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Cloud infrastructure is experiencing a shift towards disaggregated setups, especially with the introduction of
the Compute Express Link (CXL) technology, where byte-addressable persistent memory (PM) is becoming
prominent. To fully utilize the potential of such devices, it is a necessity to access them through network
stacks with equivalently high levels of performance (e.g., kernel-bypass, RDMA). While, these advancements
are enabling the development of high-performance data management systems, their deployment on untrusted
cloud environments also increases the security threats.

To this end, we present Anchor, a library for building secure PM systems. Anchor provides strong
hardware-assisted security properties, while ensuring crash consistency. Anchor exposes APIs for secure data
management within the realms of the established PM programming model, targeting byte-addressable storage
devices. Anchor leverages trusted execution environments (TEE) and extends their security properties on
PM. While TEE’s protected memory region provides a strong foundation for building secure systems, the key
challenge is that: TEEs are fundamentally incompatible with PM and kernel-bypass networking approaches—in
particular, TEEs are neither designed to protect untrusted non-volatile PM, nor the protected region can be accessed
via an untrusted DMA connection.

To overcome this challenge, we design a PM engine that ensures strong security properties for the PM data,
using confidential and authenticated PM data structures, while preserving crash consistency through a secure
logging protocol. We further extend the PM engine to provide remote PM data operations via a secure network
stack and a formally verified remote attestation protocol to form an end-to-end system. Our evaluation shows
that Anchor incurs reasonable overheads, while providing strong security properties.
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1 INTRODUCTION

Cloud storage and networking infrastructure is going through a dramatic shift to favor the design
of modern disaggregated data management systems [44, 52, 77, 81, 139], especially with the recent
introduction of the Compute Express Link (CXL) technology [36]. On the storage front, byte-
addressable Persistent Memory (PM) aims to bridge the gap between volatile main memory and
SSDs [57, 90, 105], providing opportunities for high-volume pools of low-latency non-volatile
memory. Similarly, on the networking front, kernel-bypass I/O based on RDMA [49, 80] or DPDK [5]
offers superior throughput and low latency [29, 73, 78], and is necessary to efficiently use byte-
addressable storage in disaggregated system setups. To leverage these hardware advancements, the
research community is actively working on combining PM with kernel-bypass networking to build
high-performance storage systems [30, 99, 121, 124].

While the current research is primarily focusing on performance and crash consistency aspects,
it is also imperative to address the security threats of these systems when hosted in untrusted
cloud environments. In the virtualized cloud infrastructure, where the underlying storage, network
and computing stacks are owned and operated by an untrusted third-party provider, an adversary,
such as a malicious system administrator or co-located tenants, can potentially compromise the
security properties of both persistent data and storage operations [117, 118]. Prior work has shown
that software bugs, configuration errors and security vulnerabilities pose a real threat for storage
systems [39, 45, 47, 88, 118].

In the context of PM-based systems, attackers can tamper the persistent state and data operations
violating the confidentiality and integrity properties. They can arbitrarily rollback the PM data into
a stale but valid state violating the freshness property. Further, PM crash consistency mechanisms
constitute an added vulnerability vector, where the logs are also susceptible to these security
violations. Moreover, they can manipulate the untrusted network; thus, being able to remotely
compromise data management operations.

To target these threats, our work focuses on: How can we design a secure PM system for untrusted
cloud environments while preserving performance and crash consistency within the realms of the
established programming model for byte-addressable storage?

A plausible direction would be to use Trusted Execution Environments (TEEs) to base a secure PM
library. Indeed, it seems promising because TEEs provide a secure memory area where the enclosed
code and data are protected by the CPU against all system layers including the OS/hypervisor [106].
Based on this promise, TEEs are now available in all major commodity CPUs [1, 7, 19, 21, 66, 91],
and are offered by major cloud providers [35, 48, 54, 107].

Unfortunately, in our context, TEEs are fundamentally incompatible with both PM and RDMA,
as the direct mapping of PM files and RDMA buffers to protected memory is not allowed. In
particular, TEEs are primarily designed to protect stateless (volatile) memory regions and their
security properties are not extended on the untrusted PM device, where data remains durable across
system reboots/shutdowns. Moreover, TEEs prohibit the access to the protected memory region via
an untrusted DMA connection. Consequently, TEEs cannot be used out-of-the-box for designing
an end-to-end secure PM system.

More specifically, we address the following challenges.
Firstly, the security properties of TEEs do not extend to the untrusted PM storage as TEEs are

not designed to protect data at rest. To extend the trust of the TEE to the untrusted PM and preserve
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the security properties across system reboots/crashes, we design secure data structures that ensure
confidentiality, integrity and freshness of the data residing in PM and their associated operations.

Secondly, while crash consistency is already a major issue for PM systems due to the non-atomic
and out-of-order architectural interface between the CPU cache and PM, it is exacerbated in our
setting as we need to ensure the consistency of both the data and the security metadata. To this
end, we design a “secure crash consistency" mechanism based on secure logging that provides the
desired atomicity guarantees.

Thirdly, conventional approaches for network I/O (e.g., kernel-sockets) incur great overheads [3,
73]—especially in the context of TEEs due to switches between the trusted and untrusted world [25,
132].While direct I/O vastly optimizes network operations, it is incompatible with TEEs as untrusted
DMA operations are prohibited in the protected memory [25]. On top of that, ensuring security and
crash consistency when accessing PM via RDMA is another major challenge [77]. To address these
issues, we design a secure network stack by adapting direct I/O to the contexts of TEEs and PM.

To overcome these challenges, we present Anchor, a library for building PM-based applications
that provides strong security properties — confidentiality, integrity, authenticity and freshness.
Further, it ensures crash consistency and performance within the realms of the established PM
programming model [62]. Anchor achieves these design properties by co-designing an end-to-end
system leveraging three hardware technologies; high-performance PM storage, hardware-assisted
TEEs and kernel-bypass networking.

Overall, we make the following contributions.

• Secure data management APIs (§ 4):We expose generic APIs for secure data management
within the realms of the established PM programming model [62], applicable on byte-addressable
storage mediums with similar architectural properties. Our APIs extend the Persistent Memory
Development Kit (PMDK) to support secure PM management, transactions, remote attestation
and networking for remote operations. These APIs can be used to develop trusted applications in
a single-node setup or even distributed systems.
• System architecture (§ 5): We propose a system architecture, where we provide a secure
PM management engine that encapsulates confidentiality-preserving and authenticated data
structures. It further ensures data integrity at an object level to be able to detect PM data tampering.
Our engine extends the trust of TEEs to the data on untrusted PM, where we judiciously partition
our data structures between the trusted enclave, the untrusted host memory and the untrusted
PM. Further, Anchor’s design includes an asynchronous trusted counter interface to guarantee
freshness, while preserving crash consistency. Lastly, we extend the scope of our PM engine
to enable remote operations by designing a TEE-compatible network stack for PM based on
kernel-bypass networking, whose authenticity can be verified through our formally proven
remote attestation protocol (§7.2).
• System operations (§ 6): We present Anchor’s operations for building secure PM applications.
We highlight the workflow of read and write operations, and describe our secure bootstrap and
recovery process, based on our formally proven secure logging protocol (§7.2), for ensuring crash
consistency and data freshness.

