Trusted Heterogeneous Disaggregated Architectures

Atsushi Koshiba, Felix Gust, Julian Pritzi, Anjo Vahldiek-Oberwagner, Nuno Santos, Pramod Bhatotia

Disaggregation in Data Centers

Paradigm shift from monolithic servers to **disaggregated architectures**

Disaggregation improves utilization, scalability, & flexibility in heterogeneous data centers

Security Demands in the Cloud

AI-based intelligent services with confidential data

Trusted Execution Environment (TEE)

Trusted computing is indispensable for emerging cloud workloads

Research Gap

- Unfortunately, security for the disaggregated architectures is not well studied
 - Most existing TEE technologies are device/host-specific (e.g., Intel SGX)
- Existing TEE technologies are incompatible with disaggregated systems
 - User code/data across a distributed set of heterogeneous devices

Challenging to establish secure isolation on disaggregated architectures

How do we build **trusted** disaggregated heterogeneous architectures without losing flexibility and elasticity?

Proposal: A Trustworthy Disaggregated Architecture

- HW/SW co-design that offers a virtual TEE (vTEE) abstraction
 - A secure and customizable isolated domain over disaggregated resources

Threat Model

Ο

Ο

 \bigcirc

Ο

To ensure confidentiality and integrity of data and code in trusted domains

Overview

ЛП

Design Challenges

- 1. Heterogeneity of disaggregated devices
 - Harmonizing device-specific TEEs is complex
- 2. Data distribution through the untrusted network
 - Compromise data confidentiality & integrity
- 3. Secure domain isolation across disaggregated components
 - TEE configuration changes according to users' requirements

Key Ideas

- 1. Unified trusted hardware modules
 - All devices have the same security properties
- 2. Distributed computing by a distributed microkernel-based OS
 - Securely bridging authorized WEs and DEs
- 3. vTEE initialization & mutual attestation
 - Establishing trust among all the WEs involved by a vTEE

Secure Hardware Modules (1/2)

Worker Isolation Unit (WIU)

- Secure Controller
 - Hardware root-of-trust
 - Runs the microkernel OS
- Communication Module
 - Secure P2P connections
- Local MMU
 - Cache data of remote DEs into the local memory

Worker Elements (WEs)

Secure Hardware Modules (2/2)

Data Isolation Unit (DIU)

- Secure Controller
 - Hardware root-of-trust
 - Runs the microkernel OS
- Communication Module
 - Secure P2P connections
- Remote MMU
 - Memory management for remote Processing Elements

Data Elements (DEs)

Trustworthy Disaggregated OS (TDOS)

- Microkernel-based OS
 - **Capabilities** for accessibility control to disaggregated components Ο
- Unified vTEE management
 - Trusted computing attestation Ο
 - Ο
- Cryptography encryption, signatures
 - Ο
- Communication secure P2P network connection

vTEE Initialization & Attestation

- Mutual attestation proposed by MAGE [USENIX SEC'22]
 - Establish *mutual trust* among multiple enclaves (WIUs)

image: Flaticon.com

Open Discussion Points

- Can we dynamically resize vTEEs, i.e., change the number of WEs?
- How do we verify the attestation protocol among disaggregated devices?
- How do we ensure application compatibility with a Linux system?

Problem:

Challenging to build secure isolation environments on disaggregated architectures

Proposal:

vTEE: A secure and customizable isolated domain over disaggregated resources

Solution:

HW/SW co-design: Secure hardware extension (WIU&DIU) + Microkernel (TDOS)

