
SafePM: A Sanitizer for PersistentMemory
Kartal Kaan Bozdoğan∗

Technical University of Munich
Dimitrios Stavrakakis∗

Technical University of Munich & University of Edinburgh

Shady Issa
Technical University of Munich

Pramod Bhatotia
Technical University of Munich

Abstract
Memory safety violation is a major root cause of reliability
and security issues in software systems. Byte-addressable
persistent memory (PM), just like its volatile counterpart, is
also susceptible to memory safety violations. While there is
a couple of decades of work in ensuring memory safety for
programs based on volatile memory, the existing approaches
are incompatible for PM since the PM programming model
introduces a persistent pointer representation for persistent
memory objects and allocators, where it is imperative to de-
sign a crash consistent safety mechanism.
We introduce SafePM, a memory safety mechanism that

transparently and comprehensively detects both spatial and
temporal memory safety violations for PM-based applica-
tions. SafePM’s design builds on a shadowmemory approach,
and augments it with crash consistent data structures and
system operations to ensure memory safety even across sys-
tem reboots and crashes. We implement SafePM based on
the AddressSanitizer compiler pass, and integrate it with the
PM development kit (PMDK) runtime library. We evaluate
SafePM across three dimensions: overheads, effectiveness,
and crash consistency. SafePM overall incurs reasonable over-
headswhileprovidingcomprehensivememorysafety, andhas
uncovered real-world bugs in the widely-used PMDK library.
CCS Concepts: • Software and its engineering → Soft-
ware safety.
Keywords: Memory safety, Dependable systems
ACMReference Format:
KartalKaanBozdoğan,DimitriosStavrakakis, ShadyIssa, andPramod
Bhatotia. 2022. SafePM: A Sanitizer for Persistent Memory. In Sev-
enteenth European Conference on Computer Systems (EuroSys ’22),
April 5–8, 2022, RENNES, France.ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3492321.3519574
∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of thisworkownedbyothers than the author(s)must behonored.Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00
https://doi.org/10.1145/3492321.3519574

1 Introduction
Performance-critical software systems are prominently writ-
ten in low-level languages, such as C/C++.While these lan-
guages allow the programmer to explicitly control the ap-
plication’s memory, they can unfortunately lead to mem-
ory safety bugs, i.e., illegal accesses to unintended memory
regions [26, 37, 83, 84, 91]. More specifically, memory safety
violations are categorized as spatial and temporal errors. Spa-
tial violations occur when an operation accesses a memory
region outside its assigned boundaries (e.g., buffer overflows).
Temporal violations are accesses to a memory object before
its creation or after its deletion (e.g., dangling pointers).

This fundamental trade-offbetweenperformanceandmem-
ory safety in the context of low-level unsafe languages mani-
fests in the formof numerous dependability issues in software
systems. For instance, apart fromseveralwell-knownmemory
safetyviolations [1, 6, 43], threemajorprojects:Chromium[8],
Android [5] and Windows [4] report that 70− 75% of their
discovered issues are memory safety bugs. These safety viola-
tions are wide-spread—three out of ten most critical software
weaknesses are memory safety issues [7]. More importantly,
Szekeres et al. [83] illustrate that memory safety is the root
cause of security issues in software systems.

Byte-addressablepersistentmemory (PM), similar tovolatile
memory, is also susceptible to memory safety violations. In
particular, PM is a non-volatile storage medium, accessible
at a byte granularity via load/store instructions with access
latencies close to DRAM [56]. PM content is directly mapped
into an application’s address space and is manipulated at a
byte granularity through native pointers making PM pro-
gramming prone to memory safety errors, especially in the
context of memory unsafe languages (e.g., C, C++).

Over the last twodecades, a rangeofhardware-andsoftware-
based memory safety approaches [75] have been proposed to
tackle the problemofmemory safety for volatilememory (§ 7).
These approaches are prominently designed based on deter-
ministic dynamic bounds-checking, which relies on compile-
time code instrumentation and enhances the original appli-
cation’s memory layout with memory safety metadata which
is checked during the runtime upon each memory access.
While these memory safety approaches are extensively

used incommercial softwareeco-systems forvolatilememory-
based applications, either during development [14, 16, 80] or
production phases [3, 13, 23]—there exists a distinct research
gap when we consider memory safety issues in the context

506

https://doi.org/10.1145/3492321.3519574
https://doi.org/10.1145/3492321.3519574
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

of the emerging persistent memory technology. That is, there
exists no memory safety mechanism designed for PM-based
applications written in unsafe languages.

Importantly, thestate-of-the-artmemorysafetyapproaches
for volatile memory are insufficient for PM. Unlike volatile
memory,which uses native volatile pointers, the PMprogram-
mingmodel introduces a persistent pointer representation for
its objects, and the persistent memory heap is handled using
memory allocators designed for PM, which rely on persis-
tent heapmetadata [31, 51]. In addition, although the types of
memorysafetyvulnerabilitiesonPMremain the sameas those
on volatile memory (e.g., buffer overflows, dangling pointers),
memory safety needs to be further ensured for the recovery
code paths designated to be executed after a potential crash
and/or a restart.

Therefore, we need to design a memory safety mechanism
that simultaneously ensures the correctness and crash con-
sistency of both the application’s data and the memory safety
metadata.
To address this problem, we propose SafePM, a memory

safety mechanism for PM-based applications. More precisely,
SafePM provides comprehensive memory safety by detecting
both spatial and temporal memory safety bugs. It is transpar-
ent to the application, requiring no source codemodifications.
Lastly, SafePM ensures the crash consistency property while
incurring reasonable performance overheads.

At a high-level,SafePM’s design is based on a shadowmem-
ory approach (§ 2.2). It reserves aPMregion (persistent shadow
memory)where it places itsmemory safetymetadata. This PM
part stores the state—accessible or not—of each 8-byte chunk
of PM. The persistent shadowmemory is also mapped over
a specific, precisely calculated location of the virtual address
space (§ 4.1). We call this operation overmap. Thus, SafePM
checks this overmapped PM region on every memory access
during runtime. These checks are injected in the application
through the compiler pass instrumentation of AddressSani-
tizer (ASan) [80]. Further,SafePM ensures that eachPMobject
is surrounded by guard regions (red zones) that are marked as
inaccessible in the persistent shadowmemory. Lastly, SafePM
incorporates a runtime library that instruments the PMman-
agement functions to reflect their modifications in the persis-
tent shadowmemory region in a crash consistent manner.
We implement SafePM based on Intel’s PMDK and

ASan [80]. SafePM’s persistent shadowmemory follows the
same binary format as that of ASan, and is stored as part
of the persistent pool created by SafePM. SafePM keeps
PMDK’s memory layout intact, such that a persistent pool
created by SafePM is a valid PMDK pool. When a persistent
pool is opened, SafePM maps its persistent shadow mem-
ory over the relevant portion of the ASan’s shadowmemory.
Further, SafePM’s runtime library augments the functional-
ity of PMDK’s libpmemobj [51] PM management routines
to incorporate the handling of the persistent memory safety
metadata. Thus, the PMheap operations that modify the state

of a PM range, transparently update the corresponding part
of the persistent shadow memory. These operations allow
SafePM to keep the ASan’s compiler pass and optimizations
intact and use them for memory checks, while supporting
the programming interface and semantics of PMDK, without
requiring modifications to an application’s source code.
We evaluate SafePM along three dimensions: (i) perfor-

mance and space overheads using PMDK’s benchmark frame-
work,pmembench [54]andapersistentKVstore,pmemkv [50],
(ii) effectiveness using the RIPE framework [87] and (iii) crash
consistency, which we validate for pmembench using the es-
tablished pmemcheck tool [22]. Our evaluation shows that
SafePM offers the same memory safety guarantees for per-
sistent memory as ASan provides for volatile memory with
reasonable performance overheads, e.g., 1.20−2.62× slow-
down for the KV store, while ensuring crash consistency.
Through SafePMwe have also identified two memory safety
bugs in the widely-used PMDK library.

Overall, our paper makes the following contributions.
• Wepresent the design (§ 4) of SafePM, the first solution
for comprehensive spatial and temporalmemory safety
for PMDK-based PM applications.

• Ourdesign leverages a shadowmemoryapproach trans-
parently supporting the established PMDK program-
ming model, thus allowing seamless integration into
existing testing workflows and tool chains.

• We prototype (§ 5) and extensively evaluate SafePM
across three metrics: overheads (§ 6.2, § 6.3, § 6.6), ef-
fectiveness (§ 6.4, § 6.7) and crash consistency (§ 6.5).

SafePM’s source code and evaluation setup are publicly avail-
able (Artifact Appendix A).

2 Background
2.1 PersistentMemory
Persistent memory (PM) is a byte-addressable, non-volatile
memory type with low access latency. It is connected to the
CPUvia thememorybus and is accessiblewithload/store in-
structions [73]. PM can be used in two distinct modes [25, 55];
(i) memory and (ii) app-direct mode. In the former, the PM
device acts as a volatile memory extension, while in the latter,
data persists in PM even when the system is powered off. In
the app-directmode, PM interfaceswith theOS via PM-aware
direct access file systems (DAX) [45, 60]. DAX eliminates the
page cache from the I/O path and allowsmmap(2) to establish
direct mappings to PM [49]. Thus, PM content can be directly
accessed as memory mapped files in an application’s address
space.

PersistentMemory Development Kit (PMDK). Intel has
developedacollectionof libraries inPersistentMemoryDevel-
opment Kit (PMDK) [18] to support and facilitate application
development forPM.The included libraries coverawide range
of applications and provide different ways to manage PM,

507

https://github.com/TUM-DSE/safepm
https://github.com/TUM-DSE/safepm

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

ranging from low-level primitives [15] to a persistent transac-
tional object store [51] and a persistent key-value store [50].
libpmemobj.libpmemobj [51] is a corecomponentofPMDK
that implements software based transactions to provide sup-
port for atomic updates to PM data leveraging redo and undo
logging. It exposes intuitive non-transactional as well as
transactional APIs [46, 47] for PM memory management.
libpmemobj organises PM in files, called PM pools, which are
mapped into contiguous regions in the application’s address
space. PM pools contain a pool header, a section dedicated
to the redo and undo logs required for transactions support,
called lanes, and the persistent heap, which hosts the PM
objects allocated by the application as well as heap metadata.

The kernel canmap PM pools to different regions of the ad-
dress space in different runs. Tomaintain consistent object ref-
erences across restarts, libpmemobj introduces the concept
of persistent pointers. This is a fat-pointer scheme, where each
object is described by a 16B structure, called PMEMoid, con-
taining a pool_id and an offset relative to the start of the pool.
libpmemobj exposes the pmemobj_direct() function to con-
struct thenativepointer foranobject, basedon itsoffsetwithin
the pool and the virtual address where the pool is mapped.

2.2 Memory Safety
Memorysafetybugshavebeenprominent for low-levelunsafe
languages with poor built-in memory protection capabilities,
like C/C++. There are two broad categories of memory bugs;
spatial and temporal. A spatial memory bug is an access out-
sideof theboundariesof the targetedmemory region,whereas
a temporal memory bug is an access to a memory region that
has not yet been allocated, or has already been freed. These
bugs constitute one of the main targets for attackers to get
access to unintended memory regions and, thus, be able to
hijack the control-flow or leak sensitive data [67, 84]. To pre-
vent such vulnerabilities, memory accesses beyond allocated
memory regions must be prevented. This requires a suitable
instrumentation of an application to perform bound checks
on memory accesses. Towards this direction, several mem-
ory safety techniques have been proposed based on software
implementations [24, 35, 41, 74, 80] or on hardware modifica-
tions [36, 75, 76, 88].

More specifically, theproposedapproaches canbeclassified
into three broad categories [69]:
(a)Trip-wireor shadowmemorybasedapproach.These
approachesuseapartof theavailablememorytostorewhether
or not each fixed-size chunk of memory is addressable. This
memory part is called shadow memory. Allocated memory
regions are surrounded with guards, marked as inaccessible,
allowing the detection of spatial violations [41, 42, 80].
(b) Object-based approach. Such approaches check all the
pointer manipulations to ensure that the resulting pointer is
notout-of-boundswith respect to theobject it points to [24, 32,
33, 35, 36, 38, 79]. They track metadata on a per-object level.

