anticipated. We, therefore, further investigated the
cause for the large discrepancy by measuring the individual sections of the read benchmark.
Based on our measurements, we can state that our modifications have the same runtime
for both variations and are thus not the reason for the performance difference. Instead, we
observe that the actual get() operation itself takes longer for randomly selected keys. This
insight is surprising, as hash maps typically have an average amortized complexity of O(1)
and a worst-case complexity of O(n). We assume that the recurring keys generated by
the used distribution happen to be stored in buckets with longer node lists. Consequently,
the algorithm has to search through the bucket’s node list. The average complexity of
searching a list is O(n), which significantly reduces throughput. Nevertheless, we cannot
attribute this behavior solely to pmemkv-bench and the distribution used. For this reason,
the results from Section 4.3.2 should also be considered in order to evaluate the actual read
performance of pmemkv.

As far as the multithreaded performance of reads is concerned, the performance progres-
sion of both variants is similar. The throughput increases linearly across all investigated
number of threads. As with the single-threaded experiments, reading in sequential key
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order provides the highest performance. Upon closer inspection of random reads, we notice
a slight performance drop for more than 24 threads. This small deviation can be explained
by the number of physical cores in our server. After 24 threads, the processor has to resort
to virtual cores. As can be seen from the rightmost plot, this change reduces the slope of
the throughput for more than 24 threads.
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Figure 4.15: pmemkv-bench: Performance of random/sequential read operations for varying key
size (Left) and value size (Middle) along with multithreaded performance (Right) (Miss rate: 10%)

After examining the individual performance of reads and writes, the final series of
pmemkv-bench experiments evaluate the combination of both operations. For this purpose,
each thread alternately performs random read and write operations on a shared key-value
store. In this context, Figure 4.16 illustrates the throughput progression for varying read
percentages and number of threads. The first plot focuses on the progression over varying
read percentages with five selected numbers of threads (2, 4, 8, 16, 32). It can be seen
that the higher the reading percentage, the more threads can be utilized. For example,
when the reading percentage ranges from 10% to 50%, eight threads provide the best
performance among all thread counts. Thus, the largest number of threads results in the
best throughput only when the read operations account for 90% of all operations.

To further examine this characteristic, the second plot in Figure 4.16 details the through-
put progression of selected read-percentages over a varying number of threads. From the left
plot, we are able to identify 60%, 70%, and 80% as particularly interesting. For these three
read percentages, the course of the detailed throughput curve is similar. It sharply rises up
to a certain upper bound before gradually declining. The higher the read-percentage, the
more threads can be used before the upper bound is reached, resulting in higher throughput.
For example, the maximum throughput limit of 80% reads is achieved with 16 threads and
hence 1.5× higher than the throughput of 60% read, which already peaks at around 12
threads.

From this observation, it can be deduced that the write bandwidth of DCPMM also
affects the multithreaded performance of pmemkv. As mentioned earlier, only a small
number of threads is required to saturate the available write bandwidth. Any additional
threads only create more overhead and thus even reduce the throughput. Developers should
therefore limit the number of concurrent threads if their application has a high write load.
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As our experiment demonstrates, less than 16 threads are sufficient to achieve maximum
throughput.
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Figure 4.16: pmemkv-bench: Multithreaded performance for random read/write operations for
different read percentages (Left) and a more detailed investigation of selected percentages (Right).

Summary pmemkv offers developers an easy way to integrate and exploit persistent
memory in their applications. It provides the familiar interfaces for key-value stores
and multiple storage engines for different degrees of flexibility and performance. In our
experiments, pmemkv performed well across all parameters and operations. Especially
smaller key and value sizes can benefit from the combination of pmemkv and persistent
memory. However, our experiments also showed the limitations of pmemkv. In particular,
the low write bandwidth of DCPMM affects the performance of pmemkv in write-intensive
multithreaded workloads. For this reason, pmemkv should be used predominantly in
applications that involve many smaller and fine-grained read accesses.

