
VMSH
Hypervisor-agnostic Guest Overlays for VMs

Jörg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi,
Redha Gouicem, Pramod Bhatotia

ACM EuroSys 2022

Virtual Machines (VMs)

VMs:

● Consolidation
● Cost-effectiveness

Optimized, lightweight VMs:

● Small memory footprint
● Fast bootup times
● Improve dependability: trust, reliability

2

VM VMCustomers

Cloud provider Hardware

Tradeoff: Lightweight VMs

Limited observability:

● No monitoring and inspection tools
● Disruptive: re-deployment for every change

3

regular VM

dev tools

shell

App

lightweight VM

reduce image size

dev tools

shell ?
App

Debugging, monitoring and repairing is time-consuming

VM

VM agent

App

Agent tasks:

● Provisioning
● Monitoring, Inspection
● Maintenance, Recovery

Common solution: VM agents

4

Complicated to use:
1600 pages of user manual

Infrastructure maintenance:
Management network, key
management

VM agents are an unsatisfactory solution

Devel & testing:
Provider, Hypervisor and OS distro
specific

Overheads for the customer:

Multitude of implementations:
Amazon SSM, Google OS Config,
Google Guest Agent, Microsoft OMI,
QEMU Guest Agent, SSH, …

Beyond VM agents

5

VM VMCustomers

Cloud provider Hardware

On monolithic servers, providers want to:

● Reduce overheads for customers
● Offer services to customers

○ Out-of-band management (~IPMI)
○ Update notifications
○ Security inspection

Out-of-band management with user-supplied tools?

VMSH: Guest overlays for VMs

6

VM

VM agent

App

VM
SH

potential
saving

lightweight VM

App

dev tools

shell

Lightweight VM

App

Dev tools or
 ad-hoc services

VMSH: Guest overlays for VMs

VMSH attaches to VM on demand & without guest agents

7

VM

VM agent

App

only when needed
(like a thumb drive)

lightweight VM

App

fat image

dev tools

shell

VM
SH

attach & run
via VMSH

Independent from VM

potential
saving

Lightweight VM

App

Only when needed
(like a thumb drive)

Attach & run via
VMSH

Independent from
guest userspace

Fat image

Dev tools or
 ad-hoc services

Design
Design Goals
Overview

8

Design goals

9

● Non-cooperativeness
○ No guest agents

● Generality
○ No hypervisor specific APIs
○ Many Linux kernels

● Performance
○ No degradation of guest processes

VMSH

fat image

Overview

10

lightweight image

Shell

Overlay
container

App

VMattach

● Non-cooperativeness
○ Attach to any VM

● Generality
○ Side-load overlay container

● Performance
○ VMSH serves fat image

Host

Implementation
Side-loading a kernel-agnostic library
Container-based system overlay

11

Side-loading a kernel-agnostic library

12

1. Find Kernel (KSLR)
using page table

2. Parse kernel
function table

3. Set up device
drivers and start
overlay container

Shell

root: /

Guest kernel

Side-loaded library

VMSH

Virtual Machine Guest overlay

Console
driver

Block
 driver

Side-loading:

● Side-load executable
page into guest kernel

● Find kernel and parse its
function table

The kernel library…

● Starts overlay container
● Starts VirtIO drivers

Guest Kernel

Side-loaded library

VirtIO drivers

Guest overlay

VMMVMSH

Container-based system overlay

13

Guest kernel

Side-loaded library

Virtual Machine Guest overlay

Shell

root: /

...

/var/lib/vmsh

VM root

Console device

Block device

VMSH

VirtIO drivers

1. Container based

2. VM root filesystem
is available

3. Overlay is aware of
containers in the
VM

● Overlay for attached tools
● Overlay with VMSH’s block

device as fs root
● Communication to outside

world via VMSH devices
● VMSH VirtIO devices via ptrace

and ioregionfd

Guest Kernel

Side-loaded library

VirtIO drivers

VMSH

Console
device

Block
device

Guest overlay

Shell

fat image: /

...
/var/lib/vmsh

VM root

VMM

Evaluation

14

Evaluation

Questions:

1. Is the implementation robust?

2. Is our approach general?

3. Does VMSH impact performance?

Experimental Testbed:

● Intel Core i9-9900K CPU
● 64GB RAM
● Intel P4600 NVMe 2TB

15

1. Is the implementation robust?

Xfstests [3]:

● File system testing
● Widely adopted by Linux devs
● Regression tests, fuzzing

16

Block device Passing tests

Qemu 616

VMSH 616

VMSH’s block device is as robust as Qemu’s

2. Is our approach general?

17

v5.10, v5.4, v4.19, v4.14,
v4.9, v4.4

All Linux LTS kernels:

~40h to cover 5 years of kernel
development

QEMU

kvmtool

Firecracker

crosVM

4 KVM Hypervisors:

3. Does VMSH impact performance?

18

Lightweight VM

App

Fat image

Dev tools or
 ad-hoc services

Host

VMSH

Shell

Overlay
container

Guest
process …

VirtIO

VMMattach

VMSH

fat image lightweight image

Shell

Overlay
container

App

VM

Host

3a. Common case: access original VM

3. Does VMSH impact performance?

19

Lightweight VM

App

Fat image

Dev tools or
 ad-hoc services

Host

VMSH

Shell

Overlay
container

Guest
process …

VirtIO

VMMattach

VMSH

fat image lightweight image

Shell

Overlay
container

App

VM

Host

3b. Attached tools: VMSH devices

3a. Overhead for the lightweight image

20

0x
For the common case of

accessing the original VM

3b. Overhead: VMSH devices

21

VMSH has a moderate overhead of 1.5x on average

Lower
is

better

R
el

at
iv

e
ov

er
he

ad

1.5x

VMSH incurs reasonable overhead for management tasks

Phoronix test suite

Demo

22

Demo

23

Qemu VM

❌ zsh
❌ vim
❌ tcpdump

$ qemu …Terminal for overlay shell

 zsh
 vim
 tcpdump VMSH

$ vmsh attach …

Conclusion

VMSH extends lightweight VMs with external functionality

● on-demand
● non-disruptively

VMSH provides…

1. A generic guest-overlay
2. Hypervisor-independent VirtIO devices
3. An OS-independent code side-loading into VM guests

Try it on https://vmsh.org

24

https://vmsh.org

References

[1] Maintenance icons created by kerismaker - Flaticon,
https://www.flaticon.com/free-icons/maintenance
[2] Cube icons created by Freepik - Flaticon, https://www.flaticon.com/free-icons/cube
[3] xfstests-dev https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/

25

https://www.flaticon.com/free-icons/maintenance
https://www.flaticon.com/free-icons/cube
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/

Backup Slides

26

VMSH control:

● Direct: provider
● Indirect: customer

Threats:

1. Inter-VM attack
Difficult: Attached services
run in guest domain

2. Rogue admin
Unlikely: Providers have
incentive for prevention

Threat model

27

VM Guest VM Guest Customers

Cloud providerVMSH Hypervisor Hypervisor

Rogue admin

VMSH leaves the responsibility of authentication to the provider