Based on these contributions, we implement a prototype leveraging Intel SGX [7], and integrate
with our PM engine based on PMDK [62] and secure network stack based on eRPC [78], a direct I/O
networking library. We evaluate Anchor with the YCSB benchmark suite [15, 37]. Our evaluation
shows that Anchor incurs reasonable overheads considering its strong security properties.
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2 BACKGROUND

2.1 Disaggregated Systems & Persistent Memory

Disaggregated cloud systems, where compute, memory and storage resources are decoupled,
benefit from the use of high-speed interconnects, such as the newly introduced CXL [36], to
provide low-latency, cache-coherent access to byte-addressable storage, like PM, allowing for
efficient data access and processing in a scalable and flexible manner. For such systems, high-speed
networking [43, 59, 77, 144] is an essential and performance-critical component to provide a holistic
environment for high-performance computing and reap the benefits of the fast storage devices, i.e.,
PM.
PM is byte-addressable and can be accessed via ld/st instructions with performance properties

close to DRAM, while ensuring durability [60, 101]. Existing PM technology primarily interfaces
with the OS in the “app direct mode” [61] via PM-aware direct access file systems (DAX) [56, 85].
However, PM is susceptible to two important issues in case of system failures, which can lead to
inconsistent state [115]: (i) atomicity is not guaranteed for updates larger than 8 B; and (ii) cache
lines can be written back to PM out-of-order.
To address these issues, PMDK [62] offers the libpmemobj library. libpmemobj contains a PM

allocator [64] and implements software-based transactions to ensure crash consistency. libpmemobj
maps a PM-file into a contiguous region in the application’s virtual address space. This file is called
PM pool and contains a metadata header, the transaction logs and the persistent heap.
In particular, libpmemobj exposes a transactional API [63] with durability, consistency and

atomicity semantics. PMDK transactions do not provide data isolation; applications need to resolve
any data races themselves. For each transaction, a redo log stores the heap metadata updates while
an undo log maintains snapshots of the PM objects involved in the transaction. After a crash, PMDK
can replay any live redo/undo logs to recover PM to a consistent state.

To enable developers to build end-to-end systems, PMDK further provides networking support
through librpma [67]. It allows for accessing remote PM over Remote Direct Memory Access
(RDMA). Importantly, high-performance networking based on kernel-bypass abstractions, such
as DPDK [5] and RDMA [49, 80], eschews the OS and alleviates any bottleneck in the kernel
network stack by directly interacting with the NIC hardware. To simplify kernel-bypass network
programming, remote procedure call (RPC) frameworks such as eRPC [78] provide a general, yet
performant, API for asynchronous RPCs while hiding the complexities of managing the low-level
transport layer interfaces. RDMA-based RPCs have been demonstrated through research and
industry efforts [20, 44, 55, 70] to be the most efficient programming paradigm for high-performing
cloud systems that incorporate byte-addressable storage [31, 67, 72].

2.2 Confidential Computing

Trusted Execution Environments (TEEs) [7, 21, 91] provide a hardware protected enclave that
ensures the security of code and data residing in this isolated volatile memory region. Additionally,
there exists Virtual Machine (VM)-Based TEEs, such as AMD SEV [19] and Intel TDX [66]. They
offer a different layer of protection by creating a virtualized secure environment within each
VM instance, which encrypts data-in-use and data-in-transit, and further ensures the isolation of
sensitive data and applications.

InAnchor, we build on Intel SGX [7], a set of x86 ISA extensions for TEEs. The enclavememory in
SGX is mapped in the physical memory as Enclave Page Cache (EPC), where the pages are protected
by an on-chip Memory Encryption Engine (MEE). However, the EPC is limited to 128MiB—256MiB
for SGX-v1/v2. To accommodate larger enclaves, SGX offers secure paging; however, it incurs
prohibitive overheads (up to 2000× [22]). In the context of Anchor, we need to consider two
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important architectural aspects of SGX. Firstly, normal syscall-based I/O operations require an
expensive (5×) world switch [131]. Secondly, while SGX offers a hardware trusted monotonic
counter [6], it is extremely slow (60−250m s) and can wear out after some days of continuous
use [102].

Anchor is built on SCONE [22], a shielded execution framework that leverages SGX [22, 27, 111,
113, 123, 131]. SCONE links the application against a modified libc version confining its address
space inside the secure enclave memory region.

3 SYSTEMMODEL

Threat model. Anchor extends the standard SGX threat model [27], as we need to protect the
untrusted storage (PM) and network. We aim to protect against an active adversary [42] that can
gain full control of the entire system software stack (including the OS/hypervisor) and perform
physical attacks (e.g., memory probes). For PM, we strive to guarantee rollback and forking attacks
resilience where adversaries can arbitrarily restart the system from a stale state or fork system
instances. Moreover, we assume that adversaries can control the network stack and tamper with
network traffic. However, we do not consider side-channel attacks, denial of service attacks or
memory access pattern attacks [50, 87, 94, 108, 133–135, 142].

Fault model. Anchor mandates crash consistency [38, 89, 122], which implies that data and
metadata stored in PM can be recovered to a consistent state after a crash. Anchor also requires a
protection mechanism against rollback attacks to guarantee data freshness. Additionally, Anchor
needs to extend these properties to the associated security metadata and the required logs for the
case of recovery. Likewise, crash consistency needs to be ensured for untrusted remote PM network
operations, where partial writes on PM can lead to an inconsistent state [53, 59, 77].

Programming model. Anchor offers a transactional programming model based on PMDK [62].
To maintain consistent object references across reboots, PMDK relies on persistent pointers. They
are based on a 16 B fat-pointer structure, called PMEMoid, storing the pool_id and an offset relative
to the start of the pool. PMDK provides a function to convert this structure to a native pointer.
Additionally, PMDK offers transactional APIs [63] with strict durability, consistency and atomicity
semantics in the libpmemobj library. Transactions are realized with the use of redo and undo logs.
Despite Intel announcing the discontinuation of Intel Optane DC Persistent Memory [127],

byte-addressable storage devices should share a similar programming model. Especially due the
current emergence of the Compute Express Link (CXL) technology [36], there will be an upsurge
in vendors providing non-volatile memory devices. On top of that, CXL will be combined with
Confidential Computing [40, 58, 74] to build end-to-end secure systems. In such setups, Anchor
can be used to securely manage PM devices due to their compatibility with the existing PM concepts
and libraries [2].

4 OVERVIEW

4.1 System Overview

Anchor offers a PM library with the following properties:
• Security: Anchor ensures the confidentiality, integrity, authenticity and freshness for the data
and storage operations.
• Crash consistency: Anchor offers a secure crash consistency mechanism for local and remote
operations, where it maintains a consistent and secure state in case of failures.
• Programmability: Anchor offers a transactional programming model and associated secure data
management APIs, similar to the established PMDK programming model.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.