As for the pmemkv-bench, we propose a structural redesign of the framework. In order
to improve accuracy and reliability, pmemkv-bench should migrate to a collection-based
approach. Instead of creating the keys as they are used, they should be generated in advance
and stored in a collection. This approach has two advantages: First, the measurements are
more accurate because they do not reflect the generation of the keys. Second, the number
of elements to be processed is known prior to measuring, and thus unwanted tendencies
can be prevented (e.g. recurring keys).
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4.3.2 Yahoo! Cloud Serving Benchmark (YCSB)

This section validates and complements our pmemkv-bench experiments with the Yahoo!
Cloud Serving Benchmark (YCSB) [6]. The YCSB consists of a Java client application
and a set of predefined workloads called the YCSB Core Package. For the experiments in
this section, only the following four core workloads A to D are used:

• Workload A (Update Heavy): Read 50%, Update 50%
• Workload B (Read Heavy): Read 95%, Update 5%
• Workload C (Read Only): Read 100%
• Workload D (Read Latest): Read 95%, Insert 5%

More details about the YCSB and the workload properties can be found in Chapter 3.
Similar to pmemkv-bench measurements, each data point in this section corresponds to the
average of 10 consecutive runs. Between each run, the database is cleared to ensure the same
baseline for all runs. Since all workloads have the same data set [6], we load the database
once at the beginning of each run and then execute all workloads consecutively. For the
individual experiments, the database is loaded with 100 K entries and 1 M operations are
executed per workload. Unless altered, the value size is set to 1 KiB and the key size to
32 B.

Performance Evaluation of pmemkv We evaluate the performance of pmemkv using its
Java bindings [33] and Intel’s pmemkv YCSB driver [75]. As before, we benchmark pmemkv
only using the persistent cmap storage engine.

Figure 4.17 depicts the single-threaded performance over varying value sizes, and Fig-
ure 4.18 the scalability across multiple threads. It is noticeable that the more read-
dominated workloads perform better overall. This becomes particularly obvious when
comparing Load (0% Read) with Workload C (100% Read). Workload C has a 3 − 3.5×
better throughput than Load. An explanation for this performance difference is the hash
map itself. When inserting values into the hash map, the load level increases steadily.
Once the load level exceeds a certain threshold, the algorithm initiates rehashing in order
to maintain the O(1) complexity for reads. Since rehashing involves recalculation of all
inserted values, this process is very costly and significantly degrades the insertion per-
formance. In return, the performance of subsequent read operations remains constant
[76]. Another aspect we want to emphasize again is the read-write asymmetry of Intel’s
DCPMM. As seen throughout the previous experiments, the lower write bandwidth of the
DCPMM impacts the performance of libraries like pmemkv. This asymmetrical behavior is
also reflected in this experiment.

In terms of general throughput progression, we can distinguish between the read-heavy
workloads (B, C, D) and the write-heavy workloads (Load, A). Starting with single-threaded
experiments, we observe a gradual decrease in throughput across all value sizes for the
write-heavy workloads. In contrast, the read-heavy workloads remain on a steady level up
to 512 B before declining more steeply. It should be further noted that the progression of
Workload B and Workload D are almost identical. Hence, it can be deduced that updating
and inserting have identical performance for pmemkv.
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Figure 4.17: YCSB: Single threaded performance of pmemkv with cmap engine across varying
value sizes

A similar overall pattern emerges for multithreaded experiments. The performance
between the read-heavy and write-heavy workloads remains asymmetrical, with Load being
around 3× slower than Workload C. Despite this asymmetry, all operations can increase
their throughput by a factor of 3 − 3.6 from 1 to 16 threads.

