
Chair of Decentralized Systems Engineering
Department of Informatics

LLVM-assisted Program Analysis for
High-performance Security

Enforcement

General information
Advisor Dr. Myoung Jin Nam

Email Myoungjin.nam “at” tum email address

Date 25.01.2022

Type Master / Bachelor / Guided Research

Description Before developing security defenses against known attacks, it is essential
to ensure integrity and safety of systems by detecting and preventing
errors in the first place during the development stage and practical use.
Unfortunately prevention of system vulnerabilities still suffers from
heavy overhead (dynamic analysis) and false positives (static analysis).

One of the major contributors to the run-time overhead (slowdown) is an
increase in executed instructions to check errors at runtime, along with
cache misses, increased memory bandwidth, etc. For example, run-time
checks are required basically at every memory access to detect buffer
overflow – one of the software vulnerabilities that attackers exploit most
frequently. Performing extra operations to check and retrieving
supplementary metadata significantly slows down a program. Resolving
overhead is still a key challenge in the memory safety area despite a large
amount of research for decades.

Prof. Pramod Bhatotia in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://www.in.tum.de/dse/home/


Chair of Decentralized Systems Engineering
Department of Informatics

This research aims at achieving both high performance and strong
security enforcement i.e. preventing memory safety violations (buffer
overflows, use-after-free, double free, etc)  at fine granularity (byte or
object-level granularity, rather than page or file-level) while minimising
run-time overhead. One way to reduce performance degradation is static
analysis, more specifically for this research, customised compiler
optimisation. Majority of software-based memory safety solutions are
based on instrumentation - compiler-assisted instrumentation or binary
rewriting. The research is focused on LLVM-assisted program analysis and
transformation to remove run-time checks as many as possible; to reduce
run-time overhead; and to get close to lightweight and strong system
protection.

Keywords Security, Integrity, Memory Safety, LLVM, Compiler Optimisation, Static
Analysis, Dynamic Analysis, High Performance, Buffer Overflows

Goals Concrete outcomes
1. Implement compiler optimiser using LLVM
2. Evaluate and demonstrate performance improvement in

run-time verification tools.
Bonus points

3. Profiling and finding performance hot spots
4. Extension to detect other kinds of security vulnerabilities

Prerequisites Compulsory
● Familiar with C and C++
● Taken courses on Compiler covering LLVM

Preferred
● Knowledge of static analysis and compiler-assisted dynamic

analysis
● Familiar with debuggers (GDB, Valgrind, lldb ..)
● Familiar with performance analyzing tools (Perf or PCM)

References 1. Dynamic Analysis vs. Static Analysis
2. Memory safety - Wikipedia
3. SoK: Eternal War in Memory
4. FRAMER: A Tagged-Pointer Capability System with Memory

Safety Applications

Prof. Pramod Bhatotia in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://www.intel.com/content/www/us/en/develop/documentation/inspector-user-guide-linux/top/getting-started/dynamic-analysis-vs-static-analysis.html
https://en.wikipedia.org/wiki/Memory_safety
https://people.eecs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf
https://www.repository.cam.ac.uk/bitstream/handle/1810/299949/memfis%20%281%29.pdf?sequence=3&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/299949/memfis%20%281%29.pdf?sequence=3&isAllowed=y
https://www.in.tum.de/dse/home/


Chair of Decentralized Systems Engineering
Department of Informatics

Application process Please send an email to the advisor including the following:
● Email subject: “Thesis application (DSE)”
● CV
● A copy of your transcript(s)
● A motivation statement, please include samples of your work

that you are proud of (e.g., major projects, open-source
contributions, Github page, etc.) and/or writing samples (e.g.,
your technical blog, project reports, etc.)

Prof. Pramod Bhatotia in.tum.de/dse

https://www.in.tum.de/dse
https://www.in.tum.de/
https://www.in.tum.de/dse/home/

