FlexLog

A Shared Log for Stateful Serverless Computing

Dimitra Giantsidi, Manos Giortamis, Nathaniel Tornow,
Florin Dinu and Pramod Bhatotia

A% THE UNIVERSITY
¢/ of EDINBURGH Y2 HUAWEI

Serverless (FaaS) computing TI.ITI

‘ AWS Lambda
Google
Cloud
Functions

< >Azu reFunctions

Serverless computing infrastructure is offered by all major cloud providers

e Pay-as-you-go execution model

® Programmability and ease
o Upload simple functions
o Hide complexities

e Performance and scalability
o No overheads to manage the infrastructure

Serverless workloads characteristics TI_ITI

&

Amazon S3 object store

e Storage access for data persistence
o ~40% of execution is all about storage

e Low-latency
o Functions are short-lived, < 1 sec

e Distribution and flexible consistency
o e.g., chained applications

Google cloud storage

Serverless workloads require fast storage systems with configurable semantics

Strict ordering in serverless chained applications TI.ITI
Storage system

r getchunks - = getresults r
logresults g g g commit

Enforces total ordering on storage
operations between mappers/reducers

Mappers Reducers

Total ordering is unnecessarily strict for serverless applications

The beauty of shared log abstraction TUTI

e Distributed storage system
o Append-only sequence of records

Ordering layer }

i

e Fault tolerance

e Strong programming model
o Put/Get on append-only memory

o
@

e Performance (and scalability) Storage layer
o Consensus hidden behind the API

Shared logs can benefit serverless in terms of performance and semantics

Challenges

#1. Fast storage access

#2: Fast (and flexible) ordering

Problem statement

How to design a fast storage system with flexible ordering

for serverless computing infrastructure?

Our proposal

FlexLog
A Shared Log for Stateful Serverless Computing

Properties:
- Performance
- Flexible ordering semantics
- Formally proven consistency Check the paper for the formal proof!

FlexLog overview

M®

-
@ W
L)) T
| o ol 9
5§ 3
| 5| | o
[m & &
& s
@
@ W
o 194e| 19Ae|
eyeq SuLdpIO

Outline

Metivat
e System components
e Example execution
e Evaluation

10

FlexLog

RIS

4|

2
9
—3—

Ordering layer

FlexLog builds a fast data layer and a flexible ordering layer

11

Storage layer design TI.ITI

e Persistent memory (PM):
o Durabilit
o Low-late>r/1cy /0 PM transactions (TXs) for / DRAM \
[Pm 1\

crash-consistency
/ SSD \

Memory and storage
hierarchy

12

Storage layer design TI.ITI

e Persistent memory (PM):
o Durability /in-memory\

O Low-latency I/O cache
[P
e (Storage) Replica: / SSD \
© In-memory cache
o PM for the log Replica storage stack

o SSD to checkpoint and truncate

Replicas integrate PM for fast I/O and run PM-TXs for crash consistency

13

Data layer design

e Shard

(@)

A set of (storage) replicas

® \Write-all/read-one protocol

O

Local lin. reads

TUTI

append
4 N
-’
-
Replica#0 Replica #1 Replica #k
- J

Shard #1

Data layer design

TUTI

read append
e Shard
o Aset of (storage) replicas
4 N
-’
® Write-all/read-one protocol N
o Locallin. reads Replica#o Replica #1 Replica #k
\ /
Shard #1

Replicas execute a write-all/read-one replication protocol for performance

Ordering layer design

Sequencers in a tree hierarchy
o Shards communicate w/ leaf sequencers

Color abstraction
o Denote ordering semantics

Sequence number (SN)

Root

Middle #1

Leaf sequencers

TUTI

Middle #2

16

Ordering layer design TI.ITI

Root

e Sequencersin a tree hierarchy

o Shards communicate w/ leaf sequencers

Middle #1 Middle #2

® (Color abstraction

o Denote ordering semantics

e Sequence number (SN)