231:6 Dimitrios Stavrakakis et al.

TEE (Intel SGX)

Untrusted PM

Network API

Trusted enclave memory

Attestation & key
management (AKM)

Untrusted host memory

Manifest Heap metadata log

Async trusted
counters

Trusted PM application

Object cache
obj

buffer
obj

buffer
obj

buffer

Network message buffers
Msg buffer Msg buffer Msg buffer

Userspace I/O driver

Network encryption layer

eRPC

User's App PM management engine

...

Secure network stack

Secure PM pool
Undo/redo logs PM pool heap

Trusted counters
Attestation keys

Metadata index
Bucket

key = PMEMoid
value
next

Value
obj size

obj HMAC
obj buffer ptr

In-memory data structures

PM allocator

TX management
engine

AKM API

Operating system

Anchor controller
(SCONE)

DAX

Anchor API

Fig. 1. System overview (green regions are trusted and red regions are untrusted)

The key insight of Anchor is to maintain confidential and authenticated data structures on
PM that are manipulated inside the enclave to extend the TEEs security properties to PM and
networking. Figure 1 shows the architecture of Anchor. Anchor’s design adopts the principle of
a small trusted computing base (TCB), where it partitions the system into the trusted enclave, and
the untrusted host memory & PM. In particular, the core control logic of Anchor (green regions)
resides in the protected enclave, but the actual data (red regions) resides in the untrusted host
memory and PM.
Anchor’s core component, the PM management engine (§ 5.2), interfaces with the untrusted

PM via DAX and provides a secure memory allocation mechanism and transactional programming
model. The PM engine ensures crash consistency and security for the untrusted PM. It further
provides freshness guarantees for the PM objects with Anchor’s trusted counters (§ 5.5). We also
design in-memory data structures (§ 5.3), consisting of an index and an object cache optimizing
the read path. Anchor also exposes remote access to PM through a secure network stack (§ 5.4).
Lastly, we offer a remote attestation and key management (AKM) service for clients to ensure the
trustworthiness and authenticity (§ 5.6).
At a high-level, for read operations, Anchor checks the integrity of the object and decrypts it

before returning. For write operations, Anchor fetches and decrypts the object inside the enclave,
updates its content in the protected buffer and recalculates its integrity signature. For remote
accesses, clients communicate through a TLS channel with the Anchor controller which contains
an AKM service. AKM instructs the enclave to generate a signed measure of its identity, whose
authenticity is verified by a trusted third party entity [4]. After a successful attestation, the client
provides its encryption keys and can then access the Anchor library and execute queries via the
secure network stack.
During bootstrap, Anchor scans the manifest to fetch all the object metadata and signatures

into the enclave. We use the signatures to prove the integrity of the PM objects. Afterwards, the
recovery mechanism restores the most recent consistent and secure state of PM based on valid logs.
Anchor ensures the freshness of all logs by checking the counter values of the entries along with
the latest secure trusted counter value (§ 6.2).
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Pool mgmt. APIs
secure_pool_create() Creates a secure pool in PM.
secure_pool_open() Opens a secure pool (if exists).
secure_pool_close() Closes a secure pool (if exists).
Transactions APIs
secure_obj_tx_alloc() Allocates an object (as part of a transaction).
secure_obj_tx_free() Frees an object (as part of a transaction).
secure_obj_tx_add_range() Takes a snapshot of an object.
Object mgmt. APIs
secure_obj_root() Gets or creates the root object.
secure_obj_direct() Gets a PM object in an enclave buffer.
Secure network APIs
prepare_req() Prepares a request to be sent.
enqueue_req() Submits a message for transmission.
enqueue_resp() Submits a response to a request.
send() Sends enqueued messages.
recv() Receives incoming messages.
register_req_handler() Registers a request handler.
Attestation API
attest(measurement) Attests based on the measurement.

Table 1. Anchor’s secure data management APIs

4.2 Anchor System APIs

Anchor exposes secure data management APIs (shown in Table 1) by adopting and extending the
well-established APIs of PMDK [62]. Anchor is an embedded library that can also be used to build
secure server-side and distributed system applications. Any existing PMDK-based application can
be adapted to use the secure Anchor API. The shielded execution framework further eases the
deployment, as no source code modifications are required.

Pool management APIs. Anchor’s API provides, similar to the native API, three functions (create,
open, close) to create, open and close a secure PM pool. These functions take the paths of the
PM-resident log files as extra arguments and perform the setup of the provided storage encryption
key.

Transactions API. Anchor implements a secure API for transactions that allows arbitrary data
sizes to be written to PM with strict security, durability, consistency and atomicity semantics. Both
PMDK and Anchor do not provide thread-safety for concurrent accesses to PM objects. Developers
must employ their own locking mechanisms. For the (de)allocation and objects’ snapshots, Anchor
provides three functions, secure_obj_tx_alloc, secure_obj_tx_free and secure_obj_tx_add_range, that
realize transactions through a redo log which stores the metadata updates and an undo log keeping
the initial state of the transaction’s write set for the case of a crash.
The allocation function secure_obj_tx_alloc returns an object id (PMEMoid). Upon updates,

similarly to PMDK, users have to explicitly snapshot the modified PM-objects in the undo log.
Snapshots ensure that the modified object is also added to the ongoing transaction write set (with
secure_obj_tx_add_range). Afterwards, the application can manipulate the object’s buffer inside a
transaction and the changes will be persisted during the commit phase.

Object management APIs. Anchor’s API for PM-object management offers security while pre-
serving similar semantics with PMDK. PMDK’s programming model, and consequently Anchor,
imposes one requirement to avoid PM leakage: all objects are reachable through some path from
a root object. Anchor exports the secure_obj_root function that creates/gets the root object. se-
cure_obj_direct function accepts a PMEMoid as an argument and returns a pointer to a secure
volatile buffer with the decrypted data.
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Secure network APIs. To form an end-to-end setup, Anchor integrates userspace networking
technologies (e.g., RDMA) with PM and SGX that enable secure remote access to PM via an
established RPC API [78]. Our library offers asynchronous network operations—we provide three
core functions, prepare_req, enqueue_req and enqueue_resp, for requests and responses. These
functions do not send the message over the network but users need to execute the send and recv
functions to burst and drain messages from the transmission and reception network queues. For
each request, the remote application executes a request handler that is registered on initialization
(register_req_handler). Anchor, further, encrypts the network messages, whose integrity can be
verified, and incorporates counter values in the message headers to ensure freshness.

Attestation API. Anchor provides an attestation API that allows applications to verify their
trustworthiness to remote clients. Particularly, we provide the attest function that takes as arguments
the IP of a trusted third-party service, Intel Attestation Service (IAS) [4] IP for Anchor, and a
generated enclave measurement of the code. Then, this service verifies that both the enclave signer
and measurement are in the expected state and replies accordingly.