Overall, we conclude that the pmemkv performance scales well across the different value
sizes and thread counts. The YCSB benchmarks further confirm the earlier findings that
the read-intensive workloads are better suited for pmemkv.
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Figure 4.18: YCSB: Multithreaded Performance of pmemkv with cmap engine

Comparison with Modern Databases After having established the pmemkv’s YCSB
performance, we proceed to the comparison with other database systems. As detailed in
Chapter 3, we compare the single-threaded performance of pmemkv with other PM-aware
databases, namely PM-Redis, PM-Postgres, and MongoDB-PMSE. The results of our
comparison are shown in Figure 4.19.
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Across all databases, pmemkv offers the highest performance. Especially, for read-
dominated workloads, pmemkv has a 4× better throughput compared to the next best
alternative. This trend is seen across all databases, with better throughput for read-
intensive workloads B, C, and D. For the remaining databases, the in-memory key-value
store Redis delivers the second-best performance. It is about 2× faster than MongoDB
and Postgres. From this observation, we deduce that in-memory databases in particular
provide a solid foundation for persistent memory modifications. Their internal algorithms
and data structures are already designed for faster memory access and byte-addressability.
Using the PMDK’s functionality ensures the persistence of these data structures without
logging all operations to the append-only file (AOF).
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Figure 4.19: YCSB: Comparison of different databases utilizing the PMDK (100 K records and
1 M operations)

The two remaining databases, MongoDB and Postgres, are found to have the lowest
throughput among the databases examined. It can be assumed that this observation
correlates with the high cost of the client-server communication as well as the overhead
induced by the query processing engine. To investigate the behavior of both systems in
detail, we compare these two PMDK-enabled database systems with their unmodified
counterparts. In order to minimize the impact of the storage medium on the results, all
databases store their contents on persistent memory. This way, only the difference in
performance resulting from the use of the PMDK is measured. Figure 4.20 presents the
results of this comparison.

Different characteristics can be observed for both database systems. In the case of
Postgres, the PMDK-enabled variant shows a slightly higher throughput across all workloads.
More specifically, PM-Postgres performs around 2 − 4% better than the unmodified version.
This is in line with earlier results reported by Menjo [77]. For MongoDB, we notice the
opposite. The unmodified version performs better in all workloads except Workload A. A
particularly large difference occurs at Load. In this workload, the unmodified version of
MongoDB is around 80% faster than Mongo-PMSE. By comparison, the difference in the
other core workloads is only about 2% − 6%. Only in Workload A, the PMDK-enabled
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MongoDB-PMSE can achieve a 4% higher throughout than MongoDB.
Based on our results, we deduce that replacing file operations in existing database

system with PMDK’s memory operation improves performance only to a certain extent.
Nevertheless, it should be noted that in a highly optimized modern database system, a
small percentage can already mean a significant difference in absolute terms.
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Figure 4.20: YCSB: Comparison of MongoDB and PostgreSQL with their PM-enabled
counterparts (100 K records and 1 M operations)

Summary In this section, we used the YCSB to determine the potential of the PMDK
for databases. pmemkv has demonstrated feasible performance when the PMDK’s core
concepts and features are considered in the design and implementation. Particularly
for read-dominated workloads, the proper use of persistent memory and the PMDK can
significantly improve performance. Using other database systems as an example, we found
that substituting the existing file operations with persistent memory instructions can
enhance the throughput of current database systems. However, in order to fully exploit the
potential of persistent memory and the PMDK, the database systems have to be profoundly
reengineered to take advantage of the direct access and the byte-addressability of persistent
memory.
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In this thesis, we evaluated the performance of the PMDK’s core components and explored
the opportunities that the PMDK can provide for modern software and database archi-
tectures. This chapter presents related literature to these areas of application by giving
an overview of previous research. We break down the related contributions into separate
fields: evaluation of non-volatile memory hardware, alternative persistent memory libraries,
and persistent memory applications.

