
FlexLog: A Shared Log for Stateful Serverless Computing
Dimitra Giantsidi

University of Edinburgh
Emmanouil Giortamis

TUMunich

Nathaniel Tornow
TUMunich

Florin Dinu
Huawei Munich Research Center

Pramod Bhatotia
TUMunich

University of Edinburgh

ABSTRACT

Stateful serverless applications need to persist their state and data.
The existing approach is to store the data in general purpose storage
systems. However, these approaches are not designed to meet the
demands of serverless applications in terms of consistency, fault
tolerance and performance.

We present FlexLog, a storage system, specifically a distributed
shared log,distinctivelydesigned tomeet the requirementsof stateful
serverless computing while mitigating the relevant system bottle-
necks. FlexLog’s data layer leverages the state-of-the-art persistent
memory (PM) to offer low latency I/O and improve performance. To
match the performance, FlexLog’s ordering layer employs a scalable
design, namely a tree-structure set of sequencer nodes. Importantly,
this design provides serverless applications with the flexibility to im-
plement different consistency guarantees and to seamlessly support
multi-tenancy configurations.

We implement FlexLog from the ground up on a real hardware
testbed and we also prove the correctness of our protocols. In par-
ticular, we evaluate FlexLog on a cluster of 6 machines with 800GB
Intel Optane DC PM over a 10 Gbps interconnect. Our evaluation
shows that FlexLog scales tomillions of operations per secondwhile
maintaining minimal latency. Our comparison with the state-of-the-
art shared log for serverless, Boki, shows that we achieve 10× better
throughput in the storage layer and 2×—4× lower latency in the
ordering layer, while also providing flexibility to support different
consistency properties and multi-tenancy.

CCS CONCEPTS

•Computer systems organization→Cloud computing.

KEYWORDS

Serverless Computing, Shared Distributed Log, Persistent Memory

ACMReference Format:

Dimitra Giantsidi, Emmanouil Giortamis, Nathaniel Tornow, Florin Dinu,
and Pramod Bhatotia. 2023. FlexLog: A Shared Log for Stateful Serverless
Computing. In Proceedings of the 32nd International Symposium on High-

Performance Parallel and Distributed Computing (HPDC ’23), June 16–23, 2023,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’23, June 16–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0155-9/23/06. . . $15.00
https://doi.org/10.1145/3588195.3592993

Orlando, FL, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3588195.3592993

1 INTRODUCTION

Motivation. Serverless computing is gaining increasing popularity
for building scalable cloud applications as it offers the potential to
program the cloud in an autoscaling, pay-as-you-go manner. This is
evident from the fact that major cloud providers develop serverless
computing frameworks, e.g., AWS Lambda [4], Azure Functions [5],
Google Cloud Functions [17], and are used in diverse applications,
e.g., videoprocessing [45, 66], data analytics [86, 115],machine learn-
ing [54, 85, 120] and others [65, 84, 135].

Unfortunately, the stateless nature of serverless functions is op-
posed to the stateful applications that are built with them [73, 117,
122, 138]. Suchapplicationsareoftencomprisedofmultiple functions
that need to share or persist their state and data [52, 97]. Current
industry approaches [4, 69], rely on general purpose storage ser-
vices [43, 44, 60, 68] for inter-function communication or data/state
persistence. However, these approaches fail to achieve strong con-
sistency and fault tolerance while maintaining high performance
and scalability [108, 118].

Distributed shared log systems [47, 62, 107, 128] canofferapromis-
ing solution for serverless applications. A shared log, an append-
only sequence of records, is typically composed of two core com-
ponents, a data layer that replicates the appended records and an
ordering layer that serializes the records in a meaningful order. As
such, shared logs offer a fundamental building block for various
high-level data structures and systems that are consistent, durable,
and scalable [3, 28, 48, 49, 129]. Shared logs’ strong properties can
benefit serverless computing; they offer performance while freeing
distributed applications from the burden of managing the details of
fault-tolerant consensus [49].
Limitation of state-of-art approaches. Existing shared log sys-
tems [2, 47, 49, 62, 83] come with limitations that arise especially in
the context of serverless computing. These systems build on top of
SSDs which incur high I/O latency. For example, the state-of-the-art
shared logBoki [83] reports 1—3ms read latencywhich canbe aprob-
lem for short-lived serverless applications that access the storage
frequently (§ 3.1). Secondly, their vastmajority are designed for total
ordering. However, we show that total ordering comeswith a perfor-
mance cost (§ 3.3) while we find it unnecessarily strict for (chained)
serverless applications whose updates are applied to disjoint data or
in a highly parallel manner (e.g., data analytics [1, 109]). In total, the
slow storage layer combined with the strict ordering layer limit the
system’s scalability which in turn complicates multi-tenancy, e.g.,
bursts of serverless functions, as well as high function concurrency.

1

https://doi.org/10.1145/3588195.3592993
https://doi.org/10.1145/3588195.3592993
https://doi.org/10.1145/3588195.3592993

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

Key insights, contributions and high-level design. In this work
we address these limitations. We introduce FlexLog, a shared log
system that is carefully designed for serverless’ requirements. In
FlexLog, we overcome the bottlenecks in the storage layer where
we embrace the opportunity to leverage modern storage technolo-
gies, such as persistent memory (PM) [77], and drastically improve
the I/O latencies (§ 5.2). In addition, we tackle the ordering layers’
limitations by implementing a fast ordering layer that offers flexi-
bility in ordering semantics; serverless applications can implement
different consistency properties when they need them. For example,
data analytics applications [93] do not necessarily require a strict
ordering of all events that is traditionally offered by conventional
shared log systems. While we offer flexibility, we take great care to
preserve data consistency and isolation (for correctness) and, thus,
we expose transaction-like operations that allow applications to ap-
pend multiple records atomically in different parts of the log (§ 6.4).
Our design choices for the ordering protocol increase scalability
and also enable multi-tenancy (§ 5.1). We implement (§ 6) and pro-
vide correctness proofs (§ 7) for all our append/read protocols and
auxiliary operations for accessing FlexLog.

At a high-level, FlexLog layers a high-performance ordering
layer on top of a data layer, a set of storage nodes that replicate the
log. These storage nodes implement a tiered architecture where we
use PM for persistence, DRAM for caching and SSD for flushing old
parts of the log. On top, our ordering protocol is a tree structure
of sequencer nodes that assign sequence numbers to records that
denote partial or total ordering. FlexLog overlaps record replication
and ordering targeting low latency.

We build FlexLog from the ground up in Golang [16]. For the
networking, we use remote procedure calls (RPCs), specifically gR-
PCs [18]. For the storage layer, we use Persistent Memory Develop-
ment Kit (PMDK) [78]. Lastly, we implement a Go-API for accessing
PM and creating memory bindings between our Go-API and the C++
implementation of PMDK libraries.

We run FlexLog on a cluster of 6 machines with 800GB Intel Op-
tane DC PM over a 10 Gbps interconnect. Our evaluation shows that
FlexLog seamlessly scales to millions of operations per second. We
make an apples-to-apples comparison of FlexLog’s storage and or-
dering tiers with Boki [83], the state-of-the-art shared log for server-
less. We show that our storage layer is an order of magnitude faster
than Boki’s while our ordering layer achieves 2—4× lower latency.

To sum up, our paper makes the following contributions:
• Based on our analysis of the bottlenecks and requirements in-
volved in stateful serverless computing (§ 3), we propose a shared
log architecture that builds on the state-of-the-art persistentmem-
ory and offers a scalable ordering protocol (§ 4 and § 5.2).
• Our system allows serverless applications to implement flexible
ordering semantics when they need them and can support multi-
tenancy (§ 5.1).
• We provide comprehensive protocols around the shared log ab-
straction (append/read and auxiliary operations) (§ 6) and we
provide proofs of correctness (§ 7).

Limitations of FlexLog. FlexLog is based on Intel OptaneDCPM
which recently has been discontinued by the vendor [34]. However,
we believe that this unfortunate event is not restrictive for FlexLog.
Instead, the upcoming CXL [19, 23] technology is quite promising

because it provides a Load-Store IO fabric at rack-level in memory
and storage pools [20], facilitating the FlexLog’s adoption.

2 BACKGROUND

Distributed shared log. Serverless functions require to persist and
communicate their state and data with consistency, fault tolerance
and scalability [83]. Shared logs can provide a solution to serverless
state management systems as they are a fundamental building block
for various systems (e.g., storage systems [28, 48, 49, 129], message
queues [95], databases [46]) that meet these properties.

Distributed shared logs or simply shared logs offer the view of an
append-only sequence of records. The shared log has gained traction
both in research [47, 48, 62, 107, 111] and industry [10, 14, 26, 95, 126]
because it allowsapplications to seamlessly replicate andpersist state,
e.g., by appending updates to the end of the shared log and reading
back updates from it.

At a high-level, these systems traditionally consist of three logical
components: adata layer, an ordering layer, and clients. Thedata layer
replicates and stores the records persistentlywhile the ordering layer
is responsible for ordering records by assigning each record a distinct
position in the log. Lastly, clients use the shared log’s API of append-
ing and readingwhich interactswith the data and the ordering layers.
Persistentmemory.At the same time, serverless functions need to
persist andupdate their state/data efficiently to reduce client costs. In
this direction, we embrace the opportunity to leverage modern stor-
age technologies, specifically persistent memory (PM) [77], to dras-
tically improve serverless functions’ storage I/O latencies. PM offers
durabilitywithclose-to-DRAMmemoryaccesses. PMis connected to
the CPU via thememory bus, and resides between themainmemory
and conventional storage such as SSDs or HDDs in the system stack.

Our work builds on PMDK [78], a collection of libraries and tools
developed by Intel aiming to support and facilitate application devel-
opment for persistent memory. Conveniently, our work leverages
PMDK’s transactional API (BEGIN, PUT, GET, COMMIT/ROLLBACK) to
handle PM’s architectural challenges, e.g., flushing volatile CPU
caches, metadata persistency and crash consistency [56, 116, 130].

3 MOTIVATION

3.1 Characteristics of Stateful FaaS

Serverless functions or function-as-a-service (FaaS) [4, 5], allow de-
velopers to upload simple functions to the cloud provider which
are invoked on demand. While cloud providers offer a variety of
execution environments (compute tiers) allowing a pay-as-you-go
manner [4, 5, 17, 24], managing serverless functions’ state or per-
sistent data (stateful functions) still remains a challenge [96, 97].
Currently, both research and academia approached this by building
or relying on general purpose storage services [11, 43, 44, 60, 68].
These storage services do not usually meet serverless application
requirements in terms of performance, cost, fault-tolerance, and
consistency [97]. More importantly, serverless functions present the
following characteristics that need to be taken into account when
designing a storage system for state management.
Low-latency and frequent storage accesses. Serverless functions
are short-lived [119]—the Azure study shows that half of the func-
tions complete within 1 s and > 90% of them have runtime below

2

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

syscall Video processing Gzip compression

open() 17% 19%
read() 15% 3.2%
write() N/A 22%
fstat() 5.1% 2.9%
close() 6% 1%
Total 41% 48.1%

Table 1: Profiling of two serverless functions [15, 92, 93].

Percentage of cpu time spent in accessing local storage.

10 s [123]—while they frequently need to access the storage persist-
ing data and communicating with each other [52, 73, 117, 122, 138].

To understand the bottlenecks, we locally ran and profiled two
popular serverless workloads [15, 92, 93], a video processing and a
gzip compression workload. Table 1 shows our findings. We found
that around the 40% of the CPU time is spent on accessing storage.
Note that this reported percentage is based on local storage; we ex-
pect even worse results in a real serverless environment where data
needs to be synced among the storage nodes and functions might
access shared data remotely. Consequently, the short-lived nature
of serverless and the frequent storage accesses show that a storage
system for serverless needs to optimize for storage latency.

