Rethinking IO emulation architectures for VMs

Nowadays VMs use hardware acceleration to speed up CPU and memory virtualization. On Linux the necessary hardware features are exposed via KVM (kernel virtual machine) [1]. Virtualization of IO devices on the other hand most importantly relies on emulating direct register accesses.

General information

- **Advisor**: Peter Okelmann
- **Email**: okelmann@in.tum.de
- **Date**: 18.01.2022

Type: Bachelor / Master / Guided Research

Description: Nowadays VMs use hardware acceleration to speed up CPU and memory virtualization. On Linux the necessary hardware features are exposed via KVM (kernel virtual machine) [1]. Virtualization of IO devices on the other hand most importantly relies on emulating direct register accesses.

Prof. Pramod Bhatotia

[1] in.tum.de/dse
MMIO accesses) which, historically, had bigger overheads. Recent development efforts in the kernel have brought up a new yet-to-be-upstreamed feature called IoRegionFd [2, 3, 4] to improve such register accesses both from a performance as well as an architecture standpoint.

The goal of this thesis is to leverage this new kernel feature in QEMU. You explore, implement and evaluate ways how QEMU’s virtual devices could benefit from IoRegionFd. If the implementation is promising, it could be brought upstream into QEMU.

Keywords
C lang, Linux, VMs, KVM, IoRegionFd, VirtIO

Goals
Concrete outcomes
1. Adapt QEMU to support IoRegionFd.
2. Optimize emulated devices (VirtIO etc.) for new IoRegionFd features.
3. Extensive performance measurements.

Bonus points
4. Take care of a fallback when IoRegionFd is not available.
5. Bring Qemu patches upstream.

Prerequisites
Compulsory
- Experience in systems programming
- Good knowledge of and experience with C. You will need to work in a big C project.

Preferred
- Familiarity with KVM/qemu.

References
2. https://www.spinics.net/lists/kvm/msg208139.html
3. https://github.com/Mic92/linux/tree/peter/5.12.14-v0
4. https://sbrksb.github.io/2020/12/10/intro.html
Application process

Please send an email to the advisor including the following:

- Email subject: “Thesis application (DSE)”
- CV
- A copy of your transcript(s)
- A short motivation statement, please include samples of your work that you are proud of (e.g., major projects, open-source contributions, Github page or similar, etc.) and/or writing samples (e.g., your technical blog, project reports, etc.)