5.1 Persistent Memory Hardware

After the release of the first commercially available non-volatile memory hardware, the
Intel Optane DC Persistent Memory Module (DCPMM), several papers investigate its
performance characteristics. The work of Izraelevitz et al. [15] is one of two initial studies
to examine the performance of the DCPMM. In their extensive analysis, they measure
the latency and bandwidth for DCPMM as volatile main memory and as persistent, byte-
addressable memory. Their numbers confirm that DCPMM occupies the space between
DRAM and SSD in terms of latency and bandwidth. Aside from this, they highlight the
asymmetrical load and store performance of the DCPMM, which has important implications
for future data structures and application areas.

The second initial study of the DCPMM is the paper of van Renen et al. [17]. As opposed
to Izraelevitz et al., their paper not only describes the performance characteristics but
also proposes low-level guidelines for efficient persistent memory usage. For instance, they
recommend developers to frequently force data out of the CPU caches to achieve a higher
write bandwidth. For performance-critical code, they further suggest to still use DRAM
because of its superior latency and bandwidth.

According to both studies, the smallest efficient access granularity for DCPMM is 256 B.
All smaller data sizes have the same latency, thus wasting bandwidth. For data sizes
larger than 256 B, one should ensure that they are multiples of 256 B. This observation is
explained by the size of the DCPMM’s internal write-combining buffer.

A later analysis of the DCPMM by Yang et al. [12] confirms the inefficiency of data
accesses smaller than 256 B. Their paper investigates the performance properties of the
Intel DIMMs at the micro and macro level. The researchers discovers that the DCPMM is
much more affected by access size, type, pattern, and degree of concurrency than DRAM.

Other fundamental characteristics of the DCPMM are revealed by Lersch et al. [78]. In
their paper, the authors point out that the bandwidth for persistent memory is a scarce
resource. Even a small number of threads is sufficient to saturate the available bandwidth.
Therefore, to maximize persistent memory performance, they propose to have many smaller
DCPMM DIMMs rather than a few large ones to leverage the available memory channels.

A more reality-focused performance evaluation is done by Weiland et al. [16], whose
paper investigates the benefits of DCPMM for high-performance scientific applications.
They demonstrate that primarily scientific applications, which are limited by the main
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memory capacity, can benefit from running DCPMM in Memory Mode. This finding is
supported by Mironov et al. [14], who examine the performance gains of scientific workloads
with DCPMM in Memory Mode. The two papers agree that scientific applications need
profound modifications to exploit the full potential of DCPMMs in App Direct Mode.
However, both emphasize that this effort can pay off in the long run and significantly
accelerate execution in future projects.

5.2 Persistent Memory Libraries

The PMDK is the most used library and the de-facto standard for persistent memory
programming. Different authors have analyzed the overhead of the PMDK. In their work,
Wang and Diestelhorst [79] discuss the transactional overhead introduced with the PMDK’s
libpmemobj API. For their validation, they use small kernel workloads implemented with
the transactional API of libpmemobj and a PMDK-enabled Redis-server in combination
with TPCC payloads. They propose the usage of hardware acceleration in areas with
considerable overhead, e.g. logging, persisting, ordering, and pointer translation. A similar
approach for performance evaluation is taken by Islam and Dai [80]. In their work, they
design storeds-bench and implement storage data structures in four different versions:
DRAM, volatile PMDK (libvmem), persistent PMDK (libpmemobj), and transactional
PMDK (libpmemobj). The authors discover that read-dominated workloads are much less
affected by persistent memory than write-dominated ones. Additionally, they note that the
performance of data structures using the PMDK may notably diverge from their volatile
DRAM counterparts. As a consequence, they advise developers to evaluate their data
structures on persistent memory to account for the distinct characteristics of persistent
memory.

All previous approaches, in contrast to this thesis, have investigated the overhead
of the PMDK in conjunction with data structures. With our contribution, we pursue a
systematic performance evaluation of the PMDK’s core components and the PMDK-enabled
key-value-store pmemkv.

Aside from the PMDK, there are several alternative libraries, some of which take unique
approaches to assist developers in leveraging persistent memory. In this section, we want
to highlight a few of them.