(c) Pointer-based approach. Approaches of this category
maintain the upper and lower bounds that a pointer is allowed
to access and perform the bound checks on every memory
access [57, 68, 70, 72, 82]. Metadata is kept on a pointer level.

2.3 ASan: a ShadowMemory-based Approach
Among these approaches, the shadow memory based ap-
proach, as adopted by AddressSanitizer (ASan) [80], is the
most popular memory safety technique [83]. It is widely used
at Google and other organizations to detect memory safety vi-
olations. ASan supports both GCC [10] and Clang/LLVM [9].

In particular, ASan reserves a part of the address space for
shadowmemory, where it keeps metadata indicating the state
(i.e., accessible ornot) of thememory regionsof anapplication,
including the stack, heap and global variables. ASan updates
the shadow memory whenever an object is created, freed,
or moved. It surrounds objects with memory regions, called
red zones, which are marked as inaccessible (poisoned) in the
shadowmemory. On each memory access, ASan checks if the
requested address is addressable. These checks are added via
ASan’s compiler instrumentation module. Any access to an
unallocated region or red zone is detected, usually resulting
in the crash of the program before its state can be corrupted
or sensitive information leaks. Additionally, to ensure tem-
poral memory safety, ASan implements a quarantine zone
for recently-freed objects which prevents their regions from
being allocated for some time.

3 Overview
SafePM is an efficient tool that provides comprehensivemem-
ory safety for PM applications developed with PMDK. Cur-
rent state-of-the-art approaches for ensuring memory safety
for PM incorporate prohibitive memory and performance
overheads (e.g., memcheck [16]) or require source code modi-
fications or an adoption of a new library (e.g., Corundum [44]).
Unlike those, SafePM is transparent to the application and
incurs reasonable overheads, comparable to those of ASan
for volatile memory.

SafePM leveragesASan todetect spatial and temporalmem-
ory safety violations within a PM pool without requiring any
source code modifications. Our key insight is to benefit from
the optimizations and the efficiency of the solidly engineered,
well-tested, and widely-used ASan. Therefore, SafePM keeps
ASan intact and adds metadata to PM pools to integrate with
ASan(§4). InSafePM, thememorysafetymetadata follows the
ASan’s format and the runtime checks are inserted by ASan ’s
compiler pass. The core difference is that SafePM keeps this
metadata valid across application restarts/crashes and pool
re-openings by placing it inside the persistent memory pool
and updating it in a crash-consistent manner. More specifi-
cally, SafePMmodifies the PM pool layout and transparently
stores the persistent shadowmemory as a PM object which is
retrievable through the introduced shadow root object (§ 4.1).

508

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

Persistent memory pool

Pool header

Persistent shadow memory

PM object

Red zone

Red zone

Persistent heap

Virtual address space

Pool header

Persistent shadow memory

PM object
Red zone

Red zone

Bad

Persistent shadow memory

PM object's shadow bytes

ASan
shadow
memory

Pointer
check

mmap()overmap

Figure 1.Overview of SafePM.
Thus, SafePM is compliant with PM programming concepts
and is able to detect persistent memory safety violations even
after unexpected shutdowns/crashes.
An overview of SafePM’s modified PM pool design is

shown in Figure 1. PMpools are directlymapped to the virtual
address space. SafePM reserves a part of the PM pool heap
for the persistent shadowmemory (PSM) which maintains the
memory safety metadata of the pool. The part of the pool
corresponding to PSM is mapped over the ASan’s shadow
memory during the initialization phase of SafePM. We name
this core operation of SafePM as overmap. Further, SafePM’s
memory allocator inserts and poisons the appropriate red
zones in the same way ASan does for volatile memory while
preserving the programming model of PMDK and the crash
consistency of the data and metadata.
Design goals. SafePM achieves the following goals:
• Memory safety: SafePM provides memory safety for a wide
range of potential PM access violations including both spa-
tial (e.g., PM object-overflows) and temporal (e.g., use-after-
free) in a similar manner as ASan does for volatile memory.

• Transparency & compatibility:We design SafePM based on
PMDK and ASan which allows for seamless integration in
existing PM applications without code modifications.

• High code coverage: SafePM should be able to detect mem-
ory safety violations in different code paths including re-
covery paths for abrupt shutdowns. This is achieved by
ensuring the crash consistency for both PM (meta)data and
SafePM’s metadata leveraging the transactional interfaces
and logging mechanisms provided by PMDK.

• Performance: SafePM keeps the compiler pass of ASan in-
tact and leverages its optimizations to limit the introduced
overheads due to the additional memory checks, making
SafePM suitable for performance critical environments.

3.1 SystemModel

Fault model. SafePM aims to ensure memory safety for
PMDK-based applications. It is capable of detecting and re-
porting both spatial (e.g., object overflows) and temporal (e.g.,
use-after-free) memory safety bugs in PM.

SafePM must also preserve the crash consistency prop-
erty, as it targets PM-enabled applications. Crashes or unex-
pected system shutdowns can lead to data inconsistencies.
This means that SafePM has to enforce mechanisms to en-
sure the recovery to a consistent state not only for the PM
(meta)data but also for the memory safety related metadata.
Further, SafePM extends the scope to also provide memory
safety guarantees for the recovery path.
Usage model. SafePM is a generic testing tool to prevent
memory safety bugs in PMDK programs during the develop-
ment phase. It provides the same memory safety guarantees
asASan. Further, it also offers “partial safety coverage" toman-
ually select the code parts where the checks will be applied
to limit the performance overhead.
Programming model. SafePM is based on PMDK which
is entirely written in the unsafe C/C++ languages. SafePM
preserves the programming model and semantics of PMDK.

3.2 Design Challenges

#1: Transparency.An effective memory safety testing tool
should require no source code modifications. State-of-the-art
approaches, like ASan [80] andmemcheck [16], already cover
this need with the instrumentation of the volatile memory
management functions.SafePM shouldprovide the same level
of transparency for the PM pool heap management APIs.
Approach: SafePM preserves PMDK’s programming model
and instruments the PMmanagement functions via carefully
designed wrappers (§ 5). Precisely, SafePM adapts the func-
tions that manage the pool (create/open/close) and the PM
objects (alloc/realloc/free) so that their changes are reflected
in the PSM. SafePM supports PMDK’s PMmanagement APIs,
requiring no source code modifications.
#2: Compatibility with ASan. ASan is one of the most
prominent tools to detect memory safety violations in the
volatile memory regions of an application. SafePM needs
to extend ASan checks to objects residing in PM, which are
managed by libpmemobj’s memory management functions.
Approach: During pool creation, SafePM reserves a shadow
memory region inside PM pools for the PSM. This region
corresponds to the respective shadowmemory used by ASan.
To comply with ASan’s design, SafePM also augments the
PMDK allocator to surround the PM objects with poisoned
red zones as well as to modify the PSM following the same
binary format as ASan. To preserve transparency, SafePM
wraps memory allocators to skip the red zones and return
pointers to the object data as a programmer would expect.
#3: Durability and crash consistency. PM applications
have to ensure the durability and the crash consistency for
the PM data in case of an unexpected shutdown. In SafePM,
the scope of crash consistency is extended to includememory
safety metadata as well. This implies that to integrate PMDK
with ASan, SafePM has to ensure the durability and crash

509

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

consistency of thememory safetymetadata required by ASan
along with the user specific PM residing data. This is imper-
ative to ensure that protection against memory safety vul-
nerabilities remains intact even after crashes and unexpected
shutdowns, without the need to reconstruct the metadata
from scratch.
Approach: SafePM reserves the memory safety metadata as
a part of the PM pool, thus achieving its durability. Metadata
durability ensures that uponanapplication restart or recovery
after a potential crash, SafePM is aware of the (de)allocations
made inside the PM pool and is able to correctly check for
memory safety violations based on the persistent, valid state
of the memory safety metadata.
To ensure crash consistency, and, subsequently, the va-

lidity of its memory safety metadata along with PM pool’s
(meta)data, SafePM leverages PMDK’s software transactions.
EachPMobjectmodification (alloc/realloc/free)needs tobe re-
flected in the shadowmemory representation. SinceSafePM’s
metadata is part of the pool, its modifications are performed
inside transactions along with the respective PM manage-
ment operations, guaranteeing crash consistency via PMDK’s
logging mechanism.

#4: Coverage of recovery paths. PM applications are de-
signed to be able to recover fromabrupt crashes. This requires
special code paths that restore the PM to a consistent state.
SafePMhas to ensurememory safety for these recovery paths.
Approach: SafePMmaintains the memory safety metadata
as part of the PM pool. Unlike with ASan, where the memory
safety metadata is volatile and reconstructed from scratch
on each application run, SafePM’s memory safety metadata
remains consistent and can be retrieved across reboots or
failures. Thus, SafePM ensures the durability of its metadata
along with its crash consistency and can enforce memory
safety on PM objects even on the application’s recovery code
paths.

4 SafePMDesign
Figure 2 illustrates an overview of SafePM’s components.
SafePM reservespartof thePMpool for thePSMandovermaps
it to the location expected by ASan in the program’s virtual
address space.Moreover, SafePM augments thememoryman-
agement operations of PMDK to surround allocated objects
with poisoned red zones and update the PSM accordingly.

Listing 1 illustrates an application using SafePM, which
opens a PM pool, allocates and accesses PM objects. The high-
lighted lines of code indicate the additional operations and
checks inserted by SafePM (in blue) and ASan (in red). On
line 3, the application opens an existing PM pool. SafePM
transparently initializes the pool’s PSM, if needed (line 4) and
overmaps it on the relevant section of the ASan’s shadow
memory (line 5). Then, the application allocates 𝑁 objects
(line 11).Note thatSafePM transparently converts each alloca-
tion to a transaction in order to ensure the crash consistency

1 struct my_obj { int src; int dest; } // object structure
2 ...
3 PMEMobjpool *pop = pmemobj_open(path); // open the PM Pool
4 init_shadow_memory(pop);
5 overmap_pool(pop);
6 ...
7 PMEMoid obj_oid[N]; // declare the object handles
8 size_t size = sizeof(struct my_obj);
9 for (int i=0; i<N; i++) {
10 TX_BEGIN(pop){
11 pmemobj_alloc(pop,&obj_oid[i],size+2*RZ,...);
12 snapshot_and_set_shadow_memory();
13 } TX_END
14 }
15 ...
16 int val;
17 for (int i=0; i<M; i++) {
18 sh_src = get_shadow(&D_RO(object_oid[i])->src);
19 if (*sh_src != 0 && ...)
20 error(sh_src);
21 val = D_RO(object_oid[i])->src; //load from PM
22 sh_dest = get_shadow(&D_RW(object_oid[i])->dest);
23 if (*sh_dest != 0 && ...)
24 error(sh_dest);
25 D_RW(object_oid[i])->dest = val; //store to PM
26 }
27 ...
28 pmemobj_close(pop); //close the PM pool
29 unmap_shadow_mem();

Listing 1. SafePM code transformation: lines in blue are
injected by SafePM’s wrappers and lines in red by ASan.

of its memory safety metadata (lines 10-13). The application
then accesses the PM objects (lines 21 and 25) and ASan intro-
duces the appropriate shadowmemory checks (lines 18-20,
22-24). These checks get redirected to the overmapped PSM
and leverage the memory safety metadata to ensure that the
requested PM addresses are addressable. In case that any of
these tests fails, an error is reported (e.g., if𝑀 >𝑁). Finally,
the PM pool is closed and SafePM unmaps the PSM (line 29).