Flexibility: consistency properties andmulti-tenancy.We ob-
serve that managing serverless application state requires a variety
of consistency guarantees, from strict serializability [74] (e.g., trans-
actions [135]) to weaker consistency guarantees [7] (e.g., data ana-
lytics [86, 115], such as map-reduce [93] or graph processing [109]).
Both data analytics paradigms follow a similar execution model; a
chained set of parallel tasks (phases) accesses, processes and updates
the persistent data. That said, we only need to serialize the execution
phases but not the parallel tasks within each phase. Consequently,
given that strict serializability is expensive and impractical (e.g., net-
work partitions) [107], our observation implies that a well-designed
storage systemmust offer configurable ordering guarantees between
updates—from now onwe refer to this as flexible ordering semantics.
Note that even with flexible ordering, the data isolation and correct-
ness properties should not be violated under failures or interruptions.

In addition to that, a carefully-designed storage system for server-
less needs to scalewell to supportmulti-tenancy, i.e., to handle bursts
and high concurrency of serverless applications and functions.

To sumup,weneed to target the followingproperties in thedesign
of a storage system for serverless state management:
• High-performance storage accesses for fast function start-up
times, state and data persistence and retrieval.
• Scalability for handling bursts of serverless functions as well as
high function concurrency.
• Fault tolerance for mitigating the impact of failures and decreas-
ing client costs.
• Flexiblity fororderingguarantees ranging fromweaker tostronger,
to cater to the diverse consistency requirements of serverless ap-
plications, and to support multi-tenancy.

3.2 Shared Logs for Serverless Computing

The solutions currently used for serverless statemanagement are not
specifically designed to meet the demands of serverless applications.
More specifically, current serverless applications primarily rely on
cloud storage services (e.g., AWS S3 [44], Google Cloud Storage [68],

64 128 256 512 1024 2048 4096 8192
block sz (B)

103

104

105

La
te

nc
y

(n
se

c)

pmem_read
fileio_read

read_syscall
pmem_write

fileio_write
write_syscall

Figure 1: Storage latency for read and write operations.

DynamoDB [60], etc.) to manage their state, exchange data between
the executing functions and persist data. Unfortunately, such ap-
proaches cannot simultaneously provide low latency, low cost, and
high throughput [96]. At the same time, these systems only offer
Put/Get interfaces which make quite challenging maintaining data
consistency and isolation (under failures) in stateful transactional
serverless workloads [135].

In line with prior work [83], we advocate that shared logs can
benefit serverless functions because, by design, they provide fault
tolerance and can address serverless functions’ performance, scal-
ability and consistency requirements [83]. Indeed, considering the
trends in serverless computing [15, 92, 93], we found several use
cases where a shared log can provide an efficient solution. A shared
log can be used for inter-process communication (building serverless
message queues [31, 32]). In addition, shared logs can serve as the
building block for designing high-level data structures, e.g., Durable
Objects [35], that are durable, scalable and consistent [48] because
they hide a consensus protocol behind their API. Lastly, the database
community has shown how to use logs [40] to implement transac-
tions which are fundamental for fault-tolerant workflows [135].

Unfortunately, existing shared log systems [47, 48, 62, 107] are
ill-suited for modern serverless applications because they all build
on high-latency storage technologies (SSDs) and primarily design
protocols for providing the rather expensive total ordering. For ex-
ample, Corfu [47] implements a replicated data layer in a chained
topology and a single-node sequencer as its ordering layer that, un-
fortunately, has beenproven to become a bottleneck [62, 107].On the
other hand, Fuzzylog [107] targets performance in geo-distributed
deployments by relaxing the ordering consistency guarantees. How-
ever, FuzzyLog replicates each partition via chain replication which
increases latency. Lastly, the state-of-the-art Scalog [62] implements
a Paxos [98]-based counter service (as its ordering layer) and imple-
ments a totally-ordered log. However, researchers [110] have shown
that evenwell-studied Paxos implementations can have large perfor-
mance variations (evenwithmildworkloads) that cascade and create
insufficientapplication-levelperformance.To this end, there is aneed
for a system that does not sacrifice performancewhile still providing
serverless functions with the consistency guarantees they need.

3.3 Bottleneck Analysis in Shared Log Systems

We conduct an empirical evaluation of the state-of-the-art shared
log Scalog [62], whose architecture has recently been adopted by
Boki [83], a shared log for serverless computing. Our analysis shows
that both its storage and ordering layers can limit performance,

3

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

whereas the advent of PM opens up new opportunities for improve-
ment.

Storage layerbottlenecks.Scalog [62] is built on topof SSDs, incur-
ring high latency for I/O. Due to that, there is a shift towardsmodern
PMtechnologies in clouddatamanagement systems [27, 75, 132]. Fol-
lowing this trend, we quantify the SSD overheads by measuring the
latencies for read and append operations for three competitive base-
lines: (i) PM via kernel-bypass [91], (ii) PM via OS syscalls and (iii)
SSDs. Figure1 shows theaverage latencyof readandwriteoperations
on PM (pmem_read, pmem_write) compared to read andwrite PM ac-
cesses through OS interfaces (read_syscall, write_syscall) and
SSDs (fileio_read, fileio_write). Our experiment shows that
PM improves I/O latency up to 10× compared to using SSDs. Further,
bypassing the kernel to access PM results in up to 100× lower latency.

Ordering layer bottlenecks. Scalog offers a global totally-ordered
log by layering a Paxos protocol [98] on top of its storage layer to
replicate the tail of the log. Paxos can be costly: classic (leaderless)
multi-proposer Paxos [98] runs at least two phases (Propose and
Accept) for every single increment of the tail while optimized ver-
sions of it, i.e., Multi-Paxos [124], elect a (unique) primary to handle
all requests which can become a bottleneck [9]. In case of multi-
ple proposers, Paxos might require to re-execute its phases for an
unbounded number of times to reach consensus [6]. Indeed, while
experimentingwith the protocol [25], we identified livelocks. Specif-
ically, we did not see any progress as concurrent proposers were
competing for the tail of the log. Our findings are not orthogonal to
what research is suggesting. Practical systems [53] use Paxos out of
the critical path, e.g., for leader election, lease management [70], etc.
or switch to fallback protocols [124] to improve latency.

4 FLEXLOG’S

ABSTRACTIONAND SYSTEMMODEL

Definitions.We define a log object as a bounded sequence ofWrite-

Once-Read-Many records, (𝑊ℎ , ..., 𝑊𝑡). If ℎ > 𝑡 we say that the
sequence is empty, ∅. Initially ℎ=1, 𝑡 =0. A shared log object simply
is a concurrent log object.

We define a 𝑠ℎ𝑎𝑟𝑑 as a set 𝑆 of 𝑟 ∈ N+ replica nodes (or simply,
replicas). The number of replicas within a shard is equivalent to the
replication factor of the system.

We define a 𝑐𝑜𝑙𝑜𝑟 𝐶 as a set of 𝑛 ∈ N+ shards, {𝑆ℎ𝑎𝑟𝑑#1, ... ,
𝑆ℎ𝑎𝑟𝑑#𝑛}. The colors in FlexLog are an abstraction of the notion of
a regionwithin the log. From now on, the terms region and color are
used interchangeably.

Wedefine the data layer 𝐿 as a set of 𝑙 ∈N+ colors,𝐿= {𝐶𝑜𝑙𝑜𝑟#0, ... ,
𝐶𝑜𝑙𝑜𝑟#𝑙}. Lastly,weconsideraset𝑂 of𝑜 ∈N+ nodes,𝑂 = {𝑆𝑒𝑞#0, ... ,𝑆𝑒𝑞#𝑜}
that comprise the ordering layer of our system. From now on, we
refer to the nodes of the ordering layer as sequencers.

Topology. The data layer and the ordering layer, formally, 𝐿∪𝑂 ,
make up the topology of FlexLog. FlexLog’s ordering layer is struc-
tured as an 𝑛-ary tree, abstracting the color hierarchy on top of the
data layer. All replicas of a shard are connected to a leaf-sequencer
node from the ordering layer tree that resides in the same color. A
color stores an ordered (part) of the log and might consist of multi-
ple other regions. FlexLog offers the abstraction of multiple totally

Shard #1 Shard #2

Seq #1

Color #0

Color #1 Color #2

Seq #2

Seq #0

Figure 2: FlexLog’s abstraction; the data layer (𝑆ℎ𝑎𝑟𝑑 #1,
𝑆ℎ𝑎𝑟𝑑 #2) is organized into regions of totally-ordered logs

(blue, red, green) each of which is managed by a single

sequencer node (𝑆𝑒𝑞 #0, 𝑆𝑒𝑞 #1, 𝑆𝑒𝑞 #2).
ordered shared logs all of which are part of themaster-region (root
of the tree). Records of different colors are ordered arbitrarily.

Figure 2 shows an example topology that is comprised of three col-
ors (red, green, blue), and thus three sequencers (𝑆𝑒𝑞#0 to𝑆𝑒𝑞#2) that
are responsible for ordering the records of each color. The sequencer
𝑆𝑒𝑞#0 is the root node (master-region) of the ordering layer tree.

Network model. We assume a partially synchronous message-
passing systemwith unbounded message size [64]. Message delays
are initially unbounded for some unknown but finite time, then a
delay bound Δ starts to hold. We quantize time in rounds of com-
munication. In any given round, a node may broadcast a message,
the recipient nodes deliver this message and then possibly perform
some negligible local computation.

We assume the system’s network to be reliable (lost, re-ordered
or double-sent messages are not allowed).We also assume that there
exists a reliable broadcast (from now on simply broadcast) primitive
that guarantees (as in [61]), that: if a correct process delivers a mes-
sagem, then all correct processes will eventually deliverm. Second,
a messagem is delivered by each correct process at most once iff it
was previously broadcast by some process. Finally, correct processes
deliver the same messages in the same order.

In practice, FlexLog builds reliable (FIFO) network connections
relying on the TCP protocol, as in [36]. Further, our broadcast prop-
erties are realized by combining TCP connections and FlexLog’s
recovery algorithms (§ 6.3) when failures occur. We argue that our
requirement for a reliable broadcast is not a limitation. In fact, we
are inspired from the modern trends in cloud network infrastruc-
ture which have explored the synergies between reliable (or atomic)
broadcast algorithms and fast network stacks (RDMA, SmartNICs,
programmable switches [59, 82, 99, 113]), showing that they can
benefit various distributed systems [50, 71, 101, 102, 114].

Faultmodel.Weassumecrash failures; a process can fail completely
or omit some computation/communication steps. For liveness, we as-
sume a crash-fail recovery model for the storage nodes: replicas can
fail at any point but they will recover eventually and the persistent
state (PM and SSDs) is preserved (not corrupted). The shards run a
read-one/write-all replication protocol. As in similar protocols [89,
125], upon network partitions (or replicas’ failures), we choose to
sacrifice availability to maintain consistency (CAP theorem [51]).

For the ordering layer, each sequencer has 2𝑓 backups where at
most 𝑓 nodes can crash. Failures (e.g., crashes, network partitions,
etc.) are identified by noticing message delays greater than Δ.

4

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Append(𝑟 [], c) Appends records to the log of color c and returns the
last assigned SN

Read(SN, c) Reads a record with SN from the c-colored log
Subscribe(c) Receives all records of the c-colored log
Trim(SN, c) Garbage collects the log of color c by deleting all

records with sn ≤ SN
AddColor(c, c𝑝) Creates a new c-colored log with 𝑐𝑝 log as its parent

Table 2: FlexLog’s basic API.

5 DESIGN

5.1 Overview

Serverless architecture. Figure 3 shows an example serverless
(FaaS) infrastructure which includes FlexLog. Particularly, server-
less infrastructures implement a tiered architecture where they com-
prise of an execution layer (compute tier) and a storage layer (in
our case FlexLog). The execution layer (inspired by [4, 33]) is com-
posed of front-end servers that receive and authenticate external
requests 1 .A request is then routed to the orchestratorwhichkeeps
track of the entire cluster resource utilization 2 . The orchestrator
communicates with the workers’ manager which chooses a phys-
ical host to launch the new function instance 3 1. The workers’
manager retrieves the necessary function state, e.g., a Docker im-
age or others [41] from FlexLog and starts the instance 4 . Finally,
each function performs language runtime initialization, after which
the user-provided function code retrieves the function invocation’s
inputs, e.g., data from FlexLog.
FlexLog components. FlexLog comprises (i) the ordering and (ii)
the data layers (Figure 3). The ordering layer is a tree structure of
sequencers that achieves fault tolerance through backupnodes. Each
sequencer assigns sequence numbers to all Appends that refer to its
owned region, thus, serializing them into a total order in that region.

