
Treaty: Secure Distributed Transactions
Dimitra Giantsidi

University of Edinburgh
Maurice Bailleu

University of Edinburgh
Natacha Crooks

UC Berkeley
Pramod Bhatotia

TU Munich

Abstract—Distributed transaction processing is a fundamental
building block for large-scale data management in the cloud.
Given the threats of security violations in untrusted cloud
environments, our work focuses on: How to design a distributed
transactional KV store that achieves high-performance serializable
transactions, while providing strong security properties?

We introduce TREATY, a secure distributed transactional KV
storage system that supports serializable ACID transactions while
guaranteeing strong security properties: confidentiality, integrity,
and freshness. TREATY leverages trusted execution environments
(TEEs) to bootstrap its security properties, but it extends the trust
provided by the limited enclave (volatile) memory region within a
single node to build a secure (stateful) distributed transactional KV
store over the untrusted storage, network and machines. To achieve
this, TREATY embodies a secure two-phase commit protocol co-
designed with a high-performance network library for TEEs.
Further, TREATY ensures secure and crash-consistent persistency
of committed transactions using a stabilization protocol. Our
evaluation on a real hardware testbed based on the YCSB
and TPC-C benchmarks shows that TREATY incurs reasonable
overheads, while achieving strong security properties.

I. INTRODUCTION

Transactions (Txs) are an integral part of modern cloud
computing systems [1]–[4]. They hide complexities (data dis-
tribution, concurrency, failures, etc.) from programmers and,
at the cloud scale, they provide a powerful abstraction to
atomically process massive sets of distributed data sets [5]–[8].

While distributed transactional key-value (KV) stores are
extensively used to build scalable applications with a high
degree of reliability and cost-effectiveness, offloading Tx
processing in the cloud also poses serious security threats [9].
In untrusted cloud environments, adversaries can compromise
the confidentiality and integrity of the data and application’s
execution state while they can also violate Txs semantics (iso-
lation, atomicity) by intentionally returning stale/uncommitted
data. Prior work has shown that software bugs, configuration
errors and security vulnerabilities pose a real threat for storage
systems [10]–[14]. These security threats are amplified in
distributed stores as the state is distributed across machines
connected to the untrusted storage and network system stacks.

This work pursues the following question: How to design
a high-performant, serializable, distributed transactional KV
store that offers strong security properties?

A promising direction to this question is to use trusted
execution environments (TEEs)—the new trend in confidential
computing—to build a secure distributed transactional (Tx)
KV store. TEEs provide a secure memory area (enclave) where
the residing code and data are protected even against privileged
code (e.g., OS, hypervisor). Based on this promise, TEEs are

now being streamlined by all major CPU manufacturers [15]–
[19], and adopted by major cloud providers [20]–[22].

However, we cannot use TEEs out-of-the-box to build a
secure distributed KV store with Txs. Particularly, we need to
address the following three challenges:

First, TEEs only protect a limited volatile memory region
(enclave) within a single node. These security properties do
not naturally extend to the untrusted persistent storage and
network over a distributed set of nodes, which are essential to
build a secure distributed transactional KV store.

Secondly, TEEs primarily rely on the expensive syscall
mechanism for I/O operations, where the enclave threads
need to perform an extremely costly world switch to execute
the syscall. While modern confidential computing frame-
works [23]–[25] provide an asynchronous syscall I/O mech-
anism [26] to alleviate the performance overheads, they are
still inadequate for modern distributed storage systems that
prominently rely on high-performance networking such as
RDMA or kernel-bypass [2], [27]–[29]. Unfortunately, it is not
trivial to combine high-performance networking with the TEEs
because TEEs fundamentally prohibit unauthorized access to
the protected enclave via a DMA connection.

Thirdly, distributed stores need to ensure secure and crash-
consistent persistency for committed Txs. Secure persistency
for distributed systems can be a challenge in an untrusted
environment where adversaries can rollback the database state,
to a stale yet consistent snapshot violating correctness. While
SGX [17] provides h/w trusted counters, a fundamental build-
ing block for rollback protection, writes incur prohibitively
high latency [30], [31]. Further, we need to establish trust
between the nodes in the distributed setting to protect against
forking attacks. TEEs’ attestation mechanisms provide a build-
ing block to bootstrap trust. Unfortunately, they cannot provide
collective trust for a distributed set of nodes [32].

To address these challenges, we present TREATY, a dis-
tributed KV store with serializable ACID transactions [33] and
strong security properties: integrity—unauthorized changes
can be detected, confidentiality—unauthorized entities cannot
read the data, freshness—stale state of the system can be
detected. TREATY embodies three core contributions:

1. Distributed Tx protocol: The design of a secure two-phase
commit (2PC) protocol for distributed Txs providing strict
serializability. Our protocol leverages TEEs for security, and
it is co-designed with a kernel-bypass network stack for
TEEs to ensure high-performance execution (§ V).

2. Stabilization protocol: The design of a stabilization proto-
col that guarantees secure and crash-consistent persistency

1

of committed Txs. That is, the protocol ensures crash-
consistency, recovery, and data freshness across rollback and
forking attacks in distributed settings (§ VI).

3. Trusted substrate for distributed TXs: The design of
a trusted substrate for distributed Txs—with which we
build TREATY—that overcomes the limitations of TEEs.
Specifically, we propose (a) a secure network library for
Txs based on kernel-bypass I/O within TEEs, (b) a secure
storage engine for Tx processing, (c) a userland-scheduler
for low-latency requests, and (d) a memory allocator for
secure Tx buffers management (§ VII).
We implement TREATY from the ground-up as a distributed

KV store [34], [35], where we layer a distributed Tx layer
(2PC) on top of per-node storage engine based on a secure
version of RocksDB’s [3] storage engine: SPEICHER [31]. Our
secure 2PC is co-designed with Intel SGX as the TEE and a
secure networking library based on eRPC [36].

We evaluate TREATY with TPC-C [37] and YCSB [38] on
a real hardware cluster. Our evaluation shows that TREATY
incurs reasonable overheads—6×-15× and 2×-5× for dis-
tributed and single-node Txs, respectively—while providing
serializable distributed Txs and strong security properties.
The overheads derive mainly from TEEs as (1) native runs
of TREATY perform similarly to RocksDB, (2) encryption
increases the overhead up to 1.4× compared to non-encrypted
versions and (3) stand-alone evaluation of TREATY’s 2PC
shows 2× slowdown w.r.t. a native version of the protocol.

II. BACKGROUND

A. Distributed Transactional KV Stores

Distributed KV stores [34], [35], [39]–[42] reliably store
and process large data-sets by offering Tx APIs. Such systems
(ZippyDB [34], CockroachDB [35], etc.) traditionally layer
query processing and Txs on top of a per-node storage engine,
e.g., RocksDB [3] or LevelDB [43]. We also adopt this archi-
tecture. These persistent storage engines are increasingly based
on log-structured merge-trees (LSM) [3], [34], [39], [43]–[45]
due to their superior read/write performance. TREATY builds
on RocksDB [3] where the data is stored in multiple levels,
increasing in size. Higher levels (MemTables) are stored in
the memory while the bulk of the lower levels (and thus of
the data) is stored on disk in SSTables. Updates are applied
to the MemTable and when it exceeds a maximum size, it is
merged into the next lower level (compaction). If this causes
the next level to exceed its own maximum size, the compaction
cascades further. The system remains correct under failures
through a combination of write-ahead logging (WAL) and a
MANIFEST file that records all changes in the system.

RocksDB supports Txs in two ways: pessismistic Txs ac-
quire locks as they go along (two-phase locking). Whereas,
optimistic Txs validate their R/W sets at the commit time.

B. Confidential Computing

TEEs [15]–[19] offer a tamper-resistant confidential com-
puting environment that guarantees the integrity and confiden-
tiality of code and data, even in the presence of a privileged

attacker (hypervisor or OS). TREATY relies on Intel SGX, a set
of x86 ISA extensions for TEE [46] that offers the abstraction
of an isolated memory, the enclave. Enclave pages reside in
the Enclave Page Cache (EPC)—a specific memory region
(94MiB in v1, 256MiB in v2) that is protected by an on-chip
Memory Encryption Engine. For larger enclave sizes, SGX
implements a, rather expensive, paging mechanism [23].

Confidential computing frameworks leverage TEEs to se-
cure unmodified applications. They can broadly be categorized
as libOS-based systems [25], [47]–[49], and host-based sys-
tems [23], [24], [50]. All of these efforts seek to minimise
the number of enclave transitions, world switches, due to their
high cost (e.g., TLB flushing, security checks [46]). TREATY
is built on top of SCONE [23] that exposes a modified libc and
combines user-level threading and asynchronous syscalls [26]
to reduce the cost of syscall execution.

C. SPEICHER Storage Engine

SPEICHER [31] is a secure storage system based on
RocksDB and SGX that offers authenticated and secure LSM
data-structures. SPEICHER neither supports Txs nor distribu-
tion. Clients execute PUTs whose ordering is only secured
in a future synchronization point. Shutdowns/crashes in the
meantime requires clients to re-execute the operations which
might change their initial order. TREATY uses SPEICHER as
the underlying storage system but it extends the following to
support Txs processing (§ VII-B): controller, buffer manage-
ment, I/O subsystem, and LSM & logging data structures.