4.1 PersistentMemory SafetyMetadata
SafePM constructs persistent data structures to store the re-
quired memory safety metadata. SafePM does not consume
additional memory compared to ASan and reserves the same
portion of an application’s virtual address space as ASan does.
However, it differentiates itself as the memory safety meta-
data is placed on PM. More specifically, SafePM introduces
the following persistent metadata data structures: (i) persis-
tent shadow memory, (ii) persistent red zones and (iii) the
shadow root object.
The persistent shadow memory. The central data struc-
ture of SafePM’s design is the persistent shadow memory
(PSM), which stores information about which PM pool re-
gions are addressable. To be compatible with ASan’s compiler
pass, we use the same format for the PSM as the one used
by ASan, which requires allocating one byte of PSM for ev-
ery 8 bytes of a PM pool. Following the format of ASan for

510

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

DAX FS

Virtual address space

OS

Persistent
memory

Host
memory PM pool

Shadow
memory

Persistent shadow memory

pmemobj_open(/mnt/pmem)overmap

PM pool
/mnt/pm/f1 PM

object's
shadow
bytes

2B2B PM object
Red
zone
16B

Red
zone
16B

Shadow root object

PMEMoid shadow_mem

PMEMoid app_root

Heap header
8KB

Persistent shadow memory
1/8 * pool_size

Figure 2.Detailed architecture of SafePM.

the (volatile) shadowmemory, the PSM is an array of bytes,
where each byte stores the number of accessible bytes for
its 8 corresponding bytes, or 0 to mark them all accessible.
For non-accessible 8-byte blocks, it can store why they are
non-accessible, for example that they were freed or are part
of a red zone. ASan’s runtime library reserves 1/8𝑡ℎ of the
virtual address space for shadowmemory. SafePMmaps the
PSM over ASan’s shadowmemory at the corresponding lo-
cation that ASan uses for the mapped pool’s virtual address
range. Importantly, this overmap operation allows SafePM
to leverage ASan’s shadow memory checks without modi-
fying its runtime library. By reserving a fixed region in the
lower part of the virtual address space, the corresponding
shadowmemory address can be easily found with a simple
address translation formula, where offset is platform and OS-
dependent:

1 #define GET_SM(addr) (void *)((long long)addr >> 3 + offset)

SafePM needs to persist the PSM data and ensure its crash
consistency. To this end, SafePM creates PSM as a persistent
object during the creation of a new persistent pool. The size
of the PSM is at least 1/8𝑡ℎ of the pool size requested by the
application. Further, SafePM initializes the PSM as inaccessi-
ble. This ensures that the application code cannot manipulate
any PM regions which are not explicitly allocated by the ap-
plication, including unallocated PM heap parts, PM pool’s
metadata and the PSM.
The persistent red zones. Similar to ASan, SafePM places
red zones around PM objects, which are 16 B in size by de-
fault. A red zone is a region of memory marked inaccessible
(poisoned) in the shadowmemory, which prevents user code
from accessing it. This enables the checks inserted by ASan’s
compiler pass to detect out-of-bounds accesses. Persistent red
zones are allocated on object (re)allocation. Upon an object
deallocation, the red zones are removed alongwith the object,
and are marked inaccessible in the PSM, providing temporal
violation detection capabilities.

The red zone size constitutes a trade-offbetween safety (i.e.,
buffer overflow detection capabilities) and space efficiency
(i.e., memory consumption overhead). Large red zones waste
space, while small red zones might fall short in detecting non-
contiguous memory violations. For instance, in case that two
objects are separated by a 16 B red zone, SafePM will not
detect under-/overflows of more than 16 B as the problematic
memory access might fall within another object’s boundaries.
Shadow root object. PM pools contain a root object that is
used as the reference point by the application to reach the
other pool’s objects. SafePM creates a shadow root object
during the pool creation. It contains persistent pointers to the
PSM and the user root object, as well as the size of the user
root object. From libpmemobj’s perspective, the shadow root
object is the root object of the PM pool. SafePM’s wrappers
hide the additional fields of the shadow root object by re-
turning the expected app_root field to the application when
requested by the programmer.

1 struct shadow_root {
2 PMEMoid psm; //PMEMoid of the PSM
3 PMEMoid app_root; //PMEMoid of the app's user root object
4 uint64_t app_root_size; // size of the user root object
5 };

4.2 SystemOperations
In this sectionwe describe the different operations of SafePM
that manipulate the PSM and the red zones to transparently
ensure both memory safety on PM and crash consistency.
PM pool creation. When a program calls the function
pmemobj_create, SafePM’s wrapper creates the PM pool,
allocates and initializes the shadow root object as well as the
PSM inacrash-consistentway. If theoperation is tornafter the
pool is created but before the initialization of the shadow root
object and the PSM completes, the pmemobj_openwrapper
will recover the persistent pool using the transaction capabili-
ties of libpmemobj and recreate thePSM. During the creation
of the pool, the PSM is initialized so that no region of PM is

511

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

user-accessible, guaranteeing that an application cannotmod-
ify the pool’s metadata, or access non-allocated PM regions.

1 PMEMobjpool pmemobj_create(path, size) {
2 //create a pool with extra 1/8th of size for the PSM
3 PMEMobjpool

* pool = pmemobj_create_orig(path, size+size/8);
4 //transactionally create the PSM , set to inaccessible
5 PMEMoid sm_root = init_psm(pool);
6 //mmap the PSM to its designated region
7 overmap_psm(sm_root);
8 return pool;
9 }

Note that the PSM of a memory pool is stored alongside
the data of the pool. The PSM can be located at an arbitrary
position within the mapped PM pool. Thus, ASan’s compiler
pass won’t be able to correctly map virtual addresses within
thePMpool to thePSM. Thiswould require changes toASan’s
compiler pass, hampering the transparency property. As a
workaround, after a PM pool is mapped to the virtual address
space during pmemobj_create, SafePM overmaps the PSM
region of the pool to the position determined by the virtual-
address-to-shadow-address formula used by ASan. Figure 2
shows a schematic that visualizes this operation.
PMpool opening. pmemobj_open is called to open an exist-
ing PM pool . SafePM’s wrappers check the pool’s root object
to determine if the shadow root object and the PSM are set
up correctly. If it is the case, the creation of the PM pool was
completed, and the PSM gets overmapped to the respective
location in the virtual address space according to thememory
location returned by PMDK’s original pmemobj_open. Oth-
erwise, the creation of the pool must have been torn and the
transaction forcreatingand initializing theshadowrootobject
and the PSM is executed again before the overmap operation.

1 PMEMobjpool pmemobj_open(path) {
2 PMEMobjpool* pool = pmemobj_open_orig(path);
3 // ensure the shadow root and PSM are set up correctly
4 recover(pool);
5 overmap_psm(pool);
6 return pool;
7 }

Memory management operations. PMDK supports
different memory management operations to (re/de)allocate
memory regions within a PM pool. We classify these
operations into two distinct types: transactional operations
(e.g., pmemobj_tx_alloc) that operate within a programmer-
defined transaction and non-transactional operations (e.g.,
pmemobj_alloc) that do not require a transaction, but
leverage atomic operations to ensure crash consistency.
TransactionalPMmanagementoperations.The transac-
tional memory management operations are executed within
a transaction and use redo/undo logs to ensure crash consis-
tency. SafePM builds on this and uses the memory snapshot-
ting capabilities of libpmemobj to guarantee that the changes

made to the PSM during a PM operation are atomic with re-
spect to the changesmade to the PMheap state, even in case of
a tornoperationor the abortionof a transaction.SafePM snap-
shots the respectivePSM region, thereby adding it to the undo
log of the current transaction, before performing any in-place
updates to the PSM to demarcate the user-accessible regions.
The transactional allocation takes into account the size of

theredzonesandadds it to theobject size requestedbytheuser.
Then, the relevant region of the PSM is snapshotted and the
user-accessible region is marked as such, while the adjacent
red zones aremarked inaccessible. Note that the PMEMoid re-
turned by PMDK’s allocator indicates the offset at the left red
zone. Therefore a simple translation is performed to return
to the application the offset of the object’s actual payload.

1 PMEMoid pmemobj_tx_alloc(size) {
2 //allocate an object with extra space for the red zones
3 PMEMoid *oid = pmemobj_tx_alloc_orig(size+2*RZ_SIZE);
4 //get the corresponding address within PSM
5 void *oid_psm = get_psm_address(oid);
6 //add the existing PSM region to the undo log
7 snapshot(oid_psm, sm_size);
8 //update the PSM region with the correct values
9 mark_addressable(oid_psm, size);
10 //set the pointer returned to the start of the payload
11 oid.off += RZ_SIZE;
12 return oid;
13 }

The transactional reallocationmight cause an existing ob-
ject to be moved. In this case, SafePMmarks the old location
of the object as inaccessible. The corresponding PSM region
to its new location ismodified to reflect thenewuser-specified
size of the object. Still, all changes to the PSM are crash con-
sistent, thanks to the transactional support of libpmemobj.

1 PMEMoid pmemobj_tx_realloc(oid, new_size) {
2 oid.off -= RZ_SIZE;
3 //reallocate the object to the new size
4 PMEMoid *new_oid

= pmemobj_tx_realloc_orig(oid, new_size+2*RZ_SIZE);
5 void *oid_psm = get_psm_address(oid);
6 if (oid != new_oid) { //object has been moved
7 //add the old corresponding PSM region to undo log
8 snapshot(oid_psm, sm_size);
9 //mark the old PSM region as freed
10 mark_non_addressable(oid_psm, size);
11 }
12 void *new_oid_psm = get_psm_address(new_oid);
13 snapshot(new_oid_psm, new_psm_size);
14 mark_addressable(new_oid_psm, new_size);
15 new_oid.off += RZ_SIZE;
16 return new_oid;
17 }

The transactional deallocation uses the relevant
original PMDK routine to free the specified object
(pmemobj_tx_free). SafePM’s respective wrapper marks
the memory region inaccessible. Note that libpmemobj
includes built-in protection against double-frees, but it is
based on the state of the persistent heap, the modification

512

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

of which is delayed until the transaction is committed.
Thus, double-frees that happen within a single transaction
escape detection. To detect such cases, the wrapper explicitly
verifies that the region the application is attempting to free
is accessible. Unlike ASan, SafePM has no explicit quarantine
for freed memory regions, but based on our experience,
libpmemobj delays reallocating a deallocated region of PM.

1 void pmemobj_tx_free(oid) {
2 oid.off -= RZ_SIZE;
3 //verify object's validity
4 void *oid_psm = get_psm_address(oid);
5 if (!is_addressable(oid_psm))
6 error();
7 //free the requested object
8 pmemobj_tx_free_orig(oid);
9 snapshot(oid_psm, sm_size);
10 mark_non_addressable(oid_psm, size);
11 }

Non-transactional PM management operations.
SafePM transparently replaces the non-transactional
memory management operations with their transactional
counterparts. This is functionally correct, but forgoes the
performance advantage of non-transactional operations.
Unfortunately, it is inevitable, because eachmemorymanage-
ment operation causes modifications to the shadowmemory
which cannot be performed with a single atomic operation in
conjunction with the actual PM heap metadata modification.