4.3 Design Challenges and Key Ideas

#1 Untrusted persistent memory.
Problem: TEEs are designed to protect only the volatile enclave memory — PM regions, that are
directly mapped to into the application’s address space, are not subject to the memory verification
procedures that TEEs provide. Thus, the security properties do not naturally extend to the untrusted
PM, where we need to ensure the security for stateful operations across system reboots or crashes.
Additionally, while applications in TEEs can read and write data to and from conventional block
devices, they often employ prohibitively expensive, in the context of TEEs, I/O mechanisms (e.g.,
read/wite syscalls), and provide crash-consistency and data persistence in larger granularities (e.g.
4K blocks) compared to PM.
Approach: Anchor offers security beyond the protected enclave and extends the trust of TEEs to
the untrusted PM. We design data structures that ensure confidentiality, integrity and freshness.
Anchor achieves this by: (i) encrypting and persisting data and metadata on PM on an arbitrarily-
sized object level granularity, and (ii) extending the PMDK’s metadata structure’s layout with an
append-only log, the manifest, for security metadata. Anchor’s manifest maintains the hash values
of all PM-objects. Further, it ensures rollback protection across restarts by assigning a deterministic
unique counter value to each entry. In particular, if the PM data (e.g., objects, manifest) has been
tampered, it will either be detected at runtime, during the integrity checks, or at the upcoming boot
phase, if any manifest entry integrity check fails or the counter does not reach the expected, latest
trusted value. Thus, Anchor effectively extends TEE properties to PM. Moreover, Anchor realizes
all operations as transactions. Uncommitted updates are buffered in-memory; they are persisted
during the commit phase. Our approach combines security with performance by the following key
insight: any update should be made persistent as long as Anchor can ensure its confidentiality,
integrity, and freshness. Therefore, Anchor defers writes to PM until their freshness property is
secured.

#2 Secure crash consistency.
Problem: PM guarantees atomicity only for aligned 8-byte stores. While libmemobj [63] implements
software transactions for atomic writes of arbitrary data sizes, Anchor needs to keep its security
metadata crash consistent. In particular, we need to ensure crash consistency and security for all
data and metadata. We refer to this property as secure crash consistency: any non trusted PM-content
will be discarded in favour of latest trusted and correct content.
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Approach:Anchor offers secure crash consistency by extending the transaction logic and providing
a secure logging protocol. Firstly, a transaction needs to snapshot the latest secure state of a modified
object to be able to revert it, if needed. Secondly, Anchor needs to ensure the freshness, integrity
and confidentiality of the logs that reside in the untrusted PM. This is achieved by encrypting the
payload of the log entries and enhancing themwith securitymetadata (i.e., trusted counters, integrity
signatures). We design our secure crash consistency mechanism with respect to freshness based on
asynchronous counters, originally proposed in Speicher [26]. To prohibit attackers from arbitrarily
deleting redo/undo logs or replacing them with obsolete, yet correct, logs, our transactions log
their start, commit and end to the manifest. Lastly, since we only commit stable transactions, viz.
transactions that own rollback-protected logs, Anchor can replay the secure logs and bring the PM
to the correct trusted state across reboots/restarts. At recovery, Anchor will rollback any aborted
transaction or redo any marked-as-committed transaction that got interrupted.

#3 Fast network I/O.
Problem: PM’s low access latency shifts the bottleneck from storage to network I/O. Traditional
enclave I/O issues such as enclave transitions and asynchronous syscalls execution [22] further
increase the latency compared to conventional approaches (e.g., sockets) that are already the
bottleneck in networking systems [3, 51, 73]. While direct I/O networking solutions such as RDMA
are prominently deployed in data centers to overcome the I/O bottlenecks [77], they are not directly
applicable to Anchor due to two core challenges: (i) RDMA buffers cannot be allocated inside
the enclave memory, as this would violate the security guarantees of SGX [25] and (ii) RDMA
operations might lead to inconsistent PM state.
Approach: Anchor overcomes these limitations by integrating userspace networking [78], PM and
TEEs to optimize the throughput and provide remote access to PM. In particular, Anchor designs
a secure network stack that preserves the crash consistency property for remote PM operations,
overcomes the I/O bottlenecks of TEEs, and is compatible with deployments of RDMA technology
in the cloud. Additionally, it introduces a secure message format to ensure the security properties
of the network traffic. Anchor further tackles the challenge that untrusted resources/memory
cannot be mapped into the enclave. Our network stack is placed inside the enclave but maps the
DMA and message buffers into the untrusted host memory, which is accessible by the enclave.
This design optimizes the limited EPC memory usage. Anchor overcomes the second challenge by
executing remote queries as transactions. We rely on Anchor’s crash consistency mechanism to
ensure crash consistent remote operations. Note that Anchor currently supports transactional PM
updates on a single server node.
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5 SYSTEM DESIGN AND IMPLEMENTATION

5.1 Persistent Data Structures

Anchor stores data on the untrusted PM using three persistent structures, which we explain first.
Secure PM pool. The secure PM pool is where the actual data resides. Identically to PMDK’s pool
structure, it is composed of: (i) a pool header, (ii) an area for transactional logs, (iii) heap metadata,
and (iv) the persistent heap, where the objects are stored. The header contains metadata of the pool
(e.g., size) and heap metadata that is used for managing (de)allocation in the persistent heap.
Manifest.Manifest is an append-only persistent secure log that keeps the security metadata of
all objects in a pool. For each object update, a new entry is appended to the manifest. Each entry
contains an encrypted payload, a trusted counter and a cryptographic hash over both (Figure 2).
With this format, Anchor is able to argue about Manifest’s confidentiality, integrity and freshness
on every startup. The payload consists of the object’s hash, its PMEMoid and its size. Manifest
entries allow Anchor to ensure the integrity (with the signature) and the freshness (with the
counter) of all objects.
Secure undo/redo logs. Undo/redo logs ensure crash consistency and atomicity of data operations.
An undo log entry stores an object snapshot before it is modified, while redo logs track pool/heap
metadata modifications. Anchor secures its logs in a similar fashion as the manifest. For each
log we create a unique trusted counter. Each undo log entry consists of the encrypted payload,
a trusted counter value and a hash over both (Figure 2), similarly to the Manifest. The redo log
entries do not require a hash as they are stored in bulk and a hash over the whole redo log is placed
in its header along with the total log size.

