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Distributed transactions

● A powerful programming abstraction
○ atomic processing of massive datasets
○ serializability
○ fault tolerance
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● Properties (ACID)
○ Atomicity, Consistency, Isolation, Durability



Two-phase-commit (2PC) protocol
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 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Txs require to exchange messages and log persistently their state

Client



Transactions in the cloud
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Tx

Untrusted cloud infrastructure

Client

Attackers can compromise the security properties



Threats for distributed Txs in the cloud
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#1: Secure execution #2: Secure persistency



Threat #1: Secure execution
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 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Integrity +
 confidentiality

How to guarantee secure execution for Txs?



How to ensure secure persistency (crash-consistency + rollback protection) for Txs?

Threat #2: Secure persistency
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 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Integrity +
 confidentiality

Rollback attacks



Problem statement
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To design a distributed KV store with secure Tx execution and secure persistency



Our proposal
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Properties:  

● Distributed serializable Txs

● Confidentiality, integrity and secure persistency

● Performance

Treaty
A secure distributed transactional KV store



Untrusted
 storage

Treaty overview
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TEE

Coordinator

Tx

Client

Untrusted
 storage

Participant #1 Participant #k

Untrusted cloud infrastructure

TEE TEE

Secure protocol for Txs

Untrusted
 storage

. . . .

Trusted services



● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation

Outline
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Trusted Execution Environment
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● HW extensions for trusted computing
○ Intel SGX, Arm TrustZone, etc.

● Trusted area (enclave)
○ Integrity + confidentiality 

Treaty builds on TEEs to guarantee security for distributed Txs

TEE

Application

OS/Hypervisor

Host memory

TEE hardware



Challenge #1: Distributed systems

● TEEs do not protect the network operations

● Adversaries can tamper with Txs messages
○ integrity, confidentiality
○ replay-attacks 
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TEEs cannot guarantee secure execution for distributed Txs

Coord.  P #1 P #2

Tx#1

Tx#1



Challenge #2: Stateful systems

● TEEs do not protect the persistent data and logs

● Adversaries can violate system correctness
○ delete or replace logs
○ compromise persistent data
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TEEs cannot guarantee secure persistency for committed Txs

TEE
(Volatile memory area)

Untrusted storage



Outline
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● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation



Treaty
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Secure Tx protocol Stabilization protocol

Secure execution Secure persistency



#1: Secure Tx protocol
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 Participant #1

Prepare CommitExecute

 Participant #2

Coordinator

Treaty shields (a) the 2PC protocol and (b) the network messages for secure execution



#2: Stabilization protocol
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 P #1

 P #2

Coord.

Treaty builds on (a) trusted services and (b) secure log files for secure persistency

Trust establishment

Attestation 
service

Crash-consistency

Counter service

Execution

Rollback protection

Preparation + CommitInit.



Outline
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● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation



A Treaty node: System stack
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TEE

Untrusted storage

Trusted services

Secure Tx protocol

Network layer

Storage layer

Tx KV engine

 ….Other 
nodes

Untrusted
network



Network layer
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● Low-latency shielded communication

● Direct I/O within the TEE

● Metadata to prevent replay-attacks

● Implemented on top of RDMA/DPDK

net. lib.

NIC 
memory

Host memory

TEE 

Tx/Rx 
queues

Enc. lib.Treaty bufs

Our network layer (a) optimises and (b) shields the network operations



Storage layer
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● In-memory (hybrid) KV data structure

● Persistent data in authenticated files 

● Pessimistic + optimistic single-node Txs

● Implemented on top of RocksDB

Values (encrypted)
Host memory

TEE
KV engine

In-memory KV (keys)

Secure log + data files

Untrusted storage

Our storage layer (a) secures the persistent data and (b) optimises the TEE usage



Outline
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● Motivation

● Background and challenges

● Design

● Implementation

● Evaluation



Evaluation

Questions:

● What are the overheads of Treaty's 2PC (stand-alone)?

● What are the performance overheads for Treaty ?
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Hardware setup:

● TEE: Intel SGX

● 3x Intel i9-9900K (@3.60GHz, 8 cores, 16 HT)

● Intel NIC XL710 (40Gb/s, QSFP+)

More results in the paper!



Q1: 2PC's overheads
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Treaty's 2PC overheads mainly derive from the TEE
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1.1x

1.8x
2x



Q2: Overall overheads
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Treaty offers strong security w/ reasonable overheads w.r.t. the state-of-the-art

4x-5.3x

9.4x-13.4x
11.9x-15.1x



Summary
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● Distributed Txs are an integral part of the third-party cloud infrastructure

● Secure transaction processing is challenging
○ TEEs are not designed for distributed systems with Txs and untrusted storage

● Treaty: A secure distributed Tx KV store with strong security guarantees
○ Secure 2PC protocol
○ Stabilization protocol 
○ TEEs + direct I/O

Source code: https://github.com/TUM-DSE/Treaty



Backup slides
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Is Treaty a viable solution?
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Treaty incurs similar overheads with the state-of-art secure systems

Secure Tx 
systems

Obladi [OSDI' 18]
(single-node)

Fabric [EuroSys' 18]
(blockchain)

Treaty

Latency (ms) ~340 370-550 80-320

Secure storage 
systems

Speicher [FAST' 22]
(single-node)

TWEEZER [FAST'22]
(single-node)

Treaty

Tps overheads 15x-17x 4x-9x 4x-15x



Threat model
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Threat model Treaty

Compromised system stack (OS/hypervisor) Yes

Network adversaries, 
(e.g., delay, drop, replay and manipulate network 

traffic)
Yes

Host memory memory manipulation Yes

Unauthorized modifications to persistent storage Yes

DoS No

Cache-timing attacks
(e.g., speculative execution, access pattern leakage, 

memory safety vulnerabilities)
No



EnclaveDB: A secure KVs with Txs
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EnclaveDB [SP'18] Treaty

TEEs Emulated h/w Real h/w

Data model In-memory KVs Persistent KVs

Data distribution No (single-node KVs) Yes

Overheads 1.4x 4x-15x

EnclaveDB does not show the real TEEs' overheads



Treaty shares similar overheads with state-of-the-art secure storage systems

Speicher: A secure LSM-based storage system
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Speicher [FAST'19] Treaty

TEEs Real h/w Real h/w

Data model Persistent KVs Persistent KVs

Data distribution No (single-node KVs) Yes

Txs No Yes

Overheads ~15x 4x-15x



Trusted substrate for Txs
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● Configuration and attestation service (CAS)
○ low-latency attestation

● Userland scheduler 
○ low-latency operations

● Memory management
○ TEE memory usage

TEE

Untrusted storage

CAS

Tx layer + engine

Storage layer

Userland sched.

OS
TEE controller



Userland scheduler
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● Low-latency operations for multiple clients

● A userspace thread (fiber) for each client 

● Lightweight context switches

○ Round-robin scheduling

○ No context-switches or interrupts
CPU #1

RQ SQ

TEE scheduler (framework)

TEE 

OS



Authenticated LSM data structure
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Host memory

TEE

KV engine

In-memory KV

SST#0

Untrusted storage

SST#1 SST#2

SST#3 SST#4 SST#k

Block #0

Footer

Block #1

WAL

Clog

MAN.

SSTable file

KV1 KV2 KVn

Sorted KV pairs 
(encrypted) 

Hashes of blocks



Log file and message format
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IV metadata TX data MACTrusted id Encrypted entryHash

Secure Log file format Secure message format