4.3 Additional Design Details

Crash consistency. SafePM ensures crash consistency for
the memory safety metadata stored on PM: if an application
crashes, both the application data and the SafePMmetadata
will be able to recover to a consistent state. To this end,
we leverage the transactional interface of PMDK. All PM
management operations,whether transactional or atomic, are
executed using their transactional counterpart. A pool’s PSM
object is allocated and its shadow root object is initialized in
a single transaction during the creation of that pool and the
modification of the PSM happens within the transaction that
modifies that state of an object. The shadowmemory is mod-
ified after its state is snapshotted using the undo log, hence
guaranteeing that the modifications are crash consistent.
System recovery. If an application crashes abruptly during
the execution of a transaction, SafePM’s metadatamay be left
in an incorrect state. However, whenever a pool is opened,
PMDK checks if there exists any valid redo or undo logs. A
transaction, that is interrupted before atomically validating
its redo log, will apply its valid undo log to revert the PM
pool’s data to a consistent state. Otherwise, if a transaction
is interrupted after persisting its redo log, its redo log entries
will be applied. Neither case affects the correctness of the
state as PSM modifications are performed in place and its
initial content is tracked in the transaction’s undo log. One
unique case is when an application fails after the pool was

created but before the transaction that allocates and initializes
the PSM and the shadow root object persisted its redo log. To
handle such cases, after a pool is opened successfully, SafePM
checks if the pointer to the PSM object within the shadow
root object is null. In this case, the PSMwill be reinitialized
and the shadow root object will be set accordingly.
Temporal safety. Similar to ASan, SafePM provides proba-
bilistic temporal safety capabilities.When a PMobject is freed
or moved, the corresponding shadowmemory is marked as
freed. Any subsequent access to this region will be detected
by the shadowmemory checks inserted by ASan. Further, the
PMDK PM allocator does not reuse freed memory regions
immediately but postpones their re-allocation. This enables
SafePM to detect violations such as use-after-free or double
frees that occur before the PM region is allocated again.
Multi-threading support. PMDK transactions do not pro-
vide any level of thread-safety for the PM objects and it is the
programmer’s responsibility to ensure the application is free
of race conditions. Because different persistent objects have
disjoint corresponding regions in the PSM, unless the applica-
tion is racy, the modifications on the PSMwill be thread-safe.
Further, PMDK reserves a space within the pool that is
divided into lanes. Lanes are thread-specific and are used
to store the logs of each thread’s transaction. Consequently,
SafePM’s transactional operations are also thread-safe.
Metadata protection. SafePM initializes the PSM and
marks all thePMpool as inaccessible, including theheapmeta-
data of PMDK. As the heapmetadata region is never allocated
via thelibpmemobjAPI, its corresponding shadowmemory is
never set to accessible. Accordingly, any access to a metadata
region by the application’s code will be detected by SafePM,
thus providing metadata protection without the need for any
changes to PMDK, unlike state of the art approaches [31].
Partial safety coverage.ASan is mostly used in offline test-
ing phases due to its prohibitive instrumentation costs for
everymemory access. Therefore, ASan provides the option to
disable the instrumentation for specific global variables and
functions with the (no_sanitize("address")) attribute.
This option deducts all ASan checks from the annotated func-
tion. It is designed for cases where the programmer trusts spe-
cific functions and wants to avoid the performance overhead.

SafePM also supports this functionality. It allows users to
denote functions that will not be instrumented. For such code
parts, SafePM exposes a series of ‘unsafe’-prefixed wrappers
which internally call the PMDK’s PMmanagement functions
without performing any PSM and red zones management.
However, SafePM imposes one limitation: objects allocated
with unsafe wrapper functions should only be accessed in
uninstrumented functions. Accessing them in instrumented
code causes SafePM to report an error, as their corresponding
bytes in PSM remain marked as inaccessible.
Limitations.SafePM follows the samedesign for the shadow
memory as ASan and relies on the ASan’s compiler pass

513

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

for detecting memory safety violations. Hence, it inherits
the same limitations. SafePM is incapable of detecting
intra-object overflows as the red zones are inserted at the
object level to avoid changing the objects’ memory layouts.
SafePM also misses out-of-bounds access that fall within the
boundaries of another object.
Furthermore, in SafePM, the persistent shadowmemory

is allocated and handled as an individual PM pool object
and cannot exceed the size of 16 GB [30]. This is a limitation
imposed by PMDK. Thus, since the persistent shadow
memory occupies one eighth of the persistent pool, SafePM
can currently support persistent pools up to 128 GB in size.
Usage in production. In SafePM, there are two sources that
contribute to the higher latency of PM operations and the
overall performance overhead: (i) ASan ’s instrumentation,
and the resulting PSM accesses, and (ii) the metadata
bookkeeping of SafePM’s wrappers.
Persistent pools created by PMDK are not compatible

with SafePM, and vice versa. However, an application
linked with SafePM can be used in production with ASan ’s
instrumentation disabled during compilation. The overheads
of such an approach can be observed in our SafePM w/o
ASan variant (§ 6). Note that, in this case, the memory safety
violations are not detected. For this reason, we encourage
SafePM to be used in development phases or make use of the
partial safety coverage if production use is desired.
Further, if an application passes the development phase

and no longer requires SafePM to be enabled, it can be
linked against the vanilla PMDK for production use, without
any source code modifications. Unfortunately, the PM pool
recreation is mandatory in this scenario. Thus, the overheads
introduced both by ASan and SafePM’s wrappers can be
avoided entirely. This level of transparency is a key enabler
that makes our approach practical.
Future extensions. SafePM builds on PMDK and ASan.
However, the underlying design can be ported to other persis-
tent memory libraries, provided they support transactional
updates on PM pools. The port can be achieved by creating
the respective wrappers around the memory management
functions, as SafePM performs for libpmemobj [51].
The applicability of SafePM’s approach to other memory

safety checking tools depends on the methods that the tool
uses to enforce memory safety. SafePM can be modified to
support other shadow-memory based approaches [27, 78]
by adopting their logic for the shadowmemory handling and
memory safety metadata updates. For SafePM, we choose
ASan because it is widely used and integrated into several
compiler toolchains [9, 10].

5 Implementation
SafePM consists of (i) a runtime library based on PMDK and
(ii) the ASan’s compiler pass, for the instrumentation of the
application code.

Poolmanagement
pmemobj_create creates a PM pool
pmemobj_open opens an existing memory pool
pmemobj_close closes a memory pool

Memorymanagement
pmemobj_tx_alloc transactional allocation
pmemobj_tx_realloc transactional reallocation
pmemobj_tx_free transactional deallocation
pmemobj_alloc atomic allocation

Other operations
pmemobj_alloc_usable_size returns allocated size
pmemobj_type_num returns object’s type number
pmemobj_first returns the first pool object
pmemobj_next iterates over the objects
Table 1. List of PMDKAPI modified to support SafePM

Runtime library. We implement the runtime library of
SafePM as a fork of PMDK v1.9. In SafePM, we develop
wrappers around the exposed PM management functions
which require modifications to the PSM. These wrappers
augment the PMDK functions with their respective shadow
memory operations while ensuring crash consistency
for both the PM pool (meta)data and the memory safety
metadata, as explained in Section 4.2. Table 1 enumerates the
functions that were wrapped by SafePM.
To ensure transparency and compatibility with existing

PMDK-based applications, SafePM’s wrappers are named
after their PMDK equivalent function. Thus, the function
calls from an unmodified PMDK application, which is linked
against SafePM, get redirected to their respective wrapped
version to include the memory safety metadata management.

The PSM is created as an object within a PM pool. To be
able to perform the overmap operation, the size of the PSM
must be a multiple of the page size (4KB for x86/AMD64).
mmap also requires that the in-file offset of the portion to be
memory-mapped is a multiple of the page size. The in-pool
offset of the persistent shadow memory must satisfy this
condition. Furthermore, the PSM must be mapped to a
starting address that is page-aligned, which requires that the
persistent pool is mapped to a starting address that is aligned
to eight times the page size. Finally, the entire pool needs
to be padded to a multiple of eight times the page size, since
each shadow byte corresponds to eight application bytes.
SafePM’s wrapper for pmemobj_create is responsible for
enforcing all of these padding and alignment constraints.
ASan prevents the application code from modifying the

shadow memory by using mprotect to set the shadow
memory’s protection level to PROT_NONE. Unlike ASan,
SafePM relies on the PSM being initialized to inaccessible to
ensure these guarantees. Thanks to mprotect, ASan avoids
allocating physical memory to protect the shadowmemory
itself. However, since the PSM is physically allocated during
pool creation, SafePM’s approach does not add extramemory
overheads.

514

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

ctree rtree rbtree hashmap
0.0

0.5

1.0

1.5

2.0

Sl
ow

do
wn

 w
.r.

t.
na

tiv
e

PM
DK Insert

ctree rtree rbtree hashmap
0.0

0.5

1.0

1.5

Get
SafePM w/o Asan ASan SafePM

ctree rtree rbtree hashmap
0.0

0.5

1.0

1.5

2.0
Remove

Figure 3. Performance overheads of persistent indices for PMDKw/ ASan, SafePMw/o ASan and SafePM versions.

Compiler pass. SafePM leverages ASan’s compiler pass
without any modifications. When an application is compiled
with the -fsanitize=address flag enabled, the compiler
runs the ASan compiler pass, as shown in Listing 1. ASan’s
compiler pass runs after all other compiler optimizations so
that only memory accesses that remain after the optimiza-
tions are instrumented. In SafePM we assume that PMDK
is correct and has no memory safety violations. Therefore,
we do not compile the PMDK internal functions with ASan.
Note that this is necessary as these functions manipulate
both the PMDKmetadata and the PSM.

6 Evaluation
Our evaluation is structured around three dimensions.
Space & performance overheads. We evaluate the
performance (§ 6.2) and space (§ 6.3) overheads of SafePM
using PMDK’s micro-benchmarks as well as pmemkv [50],
a persistent KV store. We further evaluate the efficiency of
the partial safety coverage approach (§ 6.6).
Effectiveness. We evaluate the effectiveness of SafePM
(§ 6.4) using the RIPE framework [87] to test the exploitability
of a wide range of memory vulnerabilities. We also report
some memory safety bugs and programming anomalies
discovered during our experiments (§ 6.7).
Crash consistency. Lastly, we validate the crash-
consistency property (§ 6.5) for both the application data and
SafePM’s metadata using the pmemcheck tool [22] provided
by the PMDK’s Valgrind fork. Note that, in these experiments
ASan is disabled due to its incompatibility with Valgrind.

6.1 Experimental Setup

Testbed.We conduct our experiments on a server machine,
equipped with Intel(R) Xeon(R) Gold 6212U CPU with 24
cores, 192 GB (6 channels × 32 GB/DIMM) DRAM and 768
GB (6 channels × 128 GB/DIMM) Intel Optane DC DIMMs
running Ubuntu 20.04.02 with Linux kernel version 5.4.0.
Variants.We conduct the experiments with the variants de-
scribed inTable 2.Native refers to the application being linked
against the native PMDK without ASan instrumentation,
while ASan indicates that the application was compiled with

gcc’s ASan extension and linked against native PMDK. These
two variants serve as our baselines as they represent unhard-
ened applications and applications hardened only with ASan,
respectively. The ASan version indicates the inevitable over-
heads introduced by ASan’s instrumentation. SafePM w/o
ASan uses the SafePM’s wrappers without compiling the ap-
plicationwith theASanextension.Thegoal of this variant is to
demonstrate the overheads incurred by ourwrapperswithout
ASan’s compiler pass instrumentation. Based on this variant,
we can determine the introduced overhead of SafePM’s addi-
tionalmanagement operations to assure the crash consistency
of the memory safety metadata. Finally, SafePM denotes our
complete tool; applications are linked against our PMDK fork
and are compiled with the ASan instrumentation enabled.

6.2 Performance Overheads
We evaluate the performance overheads of SafePM using
four different persistent indices (ctree, rbtree, rtree and
hashmap) and a persistent KV store (pmemkv [50]). We further
measure the performance of SafePM for the atomic and
transactional PMmanagement operations (alloc, realloc
and free), as well as creating and opening a PM pool. Lastly,
we evaluate the effect of SafePM on the recovery process.

All experiments are conducted with a red zone size of
16 bytes. Each object is surrounded by two red zones. The
reported values are the average of at least 3 runs.
Persistent indices.Weevaluate the performance of SafePM
for four persistent indices over the four variants shown in
Table 2. We use pmembench [54], shipped with PMDK, and
perform one million insert, get and remove operations on
each data structure. The keys are 8 bytes and the operations
choose keys at random following a uniform distribution.
Figure 3 illustrates the slowdown for ASan, SafePMw/o

ASan and SafePM versions normalised to the native PMDK
execution. In general, SafePM is 1.68-2.00×, 1.16-1.50× and
1.68-1.87× slower than thenative PMDK for the insert, get and
remove operations, respectively. Figure 3 further indicates
that the usage of SafePM’s wrappers w/o ASan does not sig-
nificantly affect the performance of the indices except for the
case of rtree insert where it incurs a of 1.34× slowdown. In
the other cases the respective overhead w.r.t. PMDK remains

515

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

1 2 4 8 16 24
0.0

0.5

1.0

1.5

2.0

Sl
ow

do
wn

 w
.r.

t.
na

tiv
e

PM
DK Random reads/writes (50%-50%)

1 2 4 8 16 24
0.0

0.5

1.0

1.5

Random reads/writes (95%-5%)

1 2 4 8 16 24
0.0

0.5

1.0

1.5

2.0

Random reads

ASan SafePM

1 2 4 8 16 24
0.0

0.5

1.0

1.5

2.0

2.5

Sequential reads

Threads

Figure 4. Performance overheads w.r.t. to native PDMK of pmemkv under different workloads and thread count.