e SNs from different sequencers are Leaf sequencers

unrelated

o Division into independent regions

((
((
((

Log

17

Ordering layer design

Middle #1

Root

Middle #2

@
(((

@

18

Ordering layer design

Middle #1

Root

Middle #2

@
(((

@

19

Ordering layer design

Root

Middle #1 Middle #2

OReq (blue) OReq (purple)
— — —
]] "
- - -

20

Ordering layer design

Root

Middle #1 Middle #2

OReq (blue) OReq (purple)
— — —
]] "
- - -

21

Ordering layer design

Root
Middle #1_ Middle #2
iSN1 OReq (purple)
— — —
-’ -’ -’
= = =

22

Ordering layer design

Root
Middle #1, Middle #2
1 SN1 ' SN2
v v

@
(((
@

23

Ordering layer design

Root
Middle #1, Middle #2
1 SN1 ' SN2
v v

#1: <blue, SN1, r1>

#2: <purple, SN2, r2>

24

Ordering layer design

Root
Middle #1_ Middle #2
; SN1 | SN2
\ / A 4
#1: <blue, SN1, r1> #2: <purple, SN2, r2>

FlexLog ordering layer allows for per-color ordering to boost performance

Outline

Metivat
o—Systermcomponents
e Example execution
e Evaluation

26

FlexLog API

append(records[], color)

read(SN, color)

subscribe(color)

trim(SN, color)

TUTI

Appends records and returns SN upon
completion

Reads a record with SN from the color-ed log

Receives all records of the color-ed log

Garbage collects the log of color-ed log by
deleting all records with sn < SN

27

FlexLog in action

>

©
(@
[

[Leaf-sequencer]

©
(©
([

[Leaf-sequencer]

[Root-sequencer]

©
(©
([

[Leaf-sequencer]

28

FlexLog in action

append(r1, pink)

L & &
—_— — - - - -
u (i u -— - - -— - -
U.'U.,U., [V.,U.,U.,} [U.,&.,&.,]
[Leaf-sequencer] [Leaf-sequencer] [Leaf-sequencer]
[Root-sequencer]

29

FlexLog in action

append(r1, pink)

L & &
—_— — - - - -
U (i u -— - - -— - -
EEE E&&& EsEss)
lOReq
[Leaf-sequencer] [Leaf-sequencer] [Leaf-sequencer]
[Root-sequencer]

30

FlexLog in action

®

/7 1\
/

Vi

|

,/ 1 Nappend(r, pink)
| \
|

/ \

-
— — - -
-— - - -— - -
TOResp(SN)
[Leaf-sequencer] [Leaf-sequencer]

[Root-sequencer]

©
(©
([

[Leaf-sequencer]

31

FlexLog in action

A

T OResp (SN)

[Leaf-sequencer]

[Leaf-sequencer]

[Root-sequencer]

cast(SN)
- = = = = = = =
u.,u.,u., -—.,U.,u., - - -

[Leaf-sequencer]

32

FlexLog in action TI.ITI
log e oy

return;
goto I1
- -
-— - -
[e = s}
[Leaf-sequencer] [Leaf-sequencer J [Leaf-sequencer]
[Root-sequencer]

33

FlexLog in action

[Leaf-sequencer] [Leaf-sequencer]

[Root-sequencer]

[Leaf-sequencer]

34

Outline

otivati
o—System-components
—Exampte-exectdtion

e Evaluation

35

Evaluation

e Implementation
o PMDK (libpmemobj++)
o gRPCfor networking

® Questions

o What s the ordering layer’s performance?
o0 What is the storage layer’s performance?

e H/W setup: 800 GB Intel Optane DC PM (x6) over a 10Gbps network

36

Q1: Ordering layer performance TI.ITI

300
o
hd
200 i
© o
< 100 9
o0
L

0 S —

® FlexLog-T = FlexLog-P = Paxos

FlexLog ordering is up to 3x faster w.r.t. the state-of-the-art

37

Q2: Storage layer performance

® RocksDB = FlexLog e RocksDB = FlexLog

o
././././‘/.—__. A % :

e v 3

2 8 2

= O
’/./././’/0" _q:J §1 4'___4’/'//
: : | : : | : .'_QD OL-= — j = :
1 2 4 6 8 10 12 I 0 25 50 75 90 95 99

threads Reads (%)

FlexLog storage layer performs up to 10x better w.r.t. the state-of-the-art

=

_

Higher is better

38

Summary TI.ITI

General purpose storage systems are not well-fitted to serverless computing

e Limited performance due to slow 1/O (SSDs)

e Strict and expensive total ordering

FlexLog: A Shared Log for Stateful Serverless Computing

e Builds a data layer on top of fast PM

e Builds a fast and flexible ordering layer

Source code: https://github.com/TUM-DSE/FlexLog

39

https://github.com/TUM-DSE/FlexLog