5.2 PM Management Engine

The PM management engine consists of the PM allocator and the transactions management engine.
It ensures the crash consistency and the security properties of the persistent data structures. The
PM management engine stores the PM data encrypted, guaranteeing confidentiality. Additionally,
for PM data encryption, it uses the AES-GCM-128 algorithm of OpenSSL [8] that directly provides
cryptographic signatures, which can be used for integrity checks. The encryption library is entirely
placed inside the enclave.
PM allocator. Anchor’s PM allocator offers secure, transparent and dynamic PM memory man-
agement. The allocator manages the secure pool’s heap to (de)allocate PM objects. It relies on
redo logs to avoid metadata corruption. Anchor logs heap metadata modifications that reflect
the status change of a block (occupied/free). The allocator frequently accesses the heap metadata.
Therefore, we maintain their core part (e.g., PM block headers) in the enclave memory during
runtime. Additionally, allocator’s volatile data structures (e.g., buckets) remain intact and reside in
the protected memory.
TX management engine. The TX management engine implements transactions that, in turn,
ensure security, data atomicity and crash consistency for the modified objects. Particularly, we
offer ACD (Atomicity, Crash Consistency and Durability) semantics for transactions; however,
similar to PMDK, we do not offer any isolation guarantees. Anchor ensures these properties by
tracking the modifications on the pool/heap metadata and snapshotting the modified objects in its
PM logs using a secure logging protocol. In contrast to the native PMDK, Anchor needs to further
consider rollback protection as part of the crash consistency mechanism. Towards this direction,
we keep the modified objects of an uncommitted transaction in the enclave buffers which are only
flushed to PM at the commit phase. This practice is mandatory, as Anchor has to ensure that the
log entries of the snapshotted objects are persisted and rollback-protected through their counter so
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that, in case of a crash, the previous state of the objects can be securely restored. These objects
are tracked with the use of a transaction-local list holding their offsets (§ 6.1). In this way, if the
logs are detected to be unstable during recovery, we are sure that the interrupted transaction never
performed actual PM updates as they are only applied after the stabilization of the respective logs.
To support concurrent transactions, similarly to PMDK, Anchor reserves a space in the secure
PM pool that is split into lanes. Each lane is assigned to a distinct thread to store its respective
transaction’s logs.

5.3 In-memory Data Structures

To accelerate the operations of Anchor, we maintain security metadata and an object cache in the
enclave memory.

Metadata index. Anchor logs the objects’ integrity signatures along with the trusted counter in
the manifest. Consequently, an object’s access would require (i) to prove the manifest’s freshness
and integrity and (ii) iterate the entire manifest to locate the most recent entry for that object. We
opt for optimizing the data path by introducing an in-memory hashmap index, that maintains only
the necessary metadata, aiming for better EPC utilization. Precisely, the index stores all integrity
signatures (16B) and the object sizes (8B) having as a key the object’s PMEMoid (16B). As a result,
object reads bypass the manifest (§ 6.1). The index is trusted at run-time since it resides in the
enclave; we populate the metadata index entries during a successful attested bootstrap (§ 6.2).

Object cache. To further accelerate the read path, we expand the scope of the metadata index to
an object cache that buffers recently accessed objects in the enclave. This eliminates the decryption
calls and access to PM. A reference of each buffered object is stored in its respective entry in the
metadata index. Additionally, to eliminate repeated volatile object buffer allocations and control
the EPC usage, Anchor enforces an epoch based data caching mechanism [93]. Each metadata
index entry is assigned an incremental value (epoch) when it is accessed. We define a configurable
memory limit that the object cache can occupy. When it is reached, a background thread reclaims
the memory of cached objects after making sure, based on their epoch, that they do not belong to
an on-going transaction.

5.4 Network Stack

Since networking consists an essential component of disaggregated cloud systems, Anchor in-
cludes a network stack that integrates kernel-bypass networking with TEEs to securely access
and manage PM data. Our design is optimized for performance; rather than adopting the costly
kernel-based networking, Anchor bypasses the kernel [5, 78] and avoids performance-expensive
enclave switches.

In particular, Anchor exposes asynchronous, secure RPCs based on two-sided RDMA. Anchor
RPCs involve the CPU in order to verify the integrity, authenticity and freshness of the network
traffic. The network stack code (e.g., RPC-library, drivers) resides in the enclave while the network
data (e.g., messages’ buffers, NIC queues) in the untrusted host memory.Anchor stores themessages
encrypted in DMA-capable buffers in the untrusted host memory satisfying two requirements (§ 4.3,
#3): (i) DMA-ed memory cannot be inside the enclave and (ii) EPC usage is optimized. We integrate
eRPC [78], with DPDK [5] as a transport layer, along with the userspace drivers into SCONE to
shield the execution of the network operations. Our network stack reserves unprotected—accessible
by the NIC—2MiB hugepages for the DMA-ed memory. To achieve that, we extend the eRPC
allocator to open shared memory files in the hugetlbfs virtual filesystem and pass the file descriptors
to the mmap.
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Anchor’s network library, further, extends the trust to the untrusted network through a secure
messaging layer. Precisely, we construct a secure message format that is comprised from three
parts: (i) the encrypted payload, (ii) the initialization vector (IV) and (iii) a hash value. For the
encrytpion of the messages, Anchor uses the AES-GCM-128 algorithm of OpenSSL [8]. In the
payload, Anchor reserves the first 8 B for a sequence number. The sequence number is unique for
each client and is deterministically increased for each operation exposing at-most once execution
semantics and guaranteeing message freshness. In this way, our network stack protects against
replay attacks on the network.

On the client side, Anchor maintains a queue for the message transmission. The queue size can
be tuned depending on the system’s requirements to optimize the network latency, throughput or
maintain a balance between them. Anchor’s network stack also stores the sequence number of
each pending request in the queue, which is then used to check whether the sequence number of a
response matches the one from the request.
On the server side, Anchor processes clients’ requests. While Anchor’s network library con-

siders lossy networks and a malicious attacker that can tamper with the network traffic, Anchor
provides reliability based on the message sequence numbers. Precisely, Anchor’s server accepts se-
quence numbers in a fixed, configurable range, based on the previously received sequence numbers
of the client requests. While we do not provide ordering for the packets inside the range, Anchor
can still detect missing packets. For total ordering this range can be configured to be 1 at the cost
of performance. On top of that, Anchor’s network stack verifies the uniqueness of each sequence
number. After this verification, the server processes the request and sends a response to the client.
Note that the the PM security and crash consistency properties are ensured via the server’s PM
management engine.

5.5 Asynchronous Trusted Counters

Anchor uses trusted counters to ensure rollback resilience for the PM logs. We design Anchor
based on an asynchronousmonotonic counter (AMC) interface, originally proposed by Speicher [26],
that allows fast increments, while overcoming the limitations of SGX counters. Anchor creates
one asynchronous counter for each log and persists their state in a file. To protect this file from
rollback attacks, the AMC uses a hardware trusted monotonic counter—in our case, Intel SGX
monotonic counter [6]. While the asynchronous counter offers fast increments, the freshness can
only be ensured when the counters’ values are secured in the file along with the SGX counter. The
time when an asynchronous counter value is written to the file with the SGX counter is called
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Algorithm 1: Read operation
Input :Persistent object id
Output :Persistent object data buffer
read(𝑜𝑖𝑑)
begin

/* object entry lookup in the metadata index */
epc_entry← index_lookup(oid);
if epc_entry == NULL then

//object not found in EPC index
return object_not_found;

else if epc_entry.cached_obj ≠ NULL then
//object already in EPC cache
return epc_entry.cached_obj;

else
//fetch and decrypt the object data
obj_buffer← decrypt_and_verify(oid, epc_entry.hash);
/* update the in-memory index entry with the buffer */
epc_entry.cached_obj← obj_buffer;
return obj_buffer;

end
end
/* object entry lookup in the EPC metadata index */
index_lookup(𝑜𝑖𝑑)
begin

key← hash_func(𝑜𝑖𝑑);
epc_entry← hashmap_lookup(𝑘𝑒𝑦);
return epc_entry;

end

stabilisation point and occurs when the SGX counter is successfully increased after an increment
request (60−250m s). Anchor’s recovery mechanism only trusts entries with stable counter values
(§ 6.2).