D. High-Performance Networking

Distributed systems mandate high-performance communi-
cation. Conventional applications use syscalls that incur the
overheads of kernel context switches [51]–[55]. Consequently,
approaches like RDMA and DPDK [56] are widely favored
for high-performance as they (i) map a device into the users
address space, and (ii) replace the costly context switches
with a polling-based approach. In our work, we build a
network stack modifying eRPC [36], a general-purpose and
asynchronous remote procedure call (RPC) library for high-
speed networking for lossy Ethernet or lossless fabrics on top
of DPDK. eRPC uses a polling-based network I/O along with
userspace drivers, eliminating interrupts and syscall overheads
from the data path which is extremely imperative in the context
of SGX. Lastly, eRPC supports a wide range of transport layers
such as RDMA, DPDK, and RoCE.

III. THREAT AND FAULT MODEL

TREATY extends the standard SGX threat model [47] to
provide stronger security guarantees even for a distributed
setting, where we also consider the untrusted storage and
network. An adversary can (1) control the entire software
stack outside the enclave (including the network stack, i.e.,
they can drop, delay, or manipulate network traffic) and,
(2) view/modify all non-enclave memory, i.e., untrusted host
memory and persistent storage (SSDs). The adversary can
perform rollback attacks and revert nodes to a stale state by

2

intentionally shutting them down and replaying older logs.
We assume a crash-fail recovery model: nodes can crash
at any point and will eventually recover. In-memory state
is lost upon failure; persistent state (SSDs) is preserved.
TREATY guarantees serializability in the presence of failures,
and maintains data integrity, confidentiality and freshness.

We do not protect against side-channel attacks: cache
timing, speculative execution [57]–[64], access pattern leak-
age [65], [66], memory safety vulnerabilities [67], [68] or
denial of service attacks.

IV. OVERVIEW

A. System Overview

Figure 1 illustrates our system architecture. TREATY is a
sharded transactional KV system, where we layer the Tx layer
that implements a secure 2PC protocol (Agreement protocol)
on the top of on a persistent KV store (SPEICHER): multiple
nodes in the system store subsets of the data and coordinate
to maintain consistency. Each node consists of two parts: 1) a
trusted set of components that resides in the enclave memory
and contains the Txs layer, lock manager, and Txs KV engine,
and 2) the untrusted network and storage stack.

Clients communicate with the system through a mutually
authenticated channel. TREATY exposes a standard transac-
tional API: Txs begin and end through BEGINTXN() and
TXNCOMMIT()/TXNROLLBACK() calls, and execute opera-
tions through TXNPUT() and TXNGET() operations. More
specifically, TREATY maintains the following properties:

• Security. TREATY guarantees confidentiality, integrity and
freshness for all Txs in the presence of untrusted storage
and networking over a distributed set of nodes.

• Programmability. TREATY offers general serializable ACID
Txs, offering the strongest possible correctness guarantees,
combined with general purpose, interactive Txs that mini-
mize the programming burden on developers.

• Performance. TREATY’s careful design minimizes the per-
formance limitations of TEEs (limits on EPC memory, high
latency of trusted counter and I/O execution).

TREATY achieves security by designing two protocols:
(i) a 2PC protocol for the correct and secure execution of
distributed Txs (§ V) and, (ii) a stabilization protocol for
secure and crash-consistent persistence of the committed Txs
(§ VI). Lastly, TREATY’s substrate (§ VII) for distributed Txs
is designed and implemented with consideration to the TEEs
architectural limitations (enclave memory, I/O, scheduling).

TREATY shares the Tx execution workflows of existing sys-
tems. Authenticated clients start Txs by selecting a transaction
coordinator, who is responsible for driving the Tx’s execution.
Upon receiving a read or write request for a key, the relevant
node acquires respectively a R/W lock, storing it in a local
lock table. When the Tx is ready to commit, the Tx coordinator
initiates a 2PC protocol consisting of a prepare and commit
phase. The Tx commits if all involved shards vote to commit.
Otherwise, the Tx aborts. In either case, locks are released.

B. Design Challenges

#1: TEE for distributed transactional KV stores. In the
untrusted cloud, adversaries can tamper with (i) Txs’ execution
(e.g., compromise the confidentiality and authenticity of the
running Txs and the 2PC’s state), and (ii) the KV store’s
content (e.g., unauthorized modifications to the store’s data).

For secure distributed Txs, we can rely on a simple 2PC
protocol that leverages the security guarantees of TEEs.
Unfortunately, TREATY cannot use a TEE as a black box
as its security guarantees are restricted only to the (limited
and volatile) enclave memory of a single node. In contrast,
modern transactional systems like TREATY are distributed,
communicate over the network, and store their data on a
persistent storage medium (SSDs). To implement distributed
Txs with TEEs, TREATY needs to overcome the following
system challenges.
Security and correctness for Txs. Our 2PC needs to ensure
confidentiality and integrity along with serializability detecting
adversaries that aim to double execute Txs.
Untrusted persistent storage. TREATY needs to protect the per-
sistent data by detecting unauthorised modifications since at-
tackers can tamper with logs to compromise the history of ex-
ecuted Txs and the 2PC state and/or can delete/modify/access
the persistent data.
Enclave memory. TREATY needs to overcome the limited
enclave memory challenge. The limited enclave memory is
especially problematic for LSM-based systems which rely
on a large MemTable to absorb recent read/write requests
(before compacting them to the SSTable). Moreover, the Tx
layer on top of LSM storage system must also buffer the
uncommitted writes for ongoing Txs. Lastly, network buffers
for communication further pressurize EPC.

We discuss TREATY’s approach for secure distributed Txs in
§ V. TREATY offers secure and correct execution of distributed
Txs by implementing a secure 2PC (§ V-A) leveraging TEEs
and a secure network library (§ VII-A). TREATY also adopts
SPEICHER’s [31] LSM data-structures as a secure store for
the untrusted storage (§ V-B, § VII-B), but it extends and
adapts SPEICHER’s storage engine and data structures for the
Tx processing and the design of the 2PC protocol for TEEs.

#2: Networking for distributed Txs. TREATY’s nodes com-
municate with each other. Traditional kernel-based approaches
for network I/O (e.g., sockets) experience high overheads due
to context switches that are further deteriorated inside the SGX
due to the costly enclave transitions.

Confidential computing frameworks, such as SCONE [23],
implement async syscalls to eliminate the expensive world
switches, but they still rely on the syscall mechanism for the
I/O, which is slow and requires two additional data copies
(enclave↔host memory↔kernel). This I/O mechanism is ill-
suited for distributed systems [2], [27]–[29], like TREATY,
that prominently rely on high-performance networking with
direct I/O or kernel by-pass. Unfortunately, these direct I/O
mechanisms are incompatible with TEEs, since TEEs prohibit
enclave memory access via the untrusted DMA connection.

3

Locks TableMemTable
(keys)

eRPC

Tx2 Tx3

Msg
Buffer2 Rx Tx NIC

Scone Controller

SSD MANIFEST Clog

SSTable Files

Node kNode 2

Configuration & Attestation
Service

Network Layer

Persistent Storage

MemTable
(values)

Untrusted Network

CASTrusted
Counter
Agreement

Protocol eRPC

Tx KV Engine

Node 1

Operating System

NIC Memory

Scone Controller

Trusted Enclave Memory

Untrusted Memory and Storage

Trusted Enclave Memory

Untrusted Memory and Storage

Transactions Layer

KernelStorage-access Layer

Userland Scheduler
Tx Engine

Trusted Counter

SSD

CASTrusted
Counter
Agreement

Protocol eRPC

Tx KV Engine

Operating System

NIC Memory

Scone Controller

Trusted Enclave Memory

Untrusted Memory and Storage
SSD

2PC
Coordinators & Participants

Tx1

Msg
Buffer1

WAL

Figure 1: TREATY’s system architecture.
Therefore, we need to adapt this mechanism in the context of
SGX to use it and design the secure distributed 2PC protocol.

TREATY implements a secure network library (§ VII-A)
through which we build the secure 2PC protocol to enable
user-space direct I/O (DPDK [56]) based on eRPC [36].
TREATY’s secure network library provides high-performant
network I/O overcoming the limitations of SGX.
#3: Secure persistency. TREATY needs to ensure that commit-
ted Txs are persisted, remain crash consistent across reboots
and are protected against forking/rollback attacks.
Trust establishment. Remote attestation (RE) ensures that the
expected code is running, thus, protecting against forking
attacks. SGX’s RE, provided by Intel Attestation Service
(IAS) [69], verifies a measurement of the enclave. Unfortu-
nately, it is designed for a single-node attestation, not offering
collective trust for distributed nodes in a data center, while
it incurs high latency (requires explicit communication with
the IAS). This can significantly slowdown recovery after
reboots/migrations, where nodes require re-attestation.
Crash consistency. Logs are commonly used to persist the state
and updates of Txs for durability. As these logs reside in the
untrusted storage, recovery needs also to verify their freshness
and integrity.
Distributed rollback protection. Trusted counters are widely
used to protect against rollback attacks. TREATY further
extends their scope to preserve serializability where Txs are
stored along with a trusted counter value that cannot be
overwritten. Consequently, the trusted counter values reveal
Txs’ order as well as the latest trusted state of the system.