The storage (data) layer, which stores the logs, consists of the
storage layer and the replication layer. The storage layer consists of
storage servers (replicas) organized into shards sitting below a repli-
cation layer that enforces a replication protocol for fault tolerance.
Figure 3 also visualizes the storage stack of a replica (§ 5.2). Each
shard is connected to a leaf-sequencer of the ordering layer.

Lastly, the serverless functions implement the FlexLog-API (Ta-
ble 2) and communicate directly with replicas of shards to issue
Append or Read requests in the respective regions.
FlexLog-API. Table 2 shows the FlexLog-API. Applications can
use existing colors or create new colored regions in FlexLog. As
shown in Figure 3, to append a record 𝑟 in color 𝑐 , a function needs to
send the Append request to every replica of a (random) shard in 𝑐 5 .
Each replica stores the record and requests a sequence number (SN)
(that is unique for each record in 𝑐) from the ordering layer. Each
replica views a persistently stored record that has been assigned a SN
as committed and can therefore serve it on read requests. An Append
call is considered complete when all replicas have committed the
record. To serve a Read call for a specific SN of a given color 𝑐 , the
application contacts a random replica of each shard of 𝑐 and receives
the record from (at least) one of them. (Figure 3, 6). The auxiliary
operations Subscribe and Trim are used to fetch all records of 𝑐 and
erase all records in 𝑐 up to a 𝑠𝑛 (given as an argument) respectively.
1We make no assumption about FlexLog’s (physical) location. The provider’s
orchestrator can co-locate FaaS applications with FlexLog’s component(s) based on
resource usage.

Example usage of FlexLog-API. Listing 1 shows how to use
FlexLog-API to implementamessagequeueandallowtwoserverless
functions, Func1 and Func2, to communicatewith each other. Func1
appends data in a data-log, the yellow log (line 22) and creates a black-
colored log, the message queue, where it enqueues the sequence
number, sn_y of the previous append (line 24-25). Func2 looks up the
black log (lines 28-30) until the expected record (and its SN) is found.

1type MessageQueue struct { // A message queue defined by a color
2 color Color, handle FlexLog
3}
4// Enqueue method to distribute record to serverless applications
5func (mq *MessageQueue) Enqueue(idx int, record String) {
6 mq.handle.Append({idx, record}, mq.color)
7}
8// Get method that returns the index and the record of an index (idx)
9func (mq *MessageQueue) Get(idx int) {int, Record} {
10 return mq.handle.Read(idx, mq.color);
11}
12// Lookup of the expected record (exp_record) in the message queue
13func (mq *MessageQueue) getIdx(exp_record String) int {
14 log := mq.handle.Subscribe(mq.color)
15 for (idx, record := <- log) { // Iterate the next entry
16 if (record == exp_record) { return idx; }
17 }
18 return -1;
19}
20// Append to yellow color the data to be read from Func2
21func (mq *MessageQueue) Func1() {
22 sn_y := handle.Append(record[], yellow)
23 // Create the black log
24 mq.color := mq.handle.AddColor(black)
25 mq.Enqueue(sn_y, String{YELLOW_READ_IDX})
26}
27func (mq *MessageQueue) Func2() {
28 for (;;) { // Lookup until the entry (s_idx) is found
29 s_idx := mq.getIdx(String{YELLOW_READ_IDX})
30 if (s_idx != -1) {break;}
31 }
32}

Listing1:Example:Amessagequeuebetweentwofunctions

Consistency models and multi-tenancy. FlexLog’s design al-
lows applications to implement various consistency models while it
is designed for scalable multi-tenancy scenarios. We next show how.

Applications can support linearizability and sequential consis-
tency by appending to a single color of the log. The leaf-sequencer
of that color is the point of serialization. For example, in Figure 3,
App2’s functions utilize a single totally-ordered color (yellow) for
appends 7 — 8 . Applications can also express causality (happens-
before relationship) by implementing synchronization primitives,
i.e., locks and barriers, similarly to [76]. In the example of the chained
execution, e.g., map-reduce, we suggest the following: each mapper
writes to a distinct colored log. Upon its completion, it appends a
final record to a specific log, the black log. Reducers wait until all
mappers append final records on the black log. This can be done by
reading the tail or subscribing.

FlexLog can support weaker, eventual consistency models, that
are common in many large distributed systems. Functions can write
to arbitrary colors; subsequent reads do not have to reflect the latest
append and reads acrossmultiple recordsmight reflect an incoherent
mix of not ordered appends, e.g., App1 (Figure 3) writes and reads
from different colors.

Multi-tenancy is supported similarly to eventual consistency. Un-
related applications can define distinct colors in FlexLog. Figure 3

5

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

Function #1

Replica #1 Replica #2 Replica #3

Shard

Replica #1 Replica #3

Shard

Sequencer

Leaf-sequencer Leaf-sequencer

D
at

a
la

ye
r

O
rd

er
in

g
la

ye
r

Function #2
Append (r1, red) Read (SN1, green)

Fl
ex

Lo
g

C
om

pu
te

 ti
er

Front-end servers Orchestrator Workers' manager

A
pp

1

Invocation
(external)

...

1

2 3
4

6

Resources allocation Host selection
Deployment

Leaf-sequencer

Shard

Replica #1 Replica #3...

Function #1

A
pp

2 Function #n...

87
Append (r2, yellow) Append (r3, yellow)

5

SSD
PM

DRAM

Storage stack

Figure 3: FlexLog system architecture.

showsanexampleof twoapplications,App1 andApp2 that updatedis-
tinct colors, red and yellow, respectively. FlexLog does not impose
an ordering relation between records of red and yellow color.

FlexLog beyond serverless.We adopt the classical API for shared
logs allowing FlexLog to easily be adopted in various systems, be-
yond serverless computing. First, FlexLog can be used to implement
fundamental primitives for systems such as distributed locking [22,
49], message queues and event sourcing [95], data structures (w/ re-
laxed consistency) [42, 48], etc. Importantly, it canbeusedas anexter-
nal system for the design of large-scale systems; such as an external
commit (transactions) log to aid distributed systems (e.g., databases)
to re-sync and restore their state and data after failures. It can further
improve scalability inmessaging and chat applicationswhere a color
can represent the history ofmessages in a chat room. Lastly, FlexLog
can help to run pipeline workflows, e.g., learning pipelines, for deliv-
ering identical event streams tomultipleMLmodel training services.

5.2 FlexLogArchitecture

Ordering layer. The ordering layer of FlexLog is a scalable and
fault-tolerant tree structure of server nodes called sequencers. Se-
quencers assign distinct 64-bit sequence numbers (SNs) as a response
to order requests (OReqs). SNs are realized as the value of an in-
creasing counter inside the sequencer and determine a total order
between all OReqs to this sequencer over time. The tree hierarchy
of sequencers describes the logical division into regions by viewing
each sequencer as the source of total ordering for each region. The
sequencer that provides the total order for a region resides at the
root of the sequencer (sub-)tree of the respective region. An OReq,
specifying a color 𝑐 of a region arrives at one of the leaves of the
sequencer tree, which resides in the region or a sub-region of 𝑐 . The
OReq gets propagated through the sequencer tree towards the root,
until it reaches the root sequencer of the requested region 𝑐 . The
root sequencer then replies with the distinct SN, which will be sent
back to the request’s origin on the same path.

To improve throughput, the sequencers of sub-regions serve as
aggregators for incoming OReqs. They merge OReqs that arrive in a
specific time interval and that have the same color into a singleOReq.
A merged OReq then also specifies the number 𝑛 of single OReqs it
consists of. By replying with the SN 𝑠 , the sequencer assigns all SNs

in the range [𝑠, 𝑠+𝑛] to the merged OReq, which are distributed to
their respective origin.
Sequencer replication. To tolerate failures, we use 2𝑓 backup nodes
that only replicate the epoch number (𝑒) (incremented on a leader’s
failure) of the current sequencer. As such, the backups do not par-
ticipate in normal execution, do not add up in latency and they are
only “activated” when the sequencer fails (detectable through heart-
beat messages). In FlexLog, the new sequencer is elected as the
backup node with the highest known 𝑒 and the highest node-id (as
a tie-breaker). To avoid the split brain problem, e.g., two sequencers
which both think they are the new leader, a (old) sequencer shuts
down if it does not receive heartbeats from the majority for some
time. In addition, every new sequencer sends initialization requests
to all replicas and waits to be acknowledged by all before executing
the protocol (§ 6.3).
Safety. A newly elected sequencer, prior to running the ordering pro-
tocol, replicates its epoch in (at least) the majority of backups. That
follows that if this sequencer fails, the latest 𝑒 will survive in at least
one replica. The leader issues and increases SNs (64-bit) of the form:
the most significant 32-bits consist of the 𝑒 , and the least significant
32-bits are the result of a counter (incremented on each OReq). That
satisfies the criterion for correctness; the SNs are increasing.
Data layer. The data layer is organized as the replication layer built
on top of the storage layer.
Replication layer: For high throughput and fault tolerance, FlexLog
stores and replicates records across multiple shards. All replicas of
a shard connect to the same leaf-sequencer. By definition, a shard is
allocated to the region of its leaf-sequencer and all its super-regions.
Our replication protocol, realized as an atomic broadcast, allows
linearizable local reads.

For an append, the record is broadcast to all replicas of the shard,
which store the record and request a SN from the ordering layer.
When a SN has been determined, the leaf-sequencer broadcasts the
SN to all replicas. At this point, replicas can commit the record. All
records are committed in a total order that is defined by the ordering
layer, and every replica commits the record before the append pro-
tocol is completed. That allows linearizable reads on every replica.
Storage layer: Each replica implements a storage server that consists
of three tiers: (i) an in-memory volatile cache, (ii) the stateful log
in PM and (iii) the secondary persistent storage (SSDs). The cache

6

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

optimizes the read path by storing some recently accessed records.
The stateful log (PM tier) stores records in a crash-consistent man-
ner. Lastly, FlexLog makes use of the SSD in case the log grows
indefinitely. By default, records appended to the log are stored in PM
(and the cache). If the cache size limit is reached, the oldest record is
evicted and replaced by the new record. If the log’s size limit in PM
is reached, a (user-configurable) contiguous portion from the start
of the log is flushed to SSD and removed from PM. Symmetrically for
read operations, the volatile cache is first read, thenPM, then the SSD.

6 FLEXLOG SYSTEMPROTOCOLS

We next describe FlexLog’s protocols: we show the Append and
Read protocols (§ 6.1), the Subscribe (used to fetch all records of a
colored-log) and Trim protocols (used to delete part of the log) (§ 6.2)
and the recovery protocols (§ 6.3) that handle failures. Lastly, we
present the multi-color append protocol in § 6.4.

6.1 Read and Append Protocols

Append protocol. Serverless functions append records to the log
of color 𝑐 by calling Append(𝑟 [],𝑐) of FlexLog-API. The Append
creates a distinct token 𝑡 , consisting of the value of a monotonically
increasing counter and the id of the caller (FID). The FIDs are distinct
across all serverless functions that are appending on𝑐 (Alg1:6). Then,
the request is broadcast to all replicasof a randomly-chosen shardof𝑐
(Alg1:7). The first round endswith the replicas receiving this request.
On receiving the append request, all replicas store the record (iden-
tified by 𝑡) persistently. The second round starts when the replicas
send anOReq to the ordering layer, requesting a SN in the region𝑐 for
the record (Alg1:18-19). In the worst case (total ordering), the OReq
needs to traverse the ordering layer tree up to the root.When the SN
for theOReq is determined, the leaf-sequencer for𝑐 broadcasts (third
round) an OResp(𝑡,𝑠𝑛) to all replicas of the shard, where 𝑠𝑛 is the SN
of the last record issued by the root sequencer of region 𝑐 , denoting
the distinct place of the records in the shared log of color 𝑐 (Alg1:33-
35). Upon receiving theOResp, replicas commit the record,making it
visible to other functions, discoverable with 𝑠𝑛. The fourth and final
round starts with each replica sending an ACK(𝑡,𝑠𝑛) to the initiating
function (Alg1:24). The function returns 𝑠𝑛 to the application when
every replica has acknowledged the records (Alg1:8-9).
Read protocol. Applications call Read(𝑠𝑛,𝑐) of FlexLog-API to
read the record stored with SN 𝑠𝑛 on the log of color 𝑐 . In the first
round, the function broadcasts the request (𝑠𝑛,𝑟𝑒𝑎𝑑) to one replica
of every shard 𝑐 . Each replica reads the record with 𝑠𝑛 for color 𝑐
on its local storage, and, if exists, it sends (second round) it back to
the caller. Otherwise, it replies with a ⊥ value. Since each record
is stored only on one shard, only one of the replicas can return the
record. If all replicas return⊥, then the shared log of color 𝑐 has no
record with SN 𝑠𝑛 stored.

