
Treaty
Secure Distributed Transactions

Dimitra Giantsidi, Maurice Bailleu,
Natacha Crooks, Pramod Bhatotia

IEEE/IFIP DSN 2022

Distributed transactions

● A powerful programming abstraction
○ atomic processing of massive datasets
○ serializability
○ fault tolerance

2

● Properties (ACID)
○ Atomicity, Consistency, Isolation, Durability

Two-phase-commit (2PC) protocol

3

 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Txs require to exchange messages and log persistently their state

Client

Transactions in the cloud

4

Tx

Untrusted cloud infrastructure

Client

Attackers can compromise the security properties

Threats for distributed Txs in the cloud

5

#1: Secure execution #2: Secure persistency

Threat #1: Secure execution

6

 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Integrity +
 confidentiality

How to guarantee secure execution for Txs?

How to ensure secure persistency (crash-consistency + rollback protection) for Txs?

Threat #2: Secure persistency

7

 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Integrity +
 confidentiality

Rollback attacks

Problem statement

8

To design a distributed KV store with secure Tx execution and secure persistency

Our proposal

9

Properties:

● Distributed serializable Txs

● Confidentiality, integrity and secure persistency

● Performance

Treaty
A secure distributed transactional KV store

Untrusted
 storage

Treaty overview

10

TEE

Coordinator

Tx

Client

Untrusted
 storage

Participant #1 Participant #k

Untrusted cloud infrastructure

TEE TEE

Secure protocol for Txs

Untrusted
 storage

. . . .

Trusted services

● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation

Outline

11

Trusted Execution Environment

12

● HW extensions for trusted computing
○ Intel SGX, Arm TrustZone, etc.

● Trusted area (enclave)
○ Integrity + confidentiality

Treaty builds on TEEs to guarantee security for distributed Txs

TEE

Application

OS/Hypervisor

Host memory

TEE hardware

Challenge #1: Distributed systems

● TEEs do not protect the network operations

● Adversaries can tamper with Txs messages
○ integrity, confidentiality
○ replay-attacks

13

TEEs cannot guarantee secure execution for distributed Txs

Coord. P #1 P #2

Tx#1

Tx#1

Challenge #2: Stateful systems

● TEEs do not protect the persistent data and logs

● Adversaries can violate system correctness
○ delete or replace logs
○ compromise persistent data

14

TEEs cannot guarantee secure persistency for committed Txs

TEE
(Volatile memory area)

Untrusted storage

Outline

15

● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation

Treaty

16

Secure Tx protocol Stabilization protocol

Secure execution Secure persistency

#1: Secure Tx protocol

17

 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Treaty shields (a) the 2PC protocol and (b) the network messages for secure execution

#2: Stabilization protocol

18

 P #1

 P #2

Coord.

Treaty builds on (a) trusted services and (b) secure log files for secure persistency

Trust establishment

Attestation
service

Crash-consistency

Counter service

Execution

Rollback protection

Preparation + CommitInit.

Outline

19

● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation

A Treaty node: System stack

20

TEE

Untrusted storage

Trusted services

Secure Tx protocol

Network layer

Storage layer

Tx KV engine

 ….Other
nodes

Untrusted
network

Network layer

21

● Low-latency shielded communication

● Direct I/O within the TEE

● Metadata to prevent replay-attacks

● Implemented on top of RDMA/DPDK

net. lib.

NIC
memory

Host memory

TEE

Tx/Rx
queues

Enc. lib.Treaty bufs

Our network layer (a) optimises and (b) shields the network operations

Storage layer

22

● In-memory (hybrid) KV data structure

● Persistent data in authenticated files

● Pessimistic + optimistic single-node Txs

● Implemented on top of RocksDB

Values (encrypted)
Host memory

TEE
KV engine

In-memory KV (keys)

Secure log + data files

Untrusted storage

Our storage layer (a) secures the persistent data and (b) optimises the TEE usage

Outline

23

● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation

Evaluation

Questions:

● What are the overheads of Treaty's 2PC (stand-alone)?