While SGX does provide us with monotonic h/w counters,
they suffer from three limitations: 1) high latency (e.g., in-
crements can take up to 250ms [70]) 2) non-recoverability if
the CPU fails—indeed, at high-rate, counters wear out after
a couple of days [70], and 3) they cannot offer rollback
protection to a set of machines as they are private per-node.

TREATY designs a stabilization protocol—incorporated into
the 2PC–to ensure crash consistent and secure persistency for
Txs (§ VI). First, TREATY uses a Configuration and Attestation
Service (CAS)—hosted within the data center to avoid the calls
to IAS—to attest all its nodes. Secondly, it provides crash
consistency for Txs through secured persistent logs. Lastly,

we build on an asynchronous trusted counter service to avoid
the SGX counter limitations and ensure distributed rollback
protection (e.g., all parts of a distributed Tx are securely
committed (persisted) to all participant nodes).

V. TRANSACTION PROTOCOL

TREATY’s 2PC protocol ensures the correct and secure
execution of distributed Txs (§ V-A). To achieve this, we
leverage TEEs to harden the security properties of the 2PC,
which we co-design with a high-performance network library
based on kernel-bypass (§ VII-A), that guarantees strong
security for the untrusted network. To realize distributed Txs,
we also design single-node Txs support in SPEICHER (§ V-B).

A. Secure Distributed Transactions

Distributed design. TREATY partitions data into shards
that may be stored on separate machines that fail indepen-
dently from each other. Each TREATY node runs a trans-
actional single-node KV storage engine built on top of
RocksDB/SPEICHER [31], as shown in Figure 1. We im-
plement a secure 2PC protocol with the userspace network
stack based on eRPC [36] to execute distributed Txs and
guarantee security properties. For securing the state of the
protocol as well as providing secure recovery we make use of
authenticated log files (MANIFEST, Clog and WAL). MAN-
IFEST logs the changes in the state of the persistent storage
(e.g., compactions, live logs). WAL stores the MemTable
updates and the prepared Txs. Lastly, Clog is written by Txs
coordinators and keeps the 2PC protocol state.

The system’s initialization requires a trusted configuration
and attestation service to establish trust in the distributed
system. It distributes to nodes important information about
the cluster configuration (e.g., secrets and keys’ distribution
to nodes, network connections).

Clients access TREATY over the network. For each Tx, a
TREATY’s node initialises a global Tx handle that is uniquely
identified by a monotonically sequence number and the node
id. A Tx coordinator interacts with the client and distributes
their requests to the involved participant nodes. Participants

4

PNPKCoordinatorClient

BeginTxn()

TxnPut(K1,V)
TxnPut(K1,V)

TxnGet(K2)

TxnGet()

return V2

TxnPut() return

ACK/FAIL

return msg

{success/fail

vector<readvalues>}

AllocMsgBuffers
EnqueueTxnRequest
TxBurst and yield

poll for replies and/or
yield

FreeMsgBuffers registered
to that request

RxBurst and process
request

ExecuteTxnReqHandler

EnqueueResponse
and yield

AllocMsgBuffers

Log TxnPrepare()
TxBurst and yield

TxnPrepare()

TxnPrepare()
ACK/FAIL

ACK/FAIL
Log commit decision

Stabilize entry

ACK
ACK

TxnCommit()TxnCommit()

return msg {

success/fail }
transaction

committed and
rollback-protected

Prepare txn

Stabilize txn
Enqueue response and

yield

TxnGet(K2)

TxnCommit()

2
1

3

4

5

6
7

8

Figure 2: TREATY’s two-phase commit protocol.

create local private Txs through TREATY’s single-node trans-
actional KV store (§ V-B). To ensure isolation, TREATY’s
engines own a private (per-node) keys lock table.

Lastly, we leverage the exit-less approach of executing
syscalls provided by SCONE for accessing the persistent stor-
age. Prior work [31], has introduced SPDK [71]. However, we
did not use SPDK for two reasons: (i) in our experiments the
database fits entirely in the kernel page cache therefore read
access was much faster than SPDK which would have to read
from SSD and (ii) we configured SCONE to best fit TREATY
for storage I/O syscall execution.

Integrity, confidentiality and freshness. Each node runs
a single modified SPEICHER instance. TREATY engine runs
inside the enclave to ensure integrity, confidentiality and
freshness for the execution and the resided run-time data (e.g.,
MemTable, transactions’ local buffers, hash values).

To extend the trust to persistent storage, we adapt SPEICHER
which offers a secure authenticated SSTable hierarchy. SPE-
ICHER stores encrypted blocks of KV pairs as well as a footer
with the blocks’ hash values (for integrity checks). TREATY
extends the persistent data structures by adding an extra log
file, the Clog for the 2PC. Lastly, to ensure crash recovery in
TREATY, we defer deleting the old SSTables and logs until
MANIFEST’s entries for that compactions are stabilized.

TREATY also extends the trust for the network I/O by
constructing a secure message format for Txs (§ VII-A). A
message encapsulates an Initialization Vector (12B) and a
MAC (16B) for proving its authenticity and integrity. In
addition to Tx’s data, we also add some metadata (e.g. node,
Tx and operations identifiers) that allows TREATY to protect
against duplication of packages by an attacker.

Two-phase commit. TREATY offers serializable distributed
ACID Txs with strong security guarantees throughout a secure

2PC protocol implemented over our secure network stack
(§ VII-A). Figure 2 illustrates the complete protocol design.
Clients are registered to TREATY nodes and thereafter, are able
to execute transactions. Upon a client’s request, the transac-
tion’s coordinator node (TxC) initializes a global Tx which
is uniquely identified in the entire cluster and associated with
a specific RPC communication channel. Each RPC is strictly
owned by one thread, which minimizes shared resources.

The TxC distributes the Tx’s requests to the responsible
nodes and/or processes its own requests. As shown in Figure 2,
before forwarding the requests to the participants, each Tx
reserves (untrusted) memory for the requests and responses 1⃝.
These message buffers have to remain allocated until the entire
request has been served 3⃝. To eliminate paging overheads,
they reside encrypted in the untrusted host memory.

Once the message is constructed, the TxC en-queues the
request 2⃝. Note that en-queuing the request does not trans-
mit the message. In case of multiple requests, coordinators
can defer the transmissions until all requests are en-queued.
Once the TxC has executed its own-managed requests and
has forwarded all requests to the participants, it yields and
periodically checks if the participants have replied 4⃝.

At a commit, TREATY first prepares the Tx for a distributed
commit accross all parties involved. Every Tx/operation is
logged to Clog with its own unique trusted counter value 5⃝.
Afterwards, all participants prepare their local Tx. Participants
delay replying back to the coordinator until the prepare entry
in the log is stabilized 8⃝. TREATY’s stabilization ensures that
coordinators will not consider the Tx as successfully prepared
until all participants ensure that they are able to recover and
commit the transaction after a crash. If not all participants
ensure that their prepare phase is stabilized, after a crash this
entry cannot be safely recovered. Especially in cases where the
participants had already committed the entry but only some
of them could recover the committed Tx after a crash, the
system would be in a inconsistent state where distributed Txs
are partially committed to some, but not all involved, nodes.

The TxC, before committing/aborting, also stabilizes the
prepare’s phase decision on the Clog 6⃝- 7⃝. If the TxC crashes
before this entry is stable, the recovered coordinator will re-
execute the prepare phase. Once this is rollback protected, the
Tx can commit. We do not need to wait for the commit entry
to be stable to reply to the client. Even if the system crashes,
this Tx can be committed in the exact same order.

B. Secure Single-node Transactions

KV Storage engine and single-node Txs. TREATY’s storage
engine runs inside the enclave for which the security properties
are guaranteed. TREATY leverages SPEICHER’s data model
that offers an authenticated LSM structure for the persistent
storage but also optimizes the usage of EPC memory. Par-
ticularly, TREATY adapts SPEICHER’s MemTable design by
separating the keys from the values. We keep keys along with
their version number inside the enclave, while we place the
encrypted values in the untrusted host. To access values and

5

prove their authenticity we similarly keep a pointer to the value
as well as its secure hash value along with the key.

However, SPEICHER cannot support Txs; therefore we
extend it to integrate both optimistic and pessimistic Txs
exporting an interface to the upper Tx layer to access the
LSM-data structure. We preserve the RocksDB’s interface and
semantics. For the persistent storage, TREATY extends the
persistent data structures by adding an extra log file, the Clog
for the 2PC. TREATY’s distributed Txs can then be viewed as
the set of all participants’ single node Txs.

Pessimistic Txs take locks on their keys while optimistic
Txs use sequence numbers to identify conflicts at the commit
phase. For optimistic Txs, each key has a seq. number showing
its the latest version and is atomically increased during the
commit phase. At commit, Txs log their updates to the WAL
and update the MemTable. We only reply to a client after the
Tx becomes stable, ensuring that upon a crash, clients will not
have to re-execute successfully committed transactions. Thus,
conflicting transactions will maintain their initial ordering.

Lock tables. Nodes store a table of locks for their keys that is
divided across shards, each protected with a lock, by splitting
the key space. TREATY runs with a big number of shards to
avoid locking bottlenecks. Txs that fail to acquire a lock within
a timeframe, return with a timeout error.