6.2 Auxiliary SystemOperation Protocols

Subscribe protocol.Applications invoke Subscribe(𝑐) to receive
all the records of the log of color 𝑐 . Similarly to the read protocol,
Subscribe broadcasts (first round) a subscribe request (0,𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒)
to one replica of each shard in 𝑐 . Upon receiving the request, each
replica replies (second round) with its local view of the log in 𝑐 .

Algorithm 1:Append protocols
1 client_append(record, color)
2 // Append protocol for a caller with 𝑖𝑑 =𝐹𝐼𝐷

3 Initially, counter := 0
4 function Append (records[], c)
5 begin

6 counter← counter + 1; t← (FID « 32) + counter
7 broadcast(records[], c, t) to all replicas in shard
8 wait(t, sn) from all replicas in shard
9 return sn

10 end

11

12 // Append protocol for replica nodes

13 Initially, tokens := ∅
14 upon receiving (records[], c, t) do //from client
15 begin

16 if 𝑡 ∈ 𝑡𝑜𝑘𝑒𝑛𝑠 then return

17 persist(records[], t); tokens← tokens + t

18 shard← ids_of_replicas_in_shard()
19 send(c, t, |records[]|, shard) to sequencer_node
20 end

21

22 upon receiving (t, sn) do //from sequencer
23 begin

24 commit_all(t, sn); send(t, sn) to FID (ACK)
25 end

26

27 // Append protocol for sequencer node with 𝑖𝑑 =𝑆𝐼𝐷

28 Initially, sn := 0, counter := 0, tokens := ∅
29 upon receiving (c, t, nrecords, shard) do
30 begin

31 if 𝑡 ∈ 𝑡𝑜𝑘𝑒𝑛𝑠 then return

32 if is_root(SID, c) then

33 tokens← tokens + t; counter← counter + nrecords
34 sn← (epoch « 32) + counter
35 broadcast(t, sn) to shard
36 else

37 send(c, t, nrecords, shard) to parent in sequencer tree
38 end

39 end

Finally, the protocol reconstructs the log of color 𝑐 by sorting all
records received based on their SNs.
Trimprotocol.Applications invoke Trim(𝑠𝑛,𝑐) to delete all records
of color 𝑐 with SN ≤𝑠𝑛. The Trim protocol broadcasts (first round) a
trim request (𝑠𝑛,𝑡𝑟𝑖𝑚) to all replicas of all shards in 𝑐 . On receipt, the
replicas delete every record of the log fragment of 𝑐 that have been
assigned a SN that is smaller or equal to𝑠𝑛. TheTrim completeswhen
all replicas acknowledge the operation to all replicas (second round)
and send to the caller a [ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙] pair message (third round).

6.3 SystemRecovery Protocols

Replicafailures.Failure detection. In linewithpractical systems[36,
67], FlexLog’s replicas periodically exchange heartbeat messages
with the sequencer (or other replicas) to detect failures. If a heartbeat
message times out, the replica transits to recovery mode.
Recovery. When a replica recovers, a synchronization phase, sync-
phase, takes place to force all replicas to synchronize their state
and ensure that no SNs, received only by some replicas, are missed
by others. For example, in the extreme scenario where the crashed
replica was the only one to receive an SN, e.g., due to sequencer
failures (right before its crash), this SNwill eventually be received by
all replicas. (We elaborate on sequencer failures later in the section.)

7

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

The recovered replica sends to all replicas of the shard a sync-
request. Replicas receiving a sync-request transition to sync mode
and stop processing new append requests or sequencer messages.
As a response to this request, the replicas send their latest state, e.g.,
their known 𝑒 (current active sequencer) and their latest committed
SN. If the 𝑒 does notmatch the 𝑒 known by all replicas, e.g., the recov-
ered replica sees an old sequencer due to network partition, it retries
the sync-request. Eventually, the old sequencer shuts down and all
replicas find out about the new one. Recall that replica failures block
append operations. Similarly, further failures or re-starts during the
steps below affect availability, not safety.

Once the recovered replica collects all acks for the sync-request
fromall replicas, it broadcasts themost up-to-date replica id. The out-
dated replicas fetch themissing entries from themost up-to-date one,
as in [63]. Once they sync their log, they ack this step to every other
replica (all-to-all communication). A replica waits for acks from all
other replicas and then it transits to operational mode. Essentially,
the all-to-all communication step at the end of the sync-phase is a
synchronization barrier that guarantees that the execution continues
iff all replicas are synchronized and are connected to the same active
sequencer. Replicas might still need to re-issue OReq requests for
records that have not being assigned an SN after the sync-phase.
Safety. Upon network partitions and failures, appends block. We
encountered two problems for the reads: (1) a function reads a value
froma “partitioned-out” replica and (2) a function reads a SNof anon-
going (not yet completed) append from (slow) replicas. Thefirst is not
a problem. FlexLog is append-only, a written entry cannot be over-
written. As such, reads of (committed) entries, that have assigned
a SN, are correct even if the replica is not part of the membership.

The second problem arises from the local reads that FlexLog
allows. For correctness, replicas hold read requests (as in [90]) that
refer to a SN that is higher than their currently seenmaximumSN for
a (configurable) amount of time2. After this timeout expires without
the replica receiving this SN (or an entry with a bigger SN which
implies that the requested SN is a hole), the request times out. That
does not violate linearizability; instead, it forces the FaaS-application
to re-execute the read and (probably) read from another replica.
Permanent failures. If the replica crashes permanently, the PM de-
vice is corrupted or the PM cannot be migrated to another node, the
log served by the replica’s shard can be read but not written as we
cannot recover the latest updates (if any) from the crashed PM.

Sequencer failures. Leaf-sequencer failures during broadcasts
might lead to scenarios where only some (but not all) of a shard’s
replicas have received the SN. Recall that, the backups are stateless,
the new sequencer does not know the actions of the old sequencer.

FlexLogneeds to ensure that the new leaf-sequencerwill start op-
erating only after all replicas have acknowledged it (guarantees that
only a single sequencer a time can be active) and have synchronized
their log (up to the previous 𝑒). That follows, that any interrupted
broadcast messages from the previous sequencer that have been
received by some replicas will eventually be received by all replicas.

To achieve this, once replicas find out about the new sequencer
(prior to initializing the ordering protocol with it), they pass through

2A timeout of 1ms is safe. It is 2-3 orders of magnitude higher than the common case
latency of modern data center fabrics [103] even in cases of network congestion [72].

Algorithm 2:Atomic Multi-color append protocol
1 functionMulti_Append (records[][], colors[])
2 begin

3 shard← get_random_shard(special_color)
4 for 𝑖←0 to |records[]| do append(records[𝑖]:colors[𝑖]:ID, special_color)
5 broadcast(end) to all replicas in shard
6 wait(ack) from any replica in shard
7 end

8

9 // Multi-color append protocol for replica nodes

10 upon receiving (end) do
11 begin

12 records[][], colors[], tokens[]← read_records(FID)
13 for 𝑖←0 to |records[]| do

14 shard← get_random_shard(colors[i])
15 broadcast(records[i][], colors[i], tokens[i]) to all replicas in shard
16 wait(token, sn) from all replicas in shard
17 end

18 send(ack) to CID
19 end

the sync-phase ensuring that they all acknowledge the new se-
quencer and have completed the messages of the previous 𝑒 .

If a failureoccursat anypoint, theexecutionblocksdue toall-to-all
communication step in the sync-phase. When the failure is restored,
all replicas will complete the sync-phase before any new sequencer
startsoperating.Thatway,weensurecorrectnesseven incaseswhere
the partitioned-out replica was the most up-to-date replica, e.g., it
was the only one that received an OReq before the old sequencer
died. This OReq will be received by all before the new 𝑒 begins.

Failures of the root andmiddle sequencers do not face such issues
as they establish peer-to-peer TCP connections with their parent
and children nodes. If the sequencer fails, the on-going requests will
timeout and either some sequencer or a replica will resend the OReq.

Holemanagement.When a sequencer fails and the new primary
issues SNs, it possible to have holes in the log where records have
no consecutive SNs. However, this does not violate correctness; by
definition, the log sequence is not necessarily consecutive. Specif-
ically, append and trim operations are not affected by any holes in
the log. In addition, it is accepted for a pair of read operations 𝑟 (𝑖,𝑐)
and 𝑟 (𝑗,𝑐) to return values =⊥ and ≠⊥, respectively, even if 𝑖 < 𝑗 .

6.4 Multi-color Append Protocol

Wedesign the multi-color append operation, shown inAlgorithm
2, that allows applications to atomically append multiple records to
more than a single log region at oncewhile ensuringdata consistency
and isolation (for correctness).

The protocol assumes a special color known to all functions a
priori (e.g., themaster-region), that acts as a broker for the operation.
The protocol works as follows: the function appends sets of records
to the log of the special color first (Alg2:3-4). Replicas handle those
sets of records as usual except that now they also persist the target
color information and the ID of the function as well. After receiving
all the acknowledgements, the function broadcasts a specialmessage,
𝑒𝑛𝑑 , marking the end of the atomic append (Alg2:5). At this point,
each of the participating replicas broadcasts the sets of records one
by one, similarly to the single-color append operation (Alg2:14-18).
When all sets are successfully appended, the replicas reply with an
acknowledgement to the initiating function.

8

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

7 PROOFOF CORRECTNESS

We adopt the definition of linearizability from [74] and show that
FlexLog is a linearizable shared log object. We do so by showing
that the sequential specification’s properties are maintained in the
case of concurrent operations.

For simplicity, and without loss of generality, we fix an arbitrary
color. For space efficiency reasons, we omit most of the details and
instead provide a sketch of proof. For any arbitrary pair of opera-
tions, it suffices to show that the acknowledgment of all participating
and correct replicas marks the response of the first operation and
that happens before the invocation of the second (in the execution
history). This means that the second is guaranteed to see the effects
(if any) of the first and not vice versa. To achieve linearizability, the
following properties must by satisfied at all times:

Property 1 (Consistency). Any two log sub-sequences 𝑠1 and 𝑠2
must be comparable; there must exist a sequence 𝑠3 that is a common

consecutive subsequence (substring) of 𝑠1 and 𝑠2.

Property 2 (Stability). Consider two successive 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 oper-
ations, 𝑠𝑢𝑏1 and 𝑠𝑢𝑏2, such that 𝑠𝑢𝑏1 responds before the invocation
of 𝑠𝑢𝑏2. Let 𝑠1 and 𝑠2 be the sequences returned by 𝑠𝑢𝑏1 and 𝑠𝑢𝑏2, re-
spectively. Then 𝑠1 is a substring of 𝑠2 in the absence of conflicting 𝑡𝑟𝑖𝑚
operation invocations between them.