In 2011, Coburn et al. [45] introduced NV-Heaps, a C++ library for Linux focusing
on user-defined objects. It provides basic functionalities such as type-safe pointer to
persistent memory, a persistent memory allocator, and a garbage collection via reference
counting. The library aims to provide both atomic and transactional semantics with
familiar programming interfaces. NV-Heaps, however, requires processor architectural
support in the form of atomic 8 byte writes, and epoch barriers originally developed for
BPFS [81]. Another limitation of NV-Heaps is that it only allows closing pools at program
exit in order to avoid unsafe volatile to non-volatile pointers.
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In the same year, Volos et al. [19] introduced Mnemosyne, a C-based user-level framework
consisting of Linux kernel modifications, a C library, and a custom compiler/linker. It
includes persistent memory regions, low-level primitives for persistent variables, and consis-
tent updates of arbitrary data structures through a transaction mechanism. Mnemosyne,
unlike NV-Heaps, does not require any special hardware support. However, it also lacks
some features from NV-Heaps, such as type-safe pointers and garbage collection.

In addition to the two mentioned libraries, there are some recent additions to the
persistent memory library landscape, namely Pangolin [82], Corundum [83], and Clobber-
NVM [25].

With Pangolin, Zhang and Swanson [82] present a fault-tolerant persistent object library
with the familiar interface of the PMDK’s libpmemobj. Pangolin combines checksums,
parity, and micro-buffering to protect integrity and detect corruption on persistent memory.
With its architecture, Pangolin guarantees that it can recover from any 4 KB page loss in
a pool while requiring less storage overhead than other libraries.

Corundum takes a different approach. Hoseinzadeh and Swanson [83] designed the
library on the language-specific features of Rust. Rust’s static-checking, for example, helps
Corundum to enforce key persistent memory programming invariants such as unsafe pointer
creation between volatile and non-volatile memory regions. Corundum further ensures that
modifications of persistent memory solely happen inside transactions and only after all
updates are logged. As a consequence, Corundum does not support log-free programming
but prevents most persistent memory allocation errors. The dependence of Corundum on
Rust, however, also has its downsides, like the susceptibility to memory leaks in cyclic-data
structures [84].

With Clobber-NVM, Xu et al. [25] present a joint compiler/runtime library that uses a
novel logging strategy called clobber-logging. This new logging strategy uses the recovery-
via-resumption technique: An undo-log only logs the transaction inputs that are overwritten
during the transaction execution, thus reducing the frequency of the logging operations.
After a failure, Clobber-NVM recovers to a consistent state by restoring all overwritten
values and re-executing any interrupted transactions. To identify those transaction inputs,
Clobber-NVM uses a custom compiler resulting in significantly reduced logging overhead
at runtime. During execution, the runtime library manages the callbacks inserted by the
compiler and initiates the recovery of interrupted transactions after a crash. The runtime
library itself and the clobber log for logging the transaction inputs are implemented with
the PMDK’s libpmemobj.

5.3 Persistent Memory Applications

In Section 4.3, we mainly demonstrated the advantages of persistent memory for future
databases. The same path is also taken by Memhive [85], a commercially available PMDK-
enabled PostgreSQL database with persistent memory support. Memhive aims to provide
significantly improved performance and transaction throughput while simultaneously
eliminating the need for cache-warmup.
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Apart from databases, there are other applications that can significantly benefit from
persistent memory. The most promising areas of applications are presented in this section.

In their paper, Pydipaty et al. [86] investigate the performance of the distributed storage
platform Ceph in a system with persistent memory. The authors demonstrate that the
performance can be increased by 100%. Based on their findings, they assume that in
future systems, the bottleneck for distributed storage platforms might shift from I/O to
computation. Consequently, they propose new approaches for storage and network design,
such as exploiting the byte-addressability of persistent memory.