Although Anchor is not bound to a specific trusted counter, we build Anchor using our AMC in
a single-node setting. While Anchor optimizes throughput by batching operations before an SGX
counter increment, unfortunately, the counter stabilization delays incur an inevitably increased
latency to provide rollback protection. System designers might want to adapt Anchor to leverage
lower-latency (remote) trusted counters (e.g., ROTE [102]) that implement a trusted counter as a
service in distributed settings [46] to reduce the stabilization time and ensure longevity.

5.6 Attestation and Key Management (AKM)

Remote clients need to establish trust with Anchor’s applications. Further, Anchor needs to
securely distribute keys and configuration to clients. Anchor’s AKM provides these services by
extending Intel Attestation service [4] and integrates a key management system, which provisions
clients with keys (e.g., for communication).

Attestation protocol. Figure 3 demonstratesAnchor’s attestation protocol. More precisely, clients
connect to the AKM service via a secure TLS channel. Following, they request to attest the Anchor
application. If the AKM service is not trusted yet by the client, the Intel attestation process is
invoked to establish the trust between the client and the AKM service. Then, the AKM service, the
verifier, attests the Anchor application by requesting a quote. The enclave requests a report from
SGX hardware and transmits it to the Intel Quoting Enclave (QE), which verifies, signs and sends
back the report. The Anchor application forwards it to the verifier. This quote can be verified
using the Intel verification service [17]. After a successful attestation, AKM generates Anchor’s
application keys and distributes them to the client for secure network communication. Note that,
Anchor currently lacks explicit access control features but can be enhanced to include them by
incorporating key separation mechanisms.
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Algorithm 2:Write operation
Input :Persistent object id & New object data
Output :Sucess/Failure & Stabilisation time
write(𝑜𝑖𝑑,𝑛𝑒𝑤_𝑜𝑏 𝑗_𝑑𝑎𝑡𝑎)
begin

//snapshot the object and add it to TX write set
snapshot(object_id);
obj_buffer← read(oid);
//update the object data
obj_buffer← store(new_obj_data);
//defer PM writes on commit
return success;

end
alloc(𝑠𝑖𝑧𝑒)
begin

mem_block← find_block(size); //find the appropriate memory block
obj_oid← extract_oid_from_block(mem_block);
//add the redo log entry for the occupied block
add_redo_entry();
return obj_oid; //return the new object id

end
On commit:
begin

persist_redo_log();
append_manifest(modified_object_entries);
append_manifest(TX_COMMIT);
//stabilisation point
foreach object_id ∈ write_set do

update_epc_index(hash(obj_buffer));//update the new object hash
store(encrypt(obj_buffer)); //store new object data in PM

end
apply_redo_log();
append_manifest(TX_FINISH);

end

6 SYSTEM OPERATIONS

6.1 Transactions

Read path. Read requests involve two steps (Algorithm 1): (i) locate the object in the PM or the
object cache and (ii) verify its security properties.Anchor first looks up the object in the in-memory
object cache. If the object is in the cache, Anchor does not need to perform any additional step;
the object cache is already secured by the enclave. Otherwise, Anchor fetches the PM object inside
the enclave, and checks if the object’s calculated signature matches the protected signature in the
metadata index and decrypts it. Note that all security metadata is populated in the index during
system bootstrap (§ 6.2) and has its integrity and freshness proved.

Commit protocol. Anchor implements a secure commit protocol to ensure crash consistency and
rollback protection. Anchor first ensures that the logs are persistent and rollback protected, and
then, it updates the PM content. Anchor’s logging process is demonstrated in Figure 2. Precisely,
the object snapshots are added to the undo log during a transaction. On commit, Anchor persists
the heap metadata updates to the redo log. It further appends the objects’ new signatures to the
manifest and a mark-as-committed entry for the transaction. Note that, the log and manifest entries
are stored encrypted and each of them contains a unique trusted counter value. Our protocol defers
PM updates until all logs are stable. Then, Anchor updates the PM as its recovery mechanism can
ensure crash consistency based on the secure logs.

Write path. Since new object creations and existing object updates modify the security metadata
(signatures, etc.), Anchor realizes all write operations (Algorithm 2) as transactions to guarantee
security and crash consistency. Users, similarly to the PMDK, need to explicitly take snapshots of a
transaction’s write set which are persisted to the secure undo log. Each undo log entry receives its
own, unique trusted counter value, as shown in Figure 2. After the snapshot, Anchor searches for
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Algorithm 3: System recovery and bootstrap
Input :Persistent memory pool & Manifest
Output :Consistent PM pool & In memory metadata index
pool_open(𝑝𝑎𝑡ℎ,𝑀𝑎𝑛𝑖 𝑓 𝑒𝑠𝑡 )
verify_log(Manifest, manifest_type);
recover(pool_lanes); //trigger the recovery process
//verify pool header
pool_header← read(pool_header_oid);
//verify PM heap headers
heap_headers← read(heap_headers_oids);
return success;
recover(𝑝𝑜𝑜𝑙_𝑙𝑎𝑛𝑒𝑠)
foreach lane ∈ lanes_with_unfinished_tx do

redo_entry_list← verifyLog(redo_log, redo_type);
if redo_in_progress then

//apply verified EPC-residing redo log entries
apply(𝑟𝑒𝑑𝑜_𝑒𝑛𝑡𝑟𝑦_𝑙𝑖𝑠𝑡 );

else
undo_entry_list← verifyLog(undo_log, undo_type);
//apply verified EPC-residing undo log entries
apply(𝑢𝑛𝑑𝑜_𝑒𝑛𝑡𝑟𝑦_𝑙𝑖𝑠𝑡 );

end
end
return success
verifyLog(𝑙𝑜𝑔, 𝑙𝑜𝑔_𝑡𝑦𝑝𝑒)
/* verify the log entries and fetch the content in EPC */
begin

counter← log.firstCounter;
// if it’s a redo/undo log keep the pending updates in a list
if log_type ≠ manifest_log then entry_list← init_entry_list() ;
foreach entry ∈ log do

entry← decrypt_and_verify(entry);
if counter ≠ entry.counter then

return Counter does not match;
end
if counter > entry.counter then break ;
if log_type ≠ manifest_log then

entry_list.add(entry);
else

if entry == tx_commit_entry then
// mark the transaction as commited but non-finished till the tx_finish_entry is read
mark_tx_commited();
mark_tx_lane_unfinished();

else if entry == tx_finish_entry then
// mark the transaction as finished
mark_tx_lane_finished();

end
end
inc(counter);

end
if counter ≠ log.trustedCounter then return Counter does not match; ;
if log_type ≠ manifest_log then return entry_list; ;
return success;

end

the object based on its PMEMoid, equivalently to a read operation. Anchor updates the object in
the object cache but it does not modify it in-place in the PM. This is our core difference with PMDK;
we keep uncommitted updates in the enclave buffers that are written to PM through Anchor’s
secure commit protocol, after the stabilization of the log entries.