VI. STABILIZATION PROTOCOL

TREATY’s stabilization protocol ensures secure and crash-
consistent persistency for the committed Txs. To achieve this,
our protocol relies on three core principles. First, TREATY
establishes trust between the nodes based on collective remote
attestation. Secondly, after the 2PC’s execution (§ V), TREATY
ensures crash consistency for the committed Txs. Lastly, once
Txs are crash-consistent, TREATY ensures rollback protection
in distributed settings. We next explain these three principles.

Distributed trust establishment. Upon startup TREATY boot-
straps a Configuration and Attestation Service (CAS) on a
node in the network to provide scalable remote attestation
and authentication. For attestation, the service provider verifies
the CAS over Intel Attestation Service (IAS). On success the
service provider deploys an instance of TREATY’s local attes-
tation service (LAS) on all nodes, verified by the CAS over
IAS. The LAS replaces the Quoting Enclave (QE), collecting
and signing quotes for all TREATY instances, running on the
node. After the CAS verified a new instance, it supplies the
instance with the necessary configuration, e.g., network key,
nodes’ IPs, etc. The CAS is also used to authenticate clients
and establish trust between TREATY and clients.

Crash consistency and recovery. After the 2PC’s execution,
TREATY ensures crash consistency and recoverability using
three persistent log files; MANIFEST, WAL and Clog. As dis-
cussed in § V, Clog logs the 2PC states, WAL the committed
data and MANIFEST stores the state changes in the SSTables.
TREATY relies on these logs being written sequentially; thus,
it assigns to each of their entries a unique, monotonic and
deterministically increased trusted counter value. The recovery

protocol relies on that property to detect rollback attacks
or verify freshness and state continuity. Precisely TREATY’s
recovery verifies that the state of the persistent storage and
logged Txs is the most recent (through the verification of the
logs) and recovers the most recent stable state.

Upon restart MANIFEST is replayed first; it recovers the
SSTable hierarchy and loads metadata (hashes of SSTable’s
blocks) that will be used to verify the integrity and the
freshness of a SSTable upon access into the enclave. Note
that TREATY’s garbage collector only deletes SSTable files
when the newly compacted ones refer to stabilized entries in
MANIFEST. MANIFEST also recovers all the “live” WAL and
Clog files. Similarly, TREATY makes sure that the old versions
of the logs are not deleted before their effect to the database
has been rollback protected (stabilized). For example, a WAL
is marked for deletion as long as the matching MemTable has
been successfully compacted and this compaction action refers
to a stable entry in the MANIFEST. The Clog is deleted as
long as there are no unstable entries and does not contain any
unfinished prepared transaction entry.

After the MANIFEST, TREATY replays in order all live
WALs to restore the latest MemTables. The WAL also contains
the prepared Txs. Therefore, each node will also re-initialize
all prepared Txs that are not yet committed. For each prepared
Tx, the node communicates with the Tx’s coordinator for
either committing or aborting.

Lastly, Clog is replayed. TREATY restores the state of the
2PC protocol for all prepared on-going Txs. The coordinator
will re-execute the prepare phase, if it cannot guarantee that
the Tx will succeed. If the prepare phase decision is logged,
then, thanks to the stabilization function of TREATY, these Txs
are also prepared in the participant nodes. The coordinator will
then instruct the participants to commit. If a node has already
committed the Tx, this message is ignored.
Distributed rollback protection. For secure persistency,
TREATY provides rollback protection across distributed Txs
by leveraging a trusted counter service. While our design is
independent of the trusted counter service, we adopt Rote [70],
a fault-tolerant distributed system where enclaves preserve the
counters freshness with 2ms average latency.

For each log file, TREATY initializes a unique trusted
counter and assigns a monotonically and deterministically
increasing counter value to each log entry. TREATY’s criterion
for freshness is that 1) only log entries with counter value less
than the trusted service’s value can be recovered, 2) the counter
values are deterministically increased—for state continuity,
e.g., deleted or reordered entries are detected, and 3) last log
entry’s value match the counter’s value.

TREATY accesses the trusted counter service through the
network. The communication is asynchronous to maximize
CPU usage. As discussed in § V the 2PC incorporates the sta-
bilization protocol ensuring distributed rollback protection—
Txs are only considered committed (and clients get notified)
after the commit decision has been stabilized in the logs.

TREATY’s trusted counter service implements an echo
broadcast [72] protocol with an extra confirmation message

6

in the end. A sender-enclave (SE) sends the counter update
to all enclaves of the protection group. Receivers-enclaves
(REs) send back to the SE an echo-message which they store
along with the counter value in the protected memory. Once
the SE receives echo-messages from the quorum (q) it starts
a second round of echo-messages. Upon receiving back the
echo, each RE verifies that the received counter value matches
the one it keeps in-memory and RE replies with a (N)ACK
message. After receiving q ACKs, the enclave seals its own
state together with the counter value to the persistent storage.

Secure persistency guarantees. TREATY’s attestation and its
secure LSM-data structure [31] ensure that TREATY maintains
its security properties after a crash as (1) only trusted nodes
obtain the encryption keys for the persistent storage, (2) nodes
perform integrity checks on accessed persistent data blocks
and, (3) at recovery, TREATY verifies the logs’ freshness. As
the underlying cloud infrastructure is owned by a third-party,
TREATY detects but cannot prevent unauthorized modifications
to persistent state.

Stabilization protocol correctness. TREATY stabilization pro-
tocol remains correct as TEEs guarantee its correct execution
on all nodes. Any faults, e.g., crashes or network partitions,
can only affect availability. While TREATY’s trusted counter
offers crash fault tolerance, CAS can be a single point of
failure. In case CAS fails, crashed nodes cannot recover.

VII. TRUSTED SUBSTRATE FOR DISTRIBUTED TXS

To support secure Tx processing, we design the following
four cross-layer subsystems for our trusted substrate: a secure
network library (§ VII-A), a secure storage engine for Txs
based on Speicher [31] (§ VII-B), a userland thread scheduler
(§ VII-C), and a memory allocator for Tx buffers (§ VII-D).

A. Network Library for Txs

To implement TREATY’s 2PC, we build a secure networking
library that implements asynchronous remote procedure calls
(RPCs) for Txs execution. Our network library relies on
eRPC [36], but we had to extend and adapt the codebase
to (i) overcome the architectural limitations of TEEs (I/O,
enclave memory and DMA-ed memory) and, (ii) ensure con-
fidentiality, integrity and freshness for the over-the-network-
communication in the presence of malicious attackers.
Architectural limitations of TEEs. To avoid the execution of
expensive syscalls for network I/O, we adapt eRPC with
DPDK as the transport layer. DPDK offers direct I/O, bypass-
ing the kernel and eliminating the syscalls overheads using
userspace drivers and polling.

To secure the software stack, we build eRPC/DPDK with
SCONE assuring that the device’s DMA mappings reside in the
host memory, thus accessible by both enclave and NIC. We
achieve this overwriting the mmap() of SCONE to bypass its
shield layer and allow the allocation of untrusted host memory
as well as the creation of memory mappings to the hugepages.

Furthermore, we change the library’s memory allocator to
place all message buffers in the host memory (in hugepages

of 2MiB), thus reducing the EPC pressure at the cost of en-
crypting them. While eRPC by default creates shared memory
regions for message buffers in hugepages, a naive port of
eRPC with SCONE allocates all of these buffers inside the
enclave triggering the costly EPC paging. Lastly, we eliminate
rdtsc() calls to reduce the number of OCALLs from the
hot path by replacing the call with a monotonic counter.
Message layout. TREATY’s networking library constructs a
secure message to guarantee the integrity and confidential-
ity of messages through a en-/decryption library based on
OpenSSL [73]. Additionally, we ensure freshness, i.e., at-most
once execution semantics for Txs’ execution. The message
is comprised of a 12B Initialization Vector (IV), a payload
of 4B (for memory alignment), a 80B Tx metadata and Tx
data that contains the size of the data and the size of the key
and/or value followed by the key and/or value. The message
is followed by a 16B MAC. MAC and IV are necessary
to prove the authenticity and integrity in the remote host.
Only the metadata and data are encrypted; in case IV or
MAC are compromised the integrity check will fail. The
metadata contains the coordinator node’s id (8B) and the Tx
id (64B), monotonically incremented in the coordinator node.
Both are necessary for uniquely identifying the transaction
in the recipient side. The operation identifier (8B) is also
unique for each Tx request. This unique tuple of the node’s, Tx
and operation ids ensures that an operation/Tx is not executed
more than once. Therefore, along with the two-phase locking
which ensures that only one Tx can modify a resource, nodes
can verify that no already executed Txs are processed again.
Similarly, the participants’ reply, except for the ACKs, also
include the coordinator’s node, Tx id and the operation id.

TREATY’ networking protocol enqueues requests, e.g., a
user-defined message, that triggers a request handler for this
request type in the remote machine. The execution returns after
enqueuing the request. The node can enqueue more requests
or process received ones. Once the request is processed in
the remote machine, the receiver replies back to the sender.
A continuation function is triggered in the host machine to
notify that the request has been completed. The sender can
now deallocate any related resources, e.g., message buffers.