Variant Compile w/ ASan SafePMwrappers
Native No Disabled
ASan Yes Disabled

SafePMw/o ASan No Enabled
SafePM Yes Enabled

Table 2. Benchmarking variants
below20%.Thisdemonstrates theabilityof SafePM to achieve
its performance goal by keeping its overheads very close to
those of the highly optimized ASan. The only exception is the
case of thehashmapgetwhere inserting red zones changes the
objects’ alignment leading to additional cache line accesses.

Persistent KV store. We evaluate SafePM’s performance
using pmemkv [50], a persistent KV store designed for
PM, with its default cmap backend storage engine. We use
the pmemkv-bench [48] benchmark suite with different
workloads: (i) update intensive (50% reads-50% writes),
(ii) read intensive (95% reads-5%writes), (iii) random reads
and (iv) sequential reads. The KV store is populated with 1M
entries at the beginning of each run. Each workload consists
of 10M operations where keys and values are set to 16B and
1024B, respectively.

Figure 4 reports the slowdown of the throughput of PMDK
w/ ASan and SafePM w.r.t. to native PMDK while varying
the number of threads. Enabling ASan with PMDK slows
down the queries’ execution by 1.14-2.36× depending on the
workload. The respective values for SafePM are 1.20-2.55×.
The additional performance overhead for SafePM stems from
the extra operations that SafePM needs to perform in order
to ensure the crash consistency of memory safety metadata.
The marginally higher overheads of SafePM compared to
ASan further demonstrate the ability of SafePM to achieve
its performance goal in real-life workloads. Furthermore,
SafePM does not affect the scalability of the KV-store as
its behaviour is similar to PMDK and PMDK w/ ASan even
for increasing number of threads. We can notice, though,
a significant drop in the overheads beyond 8 threads in the
update-intensive workloads. This is attributed to the native
application suffering from increasing level of contention
while the instrumenation decreases this stress.
Atomic and transactional PM operations.We next mea-
sure the performance of the basic atomic and transactional

64 B 256 B 1 KB 4 KB 16 KB
Object size

0

1

2

3

4

5

6

7

Sl
ow

do
wn

 w
.r.

t.
na

tiv
e

PM
DK

Atomic alloc
Transactional alloc

Atomic free
Transactional free

Atomic realloc
Transactional realloc

Figure5. Performanceoverheadof SafePM’swrappers for
selected memory operations across different object sizes.
PMmanagement operations (alloc, realloc and free) for
SafePM. We design a microbenchmark based on pmembench
where we execute 100K operations per experiment with vary-
ingobject sizes. The reported results are the averageof 10 runs.
Figure 5 shows the throughput slowdown of SafePM for

several PM operations normalized w.r.t. native PMDK. For
object allocation, we observe that the overhead decreases
for both atomic and transactional allocation as the object
size grows (2.4-5.8×). The reallocation operation maintains
a relatively constant overhead for all the tested data sizes
(1.85-2.25×). SafePM incurs a higher performance overhead
for the free operation (3.5-7.0×) compared to alloc and
realloc for every object size. The aforementioned overheads
are caused by (i) runtime checks introduced by ASan
instrumentation and (ii) the added operations of SafePM to
ensure crash consistency for PM safety metadata. Lastly, as it
was expected, SafePM poses a higher overhead for the atomic
versions of the operations, as it transparently converts them
into their transactional counterpart in order to atomically
update the appropriate PSM region along with heap state
in a crash consistent manner.

516

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

256 MB 1 GB 4 GB 16 GB 64 GB 128 GB
0.00

0.01

0.02

0.03

Av
er

ag
e

tim
e

(s
)

Pool open

256 MB 1 GB 4 GB 16 GB 64 GB 128 GB

0.10

1.00

Av
er

ag
e

tim
e

(lo
g(

s)
)

Pool create
PMDK SafePM w/o Asan ASan SafePM

Pool size
Figure 6. Performance overheads for creating and opening pool of various sizes.

PM pool create/open. Figure 6 shows the average time
of the PM pool create and open operations for the variants
listed in Table 2. We created a microbenchmark using the
pmembench framework where we create/open PM pools of
various sizes ranging from 256MB to 128GB. We observe that
opening a pool with SafePM takes ∼30ms instead of 10ms
with native PMDK, a slowdown of up to 3×. The slowdown
appears to be largely caused by the introduced ASan
checks because the performance of the SafePM w/o Asan
variant is close to that of the native PMDK. Further, during
pool creation, SafePM incurs significant slowdown which
increases with the pool size, causing the create operation to
take a few seconds to complete. This overhead stems from
the need to overmap and initialize the PSM object, which
grows with the size of the pool. It is worth noting, though,
that pool creation is an one-time operation, hence, the high
overhead is largely irrelevant to application performance.

Recovery time. Table 3 presents the average time of the
recovery process with various log sizes for the variants listed
in Table 2. The critical parameter that affects the recovery
process is the size of the log that contains the entries whose
application reverts the PM data to a consistent state. For this
experiment, we design a microbenchmark where we create
a PM pool, allocate persistent objects, each being 1 KB in size,
and snapshot their content in the undo log of a transaction.
The number of allocated objects in each experiment is equal
to the desired length of the undo log in KBs. Thus, the size of
the logs depends on the number of snapshot objects. Further,
we inject a crash at this point and then reopen the pool. The
time to reopen the pool includes the recovery process. We
perform this experiment 100 times for each configuration.
We observe that in all variants the recovery time gets

higher as the log size increases.WithASandisabled,SafePM’s
wrappers introduce insignificant overhead (<300 𝜇s) in the
recovery time compared to PMDK. When we enable ASan,
the shadow memory checks incur an inevitable, but minor,
overhead (approximately 10ms). Overall, SafePM does not
introduce any further delays in the recovery process other
than those of ASan.

Log size
Variant 4 KB 128 KB 512 KB 2MB 4MB
PMDK 15.00 15.06 15.45 17.01 19.13

SafePMw/o ASan 14.99 15.31 15.74 17.31 19.38
ASan 25.23 25.40 25.75 27.26 29.45

SafePM 25.44 25.39 25.78 27.43 29.79
Table 3. Recovery time in milliseconds (ms).

Data structure insert remove get
ctree 12.5% 12.5% 12.5%
rtree 14.25% 13.8% 13.8%
rbtree 12.5% 12.5% 12.5%

hashmap_tx 12.5% 12.5% 12.5%
Table 4. SafePM space overhead

6.3 Space Overhead
Wemeasure the extra PM space that SafePM requires. The
space overhead is comprised of (i) the persistent shadow
memory and (ii) the object red zones. This section ignores the
shadow root object, as it represents a small, fixed overhead,
independent of the pool size or allocated objects. Note that
SafePM uses the same virtual address ranges reserved by
ASan (§ 4.1). We conduct experiments on the same four
persistent indices performing insert, get and remove
operations, as discussed in § 6.2. We report the peak space
overhead when applications are linked against SafePM.
Table 4 summarizes the PM space overheads of SafePM

expressed in percentage of the total pool size. The persis-
tent shadowmemory always occupies one eighth of the pool
which corresponds to an overhead of 12.5%. For the ctree,
rbtree and hashmap_tx, we observe that this is the only con-
siderable space overhead as the persistent object red zones
occupy spacewhich is wasted to padding by the native PMDK
allocator. For the rtree index the object red zones increase
persistentmemoryusage leading to slightlyhigher spaceover-
heads. However, even in this case, themain contributor to the
increase in PM space usage is the persistent shadowmemory.

517

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

RIPE variant Always Sometimes Never
Intact 306 14 1014

ASan w/ system heap 27 1 1306
ASan w/ PM pool heap 119 12 1203

SafePM 27 1 1306
memcheck 62 0 1272

Table 5.Number of RIPE attacks that always, sometimes
or never succeed with different protection mechanisms.

6.4 Effectiveness
We evaluate the effectiveness of SafePM using the RIPE
framework [87], a comprehensive suite of memory vulner-
ability exploits. We modified the 64-bit port of the RIPE
benchmark [2] to compare the effectiveness of the following
variants: (i) Intact,where the victimapplication is unmodified,
(ii) ASan w/ system heap, where the application is compiled
with ASan, (iii) ASan, where the application uses the persis-
tent heap and is compiled with ASan, which protects only
the volatile heap and not the PM heap, (iv) SafePM, which
extends ASan’s memory safety to the PM heap, and (v)mem-
check [21], the current state-of-the-art for detecting memory
violations in persistentmemory. All variants use gcc 9.3.0 and
are compiled with the default GCC stack protections enabled.

The RIPE benchmark performs each exploit several times,
3 by default. If an exploit succeeds in all attempts, in some
trials or in none of the runs, it is marked as always, sometimes
or never, respectively. Note that, we run the RIPE benchmark
suite several times to make sure the results are stable.
Table 5 reports the number of exploits that either always,

sometimes or never succeed. We observe that when the
victim application uses the volatile (system) heap, ASan is
able to prevent most attacks. When the victim application
is modified to use the PM heap, the number of exploitable
vulnerabilities increases, as the layout of the persistent heap
is not available to ASan. However, linking the application
against SafePM restores ASan’s protection capabilities even
for memory violations occurring in the persistent heap,
reducing the number of exploitable vulnerabilities back to the
levels observedwith the systemheap. In otherwords, SafePM
achieves memory safety effectiveness for the PM heap
equivalent to that achieved by ASan for the volatile (system)
heap. Finally, we observe that SafePM is able to detect
and prevent a higher number of memory vulnerabilities
compared to the state-of-the-art memcheck [21].

6.5 Crash Consistency
We validate the crash-consistency property for both the
application data and SafePMmetadata using existing tools,
pmemcheck [22] and memcheck [74]. To perform our exper-
iments, we disable ASan as it is incompatible with Valgrind.
As SafePMwraps PMDK routines instead of modifying them
or the pool layout, these tools work without modifications.
We run the persistent indices and PM operations benchmarks
described in § 6.2 with pmemcheck and memcheck enabled.

0% 20% 40% 60% 80% 100%
Unsafe objects percentage

0

1

Sl
ow

do
wn

 w
.r.

t.
na

tiv
e

PM
DK Insert Remove Get

Figure 7. Performance overheads of persistent hashmap
index with varying percentage of unsafe PM objects.

The number of operations for each index is limited to 10000
to keep the runtime reasonable despite the slowdown caused
by Valgrind. We observe that for the tested indices, neither
pmemcheck nor memcheck report any error. For the PM
operations benchmark, pmemcheck again reports no error,
while memcheck does not report any error beyond the ones
also reported for the case of unmodified PMDK.

6.6 Partial Safety Coverage
We evaluate the efficiency of our proposed partial safety
coverage approach. In this experiment we use the persistent
hashmap in a similar fashion to 6.2. We vary the proportion
of operations that are performed using memory safe
(instrumented) andmemory unsafe (uninstrumented) objects.
Figure 7 illustrates the performance slowdown for each
operation as the proportion of used unsafe objects increases,
normalised w.r.t. the native PMDK execution. We observe
that for all three operations the relative overhead decreases
as more objects are excluded from the ASan instrumentation
and runtime checks. However, there is still an inevitable
overhead that stems fromASan intercepting the volatile heap
management functions, which are used by PMDK internally.
Note that with get operation there is no overhead as there
are no intercepted malloc/free calls.

6.7 Discovered Bugs and Anomalies
Our experiments led to discovering and reporting the
following bugs [11, 12] : (i) in the btree example of PMDK
version 1.9.2, a call tomemmove on line 378 of btree_map.c
causes an off-by-one overflow on PM residing data objects
and (ii) in the transactional operations benchmark, shipped
as part of pmembench, a configuration file lacks the con-
figuration setting nestings. This causes the transaction
to not be aborted, which triggers invalid frees at line 295
in pmemobj_tx.cpp, that is detected by SafePM, when the
benchmark attempts the cleanup.