Memory operations. Anchor relies on the PM allocator of PMDK. PM operations result in
modifications to heap metadata; consequently, Anchor realizes them as writes. Memory operations
should also be crash consistent to avoid memory corruption and leakage. In contrast to write
operations, alloc/free operations do not require PM data snapshots. However, memory operations
pass through the same secure commit protocol. All the heap metadata updates are only applied
based on the redo log entries at the commit phase.
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Algorithm 4: Network send operation
Input : ID of the desired operation, Callback for arrival of the response, Message content (arguments and their length)
Output :Message with ciphertext buffer in untrusted memory
create_message(𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑑, 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘)
begin

//Fill in sequence number and operation ID and
//add callback for arrival of the response
Message message(current_seq, operation_id, callback);
//Get a pre-allocated message buffer
message.buf← buffer_by_seq(current_seq);
//The response sequence number is current_seq + 1
//That is why we increment it by 2
current_seq← current_seq + 2;
//Current ciphertext position inside the buffer
message.ciphertext_pos← message.buf;
//Add Initialization Vector for encryption
message.ciphertext_pos← generate_IV();
//Encrypt the header (sequence number + ID)
ciphertext_pos← encrypt(message.header);
return message;

end
add_arg(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑎𝑟𝑔_𝑙𝑒𝑛, 𝑎𝑟𝑔)
begin

//The argument and its length are encrypted (arg_len + 4 B)
if 𝑎𝑟𝑔_𝑙𝑒𝑛 + 4 > 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑖𝑧𝑒 (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ) then

return False; //buffer not big enough
message.ciphertext_pos← encrypt(arg, arg_len);
return True;

end
enqueue_req(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)
begin

//Write the Authentication tag
message.ciphertext_pos_tag← write_tag(arg);
//Enqueue the request in eRPC
eRPC_enqueue_request(message.buf);

end

6.2 System Bootstrap and Recovery

System bootstrap and recovery (Algorithm 3) bring Anchor to a consistent state. After the at-
testation via the AKM service, Anchor reads the logs (manifest, undo/redo logs) and restores
information about the objects’ signatures and interrupted transactions. The goal of this process is
to: (i) verify the security properties of the logs, (ii) retrieve the signatures for integrity checks and
(iii) commit/rollback any uncompleted transactions to restore PM data consistency.

In Anchor, logs are scanned sequentially. Each log entry is integrity checked by a hash, and
its freshness is ensured by the log’s trusted counter. The counter is incremented deterministically.
Anchor uses its value to check if all entries are present. Thus, in case of a rollback attack on the
manifest or the transaction logs,Anchor is able to detect if entries are missing. Entries with counter
values higher than the stored stable trusted counter are ignored. On a successful log verification,
Anchor is assured that all the entries are valid and are originated from an authentic Anchor
instance.

Anchor first scans the manifest log and populates all objects’ signatures in the metadata index.
During this process, Anchor retrieves information about interrupted transactions. Transactions
that were not committed, are ignored since they have not modified PM data. However, there might
be transactions that are marked as committed in the manifest but the commit protocol is not
completed. Anchor examines whether the transaction was stopped during the redo log application.
In this case, Anchor applies the redo log since all the PM objects were successfully persisted.
Otherwise, the undo log is replayed. Lastly, after the integrity checks on the pool header, Anchor
opens the pool. Note that, Anchor constructs its metadata index with the latest signatures for its
objects through its bootstrap process. In that way, if an object is rolled back to a previous valid
state, any upcoming operation on it will report this violation.
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Algorithm 5: Network receive operation
Input :Buffer with encrypted message
Output :Decrypted message object
decrypt_message(𝑏𝑢𝑓 )
begin

//Message must contain an IV, a header and a MAC
assert(buf.len >= min_msg_len);
Message message(buf);
ciphertext_pos← buf + iv_size;
message.header← decrypt(ciphertext_pos, sizeof(message.header));
while remaining_size(message) > 0 do

//There must be space for the argument length
if remaining_size(message) < 4 then return error ;
arg_len← decrypt(message.ciphertext_pos, 4);
if arg_len > remaining_size(message) then return error ;
arg← decrypt(message.ciphertext_pos, arg_len);
append(message.args, pair(arg_len, arg));

end
//Check the authentication tag
if ¬ verify_decryption(message.ciphertext_pos) then return error ;
//Check the sequence number
if message.header.seq - expected_seq < 0 then

assert(is_fresh(message.header.seq));
else

assert(seq_threshold > expected_sec - message.header.seq);
end
return message;

end

6.3 Manifest Compaction

When the manifest reaches a configurable threshold, Anchor activates a compaction mechanism
that copies the latest security metadata to a newmanifest. SinceAnchor keeps all objects’ metadata
in-memory, the compaction requires copying the content of the in-memory index to the new
manifest. To this end, we design a background compaction mechanism.
While compaction is in progress, Anchor needs to ensure recoverability. Therefore, during

compaction, Anchor keeps updating the old manifest while constructing the new one. We use
a separate trusted counter for the new manifest to preserve the deterministic increment for both
manifests. Note that the new manifest is written in the background by a dedicated thread without
implications on other system operations. If the system crashes during a compaction, the application
will recover as the old manifest still contains all latest entries.

6.4 Network Operations

During the initialisation, the communication participants register the callback functions for the
supported operations. To send a message (Algorithm 4), Anchor initially gets a pre-allocated buffer
and constructs the message header (§ 5.4) and its payload. Anchor encrypts the message and places
it in a buffer residing in the untrusted host memory with its authentication tag. Then, the message
is ready to be sent. An Anchor server polls for new connections and incoming requests. Upon
the arrival of a request (Algorithm 5), the receiver decrypts the message and verifies its integrity
and the sequence number. The content of the message is stored in trusted enclave buffers. The
receiver then executes the registered callback for the message type, and returns a response, with
the previously explained process, to the sender. eRPC is responsible for the UDP headers while
DPDK constructs transport layer headers.

7 SECURITY ANALYSIS

Anchor extends the standard SGX threat model, as described in Section 3, i.e., TEE correctly
implements the secure enclave abstraction. To ensure the security principles of Anchor, we have
to (i) make sure that the Anchor code running inside the enclave is memory safe [129] while
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preserving crash consistency, and (ii) prove the security properties of Anchor’s protocols that are
implemented beyond the SGX trust boundaries. To this end, we leverage dynamic analysis tools
for security analysis, i.e., AddressSanitizer [120] and Valgrind [14], to verify the memory safety of
Anchor’s enclave code and Anchor’s crash consistency property (§7.1).