B. Storage Engine: Extensions to SPEICHER for Txs

To offer persistent Txs in TREATY, we extend SPEICHER’s
storage engine/controller [31] to support single-node pes-
simistic and optimistic transactions as discussed in § V-B.

Additionally, we implement an extra persistent log file, the
Clog. Clog’s entries are similar to MANIFEST and WAL
entries format; they are comprised of a counter value, the
encrypted Tx data and metadata and a cryptographic hash.
Clog’s deletions are also logged in the MANIFEST. Clog is
thread-safe; coordinators append independently their entries.

In TREATY, we allow group commits for Txs to flush bigger
data blocks to the persistent storage and optimize the SSD
throughput. Each group elects a leader that merges their and
all followers’ Txs buffers into a larger buffer. The leader
then writes this buffer into WAL and MemTable. We further

7

defer logging (yield) at commit, allowing us to format group
commits of bigger data blocks. For the LSM structures, we
implement a MemTable skip list that supports parallel updates
for concurrent Tx processing.

Lastly, we change the I/O sub-system of SPEICHER, where
we replace the SPDK-based direct I/O for accessing the SSDs
with async syscalls to optimize the usage of cores for our
eRPC/DPDK-based networking library.

C. Userland Scheduler

Timer based scheduling in the enclave is extremely expen-
sive, as it involves interrupts that result in world switches.
While SCONE implements its own userspace scheduler, it is
non-preemptive relying on threads to either go to sleep or issue
syscalls for ensuring progress. This design is not well-suited
for TREATY; (i) our direct I/O networking library leads to
starvation and high latency, and (ii) in the presence of multiple
clients creating too many threads is inefficient.

We overcome these by implementing a userland scheduler
on top of SCONE’s scheduler. Precisely, each thread spawns
one userland thread (fiber) for each connected client. Our
userland scheduler implements a per-core round-robin (RR)
algorithm for fibers’ scheduling and a set of queues (run queue
and sleeping/waiting queue) for the fibers.

When a fiber needs to block, e.g., acquiring a lock, wait-
ing on condition variables or sleeping, TREATY’s userland
scheduler places the fiber into a sleeping queue. It picks
and schedules the next eligible fiber from the run queue
(based on the RR algorithm). Our userland scheduler does not
involve interrupts, syscalls and context/world switches when
scheduling another fiber. Lastly, we adapted our scheduler to
frequently yield threads allowing SCONE to schedule others.
Precisely, if no fiber is in a running state, our scheduler sleeps;
thereby invoking a syscall. Our scheduler’s sleep function
yields to another SCONE thread and increases the amount of
time before future yields are triggered. In this way, fibers allow
us to both maximize CPU utilization and increase scalability.

Our userland scheduler’s implementation is based on
Boost [74]. We configure SCONE with 8 kernel and 8 ap-
plication threads each spawning one fiber per client.

D. Memory Management

We minimize EPC usage or paging; TREATY’s in-memory
data structures are divided between the enclave and untrusted
host memory. All network buffers are kept in host memory at
the cost of encryption. Note that transmission is asynchronous
so heavy network traffic could exceed EPC limit and trigger
paging if the message buffers were allocated in the enclave.

TREATY’s engine keeps the updates of uncommitted in-
progress Txs into local buffers. We implement Txs’ buffers as
a stream of bytes (std::string) that allocate continuous
memory to eliminate paging.We also explored the case to
adopt a design similar to the MemTable for Txs buffers, where
we keep only the keys in the enclave (for the read-my-own
writes semantics). However, we decided against it as it does
not offer any performance improvements; at commit, we still

need to perform integrity checks, re-collect and encrypt all the
KV pairs in the enclave memory for logging. We implement a
scalable memory allocator for host and enclave memory that
relies on a mempool. It assigns threads to different heaps based
on the hash of the get_id() and recycles unused memory,
drastically reducing the amount of mapped memory.

Implementation details. We implement TREATY in C/C++;
4000 LoC for the 2PC, encryption library and modifications to
eRPC, DPDK, boost and SPEICHER codebases. We use Java
and Rust for the workload generator and CAS respectively.

VIII. EVALUATION

A. Experimental Setup

Testbed. We perform our experiments on a real hardware
testbed using a cluster of 6 server machines. We run TREATY
on 3 SGX server machines with CPU: Intel(R) Core(TM) i9-
9900K each with 8 cores (16 HT), memory: 64GiB, caches:
32KiB (L1 data and code), 256KiB (L2) and 16MiB (L3).
TREATY nodes are connected over a 40GbE QSFP+ network
switch. Clients generate workload on 3 machines and are
connected with TREATY over a secondary 1Gb/s NIC.

Benchmarks/workloads. We evaluate TREATY’s 2PC w/o any
underlying storage (§ VIII-B). For the distributed (§ VIII-C)
and single-node (§ VIII-D) Txs evaluation, we use YCSB [38]
and TPC-C [37]. We configure TPC-C with 10 Warehouses,
as in [75]. For distributed Txs, we also run a TPC-C workload
with 100 Warehouses. Lastly, we evaluate the network stack
(§ VIII-E) by stress-testing the network using: (i) iPerf [76]
(implemented w/ kernel-sockets), and (ii) our own server/client
application, build with eRPC [36], that implements iPerf.
Unless stated otherwise, we refer to overheads for throughput
(tps).

B. TREATY’s 2PC Protocol

We evaluate TREATY’s 2PC protocol designed over eRPC
with the YCSB workload (50%R-50%W). 2PC runs without
any underlying storage to isolate the protocol’s overheads. We
compare two Secure (w/ SCONE) versions of TREATY 2PC
with and w/o Enc(ryption) against two Native executions of
the protocol with and w/o Enc(ryption) respectively. All four
versions “saturate” with 300 clients, each of which executes a
YCSB workload (10 Ops/Tx, 1000B value size).

Figure 4 shows the slowdown in the throughput of 3
versions of TREATY’s 2PC protocol (Native 2PC w/ Enc,
Secure 2PC w/o Enc, Secure 2PC w/ Enc) normalized to a
native, non-secure version of 2PC. Some Tx’s operations might
be served by the coordinator node; therefore not all opera-
tions are sent thought the network to participants and thus,
be en-/decrypted. Our evaluation shows minimal encryption
overhead in the native case. Further, TREATY’s secure 2PC
w/o Enc experiences 1.8× slowdown w.r.t. a native execution
while encryption (Secure 2PC w/ Enc) increases the overheads
leading to a 2× slowdown in comparison with native 2PC.

8

0

3

6

9

12
Sl

ow
do

wn
 w

.r.
t.

Ro
ck

sD
B TPC-C (10 Warehouses)

0
30
60
90

120
150
180
210

La
te

nc
y

(m
s)

0

2

4

6

Sl
ow

do
wn

 w
.r.

t.
Ro

ck
sD

B TPC-C (100 Warehouses)

0
40
80

120
160
200
240
280
320

La
te

nc
y

(m
s)

DS-RocksDB Treaty w/o Enc Treaty w/ Enc Treaty w/ Enc w/ Stab

Figure 3: Performance evaluation of distributed transactions under two TPC-C
workloads with 10W and 100W respectively.

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

ov
er

he
ad

s

Native w/ Enc
Secure w/o Enc

Secure w/ Enc

Figure 4: Throughput slowdown of
three versions w.r.t. Native 2PC.

20% R 80% R0

5

10

15

Sl
ow

do
wn

 w
.r.

t.
Ro

ck
sD

B

20% R 80% R0

16

32

48

64

80

La
te

nc
y

(m
s)

DS-RocksDB
Treaty w/o Enc

Treaty w/ Enc
Treaty w/ Enc w/ Stab

Figure 5: Performance evaluation of distributed Txs under a
W-heavy (20%R) and a R-heavy (80%R) YCSB workload.

C. Distributed Transactions

Baselines and setup. We evaluate the performance of dis-
tributed Txs under two TPC-C workloads, with 10 and
100 Warehouses, and two YCSB workloads: read-heavy
(80%R) and write-heavy (20%R). We show the overheads of
TREATY’s throughput normalized w.r.t. a native execution of
2PC with RocksDB as the underlying storage (DS-RocksDB).
We study the performance behavior of three systems: (i)
TREATY w/o Enc, (ii) TREATY w/ Enc and (iii) TREATY w/
Stab(ility) w/ Enc. All three versions run with SCONE and our
TREATY’s secure storage system.

Results. YCSB. Figure 5 (left) shows the throughput slow-
down of the three systems w.r.t. DS-RocksDB. TREATY’s per-
formance is 9×—15× worse compared to DS-RocksDB where
SCONE overheads fast dominate the performance (TREATY
runs w/ and w/o Enc have little differences). For the W-heavy
workload, DS-RocksDB achieves 18.5 ktps. All four systems
are saturated with 96 clients equally divided across all three
machines (each serving 32 clients). Distributed Txs require
both participants and coordinator to stabilize their entries
and therefore, TREATY rollback protection increases latency
further for write-heavy Txs, as shown in Figure 5 (right).