Proof. Let 𝑠1 = (𝑊𝑖 ,...𝑊𝑗) and 𝑠2 = (𝑊𝑘 ,...,𝑊𝑙) and without loss
of generality that the 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 that returned 𝑠1 responded before
the invocation of that which returned 𝑠2. Protocol-wise, the only
operation that can modify the tail of the log, i.e. transform 𝑗 to 𝑙 ,
is the 𝑎𝑝𝑝𝑒𝑛𝑑 operation. If between 𝑠𝑢𝑏1 and 𝑠𝑢𝑏2 zero 𝑎𝑝𝑝𝑒𝑛𝑑 op-
erations have completed, then 𝑗 = 𝑙 . Else, 𝑗 < 𝑙 . The latter case is
true since the completion of an 𝑎𝑝𝑝𝑒𝑛𝑑 operation guarantees that
at least one shard will contain the new record(s). Then, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒
will necessarily query that shard and thus, return the updated log.
Similarly, the only operation that can transform 𝑖 to 𝑘 is the 𝑡𝑟𝑖𝑚
operation which increments the head of the log. If at least one 𝑡𝑟𝑖𝑚
operation with argument𝑚 such that𝑚> 𝑖 has completed between
𝑠𝑢𝑏1 and 𝑠𝑢𝑏2, then it follows that 𝑖 < 𝑘 . If not, then 𝑖 = 𝑘 . In total,
𝑖 ≤𝑘 and 𝑗 ≤ 𝑙 which proves both properties. □

Property 3 (Append-Visibility). If the execution of an append
operation, 𝑎𝑝𝑝 , responds before the invocation of a subscribe operation,

𝑠𝑢𝑏, and no conflicting 𝑡𝑟𝑖𝑚 operation invoked between them, then

the returned sequence of 𝑠𝑢𝑏 includes the record appended by 𝑎𝑝𝑝 .

Similarly, a read operation 𝑟 that succeeds 𝑎𝑝𝑝 and reads its returned

sequence number, will return a non-⊥ value.

Proof. Let 𝑎𝑝𝑝 return 𝑠𝑛 and 𝑠𝑢𝑏 return (𝑊ℎ, ...,𝑊𝑡). If 𝑎𝑝𝑝 re-
sponds before the invocation of 𝑠𝑢𝑏, then the final round of𝑎𝑝𝑝must
have happened before the first round of 𝑠𝑢𝑏. That means that all
correct replicas that participated in𝑎𝑝𝑝 contain the (last) record iden-
tified by 𝑠𝑛. Assuming that no 𝑡𝑟𝑖𝑚(𝑖), with 𝑖 ≥𝑠𝑛, operations invoke
between 𝑎𝑝𝑝 and 𝑠𝑢𝑏, it follows that any correct replica that partici-
pated in 𝑎𝑝𝑝 and receives the 𝑠𝑢𝑏 request, will reply with a sequence
(𝑊ℎ,...,𝑊𝑡) that contains𝑊𝑠𝑛 . Since 𝑠𝑢𝑏 responds (terminates), ex-
actly one replica must have done so. In case a conflicting 𝑡𝑟𝑖𝑚 oper-
ation completes between 𝑎𝑝𝑝 and 𝑠𝑢𝑏, then𝑊𝑠𝑛 ∉ (𝑊ℎ,...,𝑊𝑡). The
case for a 𝑟𝑒𝑎𝑑 operation is simply a special case of 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 . □

Theorem 1 (Linearizable color). Consider any arbitrary execu-
tion history containing 𝑎𝑝𝑝𝑒𝑛𝑑 , 𝑟𝑒𝑎𝑑 , 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 and 𝑡𝑟𝑖𝑚 operations,

acting on an arbitrary (but the same) color. Their properties w.r.t. the

sequential specification are maintained and the operations can be or-

dered w.r.t. their real-time order in this history. Therefore, the color is

linearizable.

Corollary 1 (Linearizable shared log). Since linearizability
is compositional, and Theorem 1 states that any color is linearizable,

it follows that FlexLog is a linearizable shared log object.

Multi-color append protocol. We next extend the correctness
proof for our multi-color append protocol.

Proof. Firstly, appends to the special color behave on the exact
same way with any other color, thus their properties still hold. Now
assume that a client fails at any point between their first append
and the end of the final. Since the replicas never receive the special
𝑒𝑛𝑑 message, none of the records are appended to any color. If the
client fails just after broadcasting the 𝑒𝑛𝑑 message, then: if up to 𝑓

replicas fail, all recordswill be eventually appended to the respective
colors. This is guaranteed by the fact that all participating replicas
initiate the normal append protocol (that is already proven). Recall
that append operations are idempotent; the client’s tokens uniquely
identify the records and replicas drop append requests for already
seen tokens. Thus, it follows that in any case either all records are
appended to the colors or none is. Finally, each append operation
initiated by a replica is linearizable in the same way as any other,
since it simply operates on a single color. □

8 IMPLEMENTATION

FlexLog’sorderingandreplication layerareallwritten inGolang[16].
For simplicity and time efficiency reasons, we implemented only the
single-log Append and Read operations.

Our tiered storage layer is developed in C++ on top of PMDK [81].
We used the libpmemobj [80] and TBB [21] where we model the
shared log as a concurrent, thread-safe hashmap. The Go code inter-
acts with the storage layer via CGo [8] that creates C-bindings and
allowsus to referenceGo-allocatedmemory fromC++andvice versa.

For the network communication we use the gRPC [18] library
and Google protobufs [29] for message serialization. Specifically, we
implement a gRPC server for each sequencer that receives and sends
a stream of order-requests and order-responses respectively. The
sequencers operate as aggregators and batch the messages.

9 EVALUATION

WeevaluateFlexLogacross fourdimensions: overall throughputand
latency compared to the state-of-the-art (§ 9.1), read-write latency
(§ 9.2), scalability (§ 9.3) and recovery latencies (§ 9.4).
Experimental Setup.Webuild and run FlexLog in a cluster of 6ma-
chines, eachwitha12-core Intel(R)Xeon(R)Gold5317CPU(3.00GHz)
with 800GB Intel OptaneDCPM, connected over a 10Gbps network.
We collocate FlexLog’s processes in the machines to maximize CPU
utilization. Unless stated otherwise, each shard contains 3 replicas,
the record size equals to 1KB, and, FlexLog is configured to batch
order-requests in an interval of 1 µs.
Metrics. We evaluate FlexLog measuring: (i) latency as the av-
erage total execution time of a function call of FlexLog-API, (ii)

9

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

10 15 50
Reads (%)

0

250

500

750

1000

La
te

nc
y

(u
se

c)

00

100

200

300

kO
ps

/s
ec

Boki
FlexLog

FlexLog-P
Paxos

Figure 4: Latencies and throughput of FlexLog’ ordering

layer compared to Boki [83]’s and compared to Paxos [98].

throughput as the number of completed function calls (operations)
per second, and (iii) scalability, as FlexLog’s ability to handle in-
creasing throughput with reasonable latency.

9.1 FlexLog vs State-of-the-art

RQ1. How does FlexLog perform compared to the state-of-the-art?

We conduct an apples-to-apples evaluation of our FlexLog storage
and ordering layers with Boki [83], a state-of-the-art shared log for
serverless computing.

Ordering layer. Boki builds on top of Scalog [62] leveraging its
ordering layer that implements the Paxos consensus protocol [98].
Unfortunately, we were not able to run a multi-client deployment
of Boki’s ordering layer. That said, we conduct the following two
experiments for a fair comparison between Boki/Scalog’s ordering
layers [62, 83] and our system. First, we evaluate Boki’s ordering
layer against FlexLog’s ordering layer with a single client where
we report the measured latencies for different workload types (Fig-
ure 4, left). Secondly, we measure the throughput of Paxos [25, 98],
Boki’s and Scalog’s ordering layer abstraction, against FlexLog, all
in a multi-user setup (Figure 4, right). In all experiments we isolate
the ordering layer overheads by executing the workloads without
writing any data to the underlying storage layer.

We configure Boki’s ordering layer with 3 sequencers that run
Paxos. FlexLog is comprised of a tree of 3 sequencers (root-middle-
leaf).Lastly,werunPaxos[98] (libpaxos [25]),withasingleproposer.
As stated in § 2, running Paxos with concurrent proposers lead to
livelocks and huge latencies.
Results. Figure 4 (left) shows the average latency of FlexLog’s
ordering layer compared to Boki’s ordering layer for varying work-
loads. FlexLog achieves less than 250 µs, that is 2.5×—4× faster than
Boki. These results are also verified by our second experimentwhere
we compare Paxos with FlexLog. Specifically, Figure 4 (right) shows
the throughput, measured as operations per second, of FlexLog’s
ordering layer against an optimized version of Paxos.

In addition to FlexLog, we also run a version of our ordering
layer (FlexLog-P) that provides partial ordering using a single leaf
sequencer. The leaf sequencer is the point of serialization for this
particularly colored-log. However, in FlexLog-P the root sequencer
is not called upon to enforce a total global ordering. We observe
that our lightweight protocol can achieve 2×—3× better throughput

compared to Paxos. Our flexible ordering semantics achieve 10%
better throughput compared to providing total ordering.
Storage layer. Boki is build on top of RocksDB [30], a highly opti-
mized LSM database engine for fast, low latency flash drives (SSDs),
as the backend for its storage layer. We compare FlexLog’s storage
layer (based on PM) with Boki’s storage layer (based on RocksDB)
under workloads with varying record sizes (Figure 5), number of
threads (Figure 6) and read-write (R/W) ratios (Figure 7).

RocksDBisconfiguredwitha64MB in-memorycache (MemTable)
and withWrite-Ahead-Log (for durability and consistency) enabled.
We use db_bench [12] with uniform index distribution.
Results. Figure 5 shows the throughput, measured as operations
per second, of Boki’s and FlexLog’s storage layers with different
record sizes. First, we observe that FlexLog’s storage layer is an
order of magnitude faster than Boki’s. Boki’s limited performance
mainly derives from the sync syscalls to synchronize OS’s write
buffer with the SSD. In contrast, FlexLog greatly benefits from the
low-latency PM, offering the same properties, i.e., data consistency
and durability, with better performance. In addition, throughput is
stable compared to the record size in both cases.

Figures 6 and 7 show the throughput of Boki and FlexLog storage
layers under different workloads with varying number of threads
and R/W ratios. Both engines scale well as the number of threads is
increased (Figure 6). However, FlexLog achieves steadily higher (>
10×) throughput than Boki. Lastly, read-heavy workloads achieve
higher throughput than write-heavy workloads (Figure 7) which is
explained by RocksDB’s MemTable and our FlexLog’s cache.
RQ1.1 takeaway. FlexLog achieves up to 10× and 3× higher
throughput (operations per second) for its storage and ordering
layers, respectively, w.r.t. the state-of-the-art Boki [83]. In addition
weaker ordering improves performance by 10%w.r.t. total ordering.
While we minimize both the (mean) latencies for storage and

ordering, the ordering layer latency dominates the operations’ la-
tency. We found that in two workloads (10%R and 50%R) when the
function access the local storage (co-located with the storage node),
the storage latency is 1 us whereas the ordering latency is 250 us and
100 us respectively. As a result, the use of the fastest storage shifts
the bottleneck even more to the ordering layer (in appends). Reads
only do storage accesses and do not incur overheads due to ordering.
RQ1.2 takeaway. The performance gains come from the fast
ordering protocol (in appends) rather than the use of PM.

9.2 Latency

RQ2.What is FlexLog’s latencies? Wemeasure FlexLog’s append
and read protocols’ latency with varying replication factor.
Replication factor.We evaluate FlexLog’s protocols on a setup
of 1 shard (with varying replicas) that are all connected to the same
(root) sequencer as the minimal ordering layer for linearizability.
Results. Figure 8 shows FlexLog’s read and append latencies under
a 95%W/ 5%Rworkload. FlexLog’s latencies are reasonably affected
by the varying amount of replicas per shard thanks to its replication
protocol. Up to 3 replicas the append latency is stable. As the replica-
tion factor increases to 4, 6 and 8 (total) replicas, the append latency
doubles; a result of the protocol messages that have to be broadcast
to more replicas.

10

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

64 128 512 1K 2K 4K 8K
record sz (B)

105

106

Op
s/

se
c Boki (RocksDB)

FlexLog (PM)

Figure 5: Throughput of storage

layers with various record sizes.