The impact of persistent memory on high-performance computing (HPC) applications is
examined by Liu et al. [20]. The better pricing, higher capacities, and the performance
close to DRAM make persistent memory very appealing for applications with high demands
on I/O performance and storage capability. Liu et al. detail the impact of block-based
non-volatile memory on POSIX I/O and MPI I/O, an interface for performing parallel
I/O operations within distributed memory programs. Similar to previous reports [14, 16],
the authors suggest reconsidering the existing I/O-stack and optimizing performance for
non-volatile memory instead of block-based storage.

Due to the special characteristics of persistent memory, the evaluation of data structures
is only possible on real hardware. For this purpose, Hao et al. [87] propose PiBench,
an interactive benchmarking framework for persistent memory indexes. With PiBench,
the authors aim to provide researchers and developers with a consistent environment to
benchmark their index implementation, analyze the results and compare them with each
other. During implementation, special attention was paid to the reproducibility of the
results. After assessing common indexes with PiBench, the authors stress that future
indexes should reduce the persistent memory accesses to not exhaust the limited bandwidth.

50



6 Limitations and Future Work

This section evaluates our accomplished goals and critically discusses respective limitations
of our experimental methodology and the reported findings. Based on these limitations,
we propose possible future work.

Methodology The benchmarking environment plays a significant role in any performance
evaluation. As explained in Section 3.2, we decided to use Docker containers as foundation
for our benchmarking suite to ensure a consistent testing environment. Furthermore,
the containerization of our benchmark suite facilitates the execution of experiments on
different hardware configurations. Nevertheless, this flexibility comes at the cost of
increased overhead. We attempted to minimize this overhead as much as possible by using
Docker Direct Access. To exclude a decisive overhead, we performed selected experiments
without Docker, but could not detect any noticeable difference. However, there is still a
possibility that our containerized approach has influenced the measurements. Analyzing
and quantifying these effects on persistent memory remains an open topic for future work.

Regarding the benchmarks themselves, we primarily focused on microbenchmarking
and macrobenchmarking. This is an effective approach to evaluate the performance of
individual components, but it is not sufficient to directly derive the real-world performance.
In order to reliably quantify the actual performance improvements from modifications for
individual applications, it is inevitable to implement them. As the example of MongoDB and
PostgreSQL in Section 4.3 demonstrated, superficial changes are not necessarily adequate
to reflect the actual benefits. Therefore, new concepts have to be considered as part of
the modifications and integrated into the application accordingly. Despite the limited
expressiveness concerning real-world performance, we do believe that our microbenchmarks
are comprehensive enough to evaluate and compare the performance of individual methods.
For more sophisticated results, future work can use our benchmark suite as a basis to
investigate further aspects of the PMDK. Since our work only concerns the local libraries,
an evaluation of the remote libraries librpmem and librpma would be a useful possibility
to broaden our results.

During our evaluation, we mainly focused on the average throughput for each operation.
While this metric is valuable to most data structures and algorithms, there are other
relevant parameters to consider, such as latency and bandwidth. Aside from additional
parameters, one can also examine other statistical measures, in the context of benchmarking
particularly percentiles. As the main objective of our thesis is to identify the PMDK’s
characteristics across different dimensions, we chose throughput as our primary metric. We
do, however, measure the other metrics in the majority of our experiments as well, so no
adjustments are required to obtain them. Consequently, other researchers and developers
can employ our benchmarking suite to evaluate the PMDK against other criteria and
metrics.
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6 Limitations and Future Work

Findings Our presented findings are occasionally surprising, but overall plausible and
reproducible. While conducting our experiments, one framework in particular caught our
attention with unexpected results: pmemkv-bench. The framework exhibits a noticeable
discrepancy between random and sequential operations. After some investigation and
exploration, we identified the random distribution and key computation as the main cause.
To some extent, we were able to improve the behavior by making our own adjustments,
which are described in Section 3.2. However, these modifications could not eliminate all
peculiarities and thus the random key generation remains an issue. For this reason, other
benchmarking frameworks, such as the YCSB, are preferable for analyzing and evaluating
the performance of the pmemkv’s performance.

