
Dimitra Giantsidi, Manos Giortamis, Nathaniel Tornow,
Florin Dinu and Pramod Bhatotia

FlexLog
A Shared Log for Stateful Serverless Computing

1

Serverless (FaaS) computing

● Pay-as-you-go execution model

● Programmability and ease
○ Upload simple functions
○ Hide complexities

● Performance and scalability
○ No overheads to manage the infrastructure

2

Serverless computing infrastructure is offered by all major cloud providers

● Storage access for data persistence
○ ~40% of execution is all about storage

● Low-latency
○ Functions are short-lived, < 1 sec

● Distribution and flexible consistency
○ e.g., chained applications

Serverless workloads characteristics

3

Serverless workloads require fast storage systems with configurable semantics

Amazon S3 object store

Google cloud storage

Strict ordering in serverless chained applications

4

Total ordering is unnecessarily strict for serverless applications

Mappers

…

get chunks

log results

Reducers

get results

commit

Enforces total ordering on storage
operations between mappers/reducers

Storage system

● Distributed storage system
○ Append-only sequence of records

The beauty of shared log abstraction

5

Shared logs can benefit serverless in terms of performance and semantics

Ordering layer

…

Storage layer

● Fault tolerance

● Strong programming model
○ Put/Get on append-only memory

● Performance (and scalability)
○ Consensus hidden behind the API

Challenges

6

#1: Fast storage access #2: Fast (and flexible) ordering

Problem statement

7

How to design a fast storage system with flexible ordering

for serverless computing infrastructure?

Our proposal

8

FlexLog
A Shared Log for Stateful Serverless Computing

Properties:
- Performance
- Flexible ordering semantics
- Formally proven consistency Check the paper for the formal proof!

FlexLog overview

9

Sequencer #1 Sequencer #3Sequencer #2

Sequencer #k

…

FlexLog

D
at

a
la

ye
r

O
rd

er
in

g
la

ye
r

Outline

● Motivation
● System components
● Example execution
● Evaluation

10

FlexLog builds a fast data layer and a flexible ordering layer

FlexLog

11

Data layer Ordering layer

Storage layer design

12

● Persistent memory (PM):
○ Durability
○ Low-latency I/O

Memory and storage
hierarchy

DRAM

PM

SSD

PM transactions (TXs) for
crash-consistency

Storage layer design

13

Replicas integrate PM for fast I/O and run PM-TXs for crash consistency

Replica storage stack

in-memory
cache

PM

SSD

● Persistent memory (PM):
○ Durability
○ Low-latency I/O

● (Storage) Replica:
○ In-memory cache
○ PM for the log
○ SSD to checkpoint and truncate

● Shard
○ A set of (storage) replicas

● Write-all/read-one protocol
○ Local lin. reads

Data layer design

14

…

Shard #1

Replica #0 Replica #k

append

Replica #1

…

● Shard
○ A set of (storage) replicas

● Write-all/read-one protocol
○ Local lin. reads

Data layer design

15

…

Replica #0 Replica #k

Replicas execute a write-all/read-one replication protocol for performance

append

Replica #1

…

read

Shard #1

…

Middle #2Middle #1

Ordering layer design

16

● Sequencers in a tree hierarchy
○ Shards communicate w/ leaf sequencers

Root

Leaf sequencers

● Color abstraction
○ Denote ordering semantics

● Sequence number (SN)

Data layer

…

Middle #2Middle #1

Ordering layer design

17

● Sequencers in a tree hierarchy
○ Shards communicate w/ leaf sequencers

Root

Leaf sequencers

● Color abstraction
○ Denote ordering semantics

● Sequence number (SN)

Log …

● SNs from different sequencers are
unrelated
○ Division into independent regions

Middle #2Middle #1

Ordering layer design

18

Root

…

OReq (blue)

Middle #2Middle #1

Ordering layer design

19

Root

…

OReq (blue)

Middle #2Middle #1

Ordering layer design

20

Root

OReq (purple)

…

OReq (blue)

Middle #2Middle #1

Ordering layer design

21

Root

OReq (purple)

…

Middle #2Middle #1

Ordering layer design

22

Root

OReq (purple)

…

SN1

Middle #2Middle #1

Ordering layer design

23

Root

…

SN1 SN2

Middle #2Middle #1

Ordering layer design

24

Root

SN1 SN2

#1: <blue, SN1, r1> #2: <purple, SN2, r2>

SN1

Middle #2Middle #1

Ordering layer design

25

Root

 SN2

FlexLog ordering layer allows for per-color ordering to boost performance

#1: <blue, SN1, r1> #2: <purple, SN2, r2>

Outline

● Motivation
● System components
● Example execution
● Evaluation

26

FlexLog API

27

append(records[], color) Appends records and returns SN upon
completion

read(SN, color) Reads a record with SN from the color-ed log

subscribe(color) Receives all records of the color-ed log

trim(SN, color) Garbage collects the log of color-ed log by
deleting all records with sn ≤ SN

FlexLog in action

28

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

FlexLog in action

29

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

append(r1, pink)

FlexLog in action

30

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

append(r1, pink)

OReq

FlexLog in action

31

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

append(r1, pink)

OResp (SN)

FlexLog in action

32

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

bcast(SN)

OResp (SN)

FlexLog in action

33

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

append(SN, green)

l1:
log := subscribe(green)

 if (log.size() > 0)
 return;
goto l1

FlexLog in action

34

Leaf-sequencer Leaf-sequencerLeaf-sequencer

Root-sequencer

r1 = read(SN, pink)

Outline

● Motivation
● System components
● Example execution
● Evaluation

35

Evaluation

● Implementation
○ PMDK (libpmemobj++)
○ gRPC for networking

● Questions
○ What is the ordering layer’s performance?
○ What is the storage layer’s performance?

● H/W setup: 800 GB Intel Optane DC PM (x6) over a 10Gbps network

36

Q1: Ordering layer performance

37

H
ig

he
r i

s
be

tt
er

FlexLog ordering is up to 3x faster w.r.t. the state-of-the-art

H
ig

he
r i

s
be

tt
er

Q2: Storage layer performance

38

FlexLog storage layer performs up to 10x better w.r.t. the state-of-the-art

H
ig

he
r i

s
be

tt
er

Summary

General purpose storage systems are not well-fitted to serverless computing

● Limited performance due to slow I/O (SSDs)

● Strict and expensive total ordering

FlexLog: A Shared Log for Stateful Serverless Computing

● Builds a data layer on top of fast PM

● Builds a fast and flexible ordering layer

39

Source code: https://github.com/TUM-DSE/FlexLog

https://github.com/TUM-DSE/FlexLog