1 2 4 6 8 10 12
number of threads

104

105

106

Op
s/

se
c

Figure 6: Throughput of storage

layers with various number of

threads.

0 25 50 75 90 95 99
Reads (%)

105

106

Op
s/

se
c

Figure 7: Throughput of storage

layers for various workloads

(R/W ratios).

Throughput of FlexLog’s vs Boki’s [83] storage layer under different record sizes, number of threads andworkloads.

2 3 4 6 8
Replication factor

0.0

0.2

0.4

0.6

0.8

La
te

nc
y

(m
s)

Reads
Appends

Figure 8: Latency vs replication

factor on a shard.

1 2 4 6
number of leaf-sequencers

0.0

1.5

3.0

4.5

6.0
M

Re
qs

/s
ec

Figure 9: Scalability of the order-

ing layer.

100 1K 5K 10K100K1e6 3e6
records to recover

101

103

Re
co

ve
ry

 ti
m

e
(m

s)

Figure 10: Recovery time vs

records to recover.

0 500 1000 1500 2000 2500 3000
KOps/sec

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

La
te

nc
y

(m
s)

Append (3 shards)
Read (3 shards)

Read (6 shards)
Append (6 shards)

Figure 11: Latency vs throughput for an increasing number

of shards [95% read, 5% appendworkload].

Our findings are reasonable; first the read latency remains stable
or is increased marginally with the number of replicas. This result is
justified by FlexLog’s read protocol which allows for local reads on
a shard’s replicas, keeping latency to aminimum. Secondly, FlexLog
achieves low append-latency when executing an-almost-write-only
workload (5%R). This is achieved by FlexLog’s applications-centric
replication protocol where applications broadcast the records di-
rectly to all replica of each shard.
RQ2 takeaway. FlexLog achieves low append latencies while it
also offers stable read latency w.r.t. the replication factor.

9.3 Scalability

RQ3.HowdoesFlexLog scale?Weevaluate thescalabilityof FlexLog
across two parameters: the number of sequencers in the ordering
layer and the number of shards.

Number of sequencers.We evaluate FlexLog’s ordering layer for
a varying number of leaf-sequencers. Each sequencer batches the
order requests in the batching interval (§ 8) serving as an aggregator
for the incoming requests to the root sequencer.

Results.Figure9 shows the throughputof theordering layer asmore
sequencers are added to the tree as leafs and therefore as a proxy to
the root sequencer.We observe that a single leaf sequencer can issue
approximately 1.2M sequence numbers per second. If we now add
more leaf sequencers to the sequencer tree, we can achieve an addi-
tional throughput of 1M sequence numbers per second for each leaf
sequencer. It is worth noting that through order-request batching,
the throughput of a root sequencer is not dependent on the height
of the sequencer tree, but rather just on the branching factor. We
find that a sequencer can handle up to 10 direct aggregators, sending
order-request in an interval of 1`s before the throughput stagnates.

We further measure the latency of an order request (measured
as the time difference between sending the request and receiving a
sequence number for that request). We found out that the latency
is primarily dependant of the RTT of the network rather than the
processing necessary for ordering. Wemeasure a latency of about
110`s with a single sequencer. However, as we add more sequencers
increasing the height of the sequencer tree, the latency for an order-
request is increased linearly with the height of the ordering layer.
Number of shards.We evaluate the scalability of FlexLogw.r.t.
the number of shards by deploying a cluster of 6 shards with an
ordering layer consisting of a tree of 3 sequencers, for which the leaf
sequencers each have 3 shards allocated to them. We conduct the
same experiments as for the 3-shard experiment (§9.2), reading and
appending to the global log that is ordered by the root sequencer.
Results.As shown in Figure 11, with an example 95%R workload,
FlexLog achieves double the throughput with double the amount
of shards, indicating linear scalability. This gain in throughput from
scaling both the ordering and the data layer is accompanied only by a
slightly higher append latency compared to the 3-shard experiment.
This append latency is due to the fact that with the scaled ordering
layer, the sequencer tree now has the depth of one, which adds more
latency to the ordering protocol (as described in § 9.3). The read

11

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

latency on the other hand is not affected by scaling the data layer, and
behaves similar to the read latency of the experiment with 3 shards.
RQ3 takeaway. FlexLog scales linearly with the number of
sequencers (ordering layer) and number of shards.

9.4 Recovery

RQ4. How fast can FlexLog recover? We evaluate the recovery la-
tency of FlexLog’s nodes; how fast can a node get up to date on all
records that have been committed during its downtime before being
able to participate in the protocol and serve requests.
Replica recovery. For this experiment, we use an artificial micro-
benchmark that reads the records from the log and, then, applies
them to a second file in PM.
Results. Figure 10 shows the latency of the recovery process (of a
single replica).We see that recovery time is heavily dependent on the
number of committed records during the downtime.As expected, the
recovery latency grows almost linearly as a function of the number
of records to recover, as a result of reading all records that have to
be recovered in a sequential manner.
RQ4 takeaway. FlexLog’s recovery latency grows linearly with
the number of records to be recovered.

10 RELATEDWORK

Shared logs. The shared log abstraction is well studied in the lit-
erature. Corfu [47], a widely-adopted shared log, is one of the first
to build on the then-new flash storage units, SSDs. Corfu separates
ordering from replication but, unfortunately, Corfu’s single-node
sequencer quickly becomes the bottleneck. Scalog [62] aims to im-
prove this bottleneck by replacing Corfu’s centralized sequencer
with a replicated counter based on Paxos [98]. It also introduces a
tree of aggregators as an optimization that reduces the number of
connections in cases where a large number of shards are deployed.

Towards the samedirection,Kafka [128] exposes scalability but, in
contrast to previous systems, it only provides linearizabilitywithin a
shard (and not global total ordering). Lastly, FuzzyLog [107] further
relaxes the consistency guarantees offering partial ordering seman-
tics, essentially, by capturing happens-before relationships between
conflicting operations.

The FlexLog ordering layer exposes similar (strong consistency)
semantics to Scalog, that is, linearizable reads. However, Scalog is-
sues new sequence numbers for every order-request using Paxos,
while FlexLog decides on an epoch number, only when a sequencer
node crashes. In other words, FlexLog combines the simplicity of
Corfu’s single sequencer (per color)with Scalog’s tree of aggregators
but in a region-tree-structure fashion, enabling locality-aware order-
ing semantics. In contrast to all those systems, FlexLog extends the
conventional append operationwith atomicmulti-record appends to
multiple logs. In FlexLogwe leverage the near-DRAM latency of PM
by simplifying yet optimizing the ordering and replication of records,
making it able to scale for a large number of shards. FlexLog’s pro-
tocol enables concurrent appends and local linearizable reads.
Serverless computing frameworks. State management remains a
challenge in (stateful) serverless computing [73, 117]. Unfortunately,
recent attempts from industry [13, 35] are in very early stages thus
recognizing limited adoption.

Prior research efforts on this direction [97, 121, 122] expose a
limited Put/Get interface for functions to manage state and have
different focus, e.g., heterogeneous storage technology [97], light-
weight isolation [121], and auto-scaling [122]. Cloudburst [122] uses
Anna [131], an autoscaling KV store for state sharing combinedwith
caches co-locatedwith the functions. Pocket [97] is a distributed data
store targeted at the ephemeral data used by serverless functions to
share state. Pocket uses multiple tiers (e.g., DRAM, flash, disk) and
provides an elastic and cost-effective storage solution.

Thestate-of-the-art for statemanagement inserverless isBoki [83];
thefirst attempt to study serverless statemanagement leveraging the
shared log API. Boki’s approach is motivated by the fault-tolerance
and consistency challenges encountered by stateful serverless ap-
plications, which the Put/Get interface might not be able to easily
address—indeed recent work [52] argues that future serverless ab-
stractions will be general-purpose, where cloud providers expose
a few basic building blocks, e.g., cloud functions (FaaS) for computa-
tion and serverless storage for statemanagement. Boki partly adopts
Scalog’s ordering layer and introduces themetalog, a component
that combines ordering, read consistency and fault tolerance.

Similarly to Boki, FlexLog realises the synergy between the
shared log abstraction and stateful serverless. However, we go one
step further realizing that prominent storage technologies, like PM,
in combination with a stateless, scalable ordering layer with flexible
semantics can benefit even more serverless environments.
PMsystems.PMsystemsareactively researched invariousdomains,
such as filesytems [58, 88, 127, 134, 141], KV-stores [55, 87, 100, 133,
139], crash consistency & reliability [57, 112, 116, 136, 137, 140] and
testing tools [104–106].Well-known datamanagement systems [37–
39, 79, 94] have already integrated PM in their system stack. FlexLog
leverages PM to offer low-latency storage access which especially
benefits short-lived serverless functions [119].

11 CONCLUSION

The shared log abstraction offers a suitable solution for serverless
applications that require a fast and fault-tolerant shared data plane.
In this paper we present FlexLog, a shared log system carefully
designed for serverless applications, that combines a data layer on
persistent memory along with a scalable ordering layer that exposes
flexible ordering semantics. Our evaluation on a cluster of 6 ma-
chines equipped with 800 GB Intel Optane DC PM shows that both
FlexLog’s ordering and data layer scale almost linearly while pre-
serving minimal latency thanks to leveraging persistent memory
as a storage medium. Compared to the state-of-the-art shared log
systems for serverless, FlexLog achieves higher performance in
both the ordering and storage layers.
Software artifact. FlexLog’s code is publicly available: https://
github.com/TUM-DSE/FlexLog.
Acknowledgements.We thank our shepherd and the reviewers for
their insightful comments. We also thank MaxWiesholler and Dim-
itris Stavrakakis. Thisworkwas supported in parts by aMicrosoft Re-
search PhD Fellowship, a UK RISE Grant and an ERC Starting Grant.

REFERENCES

[1] Ad hoc big data processing made simple with serverless mapreduce.
https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-

12

https://github.com/TUM-DSE/FlexLog
https://github.com/TUM-DSE/FlexLog
https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/
https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

simple-with-serverless-mapreduce/. Last accessed: May 24, 2023.
[2] Apache kafka streams. https://kafka.apache.org/documentation/streams/.

Accessed: 2021-02-04.
[3] Apache kafka website. https://kafka.apache.org/. Accessed: 2021-10-12.
[4] Aws lambda. https://aws.amazon.com/lambda/. Accessed: May 24, 2023.
[5] Azure functions. https://docs.microsoft.com/en-us/azure/azure-

functions/functions-overview. Accessed: May 24, 2023.
[6] A brief analysis of consensus protocol: From logical clock to raft.

https://www.alibabacloud.com/blog/a-brief-analysis-of-consensus-protocol-
from-logical-clock-to-raft_594675. Accessed: May 24, 2023.

[7] Causal consistency. https://mariadb.org/causal-consistency/. Accessed: May
24, 2023.

[8] Cgo command. https://pkg.go.dev/cmd/cgo. Accessed: 2021-10-12.
[9] Consistency and replication model. https://docs.hazelcast.com/imdg/4.2/

consistency-and-replication/consistency. Accessed: May 24, 2023.
[10] CorfuDB. https://github.com/corfudb. Last accessed: May 24, 2023.
[11] Couchbase. https://www.couchbase.com/. Last accessed: May 2021.
[12] db_bench. https://github.com/EighteenZi/rocksdb_wiki/blob/master/

Benchmarking-tools.md. Accessed: May 24, 2023.
[13] Entity functions. https://docs.microsoft.com/en-us/azure/azure-functions/

durable/durable-functions-entities?tabs=csharp. Accessed: May 24, 2023.
[14] etcd. https://etcd.io/. Last accessed: May 24, 2023.
[15] Functionbench. https://github.com/ddps-lab/serverless-faas-workbench.

Accessed: May 24, 2023.
[16] Golang. https://golang.org/. Accessed: 2021-07-10.
[17] Google functions. https://cloud.google.com/functions. Accessed: May 24, 2023.
[18] grpc. https://grpc.io/. Accessed: 2021-07-10.
[19] How cxl may change the datacenter as we know it. https://www.theregister.

com/2022/05/16/cxl_datacenter_memory/. Accessed: May 24, 2023.
[20] Intel sees cxl as rack-level disaggregator with optane connectivity. https:

//blocksandfiles.com/2021/08/18/intel-sees-cxl-as-rack-level-disaggregator/.
Accessed: May 24, 2023.