For the R-heavy workload, TREATY w/ Enc slows down
the execution 11× while the un-encrypted version of the
system shows a slowdown of 9.5×, both compared to native
DS-RocksDB (24 ktps). Encryption overheads are reasonable;
reading from SSTables requires integrity checks as well as
proving the freshness of the entry. All four systems present
different scaling capabilities. DS-RocksDB and TREATY w/o
Enc scale up to 92 clients while encrypted versions cannot

scale more than 60 clients. Therefore, TREATY is over satu-
rated in the benchmark, explaining the higher latency values.
TPC-C (10W). Figure 3 (left) shows the throughput overheads
and the latencies of three versions of TREATY (all run in
SCONE) w.r.t DS-RocksDB under TPC-C with 10 Warehouses.
TREATY is 8×—11× slower compared to the native, non-
secure DS-RocksDB. This configuration presents heavy W-W
conflicts; DS-RocksDB achieves 780 tps. Consequently, DS-
RocksDB, TREATY w/o Enc and TREATY w/ Enc cannot scale
for more than 10 clients. However, TREATY w/ Enc w/ Stab
scales up to 16 clients as the stabilization period (where locks
are released) allows the system to serve more requests.
TPC-C (100W). Figure 3 (right) shows the throughput over-
heads and the latencies of three versions of TREATY (all
run w/ SCONE) w.r.t DS-RocksDB under TPC-C with 100
Warehouses (total worksize equals to 10GB divided equally
to all 3 nodes). This configuration presents less conflicts
than the previous case; DS-RocksDB achieves 1200 tps. Our
evaluation shows reasonable overeheads (4×-6×) and similar
behavior for TREATY w/ Enc and Stab; while all the three
other systems (DS-RocksDB, TREATY w/ Enc, TREATY w/o
Enc) are saturated with 60 clients, TREATY w/ Enc w/ Stab
is saturated with 84 clients.

D. Single-node Transactions

Baselines and setup. We evaluate the performance of pes-
simistic and optimistic single-node Txs with TPC-C and
YCSB. TPC-C is configured with 10 Warehouses as in [75]
and YCSB with: 10 ops/Tx, value size to be equal to 1000B,
uniform distribution with 10 k unique keys. For the pessimistic
Txs, we measure the performance against read-heavy (80%R-
20%W) and write-heavy (20%R-80%W) workloads, while
for the optimistic Txs we use the read-heavy workload. Our
experiments stress-test EPC usage since both TREATY and
RocksDB do not support in-place updates. We evaluate the
throughput (tps) and latency for 6 versions of the single-
node TREATY; (i) RocksDB, (ii) Native TREATY, (iii) Native
TREATY w/ Enc, (iv) TREATY w/o Enc (SCONE), (v) TREATY
w/ Enc (SCONE) and (vi) TREATY w/ Enc w/ Stab (SCONE).

Results. Pessimistic Txs. Figure 6 shows the throughput and
latency of the TPC-C for the pessimistic Txs. TREATY ex-
ecuted natively (Native TREATY) performs equivalently to
RocksDB. Additionally, we deduce that Native TREATY w/

9

0.00

0.75

1.50

2.25

3.00

Th
ro

ug
hp

ut
 (k

tp
s)

TPC-C

20% R 80% R0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

YCSB

0.0
2.7
5.4
8.1

10.8
13.5
16.2
18.9
21.6
24.3

La
te

nc
y

(m
s)

TPC-C

20% R 80% R0.0
1.5
3.0
4.5
6.0
7.5
9.0

10.5

YCSBThroughput Latency

RocksDB Native Treaty Native Treaty w/ Enc Treaty w/o Enc Treaty w/ Enc Treaty w/ Enc w/ Stab

Figure 6: Performance evaluation of pessimistic single-node transactions under TPC-C and YCSB benchmarks. YCSB
performance is evaluated with a write heavy (20% reads) and a read heavy (80% reads) workload.

0.00

0.75

1.50

2.25

3.00

Th
ro

ug
hp

ut
 (k

tp
s)

TPC-C

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

YCSB

0
5

10
15
20
25
30
35
40

La
te

nc
y

(m
s)

TPC-C

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5

YCSBThroughput Latency

RocksDB Native Treaty Native Treaty w/ Enc Treaty w/o Enc Treaty w/ Enc Treaty w/ Enc w/ Stab

Figure 7: Performance evaluation of optimistic single-node transaction under TPC-C and YCSB benchmarks. YCSB
performance is evaluated with a write heavy (20% reads) and a read heavy (80% reads) workload.

Enc adds minimal overhead compared to the non-encrypted
versions. Further, SCONE’s overheads are reasonable. TREATY
w/o Enc has roughly 1.6× slowdown compared to RocksDB
while TREATY w/ Enc has 2× slowdown. Lastly, the stabi-
lization period seems not to have great impact on the overall
throughput. We experience a 2.1× slowdown compared to
RocksDB. Regarding the latency, we see that all TREATY
SCONE versions do not scale as good as the native execution.
However, the latency of SCONE systems is equivalent or
smaller to the natively executed versions. This behavior is
reasonable since the native versions are “saturated” to 64
clients while the SCONE versions to 32 clients.

Additionally, Figure 6 shows the throughput and latency
of all 6 systems for the two YCSB workloads. YCSB’s
configuration, in contrast to TPC-C, present little conflicts.
That said, for the read-heavy workload, encryption, adds a
throughput overhead of 1.3× and 2.7× compared to native and
SCONE versions respectively while the respective overheads
for latency are 1.6× and 4.6×. For the write-heavy workload,
we have 1.2× and 2.8× slowdown to native and SCONE
versions compared with RocksDB. The latency overheads are
1.5× and 4.7× respectively. Similarly to TPC-C, TREATY’s
stabilization function does not impact performance dramat-
ically. We experience 3.5× slowdown for the read-heavy
workload and 3.2× slowdown with respect to RocksDB for
the write-heavy workload compared to when de-activating the
stabilization mechanism. Further, especially for the read-heavy
workload, we find out that TREATY w/ Enc w/ Stab takes
advantage of the “idle” (stabilization) time to improve the
scalability; TREATY w/ Enc w/ Stab becomes saturated in 64
clients while the otherversions are saturated in 32 clients.

Optimistic Txs. Figure 7 shows that TREATY w/ Enc w/ Stab
performs 5× and 4× worse compared to the native RocksDB
for TPC-C and YCSB, respectively. We see that TREATY’s sta-
bilization does not incur extra throughput overhead compared
to the TREATY w/ Enc as the system, thanks to our userspace
fiber scheduler, continues to process requests. TREATY w/ Enc
w/ Stab’s compared to TREATY w/ Enc experiences roughly
10% latency overhead. Further, we notice that TREATY w/ Enc
w/ Stab’s saturation point under YCSB is 128 clients while
RocksDB’s one is 32. TREATY shows similar overheads as
SPEICHER [31] which is the most related system.

E. Network Library for Txs

We evaluate the performance of TREATY’s networking
library using iPerf against six baselines: eRPC (SCONE), eRPC
(native), iPerf-UDP (native), iPerf-UDP (SCONE), iPerf-TCP
(native), and iPerf-TCP (SCONE). All native (eRPC and iPerf)
versions do not provide any security. Additionally, SCONE
(eRPC and iPerf) versions do not secure network layer; we
only use the secure message format for TREATY-networking.
Note that iPerf build with SCONE is optimized w.r.t to SGX
since SCONE uses the async syscalls [26] for performance.

For the sockets (native and SCONE), we use iPerf to
measure the throughput. For the eRPC versions and TREATY-
networking, we implement a client-server model with eRPC to
implement iPerf. Our experiments saturate network bandwidth
where we compare the performance with different packet sizes.
iPerf supports TCP and UDP, eRPC supports only UDP.

Figure 8 shows the throughput in network bandwidth for
all seven systems discussed (TREATY networking, eRPC
(SCONE), eRPC (native), iPerf-UDP (native), iPerf-UDP

10

64 256 1024 1460 2048 4096
message size (B)

0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (G

bs
)

iPerf UDP
iPerf UDP (Scone)
iPerf TCP

iPerf TCP (Scone)
eRPC

eRPC (Scone)
Treaty networking

Figure 8: Throughput in network bandwidth of TREATY-
networking, eRPC (native and SCONE), iPerf-TCP and
iPerf-UDP (native and SCONE).

(SCONE), iPerf-TCP (native), and iPerf-TCP (SCONE)). We
see that eRPC is comparable to iPerf-TCP while iPerf-UDP
performs poorly. Especially for large messages (> MTU),
UDP throughput equals zero as many messages are dropped.
In contrast to UDP, TCP performs equivalently and better than
eRPC. We deduct this to the fact that TCP is optimized for high
speed bulk transfers and, additionally, the entire TCP/IP stack
processing is frequently offloaded to the network controller.
For small and medium packets sizes that are still smaller
than the MTU (1460B), we observe performance differences
between eRPC and iPerf-TCP. Especially, for packet sizes
of 256B and 1024B, eRPC shows roughly 30% and 22%
slowdown respectively compared to iPerf-TCP. For larger mes-
sages, both eRPC and iPerf-TCP perform almost equivalently.