7 Related work
Persistent-memory based systems. Several well-known,
high performant data management systems, such as
RocksDB [20] and Redis [19], have already been adapted to

518

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

incorporate persistent memory in their system stack [17, 19,
20, 50]. Apart from that, there exists proposed filesystems spe-
cially designed to benefit from PM as a storage medium [29,
59, 85, 89]. Additionally, accessing PM remotely is an active
area of research in order to enable PM usage in distributed
settings [52, 53, 58, 66, 81, 90]. While these systems mainly
target to ensure crash consistency and high performancewith
the use of the innovative PM technology, SafePM focuses on
the important aspect of memory safety in PM programming.
SW-basedmemory safety. Protecting against DRAMmem-
ory safety bugs with software based approaches has been the
target of severalworks [24, 61, 62, 80]. They leverage different
techniques such as compiler pass instrumentation accom-
panied with runtime libraries and compact representation of
upper and lower pointer bounds, needed to perform the appro-
priate runtime checks. They aim tominimise the performance
and memory overheads while maintaining compatibility and
efficiency. Another alternative for ensuring memory safety
is to use a memory safe language. Corundum [44] is a generic
library for persistent memory management written in Rust,
which statically enforces language based memory safety
for PM. SafePM, on the contrary to Corundum, does not
require programmers to use specific libraries or languages,
but targets applications developed using PMDK, the de facto
library for PM, while requiring no source code modifications.
The memcheck tool [21] uses Valgrind and instrumentation
built into PMDK to achieve memory safety similar to SafePM.
Unlike ASan, it does not require compiler support, as it
uses runtime translation. Further, unlike SafePM, it has no
persistent memory overhead. The trade-offs are that it incurs
a much larger performance overhead, and its spatial violation
detection capabilities are not as precise as SafePM’s.
HW-based memory safety. There exists a large body of
work that enforces memory safety for volatile memory using
hardwareextensions [3, 36, 75, 76, 88]. Lowfatpointers [36]en-
force spatial safety by associating the pointer with its bounds.
It contains gate-level implementations of the logic for updat-
ingandvalidating the compact fat pointers.Cheri [88] ensures
memory safety bugdetectionwith the support of hardware ca-
pabilities. Intel MPX [75, 76] provides ISA extensions of Intel
x86-64 architecture formemoryprotection.ArmMTE[3] is an
ARM extension that enables hardware-assisted memory tag-
ging to detect both temporal and spatial memory safety bugs.
Besides being designed for volatile memory only, these solu-
tions require specializedhardware,whereasSafePMcanbede-
ployed in commodity servers to ensurememory safety for PM.
PM debuggers, allocators and libraries. Several frame-
works have been developed to test the correctness of
PM software [22, 34, 39, 40, 63–65, 71], an orthogonal
problem to memory safety. Many projects strive to manage
persistent memory efficiently while also ensuring crash
consistency [28, 31, 51, 86]. Mnemosyne [86] exposes a
simple interface for PM programming with respect to crash

consistency and persistence. NVHeaps [28] is a lightweight,
high-performance persistent object system with transaction
support and persistency semantics. Poseidon [31] is another
allocatordesigned forPMthat relieson IntelMPK[77] toavoid
the corruption of the persistent metadata by memory bugs.

8 Conclusion
In this paper, we present SafePM, a framework that ensures
the memory safety of PMDK-based PM applications by
detecting spatial and temporal memory safety violations. To
this end, SafePM leverages the compiler pass and reporting
mechanism of the popular ASan. During the creation of a
memory pool, SafePM creates a persistent shadowmemory
object that is mapped when the pool is opened to the
corresponding location in ASan’s shadowmemory. SafePM
manipulates the persistent shadowmemory along with the
persistent heap in a transparent and crash consistent manner.
Consequently, any PMDK-based application can make use of
SafePMwithout source codemodifications to test formemory
violations at runtime, including the recovery process. Our ex-
tensive evaluation shows that SafePMprovides the same level
of memory safety guarantees for PM applications as ASan
provides for volatile memory at a cost of marginal overheads.

Artifact evaluation. SafePM’s source code and evaluation
setup are publicly available—see Artifact Appendix A.

Acknowledgments.We thank our shepherd, Prof. Youyou
Lu, and the anonymous reviewers for their helpful comments.
We are also thankful to the chair for database systems at Tech-
nicalUniversity ofMunich for providinguswith thehardware
infrastructure. Thisworkwas supported in parts by aUKRISE
Grant fromNCSC/GCHQat theUniversity of Edinburgh, UK.

References
[1] 2015. PojectZero - Stagefrightened? https://googleprojectzero.blogspot.

com/2015/09/stagefrightened.html. Accessed 27-09-2021.
[2] 2019. A 64-bit port of the RIPE benchmark. https://github.com/hrosier/

ripe64.git. Accessed 27-09-2021.
[3] 2019. Memory Tagging Extension: Enhancing memory safety through

architecture. https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/enhancing-memory-safety.
Accessed 27-09-2021.

[4] 2019. A proactive approach to more secure code. https://msrc-
blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-
secure-code/. Accessed 27-09-2021.

[5] 2019. Queue theHardening Enhancements. https://security.googleblog.
com/2019/05/queue-hardening-enhancements.html. Accessed: 2021-
02-27.

[6] 2020. The Heartbleed Bug. https://heartbleed.com/. Accessed 27-09-
2021.

[7] 2021. 2021 CWE Top 25Most Dangerous SoftwareWeaknesses. http:
//cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html. Accessed:
31-08-2021.

[8] 2021. TheChromiumProjects -MemorySafety. https://www.chromium.
org/Home/chromium-security/memory-safety. Accessed 27-09-2021.

[9] 2021. Clang 13 Documentaion - AddressSanitizer. https://clang.llvm.
org/docs/AddressSanitizer.html Accessed 27-09-2021.

519

https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://github.com/hrosier/ripe64.git
https://github.com/hrosier/ripe64.git
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://heartbleed.com/
http://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
http://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

[10] 2021. GCC - Program Instrumentation Options. https://gcc.gnu.org/
onlinedocs/gcc/Instrumentation-Options.html Accessed 27-09-2021.

[11] 2021. GitHub issue on the btree overflow. XXX. Accessed 05-10-2021.
[12] 2021. GitHub issue on the missing abort. XXX. Accessed 05-10-2021.
[13] 2021. Hardware-Assisted Checking Using Silicon Secured Memory

(SSM). https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.
html. Accessed 27-09-2021.

[14] 2021. Intel® Inspector: Deliver reliable applications. Locate and debug
threading,memory, andpersistentmemory errors early in the design cy-
cle toavoidcostlyerrors later.https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/inspector.html#gs.cdp2vf.
Accessed 27-09-2021.

[15] 2021. The libpmemwebpage. https://pmem.io/pmdk/libpmem/. Ac-
cessed: 2021-02-27.

[16] 2021. Memcheck: a memory error detector. https://valgrind.org/docs/
manual/mc-manual.html. Accessed 27-09-2021.

[17] 2021. Memhive: Scale applications with persistent memory! https:
//www.memhive.io/. Accessed 27-09-2021.

[18] 2021. The PMDKwebpage. https://pmem.io/pmdk/. Accessed: 2021-
02-27.

[19] 2021. Pmem-Redis. https://github.com/pmem/pmem-redis. Accessed
27-09-2021.

[20] 2021. pmem-rocksdb. https://github.com/pmem/pmem-rocksdb. Ac-
cessed 27-09-2021.

[21] 2021. pmem-valgrind. https://github.com/pmem/valgrind. Accessed
27-09-2021.

[22] 2021. Pmemcheck: persistent memory analyzer. https://pmem.io/
valgrind/generated/pmc-manual.html. Accessed 27-09-2021.

[23] 2021. The Kernel Address Sanitizer (KASAN). https://www.kernel.org/
doc/html/latest/dev-tools/kasan.html#hardware-tag-based-kasan.
Accessed 27-09-2021.

[24] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009.
Baggy Bounds Checking: An Efficient and Backwards-Compatible De-
fense against Out-of-Bounds Errors. In 18th USENIX Security Sym-
posium (USENIX Security 09). USENIX Association, Montreal, Que-
bec. https://www.usenix.org/conference/usenixsecurity09/technical-
sessions/presentation/baggy-bounds-checking-efficient-and

[25] Jan Willem Aldershoff. 2021. Intel reveals App Direct
mode and Memory mode for Optane DC Persistent Memory.
https://www.myce.com/news/intel-reveals-app-direct-mode-and-
memory-mode-for-optane-dc-persistent-memory-85373/ Accessed
27-09-2021.

[26] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic
Memory Safety for Unsafe Languages. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (Ottawa, Ontario, Canada) (PLDI ’06). Association for Computing
Machinery, New York, NY, USA, 158–168. https://doi.org/10.1145/
1133981.1134000

[27] W.Cheng,QinZhao,BeiYu, andS.Hiroshige. 2006. TaintTrace: Efficient
Flow Tracing with Dynamic Binary Rewriting. In 11th IEEE Symposium
on Computers and Communications (ISCC’06). 749–754. https://doi.org/
10.1109/ISCC.2006.158

[28] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with next-Generation, Non-
Volatile Memories. SIGARCH Comput. Archit. News 39, 1 (March 2011),
105–118. https://doi.org/10.1145/1961295.1950380

[29] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through Byte-Addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (Big Sky,
Montana, USA) (SOSP ’09). Association for ComputingMachinery, New
York, NY, USA, 133–146. https://doi.org/10.1145/1629575.1629589

[30] Debian. 2021. Debian manpages - libpmemobj-dev. https://manpages.
debian.org/testing/libpmemobj-dev/pmemobj_volatile.3.en.html

[31] Anthony Demeri, Wook-Hee Kim, R. Madhava Krishnan, Jaeho Kim,
Mohannad Ismail, and ChangwooMin. 2020. Poseidon: Safe, Fast and
Scalable Persistent Memory Allocator. In Proceedings of the 21st Inter-
national Middleware Conference (Delft, Netherlands) (Middleware ’20).
Association for Computing Machinery, New York, NY, USA, 207–220.
https://doi.org/10.1145/3423211.3425671

[32] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-Compatible
Array Bounds Checking for C with Very Low Overhead. Association
for Computing Machinery, New York, NY, USA, 162–171. https:
//doi.org/10.1145/1134285.1134309

[33] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFE-
Code: enforcing alias analysis for weakly typed languages. In PLDI
’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation (Ottawa, Ontario, Canada). ACM,
New York, NY, USA, 144–157. https://doi.org/10.1145/1133981.1133999

[34] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, Flexible, and
Comprehensive Bug Detection for Persistent Memory Programs. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS 2021). Association for ComputingMachinery, New York,
NY, USA, 503–516. https://doi.org/10.1145/3445814.3446744

[35] Gregory J. Duck, R. Yap, and L. Cavallaro. 2017. StackBounds Protection
with Low Fat Pointers. In Network and Distributed System Security
Symposium (NDSS).

[36] Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection
withLowFatPointers. InProceedings of the 25th InternationalConference
on Compiler Construction (Barcelona, Spain) (CC 2016). Association for
Computing Machinery, New York, NY, USA, 132–142. https://doi.org/
10.1145/2892208.2892212

[37] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type and
Memory Error Detection Using Dynamically Typed C/C++. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). As-
sociation for Computing Machinery, New York, NY, USA, 181–195.
https://doi.org/10.1145/3192366.3192388

[38] Frank Eigler. 2003. Mudflap: Pointer use checking for C/C++. InGCC
Developers Summit.

[39] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Is-
mail, SunnyWadkar,DongyoonLee, andChangwooMin. 2021. Witcher:
Systematic Crash Consistency Testing for Non-Volatile Memory Key-
Value Stores. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles (Virtual) (SOSP ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1–15.