[21] Intel threading building blocks. https://github.com/oneapi-src/oneTBB.
Accessed: 2021-10-12.

[22] Introducing zelos: A zookeeper api leveraging delos. https://engineering.fb.com/
2022/06/08/developer-tools/zelos/. Accessed: May 24, 2023.

[23] Is intel’s optane technology really dead? https://gestaltit.com/checksum/
stephen/is-intels-optane-technology-really-dead-checksum-episode-21/.
Accessed: May 24, 2023.

[24] knative. https://knative.dev/docs/. Accessed: May 24, 2023.
[25] libpaxos. https://libpaxos.sourceforge.net/. Accessed: May 24, 2023.
[26] Logdevice: Distributed storage for sequential data. https://logdevice.io/.

Accessed: 2021-10-12.
[27] pmem-rocksdb. https://github.com/pmem/pmem-rocksdb. Last accessed: May

24, 2023.
[28] Pravega – a reliable stream storage system. https://pravega.io/#. Accessed:

2021-10-12.
[29] Protocol buffers. https://developers.google.com/protocol-buffers. Last accessed:

May 24, 2023.
[30] Rocksdb. https://github.com/facebook/rocksdb. Accessed: May 24, 2023.
[31] Serverless message queues and how to leverage the best. https:

//dzone.com/articles/serverless-message-queues-and-how-to-leverage-the.
Accessed: May 24, 2023.

[32] Sqs queues. https://www.serverless.com/framework/docs/providers/aws/
events/sqs. Accessed: May 24, 2023.

[33] vhive. https://vhive-serverless.github.io/. Accessed: May 24, 2023.
[34] Why intel killed its optane memory business. https://www.theregister.com/

2022/07/29/intel_optane_memory_dead/. Accessed: May 24, 2023.
[35] Workers durable objects beta: A new approach to stateful serverless. https://blog.

cloudflare.com/introducing-workers-durable-objects/. Accessed: May 24, 2023.
[36] Zookeeper internals. https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.html.
[37] Memhive: Scale applicationswith persistent memory! https://www.memhive.io/,

2021. Accessed 27-09-2021.
[38] Pmem-Redis. https://github.com/pmem/pmem-redis, 2021. Accessed 27-09-2021.
[39] pmem-rocksdb. https://github.com/pmem/pmem-rocksdb, 2021. Accessed

27-09-2021.
[40] The transaction log. https://learn.microsoft.com/en-us/sql/relational-

databases/logs/the-transaction-log-sql-server?view=sql-server-ver16, 2021.
Accessed: May 24, 2023.

[41] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), pages 419–434, Santa
Clara, CA, February 2020. USENIX Association.

[42] Sérgio Almeida, João Leitão, and Luís Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. pages 85–98, 04 2013.

[43] Amazon. AmazonMemoryDB for Redis. https://aws.amazon.com/memorydb/
?p=ft&c=db&z=3. Last accessed: May 24, 2023.

[44] Amazon. Amazon S3 Cloud Object Storage. https://aws.amazon.com/s3. Last
accessed: Dec, 2018.

[45] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. Sprocket: A
serverless video processing framework. In Proceedings of the ACM Symposium on

Cloud Computing, SoCC ’18, page 263–274, NewYork, NY, USA, 2018. Association
for Computing Machinery.

[46] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed
Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi,
Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef,
Francois Richard, and Yee Jiun Song. Virtual consensus in delos. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
617–632. USENIX Association, November 2020.

[47] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,
Michael Wei, and John D. Davis. CORFU: A shared log design for flash clusters.
In 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 12), pages 1–14, San Jose, CA, April 2012. USENIX Association.
[48] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-

hakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck.
Tango: Distributed data structures over a shared log. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page
325–340, New York, NY, USA, 2013. Association for Computing Machinery.

[49] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David Geraghty,
Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh Ghosh, Mihir Dharamshi,
Jingming Liu, Filip Gruszczynski, Jun Li, Rounak Tibrewal, Ali Zaveri, Rajeev
Nagar, Ahmed Yossef, Francois Richard, and Yee Jiun Song. Log-structured
protocols in delos. In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, page 538–552, New York, NY, USA, 2021.
Association for Computing Machinery.

[50] R. Baldoni, R. Beraldi, and R. Prakash. Flexible general purpose communication
primitives for distributed systems. In Proceedings. The Sixth IEEE International
Symposium on High Performance Distributed Computing (Cat. No.97TB100183),
pages 201–210, 1997.

[51] Eric A. Brewer. Towards robust distributed systems. In Symposium on Principles

of Distributed Computing (PODC), 2000.
[52] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor

McMahon, and Christopher S. Meiklejohn. Durable functions: Semantics for
stateful serverless. InOOPSLA, pages 133:1–133:27. ACM, October 2021.

[53] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.
In 7th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2006.
[54] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.

Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings

of the ACM Symposium on Cloud Computing, SoCC ’19, page 13–24, New York,
NY, USA, 2019. Association for Computing Machinery.

[55] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu Shu. Flat-
store: An efficient log-structured key-value storage engine for persistentmemory.
In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’20, page
1077–1091, New York, NY, USA, 2020. Association for Computing Machinery.

[56] Brian Choi, Randal Burns, and Peng Huang. Understanding and Dealing with
Hard Faults in Persistent Memory Systems, page 441–457. Association for
Computing Machinery, New York, NY, USA, 2021.

[57] Brian Choi, Randal Burns, and Peng Huang. Understanding and dealing with
hard faults in persistent memory systems. In Proceedings of the Sixteenth

European Conference on Computer Systems, EuroSys ’21, page 441–457, New York,
NY, USA, 2021. Association for Computing Machinery.

[58] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better i/o through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles, SOSP ’09, page 133–146, New York, NY, USA, 2009.
Association for Computing Machinery.

[59] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman,
Hakim Weatherspoon, Marco Canini, Fernando Pedone, and Robert Soulé.
P4xos: Consensus as a network service. IEEE/ACM Transactions on Networking,
28(4):1726–1738, 2020.

[60] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
andWerner Vogels. Dynamo: Amazon’s highly available key-value store. ACM
SIGOPS Operating Systems Review (SIGOPS), 2007.

[61] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421,
dec 2004.

[62] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert Van
Renesse. Scalog: Seamless reconfiguration and total order in a scalable shared log.
In 17th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20), pages 325–338, Santa Clara, CA, February 2020. USENIX Association.
[63] AleksandarDragojević,DushyanthNarayanan, EdmundB.Nightingale,Matthew

Renzelmann, Alex Shamis, Anirudh Badam, andMiguel Castro. No compromises:
13

https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/
https://aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://www.alibabacloud.com/blog/a-brief-analysis-of-consensus-protocol-from-logical-clock-to-raft_594675
https://www.alibabacloud.com/blog/a-brief-analysis-of-consensus-protocol-from-logical-clock-to-raft_594675
https://mariadb.org/causal-consistency/
https://pkg.go.dev/cmd/cgo
https://docs.hazelcast.com/imdg/4.2/consistency-and-replication/consistency
https://docs.hazelcast.com/imdg/4.2/consistency-and-replication/consistency
https://github.com/corfudb
https://github.com/EighteenZi/rocksdb_wiki/blob/master/Benchmarking-tools.md
https://github.com/EighteenZi/rocksdb_wiki/blob/master/Benchmarking-tools.md
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://etcd.io/
https://github.com/ddps-lab/serverless-faas-workbench
https://golang.org/
https://cloud.google.com/functions
https://grpc.io/
https://www.theregister.com/2022/05/16/cxl_datacenter_memory/
https://www.theregister.com/2022/05/16/cxl_datacenter_memory/
https://blocksandfiles.com/2021/08/18/intel-sees-cxl-as-rack-level-disaggregator/
https://blocksandfiles.com/2021/08/18/intel-sees-cxl-as-rack-level-disaggregator/
https://github.com/oneapi-src/oneTBB
https://engineering.fb.com/2022/06/08/developer-tools/zelos/
https://engineering.fb.com/2022/06/08/developer-tools/zelos/
https://gestaltit.com/checksum/stephen/is-intels-optane-technology-really-dead-checksum-episode-21/
https://gestaltit.com/checksum/stephen/is-intels-optane-technology-really-dead-checksum-episode-21/
https://knative.dev/docs/
https://libpaxos.sourceforge.net/
https://logdevice.io/
https://github.com/pmem/pmem-rocksdb
https://pravega.io/#
https://developers.google.com/protocol-buffers
https://github.com/facebook/rocksdb
https://dzone.com/articles/serverless-message-queues-and-how-to-leverage-the
https://dzone.com/articles/serverless-message-queues-and-how-to-leverage-the
https://www.serverless.com/framework/docs/providers/aws/events/sqs
https://www.serverless.com/framework/docs/providers/aws/events/sqs
https://vhive-serverless.github.io/
https://www.theregister.com/2022/07/29/intel_optane_memory_dead/
https://www.theregister.com/2022/07/29/intel_optane_memory_dead/
https://blog.cloudflare.com/introducing-workers-durable-objects/
https://blog.cloudflare.com/introducing-workers-durable-objects/
https://www.memhive.io/
https://github.com/pmem/pmem-redis
https://github.com/pmem/pmem-rocksdb
https://learn.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver16
https://aws.amazon.com/memorydb/?p=ft&c=db&z=3
https://aws.amazon.com/memorydb/?p=ft&c=db&z=3
https://aws.amazon.com/s3

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Giantsidi et al.

Distributed transactions with consistency, availability, and performance. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
page 54–70, New York, NY, USA, 2015. Association for Computing Machinery.

[64] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. J. ACM, 35(2):288–323, apr 1988.

[65] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda:
Outsourcing everyday jobs to thousands of transient functional containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 475–488,
Renton, WA, July 2019. USENIX Association.

[66] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam,William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. Encoding, fast and slow: Low-Latency video
processing using thousands of tiny threads. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 17), pages 363–376, Boston,
MA, March 2017. USENIX Association.

[67] Sanjay Ghemawat, HowardGobioff, and Shun-Tak Leung. The google file system.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages
20–43, Bolton Landing, NY, 2003.

[68] Google. Cloud Storage. http://www.cloud.google.com/storage, 2017. Last
accessed: Dec, 2018.

[69] Google. Google Cloud Functions. https://cloud.google.com/functions, 2017. Last
accessed: May 24, 2023.

[70] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. In Proceedings of the Twelfth ACM Symposium

on Operating Systems Principles, SOSP ’89, page 202–210, New York, NY, USA,
1989. Association for Computing Machinery.

[71] G. Guerraoui and A. Schiper. A generic multicast primitive to support
transactions on replicated objects in distributed systems. In Proceedings of the
Fifth IEEE Computer Society Workshop on Future Trends of Distributed Computing

Systems, pages 334–342, 1995.
[72] Rachid Guerraoui, Antoine Murat, Javier Picorel, Athanasios Xygkis, Huabing

Yan, and Pengfei Zuo. uKharon: A membership service for microsecond
applications. In 2022 USENIX Annual Technical Conference (USENIX ATC 22),
pages 101–120, Carlsbad, CA, July 2022. USENIX Association.

[73] JosephM. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and ChenggangWu. Serverless computing:
One step forward, two steps back, 2018.

[74] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACMTrans. Program. Lang. Syst., 12(3):463–492,
July 1990.

[75] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. PASTE: A
network programming interface for non-volatile main memory. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18), pages
17–33, Renton, WA, 2018.

[76] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference.

[77] Intel. Intel®Optane™PersistentMemory. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html, 2021.

[78] Intel. Persistent Memory Development Kit. https://pmem.io/pmdk/, 2021.
[79] Intel. Persistent Memory Development Kit : pmemkv, 2021. Accessed 27-09-2021.
[80] Intel. Persistent Memory Development Kit : The C++ bindings to libpmemobj,

2021. Accessed 27-09-2021.
[81] Intel. PMDK: libpmemobj examples. https://github.com/pmem/pmdk/tree/

master/src/examples/libpmemobj, 2021.
[82] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. Consensus in

a box: Inexpensive coordination in hardware. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), pages 425–438, Santa
Clara, CA, March 2016. USENIX Association.