As explained in Section 4.1, we conduct our experiments on a machine with Intel DCPMM
hardware. The Intel DCPMM, as seen throughout the thesis, has its own set of performance
properties. This makes it difficult to distinguish whether some of the properties shown
can be attributable to the DCPMM or the PMDK. For example, the observed throughput
increase at 256 B is most certainly related to the DCPMM’s write-combining buffer, which
also has a size of 256 B. Another characteristic that might be related to the DCPMM is
the asymmetrical read/write performance we observed with the YCSB in Section 4.3.

At the time of writing, the DCPMM is the only commercially available persistent memory
hardware. Hence, it is difficult to validate our findings on alternative persistent memory,
which might have different performance properties. Due to our container-based approach,
the validation can easily be done at a later time, once the alternative hardware becomes
available. In the future, for example, a re-evaluation with the second generation of Intel’s
DCPMM [88] is conceivable.

A re-evaluation should also be performed as soon as processors with optimized CPU
instructions, namely CLWB and MOVDIR64B, become available. In Chapter 2, we presented
various CPU instructions for flushing the CPU caches. Currently, the optimal method
CLWB only serves as a wrapper for CLFLUSHOPT, so both invalidate the cache line when
flushing it to persistent memory. Starting with Ice Lake, Intel fully implemented CLWB
without cache line invalidation. This change in conjunction with the upcoming instruction
MOVDIR64B, which ensures 64 B atomicity for stores, may significantly improve the efficiency
of memory operations to persistent memory. We therefore propose to reinvestigate the
possible implications of these instructions in future work.
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7 Conclusion

The primary accomplishments of our thesis can be summarized in three points:
Firstly, we approached the topic of persistent memory from a theoretical angle. We

explained the properties of persistent memory in comparison to conventional memory
and storage devices. These properties were then described in more detail using the first
commercially available non-volatile memory technology, the Intel DCPMM. Especially, the
peculiarities such as the asymmetrical read-write performance, the 256 B writing-combining
buffer, and the two operation modes were highlighted. Following the hardware background,
we proceeded with the essential concepts of persistent memory programming, such as cache
line flushing and ordering barriers. These concepts are pivotal to comprehend the PMDK’s
structure and functionality, which we subsequently presented and described.

After having established the background knowledge, we outlined the design and imple-
mentation of our versatile open-source benchmarking suite. To provide a consistent testing
environment, the benchmark suite is built on Docker and employs multiple benchmarking
frameworks, more precisely, pmembench, pmemkv-bench, and the YCSB. In addition, these
frameworks were modified and complemented with configuration files and scripts to enable
automated benchmark execution. Through this approach, we were able to scrutinize the
PMDK’s performance at the micro and macro level.

Finally, in more than 570 hours of machine time on a persistent memory server, we
thoroughly evaluated the PMDK’s performance. By utilizing pmembench, we were able
to analyze the performance of the PMDK’s core components. We started by examining
the low-level functionality of libpmem and libpmem2. Based on our measurements, we
identified 64 B and 256 B as the optimal ratio between performance and data size. Moreover,
we discovered that the larger the data size, the fewer threads are required to achieve the
maximum throughput. After having determined the low-level characteristics, we evaluated
the mechanism of libpmemobj, including transactions, dynamic memory management,
and synchronization primitives. Our findings show that all mechanisms scale well across
data sizes and number of threads with reasonable overhead compared to their volatile
counterparts. Following the evaluation of the core components, we introduced the PMDK’s
key-value store pmemkv and compared its performance with other state-of-the-art database
systems using the YCSB. Our results demonstrate that incorporating the new concepts of
the PMDK can significantly improve performance by up to four times. Particularly for
read-dominated workloads, we noticed that the PMDK’s direct, finer-grained access to
persistent memory provides major benefits.

In conclusion, these contributions support developers who want to leverage the PMDK to
exploit the benefits of persistent memory by examining its characteristics and suggesting
guidelines for optimal use.
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