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Virtual Machines (VMs)

VMs:

● Consolidation
● Cost-effectiveness

Optimized, lightweight VMs:

● Small memory footprint
● Fast bootup times
● Improve dependability: trust, reliability
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VM VMCustomers

Cloud provider Hardware



Tradeoff: Lightweight VMs

Limited observability:

● No monitoring and inspection tools
● Disruptive: re-deployment for every change
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Agent tasks:

● Provisioning
● Monitoring, Inspection
● Maintenance, Recovery

Common solution: VM agents
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Complicated to use:
1600 pages of user manual

Infrastructure maintenance:
Management network, key 
management

VM agents are an unsatisfactory solution

Devel & testing:
Provider, Hypervisor and OS distro 
specific

Overheads for the customer:

Multitude of implementations:
Amazon SSM,   Google OS Config, 
Google Guest Agent,   Microsoft OMI, 
QEMU Guest Agent,   SSH, …



Beyond VM agents
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VM VMCustomers

Cloud provider Hardware

On monolithic servers, providers want to:

● Reduce overheads for customers
● Offer services to customers

○ Out-of-band management (~IPMI)
○ Update notifications
○ Security inspection

Out-of-band management with user-supplied tools?



VMSH: Guest overlays for VMs
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VMSH: Guest overlays for VMs

VMSH attaches to VM on demand & without guest agents
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Design
Design Goals
Overview
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Design goals
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● Non-cooperativeness
○ No guest agents

● Generality
○ No hypervisor specific APIs
○ Many Linux kernels

● Performance
○ No degradation of guest processes



VMSH

fat image

Overview

10

lightweight image

Shell

Overlay 
container

App

VMattach

● Non-cooperativeness
○ Attach to any VM

● Generality
○ Side-load overlay container

● Performance
○ VMSH serves fat image

Host



Implementation
Side-loading a kernel-agnostic library
Container-based system overlay
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Side-loading a kernel-agnostic library
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1. Find Kernel (KSLR) 
using page table

2. Parse kernel 
function table

3. Set up device 
drivers and start 
overlay container

Shell

root: /

Guest kernel

Side-loaded library

VMSH

Virtual Machine Guest overlay

Console 
driver

Block
 driver

Side-loading:

● Side-load executable 
page into guest kernel

● Find kernel and parse its 
function table

The kernel library…

● Starts overlay container
● Starts VirtIO drivers

Guest Kernel

Side-loaded library

VirtIO drivers

Guest overlay

VMMVMSH



Container-based system overlay
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Guest kernel

Side-loaded library

Virtual Machine Guest overlay

Shell

root: /

...

/var/lib/vmsh

VM root

Console device

Block device

VMSH

VirtIO drivers

1. Container based

2. VM root filesystem 
is available

3. Overlay is aware of 
containers in the 
VM

● Overlay for attached tools
● Overlay with VMSH’s block 

device as fs root
● Communication to outside 

world via VMSH devices
● VMSH VirtIO devices via ptrace 

and ioregionfd

Guest Kernel

Side-loaded library

VirtIO drivers

VMSH

Console 
device

Block 
device

Guest overlay

Shell

fat image: /

...
/var/lib/vmsh

VM root

VMM



Evaluation
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Evaluation

Questions:

1. Is the implementation robust?

2. Is our approach general?

3. Does VMSH impact performance?

Experimental Testbed:

● Intel Core i9-9900K CPU
● 64GB RAM
● Intel P4600 NVMe 2TB
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1. Is the implementation robust?

Xfstests [3]:

● File system testing
● Widely adopted by Linux devs
● Regression tests, fuzzing
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Block device Passing tests

Qemu 616

VMSH 616

VMSH’s block device is as robust as Qemu’s



2. Is our approach general?
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v5.10, v5.4, v4.19, v4.14, 
v4.9, v4.4

All Linux LTS kernels:

~40h to cover 5 years of kernel 
development

QEMU

kvmtool

Firecracker

crosVM

4 KVM Hypervisors:



3. Does VMSH impact performance?
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3a. Common case: access original VM



3. Does VMSH impact performance?
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3b. Attached tools: VMSH devices



3a. Overhead for the lightweight image
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0x
For the common case of 

accessing the original VM



3b. Overhead: VMSH devices
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VMSH has a moderate overhead of 1.5x on average

Lower 
is 

better
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VMSH incurs reasonable overhead for management tasks

Phoronix test suite



Demo
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Demo
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Qemu VM

❌ zsh
❌ vim
❌ tcpdump

$ qemu …Terminal for overlay shell

    zsh
    vim
    tcpdump VMSH

    
    
    

$ vmsh attach …



Conclusion

VMSH extends lightweight VMs with external functionality 

● on-demand
● non-disruptively

VMSH provides…

1. A generic guest-overlay  
2. Hypervisor-independent VirtIO devices
3. An OS-independent code side-loading into VM guests

Try it on https://vmsh.org
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https://vmsh.org
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Backup Slides
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VMSH control:

● Direct: provider
● Indirect: customer

Threats: 

1. Inter-VM attack
Difficult: Attached services 
run in guest domain

2. Rogue admin
Unlikely: Providers have 
incentive for prevention

Threat model
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VM Guest VM Guest Customers

Cloud providerVMSH Hypervisor Hypervisor

Rogue admin

VMSH leaves the responsibility of authentication to the provider