[83] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with
shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, SOSP ’21, page 691–707, NewYork, NY, USA, 2021. Association
for Computing Machinery.

[84] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings of

the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’21, page 152–166, New York, NY,
USA, 2021. Association for Computing Machinery.

[85] Jiawei Jiang, Shaoduo Gan, Yue Liu, FanlinWang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. Towards demystifying serverless
machine learning training. In Proceedings of the 2021 International Conference

on Management of Data, SIGMOD ’21, page 857–871, New York, NY, USA, 2021.
Association for Computing Machinery.

[86] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
Occupy the cloud: Distributed computing for the 99 In Proceedings of the 2017

Symposium on Cloud Computing, SoCC ’17, page 445–451, New York, NY, USA,
2017. Association for Computing Machinery.

[87] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young
ri Choi. Slm-db: Single-level key-value store with persistent memory. In 17th

USENIX Conference on File and Storage Technologies (FAST 19), pages 191–205,
Boston, MA, February 2019. USENIX Association.

[88] Chandan Kalita, Gautam Barua, and Priya Sehgal. Durablefs: A file system for
persistent memory. CoRR, abs/1811.00757, 2018.

[89] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: A Fast,
Fault-Tolerant and Linearizable Replication Protocol. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2020.
[90] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit

Joshi, Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: A
fast, fault-tolerant and linearizable replication protocol. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’20, page 201–217, New York, NY,
USA, 2020. Association for Computing Machinery.

[91] The Linux kernel archives. DAX - Direct access for files. https:
//www.kernel.org/doc/Documentation/filesystems/dax.txt, 2021.

[92] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for
serverless cloud function service. In 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pages 502–504, 2019.

[93] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for serverless
faas. In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, page
477, New York, NY, USA, 2019. Association for Computing Machinery.

[94] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young ri Choi,
Alan Sussman, and Beomseok Nam. ListDB: Union of Write-Ahead logs and
persistent SkipLists for incremental checkpointing on persistent memory. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI

22), pages 161–177, Carlsbad, CA, July 2022. USENIX Association.
[95] Martin Kleppmann and Jay Kreps. Kafka, samza and the unix philosophy of

distributed data. 12 2015.
[96] Ana Klimovic, YawenWang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,

and Animesh Trivedi. Understanding ephemeral storage for serverless analytics.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 789–794,
Boston, MA, July 2018. USENIX Association.

[97] AnaKlimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics.
In 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18), pages 427–444, Carlsbad, CA, October 2018. USENIX Association.
[98] Leslie Lamport. The Part-Time Parliament, page 277–317. Association for

Computing Machinery, New York, NY, USA, 2019.
[99] Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo Coelho, and Fernando Pedone.

Ramcast: Rdma-based atomic multicast. In Proceedings of the 22nd International
Middleware Conference, Middleware ’21, page 172–184, New York, NY, USA, 2021.
Association for Computing Machinery.

[100] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. Recipe: Converting concurrent dram indexes to persistent-memory
indexes. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP ’19, page 462–477, New York, NY, USA, 2019. Association for
Computing Machinery.

[101] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-free consistent
transactions using in-network concurrency control. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, page 104–120, New York,
NY, USA, 2017. Association for Computing Machinery.

[102] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
Just say NO to paxos overhead: Replacing consensus with network ordering.
In 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 467–483, Savannah, GA, November 2016. USENIX Association.
[103] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
Hpcc: High precision congestion control. In Proceedings of the ACM Special

Interest Group on Data Communication, SIGCOMM ’19, page 44–58, New York,
NY, USA, 2019. Association for Computing Machinery.

[104] Sihang Liu, SuyashMahar, Baishakhi Ray, and Samira Khan. Pmfuzz: Test case
generation for persistent memory programs. In Proceedings of the 26th ACM

International Conference onArchitectural Support for Programming Languages and

Operating Systems, ASPLOS 2021, page 487–502, New York, NY, USA, 2021. ACM.
[105] Sihang Liu, Korakit Seemakhupt, YizhouWei, ThomasWenisch, Aasheesh Kolli,

and Samira Khan. Cross-failure bug detection in persistent memory programs.
In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’20, page
1187–1202, New York, NY, USA, 2020. Association for Computing Machinery.

[106] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. Pmtest:
A fast and flexible testing framework for persistent memory programs. In
Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’19, page
411–425, New York, NY, USA, 2019. Association for Computing Machinery.

14

http://www.cloud.google.com/storage
https://cloud.google.com/functions
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://pmem.io/pmdk/
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

FlexLog: A Shared Log for Stateful Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

[107] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J. Abadi,
James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. The fuzzylog: A
partially ordered shared log. In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), pages 357–372, Carlsbad, CA, October
2018. USENIX Association.

[108] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. SONIC: Application-aware data passing for
chained serverless applications. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 285–301. USENIX Association, July 2021.
[109] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’10, page 135–146, New York, NY,
USA, 2010. Association for Computing Machinery.

[110] Parisa Jalili Marandi, Samuel Benz, Fernando Pedone, and Kenneth P. Birman.
The performance of paxos in the cloud. In 2014 IEEE 33rd International Symposium

on Reliable Distributed Systems, pages 41–50, 2014.
[111] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi. Chariots:

A scalable shared log for data management in multi-datacenter cloud environ-
ments. InGustavoAlonso, FlorisGeerts, LucianPopa, PabloBarceló, JensTeubner,
Martín Ugarte, Jan Van den Bussche, and Jan Paredaens, editors, Proceedings of
the 18th International Conference on Extending Database Technology, EDBT 2015,

Brussels, Belgium, March 23-27, 2015, pages 13–24. OpenProceedings.org, 2015.
[112] Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: Healing persistent

memory bugs without doing any harm. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2021, page 401–414, New York, NY, USA, 2021.
Association for Computing Machinery.

[113] Marius Poke and Torsten Hoefler. Dare: High-performance state machine
replication on rdma networks. In Proceedings of the 24th International Symposium

on High-Performance Parallel and Distributed Computing, HPDC ’15, page
107–118, New York, NY, USA, 2015. Association for Computing Machinery.

[114] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. Designing distributed systems using approximate synchrony in data cen-
ter networks. In 12th USENIX Symposium onNetworked SystemsDesign and Imple-

mentation (NSDI 15), pages 43–57, Oakland, CA, May 2015. USENIX Association.
[115] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:

Scalable analytics on serverless infrastructure. In 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 19), pages 193–206, Boston,
MA, February 2019. USENIX Association.

[116] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, YongweiWu, and Onur
Mutiu. Thynvm: Enabling software-transparent crash consistency in persistent
memory systems. In 2015 48th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 672–685, 2015.
[117] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,

Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. What serverless computing is and should become: The next
phase of cloud computing. Commun. ACM, 64(5):76–84, apr 2021.

[118] Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen, Parveen
Patel, and Jinglei Ren. Realizing the Fault-Tolerance promise of cloud storage
using locks with intent. In 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), pages 501–516, Savannah, GA, November 2016.
USENIX Association.

[119] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20), pages 205–218. USENIX Association, July 2020.
[120] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for efficient

stateful serverless computing. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 419–433. USENIX Association, July 2020.
[121] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for efficient

stateful serverless computing. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 419–433. USENIX Association, July 2020.
[122] Vikram Sreekanti, ChenggangWu, Xiayue Charles Lin, Johann Schleier-Smith,

Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. Cloudburst:
Stateful functions-as-a-service. Proc. VLDB Endow., 13(12):2438–2452, jul 2020.

[123] Dmitrii Ustiugov. Data-centric Serverless Cloud Architecture. PhD thesis, 2022.
[124] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex.

ACMComput. Surv., 47(3), feb 2015.
[125] Robbert vanRenesse and FredB. Schneider. Chain replication for supporting high

throughput and availability. In Proceedings of the 6th Conference on Symposium

on Operating Systems Design amp; Implementation - Volume 6, OSDI’04, page 7,
USA, 2004. USENIX Association.

[126] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. Amazon aurora: Design considerations for
high throughput cloud-native relational databases. In SIGMOD 2017, 2017.

[127] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan
Varadarajan, Prashant Saxena, and Michael M. Swift. Aerie: Flexible file-system
interfaces to storage-class memory. In Proceedings of the Ninth European

Conference on Computer Systems, EuroSys ’14, New York, NY, USA, 2014.
Association for Computing Machinery.

[128] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam,
Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a
replicated logging systemwith apachekafka. Proc. VLDBEndow., 8(12):1654–1655,
August 2015.

[129] MichaelWei, Amy Tai, Christopher J. Rossbach, Ittai Abraham, MaithemMun-
shed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
Michael J. Freedman, and Dahlia Malkhi. vcorfu: A cloud-scale object store on
a shared log. In 14th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 17), pages 35–49, Boston, MA, March 2017. USENIX Association.
[130] XueliangWei, Dan Feng,Wei Tong, Jingning LIU, and Liuqing Ye. Nico: Reducing

software-transparent crash consistency cost for persistent memory. IEEE

Transactions on Computers, 68(9):1313–1324, 2019.
[131] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Anna:

A kvs for any scale. IEEE Trans. on Knowl. and Data Eng., 33(2):344–358, feb 2021.
[132] Yinjun Wu, Kwanghyun Park, Rathijit Sen, Brian Kroth, and Jaeyoung Do.

Lessons learned from the early performance evaluation of intel optane dc
persistent memory in dbms. In Proceedings of the 16th International Workshop

on Data Management on New Hardware, DaMoN ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[133] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv: A hybrid index key-value
store for dram-nvm memory systems. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 349–362, Santa Clara, CA, July 2017. USENIX
Association.

[134] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conference on File and

Storage Technologies (FAST 16), pages 323–338, Santa Clara, CA, February 2016.
USENIX Association.

[135] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. Fault-tolerant and transactional stateful serverless workflows. In 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 1187–1204. USENIX Association, November 2020.

[136] L. Zhang. Building reliable software for persistent memory. 2019.
[137] Lu Zhang and Steven Swanson. Pangolin: A fault-tolerant persistent memory

programming library. In Proceedings of the 2019 USENIX Conference on Usenix

Annual Technical Conference, USENIX ATC ’19, page 897–911, USA, 2019.
USENIX Association.

[138] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing the gap between
serverless and its state with storage functions. In Proceedings of the ACM

Symposium on Cloud Computing, SoCC ’19, page 1–12, New York, NY, USA, 2019.
Association for Computing Machinery.

[139] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. Chameleondb:
A key-value store for optane persistent memory. In Proceedings of the Sixteenth
European Conference on Computer Systems, EuroSys ’21, page 194–209, New York,
NY, USA, 2021. Association for Computing Machinery.

[140] Yiying Zhang, Jian Yang, AmirsamanMemaripour, and Steven Swanson. Mojim:
A reliable and highly-available non-volatile memory system. SIGARCH Comput.

Archit. News, 43(1):3–18, March 2015.
[141] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, ChangwooMin, and Sanid-

hya Kashyap. ODINFS: Scaling PM performance with opportunistic delegation.
In 16th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22), pages 179–193, Carlsbad, CA, July 2022. USENIX Association.

15

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Characteristics of Stateful FaaS
	3.2 Shared Logs for Serverless Computing
	3.3 Bottleneck Analysis in Shared Log Systems

	4 FlexLog's Abstraction and System Model
	5 Design
	5.1 Overview
	5.2 FlexLog Architecture

	6 FlexLog System Protocols
	6.1 Read and Append Protocols
	6.2 Auxiliary System Operation Protocols
	6.3 System Recovery Protocols
	6.4 Multi-color Append Protocol

	7 Proof of Correctness
	8 Implementation
	9 Evaluation
	9.1 FlexLog vs State-of-the-art
	9.2 Latency
	9.3 Scalability
	9.4 Recovery

	10 Related Work
	11 Conclusion
	References