We deduce two core conclusions: (a) SCONE’s overhead is
significant—SCONE deteriorates up to 8× iPerf-TCP (SCONE)
while up to 4× eRPC; and (b), due to the amount of syscalls,
eRPC in SCONE performs up to 1.5× faster than iPerf-TCP
(SCONE). As discussed, syscalls execution in the enclave
incurs heavy overheads. Note the bigger the packet size is,
the worse the performance becomes. Lastly, we see that
TREATY network stack which also fully secures the network
and includes the encryption overheads performs equivalently
to iPerf-TCP (SCONE) that do not provide any security. As a
result, iPerf-TCP (SCONE) is an inappropriate design.

F. Recovery Protocol

We next evaluate the overheads of TREATY recovery w/ and
w/o Enc compared with native recovery. We construct logs of
800K entries each that lead to log sizes of 69MiB and 91MiB
for the non-encrypted and encrypted entries respectively. In
this experiment we use relatively small log entries (e.g 100B
per log entry) which is the worse case for TREATY as: (i) we
have more syscalls, and (ii) we have more decryption calls.

Table I shows that TREATY recovery without decryption
costs incurs roughly 1.5× slowdown compared to the native
recovery. Further, encryption increases the overheads by up to
2× slower than the native recovery.

IX. RELATED WORK

Confidential computing frameworks [23], [25], [47], [77]
use TEEs to build secure systems [31], [78]–[85]. TREATY

Version Slowdown Version Slowdown
TREATY w/o Enc 1.5× TREATY 2.0×

Table I: Recovery overheads w.r.t. native recovery.
leverages SCONE to build the first secure distributed transac-
tional KV storage system with TEEs.

Secure systems for cloud computing [75], [80], [86]–[95]
offer different security properties, interfaces, threat model, and
security enforcement mechanisms. EnclaveDB [80] is the most
related work. In contrast to TREATY, it (1) is a single-node
in-memory system (w/o persistence and distribution), (2) runs
in emulated h/w and, (3) assumes unlimited enclaves. TREATY
targets a distributed storage system, where we extend the
security properties to storage and network and overcome the
limitations of TEEs. Other storage systems vary on hardware,
security guarantees and interfaces: KV APIs [31], [78], [96]
and filesystems [97]–[99]. Precursor [94] combines SGX with
RDMA offloading the cryptographic operations to clients. In
contrast, TREATY provides distribution, persistency and Txs.

Secure distributed storage systems [100]–[102] provide
consistency, durability, availability and integrity. Cloud-
Proof [102], as TREATY, distrusts the cloud provider but it
requires (1) clients to guarantee these security properties and
(2) a trusted proxy which limits scalability. TREATY leverages
TEEs to avoid such limitations.

Other distributed systems [2], [27]–[29] deploy RDMA as
TREATY. However, we target security which is more chal-
lenging; DMA connections for direct I/O are not allowed by
TEEs. ShieldBox [83] uses DPDK to overcome this limitation,
but it targets only layer 2 in the OSI model which is limiting
for distributed systems. SPEICHER [31] uses SPDK [71] for
direct I/O to the SSDs. rkt-io [49] provides a library OS in
the enclave including a full network stack. We build on these
advancements to build a secure direct network I/O mechanism
for TEEs with which we design a 2PC protocol.

X. CONCLUSION

In this paper, we present TREATY, a secure distributed
transactional KV store for untrusted cloud environments.
TREATY offers high-performance serializable Txs with strong
security properties.We achieve these design goals by building
on hardware-assisted secure Txs with SGX and designing a
distributed 2PC protocol with a direct I/O network library
based on eRPC. Further, we design a stabilization protocol
for Txs using an asynchronous trusted counter interface along
with a distributed attestation service. We implement an end-
to-end secure Tx processing system from the ground-up based
on RocksDB/SPEICHER as the underlying storage engine. Our
evaluation with the YCSB and TPC-C shows reasonable over-
heads for TREATY, while it provides strong security properties.
Software artifact. TREATY is publicly available: https://
github.com/TUM-DSE/Treaty.
Acknowledgements. We thank our shepherd, Prof. Fernando
Pedone. We also thank Dr. Le Quoc Do, Dimitris Stavrakakis
and Prof. Jana Giceva for their helpful comments. This work
was supported in parts by a Microsoft Research PhD Fellow-
ship and Huawei Research, UK RISE and BaCaTeC Grants.

11

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS Operating
Systems Review (SIGOPS), 2007.

[2] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014.

[3] “RocksDB, A persistent key-value store,” https://rocksdb.org/, last
accessed: Dec, 2018.

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s Globally Distributed
Database,” 2013.

[5] Amazon, “Amazon S3 Cloud Object Storage,”
https://aws.amazon.com/s3, last accessed: Dec, 2018.

[6] Microsoft, “Azure Blob Storage,” https://azure.microsoft.com/en-
us/services/storage/blobs, last accessed: Dec, 2018.

[7] Google, “Cloud Storage,” http://www.cloud.google.com/storage, 2017,
last accessed: Dec, 2018. [Online]. Available: https://cloud.google.
com/storage/

[8] Dell, “Elastic Cloud Storage,” https://www.dellemc.com/en-
us/storage/ecs/, 2017, last accessed: Dec, 2018. [Online]. Available:
https://www.dellemc.com/en-us/storage/ecs/index.htm

[9] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted Cloud
Computing,” in Proceedings of the 1st USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2009.

[10] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, “What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems,” in Proceedings of the ACM Symposium on Cloud
Computing (SoCC), 2014.

[11] CRN, “The ten biggest cloud outages of
2013,” https://www.crn.com/slide-shows/cloud/240165024/the-10-
biggest-cloud-outages-of-2013.htm, 2013, last accessed: Dec,
2018. [Online]. Available: https://www.crn.com/slide-shows/cloud/
240165024/the-10-biggest-cloud-outages-of-2013.htm

[12] N. Santos, R. Rodrigues, and B. Ford, “Enhancing the os against
security threats in system administration,” in Proceedings of the 13th
International Middleware Conference (Middleware), 2012.

[13] G. Goodson and B. Schroeder, “An analysis of data corruption in
the storage stack,” in 6th USENIX Conference on File and Storage
Technologies (FAST 08). San Jose, CA: USENIX Association, Feb.
2008. [Online]. Available: https://www.usenix.org/conference/fast-08/
analysis-data-corruption-storage-stack

[14] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer,
“Haft: Hardware-assisted fault tolerance,” in Proceedings of the
Eleventh European Conference on Computer Systems, ser. EuroSys
’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/2901318.2901339

[15] ARM, “Building a secure system using trustzone technology,”
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC-009492C trustzone security whitepaper.pdf,
last accessed: Jan, 2021.

[16] “Arm Confidential Compute Architecture,” https://www.arm.com/why-
arm/architecture/security-features/arm-confidential-compute-
architecture, last accessed: May 2021.

[17] “Intel Software Guard Extensions (Intel SGX),”
https://software.intel.com/en-us/sgx, last accessed: Jan, 2021.

[18] AMD, “AMD Secure Encrypted Virtualization (SEV),”
https://developer.amd.com/sev/, last accessed: Jan, 2021. [Online].
Available: https://developer.amd.com/sev/

[19] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: an open framework for architecting trusted execution en-
vironments,” in Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys), 2020.

[20] A. Cloud, “ Alibaba Cloud’s Next-Generation Security Makes Gart-
ner’s Report,” https://www.alibabacloud.com/blog/alibaba-clouds-next-
generation-security-makes-gartners-report 595367, last accessed: Jan,
2021.

[21] Microsoft Azure, “Azure confidential computing,”
https://azure.microsoft.com/en-us/solutions/confidential-compute/,
last accessed: Jan, 2021.

[22] “Introducing Google Cloud Confidential Computing with
Confidential VMs,” https://cloud.google.com/blog/products/identity-
security/introducing-google-cloud-confidential-computing-with-
confidential-vms, last accessed: Jan, 2021. [Online].
Available: https://cloud.google.com/blog/products/identity-security/
introducing-google-cloud-confidential-computing-with-confidential-vms

[23] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[24] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “PANOPLY: Low-
TCB Linux Applications with SGX Enclaves,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2017.

[25] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical
library OS for unmodified applications on SGX,” in Proceedings of
the USENIX Annual Technical Conference (USENIX ATC), 2017.

[26] L. Soares and M. Stumm, “FlexSC: Flexible System Call Scheduling
with Exception-less System Calls,” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2010.

[27] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Data-
gram RPCs,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016.

[28] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos, A. Drago-
jević, D. Narayanan, and M. Castro, “Fast General Distributed Trans-
actions with Opacity,” in Proceedings of the 2019 International Con-
ference on Management of Data (SIGMOD’19), 2019.

[29] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, Fast In-Memory
Transaction Processing Using RDMA and HTM, 2015.

[30] “Intel, “SGX documentation: sgx create monotonic counter”,”
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-
monotonic-counter/, last accessed: Dec, 2018.

[31] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani, “SPEICHER: Securing lsm-based key-value stores using
shielded execution,” in 17th USENIX Conference on File and Storage
Technologies (FAST), 2019.

[32] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. L. Quoc, S. Arnautov,
A. Martin, V. Schiavoni, P. Felber, and C. Fetzer, “Trust Management
as a Service: Enabling Trusted Execution in the Face of Byzantine
Stakeholders,” in 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2020), 2020.