[40] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru:
Efficiently Model Checking Persistent Memory Programs. In Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS 2021). Association for Computing Machinery, New York, NY, USA,
415–428. https://doi.org/10.1145/3445814.3446735

[41] Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-Weight
Bounds Checking. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization (San Jose, California) (CGO ’12).
Association for Computing Machinery, New York, NY, USA, 135–144.
https://doi.org/10.1145/2259016.2259034

[42] Reed Hastings and Bob Joyce. 1991. Purify: Fast detection of memory
leaks and access errors. In In Proc. of theWinter 1992 USENIX Conference.
125–138.

[43] Red Hat. 2015. GHOST: glibc vulnerability (CVE-2015-0235). https:
//access.redhat.com/articles/1332213. Accessed 27-09-2021.

[44] MortezaHoseinzadeh and Steven Swanson. 2021. Corundum: Statically-
Enforced Persistent Memory Safety. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). As-
sociation for Computing Machinery, New York, NY, USA, 429–442.

520

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html##gs.cdp2vf
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html##gs.cdp2vf
https://pmem.io/pmdk/libpmem/
https://valgrind.org/docs/manual/mc-manual.html
https://valgrind.org/docs/manual/mc-manual.html
https://www.memhive.io/
https://www.memhive.io/
https://pmem.io/pmdk/
https://github.com/pmem/pmem-redis
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/valgrind
https://pmem.io/valgrind/generated/pmc-manual.html
https://pmem.io/valgrind/generated/pmc-manual.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html##hardware-tag-based-kasan
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html##hardware-tag-based-kasan
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/baggy-bounds-checking-efficient-and
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/baggy-bounds-checking-efficient-and
https://www.myce.com/news/intel-reveals-app-direct-mode-and-memory-mode-for-optane-dc-persistent-memory-85373/
https://www.myce.com/news/intel-reveals-app-direct-mode-and-memory-mode-for-optane-dc-persistent-memory-85373/
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1109/ISCC.2006.158
https://doi.org/10.1109/ISCC.2006.158
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/1629575.1629589
https://manpages.debian.org/testing/libpmemobj-dev/pmemobj_volatile.3.en.html
https://manpages.debian.org/testing/libpmemobj-dev/pmemobj_volatile.3.en.html
https://doi.org/10.1145/3423211.3425671
https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/2259016.2259034
https://access.redhat.com/articles/1332213
https://access.redhat.com/articles/1332213

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

https://doi.org/10.1145/3445814.3446710
[45] indradead. 2021. Direct Access for files. https://www.infradead.org/

~mchehab/kernel_docs/filesystems/dax.html Accessed 27-09-2021.
[46] Intel. 2021. An introduction to pmemobj (part 4) - transactional dy-

namic memory allocation. https://pmem.io/2015/06/17/tx-alloc.html
Accessed 27-09-2021.

[47] Intel. 2021. An introduction to pmemobj (part 5) - atomic dynamicmem-
ory allocation. https://pmem.io/2015/06/18/ntx-alloc.html Accessed
27-09-2021.

[48] Intel. 2021. Benchmarking tools for pmemkv. https://github.com/
pmem/pmemkv-bench Accessed 27-09-2021.

[49] Intel. 2021. Documentation for ndctl and daxctl. https://pmem.io/
ndctl/ndctl-create-namespace.html Accessed 27-09-2021.

[50] Intel. 2021. Persistent Memory Development Kit : pmemkv. https:
//pmem.io/pmemkv/ Accessed 27-09-2021.

[51] Intel. 2021. Persistent Memory Development Kit : The libpmemobj
library. https://pmem.io/pmdk/libpmemobj/ Accessed 27-09-2021.

[52] Intel. 2021. Persistent Memory Development Kit : The librpma library.
https://pmem.io/rpma/ Accessed 27-09-2021.

[53] Intel. 2021. PersistentMemoryDevelopment Kit : The librpmem library.
https://pmem.io/pmdk/librpmem/ Accessed 27-09-2021.

[54] Intel. 2021. pmembench: PMDK benchmark framework. https://github.
com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp.
https://github.com/pmem/pmdk/blob/master/src/benchmarks/
pmembench.cpp Accessed 27-09-2021.

[55] Intel. 2021. The Challenge of Keeping Up with Data.
https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/optane-dc-persistent-memory-
brief.html Accessed 27-09-2021.

[56] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module.
CoRR abs/1903.05714 (2019). arXiv:1903.05714 http://arxiv.org/abs/
1903.05714

[57] Trevor Jim, J. Morrisett, Dan Grossman, Michael Hicks, James Cheney,
and YanlingWang. 2002. Cyclone: A safe dialect of C. Proc. of the 2002
USENIX Annual Technical Conference, 275–288.

[58] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges
and Solutions for Fast Remote PersistentMemoryAccess. In Proceedings
of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA,
105–119. https://doi.org/10.1145/3419111.3421294

[59] Chandan Kalita, Gautam Barua, and Priya Sehgal. 2018. DurableFS:
A File System for Persistent Memory. CoRR abs/1811.00757 (2018).
arXiv:1811.00757 http://arxiv.org/abs/1811.00757

[60] The Linux kernel archives. 2021. DAX - Direct access for files. https:
//www.kernel.org/doc/Documentation/filesystems/dax.txt Accessed
27-09-2021.

[61] Taddeus Kroes, Koen Koning, Erik Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2018. Delta pointers: buffer overflow checks without the
checks. 1–14. https://doi.org/10.1145/3190508.3190553

[62] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
PramodBhatotia, Pascal Felber, andChristof Fetzer. 2017. SGXBOUNDS:
Memory Safety for Shielded Execution. In Proceedings of the Twelfth Eu-
ropean Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17).
Association for Computing Machinery, New York, NY, USA, 205–221.
https://doi.org/10.1145/3064176.3064192

[63] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PM-
Fuzz: TestCaseGeneration for PersistentMemoryPrograms. InProceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS 2021). Association for Computing Machinery, New York, NY, USA,
487–502. https://doi.org/10.1145/3445814.3446691

[64] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. 2020. Cross-Failure Bug Detection
in Persistent Memory Programs. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for ComputingMachinery, New York, NY, USA, 1187–1202.
https://doi.org/10.1145/3373376.3378452

[65] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.
2019. PMTest: A Fast and Flexible Testing Framework for Persistent
Memory Programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 411–425. https://doi.org/
10.1145/3297858.3304015

[66] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIXAssoci-
ation, Santa Clara, CA, 773–785. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/lu

[67] KayvanMemarian, Justus Matthiesen, James Lingard, Kyndylan Nien-
huis, David Chisnall, Robert N. M. Watson, and Peter Sewell. 2016.
Into the Depths of C: Elaborating the de Facto Standards. In Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/2908080.2908081

[68] Santosh Nagarakatte, Aa Bb, Milo Martin, and S. Zdancewic. 2009. Soft-
Bound: Highly Compatible and Complete Spatial Memory Safety for
C. Sigplan Notices - SIGPLAN 44, 245–258. https://doi.org/10.1145/
1542476.1542504

[69] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015.
Everything YouWant to KnowAbout Pointer-Based Checking. In 1st
Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 32), Thomas Ball,
Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg
Morrisett (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 190–208. https://doi.org/10.4230/LIPIcs.SNAPL.
2015.190

[70] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for C.
In Proceedings of the 2010 International Symposium on Memory Manage-
ment (Toronto,Ontario,Canada) (ISMM’10).Association forComputing
Machinery,NewYork,NY,USA,31–40. https://doi.org/10.1145/1806651.
1806657

[71] Ian Neal, AndrewQuinn, and Baris Kasikci. 2021. Hippocrates: Healing
Persistent Memory Bugs without Doing Any Harm. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages andOperating Systems (Virtual, USA) (ASPLOS
2021). Association for Computing Machinery, New York, NY, USA,
401–414. https://doi.org/10.1145/3445814.3446694

[72] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
andWestleyWeimer. 2005. CCured: Type-Safe Retrofitting of Legacy
Software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
https://doi.org/10.1145/1065887.1065892

[73] Netapp. 2021. What is persistent memory? https://www.netapp.com/
knowledge-center/what-is-persistent-memory/ Accessed 27-09-2021.

[74] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. SIGPLAN Not. 42,
6 (June 2007), 89–100. https://doi.org/10.1145/1273442.1250746

[75] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Fel-
ber, and Christof Fetzer. 2017. Intel MPX Explained: An Empirical
Study of Intel MPX and Software-based Bounds Checking Approaches.
CoRR abs/1702.00719 (2017). arXiv:1702.00719 http://arxiv.org/abs/
1702.00719

521

https://doi.org/10.1145/3445814.3446710
https://www.infradead.org/~mchehab/kernel_docs/filesystems/dax.html
https://www.infradead.org/~mchehab/kernel_docs/filesystems/dax.html
https://pmem.io/2015/06/17/tx-alloc.html
https://pmem.io/2015/06/18/ntx-alloc.html
https://github.com/pmem/pmemkv-bench
https://github.com/pmem/pmemkv-bench
https://pmem.io/ndctl/ndctl-create-namespace.html
https://pmem.io/ndctl/ndctl-create-namespace.html
https://pmem.io/pmemkv/
https://pmem.io/pmemkv/
https://pmem.io/pmdk/libpmemobj/
https://pmem.io/rpma/
https://pmem.io/pmdk/librpmem/
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3419111.3421294
https://arxiv.org/abs/1811.00757
http://arxiv.org/abs/1811.00757
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3297858.3304015
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.4230/LIPIcs.SNAPL.2015.190
https://doi.org/10.4230/LIPIcs.SNAPL.2015.190
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/3445814.3446694
https://doi.org/10.1145/1065887.1065892
https://www.netapp.com/knowledge-center/what-is-persistent-memory/
https://www.netapp.com/knowledge-center/what-is-persistent-memory/
https://doi.org/10.1145/1273442.1250746
https://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

[76] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. 2018. Intel MPX Explained: A Cross-layer Analysis
of the Intel MPX System Stack. Proceedings of the ACM onMeasurement
and Analysis of Computing Systems (2018).

[77] Soyeon Park, Sangho Lee, Wen Xu, HyunGonMoon, and Taesoo Kim.
2019. libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In 2019 USENIX Annual Technical Conference (USENIX ATC
19). USENIX Association, Renton, WA, 241–254. https://www.usenix.
org/conference/atc19/presentation/park-soyeon

[78] FengQin,ChengWang,ZhenminLi,Ho-seopKim,YuanyuanZhou, and
YoufengWu. 2006. LIFT: A Low-Overhead Practical Information Flow
Tracking System for Detecting Security Attacks. In 2006 39th Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO’06).
135–148. https://doi.org/10.1109/MICRO.2006.29

[79] Olatunji Ruwase andM. Lam. 2004. A Practical Dynamic Buffer Over-
flowDetector. InNetwork and Distributed System Security Symposium
(NDSS).

[80] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC 12).
USENIX Association, Boston, MA, 309–318. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/serebryany

[81] Jiwu Shu, YouminChen, QingWang, BohongZhu, Junru Li, and Youyou
Lu. 2020. TH-DPMS: Design and Implementation of an RDMA-Enabled
Distributed Persistent Memory Storage System. ACM Trans. Storage 16,
4, Article 24 (Oct. 2020), 31 pages. https://doi.org/10.1145/3412852

[82] Matthew S. Simpson and Rajeev K. Barua. 2010. MemSafe: Ensuring the
Spatial and Temporal Memory Safety of C at Runtime. In 2010 10th IEEE
Working Conference on Source Code Analysis andManipulation. 199–208.
https://doi.org/10.1109/SCAM.2010.15

[83] László Szekeres, M. Payer, Tao Wei, and D. Song. 2013. SoK: Eternal
War in Memory. 2013 IEEE Symposium on Security and Privacy (2013),
48–62.