● What are the performance overheads for Treaty ?

24

Hardware setup:

● TEE: Intel SGX

● 3x Intel i9-9900K (@3.60GHz, 8 cores, 16 HT)

● Intel NIC XL710 (40Gb/s, QSFP+)

More results in the paper!

Q1: 2PC's overheads

25

Treaty's 2PC overheads mainly derive from the TEE

Lo
w

er
 is

 b
et

te
r

1.1x

1.8x
2x

Q2: Overall overheads

26

Lo
w

er
 is

 b
et

te
r

Treaty offers strong security w/ reasonable overheads w.r.t. the state-of-the-art

4x-5.3x

9.4x-13.4x
11.9x-15.1x

Summary

27

● Distributed Txs are an integral part of the third-party cloud infrastructure

● Secure transaction processing is challenging
○ TEEs are not designed for distributed systems with Txs and untrusted storage

● Treaty: A secure distributed Tx KV store with strong security guarantees
○ Secure 2PC protocol
○ Stabilization protocol
○ TEEs + direct I/O

Source code: https://github.com/TUM-DSE/Treaty

Backup slides

28

Is Treaty a viable solution?

29

Treaty incurs similar overheads with the state-of-art secure systems

Secure Tx
systems

Obladi [OSDI' 18]
(single-node)

Fabric [EuroSys' 18]
(blockchain)

Treaty

Latency (ms) ~340 370-550 80-320

Secure storage
systems

Speicher [FAST' 22]
(single-node)

TWEEZER [FAST'22]
(single-node)

Treaty

Tps overheads 15x-17x 4x-9x 4x-15x

Threat model

30

Threat model Treaty

Compromised system stack (OS/hypervisor) Yes

Network adversaries,
(e.g., delay, drop, replay and manipulate network

traffic)
Yes

Host memory memory manipulation Yes

Unauthorized modifications to persistent storage Yes

DoS No

Cache-timing attacks
(e.g., speculative execution, access pattern leakage,

memory safety vulnerabilities)
No

EnclaveDB: A secure KVs with Txs

31

EnclaveDB [SP'18] Treaty

TEEs Emulated h/w Real h/w

Data model In-memory KVs Persistent KVs

Data distribution No (single-node KVs) Yes

Overheads 1.4x 4x-15x

EnclaveDB does not show the real TEEs' overheads

Treaty shares similar overheads with state-of-the-art secure storage systems

Speicher: A secure LSM-based storage system

32

Speicher [FAST'19] Treaty

TEEs Real h/w Real h/w

Data model Persistent KVs Persistent KVs

Data distribution No (single-node KVs) Yes

Txs No Yes

Overheads ~15x 4x-15x

Trusted substrate for Txs

33

● Configuration and attestation service (CAS)
○ low-latency attestation

● Userland scheduler
○ low-latency operations

● Memory management
○ TEE memory usage

TEE

Untrusted storage

CAS

Tx layer + engine

Storage layer

Userland sched.

OS
TEE controller

Userland scheduler

34

● Low-latency operations for multiple clients

● A userspace thread (fiber) for each client

● Lightweight context switches

○ Round-robin scheduling

○ No context-switches or interrupts
CPU #1

RQ SQ

TEE scheduler (framework)

TEE

OS

Authenticated LSM data structure

35

Host memory

TEE

KV engine

In-memory KV

SST#0

Untrusted storage

SST#1 SST#2

SST#3 SST#4 SST#k

Block #0

Footer

Block #1

WAL

Clog

MAN.

SSTable file

KV1 KV2 KVn

Sorted KV pairs
(encrypted)

Hashes of blocks

Log file and message format

36

IV metadata TX data MACTrusted id Encrypted entryHash

Secure Log file format Secure message format