[33] C. H. Papadimitriou, “The serializability of concurrent database
updates,” J. ACM, vol. 26, no. 4, p. 631–653, Oct. 1979. [Online].
Available: https://doi.org/10.1145/322154.322158

[34] “How big is rocksdb adoption?”
https://rocksdb.org/docs/support/faq.html, last accessed: May 2021.

[35] “CockroachDB,” https://www.cockroachlabs.com/, last accessed: May
2021.

[36] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
General and Fast,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2019.

[37] “TPC-C,” http://www.tpc.org/tpcc/, April 4, 2022.
[38] “YCSB,” https://github.com/brianfrankcooper/YCSB, last accessed:

Jan, 2021.
[39] A. Lakshman and P. Malik, “Cassandra: structured storage system

on a p2p network,” in Proceedings of the 28th ACM Symposium on
Principles of distributed computing (PODC). ACM, 2009.

[40] “MongoDB,” https://www.mongodb.com/, last accessed: May 2021.
[41] “Couchbase,” https://www.couchbase.com/, last accessed: May 2021.
[42] L. Bindschaedler, A. Goel, and W. Zwaenepoel, “Hailstorm: Disag-

gregated compute and storage for distributed lsm-based databases,” in
Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20), 2020.

[43] “LevelDB,” http://leveldb.org/, last accessed: Dec, 2018.
[44] “Apache HBase,” https://hbase.apache.org/, last accessed: May 2021.
[45] “Apache AsterixDB,” https://asterixdb.apache.org/, last accessed: May

2021.
[46] V. Costan and S. Devadas, “Intel SGX Explained,” 2016.

12

[47] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2014.

[48] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, “Sgx-lkl: Securing the host os interface for trusted
execution,” 2019.

[49] J. Thalheim, H. Unnibhavi, C. Priebe, P. Bhatotia, and P. Pietzuch,
“Rkt-io: A direct i/o stack for shielded execution,” in Proceedings of the
Sixteenth European Conference on Computer Systems (ACM EuroSys
21), 2021.

[50] M. Orenbach, M. Minkin, P. Lifshits, and M. Silberstein, “Eleos:
ExitLess OS services for SGX enclaves,” in Proceedings of the 12th
ACM European ACM Conference in Computer Systems (EuroSys),
2017.

[51] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “MTCP: A Highly Scalable User-Level TCP Stack for
Multicore Systems,” in Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementationi (NSDI), 2014.

[52] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “MegaPipe:
A New Programming Interface for Scalable Network I/O,” in 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12), 2012.

[53] L. Soares and M. Stumm, “FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI),
2010.

[54] V. Vasudevan, D. Andersen, and M. Kaminsky, “The Case for VOS:
The Vector Operating System,” in 13th Workshop on Hot Topics in
Operating Systems (HotOS), 2011.

[55] “How long does it take to make a context switch?”
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-
context.html, last accessed: Jan, 2021.

[56] “Intel DPDK,” http://dpdk.org/, last accessed: Jan, 2021.
[57] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How

SGX fails in practice,” https://sgaxeattack.com/, 2020.
[58] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,

“CacheOut: Leaking Data on Intel CPUs via Cache Evictions,” 2020.
[59] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T. Eisen-

barth, and B. Sunar, “SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019.

[60] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in Proceedings of the 27th USENIX
Security Symposium (USENIX Security), 2018.

[61] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in CCS, 2019.

[62] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20), 2020.

[63] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P), 2019.

[64] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[65] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy (Oakland), 2015.

[66] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for
untrusted operating systems,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2017.

[67] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “SGXBOUNDS: Memory Safety for Shielded
Execution,” in Proceedings of the 12th ACM European Conference on
Computer Systems (EuroSys), 2017.

[68] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX Explained: A Cross-layer Analysis of the Intel MPX System

Stack,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2018.

[69] “Intel Corporation. Attestation Service for Intel Software
GuardExtensions (Intel SGX): API Documentation.”
https://api.trustedservices.intel.com/documents/sgx-attestation-api-
spec.pdf, last accessed: Jan, 2021.

[70] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” in 26th USENIX Security Symposium (USENIX Security),
2017.

[71] “Intel Storage Performance Development Kit,” http://www.spdk.io,
last accessed: Dec, 2018. [Online]. Available: http://www.spdk.io

[72] M. K. Reiter, “Secure Agreement Protocols: Reliable and Atomic
Group Multicast in Rampart,” in Proceedings of the 2nd ACM Confer-
ence on Computer and Communications Security (CCS), 1994.

[73] “OpenSSL library,” https://openssl.org, last accessed: Jan, 2021.
[Online]. Available: https://openssl.org

[74] “boost: C++ libraries,” https://www.boost.org/, last accessed: Aug,
2020. [Online]. Available: https://www.boost.org/

[75] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and L. Alvisi,
“Obladi: Oblivious Serializable Transactions in the Cloud,” in Proceed-
ings of the 13th USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2018.

[76] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/, last accessed: Aug, 2020. [Online]. Available:
https://iperf.fr/

[77] “Asylo: An open and flexible framework for enclave applications,”
https://asylo.dev/, last accessed: Jan, 2021. [Online]. Available:
https://asylo.dev/

[78] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia,
and C. Fetzer, “Pesos: Policy enhanced secure object store,” in Pro-
ceedings of the Thirteenth EuroSys Conference (EuroSys), 2018.

[79] F. Schuster, M. Costa, C. Gkantsidis, M. Peinado, G. Mainar-ruiz, and
M. Russinovich, “VC3 : Trustworthy Data Analytics in the Cloud using
SGX,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), 2015.

[80] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A Secure Database
using SGX (S&P),” in IEEE Symposium on Security and Privacy, 2018.

[81] B. Trach, R. Faqeh, O. Oleksenko, W. Ozga, P. Bhatotia, and C. Fetzer,
“T-lease: A trusted lease primitive for distributed systems,” in Proceed-
ings of the 11th ACM Symposium on Cloud Computing (SoCC), 2020.

[82] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer, “Clem-
mys: Towards secure remote execution in faas,” in Proceedings of the
12th ACM International Conference on Systems and Storage (SYSTOR),
2019.

[83] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “ShieldBox: Secure Middleboxes using Shielded Execution,”
in Proceedings of the ACM SIGCOMM Symposium on SDN Research
(SOSR), 2018.

[84] D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel, P. Bhatotia, and
C. Fetzer, “Securetf: A secure tensorflow framework,” in Proceedings
of the 21st International Middleware Conference (Middleware), 2020.

[85] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer, “Tee-perf: A profiler
for trusted execution environments,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2019.

[86] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen,
H. Singh, A. Modi, and S. Badrinarayanan, “Big data analytics over
encrypted datasets with seabed,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

[87] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP), 2011.

[88] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proceedings of the 39th
international conference on Very Large Data Bases (VLDB), 2013.

[89] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious Query Process-
ing for Secure Databases,” in Proceedings of the VLDB Endowment
(VLDB), 2019.

[90] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Rama-
murthy, and R. Venkatesan, “Orthogonal security with cipherbase,” in
Proc. of the 6th CIDR, 2013.

13

[91] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez,
and I. Stoica, “Opaque: An Oblivious and Encrypted Distributed
Analytics Platform,” in Proceedings of the 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[92] S. Bajaj and R. Sion, “Trusteddb: a trusted hardware based database
with privacy and data confidentiality,” in In Proceedings of the 2011
international conference on Management of data. ACM, 2011, pp.
205–216.

[93] U. Maheshwari, R. Vingralek, and W. Shapiro, “How to build a trusted
database system on untrusted storage,” in Proceedings of the 4th Con-
ference on Symposium on Operating System Design & Implementation
(OSDI), 2000.

[94] I. Messadi, S. Neumann, N. Weichbrodt, L. Almstedt, M. Mahhouk,
and R. Kapitza, “Precursor: A fast, client-centric and trusted key-value
store using rdma and intel sgx,” in Proceedings of the 22nd
International Middleware Conference, ser. Middleware ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
1–13. [Online]. Available: https://doi.org/10.1145/3464298.3476129

[95] M. Bailleu, D. Giantsidi, V. Gavrielatos, D. L. Quoc, V. Nagarajan, and
P. Bhatotia, “Avocado: A secure in-memory distributed storage system,”
in 2021 USENIX Annual Technical Conference (ATC’21), 2021.

[96] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “ShieldStore: Shielded
In-Memory Key-Value Storage with SGX,” in Proceedings of the

Fourteenth EuroSys Conference 2019 (EuroSys), 2019.
[97] D. Garg and F. Pfenning, “A proof-carrying file system,” in Proceedings

of the 31st IEEE Symposium on Security and Privacy, 2010.
[98] C. Weinhold and H. Härtig, “jVPFS: Adding Robustness to a Secure

Stacked File System with Untrusted Local Storage Components,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2011.

[99] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Druschel,
R. Rodrigues, J. Gehrke, and A. Post, “Guardat: Enforcing data policies
at the storage layer,” in Proceedings of the 10th ACM European
Conference on Computer Systems (EuroSys), 2015.

[100] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud Storage with Minimal Trust,” in
ACM Transactions on Computer Systems, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2063509.2063512

[101] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam, L. Alvisi,
and M. Dahlin, “Robustness in the salus scalable block store,” in
Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

[102] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang,
“Enabling security in cloud storage slas with cloudproof,” in Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC), 2011.

14