[84] Victor van der Veen, Nitish Dutt-Sharma, Lorenzo Cavallaro, and Her-
bert Bos. 2012. Memory Errors: The Past, the Present, and the Future,
Vol. 7462. https://doi.org/10.1007/978-3-642-33338-5_5

[85] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. 2014. Aerie: Flexible File-System Interfaces to Storage-Class
Memory. In Proceedings of the Ninth European Conference on Computer
Systems (Amsterdam, The Netherlands) (EuroSys ’14). Association
for Computing Machinery, New York, NY, USA, Article 14, 14 pages.
https://doi.org/10.1145/2592798.2592810

[86] Haris Volos, Andres JaanTack, andMichaelM. Swift. 2011. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Newport Beach, California, USA) (ASPLOS XVI).
Association for Computing Machinery, New York, NY, USA, 91–104.
https://doi.org/10.1145/1950365.1950379

[87] JohnWilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and
Wouter Joosen. 2011. RIPE: Runtime Intrusion Prevention Evaluator.
ACM International Conference Proceeding Series, 41–50. https://doi.org/
10.1145/2076732.2076739

[88] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capabil-
ity Model: Revisiting RISC in an Age of Risk. SIGARCH Comput. Ar-
chit. News 42, 3 (June 2014), 457–468. https://doi.org/10.1145/2678373.
2665740

[89] JianXuandStevenSwanson. 2016. NOVA:ALog-structuredFile System
for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Con-
ference on File and Storage Technologies (FAST 16). USENIX Association,
Santa Clara, CA, 323–338. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/xu

[90] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR:
Rethinking RDMA Networking for Scalable Persistent Memory. In
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 111–125.
https://www.usenix.org/conference/nsdi20/presentation/yang

[91] Yves Younan, Wouter Joosen, and Frank Piessens. 2012. Runtime
Countermeasures for Code Injection Attacks Against C and C++ Pro-
grams. ACM Computing Surveys - CSUR 44 (06 2012), 1–28. https:
//doi.org/10.1145/2187671.2187679

522

https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.1109/MICRO.2006.29
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3412852
https://doi.org/10.1109/SCAM.2010.15
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/2076732.2076739
https://doi.org/10.1145/2076732.2076739
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/2678373.2665740
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/nsdi20/presentation/yang
https://doi.org/10.1145/2187671.2187679
https://doi.org/10.1145/2187671.2187679

EuroSys ’22, April 5–8, 2022, RENNES, France Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia

A Artifact Appendix
A.1 Abstract
This appendix provides the necessary information for obtain-
ing the source code, building, and reproducing the experi-
ments and figures from the Eurosys 2022 paper—"SafePM:
A Sanitizer for Persistent Memory" by K. Bozdoğan, D.
Stavrakakis, S. Issa, P. Bhatotia. SafePM provides a memory
safety mechanism that transparently and comprehensively
detects both spatial and temporal memory safety violations
for persistent memory applications. We describe the hard-
ware and software requirements to run the experiments and
reproduce the results as they appear in Section 6.

A.2 Description &Requirements
A.2.1 How to access. All the project source code along
with instructions on how to evaluate and build the software
are available in our git repository https://github.com/TUM-
DSE/safepm or in the following persistentDOI for our artifact
https://doi.org/10.5281/zenodo.6338745.

A.2.2 Hardware dependencies. To reproduce the results
from the paper, the machine should preferably be equipped
with a physical persistent memory module (e.g., Intel Op-
tane DC) with at least 64 GB available space. The persistent
memory module should be mounted using a DAX-enabled
file system (e.g. EXT4-DAX), as also described in A.3.

Additionally, we recommend running the pmemkv experi-
ments on a machine with at least 24 cores, as they are config-
ured to run with up to 24 threads.

The testbed, used to conduct our experiments, is equipped
with Intel(R) Xeon(R) Gold 6212U CPUwith 24 cores and 768
GB (6 channels × 128 GB/DIMM) Intel Optane DC DIMMs.

A.2.3 Software dependencies. We require the following
software configuration to reproduce our experimental results:
1. Linux (tested in Ubuntu 20.04.3 LTS with kernel version

5.4.0)
2. Docker (tested with Docker version 20.10.7): Each experi-

ment comeswith its pre-configuredDockerfile.Weprovide
scripts that automatically build the images containing the
required software dependencies.

3. gcc and cmake (tested with gcc 9.3.0 and cmake 3.16.3): To
build our unit tests.

4. Python 3.7 or newer (testedwith Python 3.8.10): To execute
our parsing and plotting scripts for the figures.
To use SafePM in a native environment the required soft-

ware dependencies are the same as those of PMDK v1.9.2
and can also be found in the respective Dockerfiles in our
benchmarks’ directories.

A.2.4 Benchmarks. In our evaluation, we run the follow-
ing benchmarking applications:
• pmembench: pmembench is a benchmark driver shipped
with PMDK. We use pmembench to execute our perfor-
mance measurements on the persistent indices of PMDK

and to create and run our microbenchmarks for the basic
PM operations (alloc/realloc/free/pool_open/pool_create)

• pmemkv-bench: pmemkv-benchutility provides some stan-
dard read, write & remove benchmarks used for our experi-
ments on pmemkv.

• RIPE:We use a 64bit port of RIPE benchmarks to measure
the efficiency of SafePM.

A.3 Set-up
To reproduce the results of SafePM, a machine equipped with
a physical persistent memory module is required. SafePM
requires a DAX-enabled file system, such as EXT4-DAX. To
format and mount the drive (assuming the device name is
/dev/pmem0), follow the instructions below:
$ sudo mkdir /mnt/pmem0
$ sudo mkfs.ext4 /dev/pmem0
$ sudo mount −t ext4 −o dax /dev/pmem0 /mnt/pmem0
$ sudo chmod −R 777 /mnt/pmem0
In case you do not have amachine with persistent memory,

you can execute the experiments by emulating it with DRAM,
e.g., with the /dev/shm/ directory.
Further, you need to get the source code of SafePM. It can

be found by simply running:
$ git clone https://github.com/TUM−DSE/safepm
Note that our automated scripts create the docker images,

run the containers and carry out each experiment with the
appropriate configuration.

A.4 Evaluation workflow1

A.4.1 Major Claims.
• (C1): Performance: SafePM provides comprehensive mem-
ory safety, both temporal and spatial, while incurring rea-
sonable performance overheads. This is proven by the ex-
periments (E1 & E2) described in Section 6.2 whose results
are illustrated in Figure 3, Figure 4, Figure 5 and Figure 6.
Theseoverheadscanbe further reducedviaSafePM’spartial
coverage approach as shown in Figure 7.

• (C2): Efficiency: SafePMoffers the samememory safetyguar-
antees for persistent memory as ASan provides for volatile
memory. This is proven by experiment (E3) described in
Section 6.4 whose results are reported in Table 5.

• (C3): Crash consistency: SafePM preserves the crash con-
sistency property for both the PM residing data and its
memory safety metadata. This is proven by the experiment
(E4) described in Section 6.5.

• (C4): Bug discovery: SafePM has been used to uncover two
new bugs in the PMDK software. These can be reproduced
by the experiment (E5) described in Section 6.7.

1Submission, reviewing and badging methodology followed for the eval-
uation of this artifact can be found at https://sysartifacts.github.io/
eurosys2022/.

523

https://github.com/TUM-DSE/safepm
https://github.com/TUM-DSE/safepm
https://doi.org/10.5281/zenodo.6338745
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/pmem/pmemkv
https://github.com/pmem/pmdk/tree/1.9.2#dependencies
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://github.com/pmem/pmemkv-bench
https://github.com/hrosier/ripe64
https://pmem.io/blog/2016/02/how-to-emulate-persistent-memory/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://sysartifacts.github.io/eurosys2022/
https://sysartifacts.github.io/eurosys2022/

SafePM: A Sanitizer for Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

A.4.2 Experiments.
To execute our experiments, navigate to the directory of
cloned/downloaded source code and run:
$ cd safepm/artifact_evaluation

The artifact_evaluation folder is where our automated scripts
are placed. We assume /mnt/pmem0/ as the directory where
PM is mounted.

Experiment (E1): [pmembench] [5 human-minutes + 2
compute-hours]: This experiment executes the defined
configurations for pmembench which include the persistent
indices workloads and the basic persistent memory opera-
tions (alloc/realloc/free/pool_open/pool_create). The
results of pmembench are used to produce Figure 3, Fig-
ure 5, Figure 6 and Figure 7.
[Preparation] None.
[Execution] Our automated script runs pmembench for all the
configurations. It exports the results in ‘;‘ delimitedfileswhich
are placed in safepm/benchmarks/pmembench/results.
$./run_pmembench.sh /mnt/pmem0

[Results] To obtain the figures, follow the commands below:
$./figure_3.sh
$./figure_5.sh
$./figure_6.sh
$./figure_7.sh

These scripts import the results and place the figures in a
folder named plots in the artifact_evaluation directory
both in .pdf and in .png formats.

Experiment (E2): [pmemkv] [5 human-minutes + 6
compute-hours]: This experiment executes the persistent KV
store (pmemkv) workloads using pmemkv-bench. The results
of pmemkv are used to produce Figure 4.
[Preparation] None.
[Execution] This automated script runs the pmemkv for all
the configurations. It exports the results in ‘,‘ delimited files
which are placed in safepm/benchmarks/pmemkv/results.
$./run_pmemkv.sh /mnt/pmem0

[Results]Toobtain thefigure, execute the following command:
$./figure_4.sh

These scripts import the results and place the figures in a
folder named plots in the artifact_evaluation directory
both in .pdf and in .png formats.

Experiment (E3): [RIPE] [5 human-minutes + 2.5 compute-
hours]: This experiment executes the RIPE benchmark for
the different variants shown in Table 5.
[Preparation] None.
[Execution] This automated script runs the RIPE benchmark
for all the different variants. It produces the results in .txt files
which are placed in safepm/benchmarks/ripe/results.
$./run_ripe.sh /mnt/pmem0

[Results] The following script prints in the standard output
theRIPE benchmark results in a table format similar to Table 5
in the paper.
$./table_4.sh

Note: To ease the execution of the first three experiments (E1,
E2 and E3), we provide a script that collectively runs all the
benchmarks and their configurations:
$./run_all.sh /mnt/pmem0

At the same level, we provide a script that parses the results
of E1 and E2 and produces all the plots of the paper and places
them in safepm/artifact_evaluation/plots:
$./safepm_figures.sh

Experiment (E4): [Crash consistency check] [5 human-
minutes + 1.5 compute-hours]: This experiment runs
memcheck and pmemcheck on the described configurations of
Section 6.5.
[Preparation] None.
[Execution] This automated script redirects
the valgrind output to files that are placed in
safepm/benchmarks/crash_consistency/results.
$./run_crash_consistency.sh /mnt/pmem0

[Results] To observe the summaries of valgrind for these ex-
periments, run:
$./valgrind_summary.sh

This script prints in the standard output the valgrind
summaries to prove our claims in Section 6.5.

Experiment (E5): [Bug reproduction] [5 human-minutes + 10
compute-minutes]: This experiment reproduces the PMDK
bugs reported in Section 6.7.
[Preparation] None.
[Execution] To reproduce the bugs, run the command:
$./run_reproduce_bugs.sh /mnt/pmem0

[Results] The executed script reproduces the bugs that SafePM
discovered in PMDK. It reports the bugs on standard output
with the appropriate error messages (error message report
fromASan for the first bug and a failed assertion for an invalid
free for the second one).

A.5 Notes on Reusability
We include in SafePM a set of tests that contain deliberate
memory safety violations. They are simple applications fol-
lowing the PM programming model using the PMDK APIs.
Their source code is in the tests folder. To build and run the
tests to validate the effectiveness of SafePM for thesememory
safety violations, in the root directory of the source code, run:
$./test.sh

Note that the tests are not configured to run on PM by default.
To test them on PM, the pool path should be modified in their
source code in the pmemobj_create function call.

524

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 Memory Safety
	2.3 ASan: a Shadow Memory-based Approach

	3 Overview
	3.1 System Model
	3.2 Design Challenges

	4 SafePM Design
	4.1 Persistent Memory Safety Metadata
	4.2 System Operations
	4.3 Additional Design Details

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance Overheads
	6.3 Space Overhead
	6.4 Effectiveness
	6.5 Crash Consistency
	6.6 Partial Safety Coverage
	6.7 Discovered Bugs and Anomalies

	7 Related work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