Importantly, we further formally prove the security principles of Anchor’s remote attestation
and secure logging protocol using the Tamarin prover [103] (§7.2). For our proofs, we rely on
SGX to ensure the integrity and confidentiality of the enclaves. Additionally, we require that the
proper software attestation of the enclaves guarantees authenticity. In particular, this means that
we assume that the SGX Quoting Enclave works correctly. Note that the models of our protocols
allowed for Tamarin to efficiently exhaust the search space and terminate without the need for
oracles.

7.1 Dynamic Analysis for Security Issues

Memory safety using AddressSanitizer.Memory safety bugs and memory leaks are common
causes of security vulnerabilities. Therefore, we need to verify that Anchor does not include such
memory errors. To this end, we compile the native Anchor with AddressSanitizer (ASan) [120],
a state-of-the-art tool for detecting memory safety issues. We conduct experiments to pinpoint
memory safety bugs in Anchor. We use a set of persistent indices shipped with PMDK. During
the execution of our experiments, ASan reports neither spatial (e.g., buffer over-/underflows) nor
temporal (e.g., use-after-free) memory safety violations. Additionally, ASan does not detect any
memory leaks. Thus, we verify thatAnchor’s components do not expose any security vulnerabilities
through memory safety bugs or memory leaks.
Crash consistency using Valgrind’s pmemcheck. We use the Valgrind-based pmemcheck [14]
and pmreorder [12] to verify Anchor’s crash consistency property. First, we conduct experiments
with the native Anchor using workloads of 10000 operations with the persistent indices of PMDK,
to keep the runtime reasonable due to Valgrind’s instrumentation. Throughout our experiments,
pmemcheck did not report any issues. Additionally, we port one PMDK recovery test [10] to
Anchor. All the test cases [9] passed without indicating any crash consistency violation. Lastly,
we adapt a pmreorder test of PMDK [11] and the core pmreorder example of the PM book [119] to
Anchor’s API. Our tests did not report any reordering or consistency issue, which, along with
the object recovery test, our recovery microbenchmark and the pmemcheck tests, highlight that
Anchor preserves the crash consistency property.

7.2 Formal Verification of Security Protocols

Remote attestation protocol. We model Anchor’s attestation protocol (Figure 3), described
in §5.6, using Tamarin [103]. In our model, all messages are handled as atomic and we consider
that the cryptographic functions are perfect without side effects. Further, we build on the formally
proven TLS handshake [13] to establish an authentic session between agents that includes a secret
symmetric key for further communication. Lastly, IAS approves only quotation engine reports
running on genuine Intel SGX hardware.

In our model, the protocol states are modeled as a multiset. The state transitions are represented
as multiset rewriting rules. Our model is checked for correctness through a set of control lemmas.
They ensure that certain valid states are reachable. Our model is used to prove Anchor’s desired
security properties. Precisely, an attestation lemma holds if and only if: once a client trusts an
Anchor application, this application is in a valid, expected state.

Tamarin verifies the specified lemmas, by (i) finding at least one valid trace (series of state
transitions) for the required states and (ii) showing that there exists no trace leading to invalid
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states. In our model, Tamarin found at least one trace for every control lemma and proved that
there is no trace to any state where our lemmas are violated. Thus, our attestation lemmas hold for
our model.
Secure logging protocol. Anchor’s secure logging protocol is modeled in Tamarin based on
Figure 2. Anchor’s logs share a unified format. Each entry contains an encrypted payload, a trusted
counter value and an integrity signature.
The confidentiality and integrity of the entries is ensured through the encryption and the

cryptographic hash that is checked on the decryption of the entries. Our model is used to prove
that if a log is successfully verified during bootstrap (§6.2), (i) there is no stable entry missing, and
(ii) all entries are valid and from a genuine source. Note that the version of Tamarin that we used
for the proofs does not contain direct support for counters. We worked around this limitation by
modeling our counters using temporal variables associated to the action facts. Precisely, our proof
uses the timestamp of the action facts to model the counter values since Anchor’s trusted counters
are unique and in a sequential, increasing order.
Tamarin identified at least one trace for our aforementioned lemmas and indicated that there

is no set of transitions leading to a violating state. In this way, it formally proves the security
principles of our secure logging protocol.

8 EVALUATION

8.1 Experimental Setup

We conduct our experiments on a server machine with SGXv.1, equipped with Intel(R) Core(TM)
i9-9900K CPU with 8 cores (16 threads), 64GiB dual-channel memory and 32 KiB (L1D, L1I), 256 KiB
(L2) and 16MiB (L3) caches. At the time of writing this paper, processors could not support SGX
and PM simultaneously[68, 69], therefore we opted for emulating PM backed by DRAM. We inject
write latency on cacheline flushes similarly to previous works[76, 83, 109, 136]. For the network
experiments, the nodes are equipped with Intel Corporation Ethernet Controller XL710 network
card and are connected over a 40GbE QSFP+ network switch.

For our evaluation, we use two classes of workloads: (i) 5 well-known persistent indices (ctree,
btree, rbtree, rtree and hashmap) to showcase how Anchor performs in real-life workloads and
(ii) microbenchmarks to perform a sensitivity study on different operations. We benchmark the
indices using different YCSB workloads (zipfian distribution) [15, 37] with varying R/W ratios. For
our client-server evaluation, we use iPerf [71] and YCSB.

8.2 Persistent Indices

We evaluate the performance of Anchor for five different PM indices (ctree, btree, rbtree, rtree
and hashmap) under four YCSB workloads (10 % Get, 50 % Get, 70 % Get and 90 % Get). We compare
the performance of all five indices over five competitive baselines: (i) Anchor, (ii) Anchor w/o
Encryption, (iii) Anchor running outside SCONE (Native Anchor) (iv) Native Anchor w/o
Encryption, and (v) Native PMDK. Our experiments seek to quantify two inevitable overheads:
(i) the overheads to ensure confidentiality through the comparison between the versions with
and without the encryption layer and (ii) the overheads of the TEE (e.g., due to limited enclave
memory) by comparing the versions that run natively with those running inside SCONE. We use
10M operations on 100 k keys grouped in transactions and fixed key-value sizes equal to 8 B and
512 B, respectively.
Figure 4 illustrates the average slowdown for the four Anchor’s versions normalized to the

native PMDK. In general, Anchor’s throughput is 4.33-8.40× lower for every data structure except
rtree, whose slowdown ranges from 7.54× to 25.96×. To better understand the results and the
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Version 50% Get 70% Get 90% Get
Anchor w/o Enc — 10k keys 3.4× 3.6× 4.2×

Anchor — 10k keys 4.8× 5.3× 7.0×
Table 2. rtree overhead for 10k keys

overhead sources, we collected statistics for the native Anchor, as taking precise timestamps
inside SCONE does not give reliable results due to enclave exits, shown in Figure 5. We further
observe that the application integration into SCONE leads to a slowdown of 1.45-3.47×, depending
on the workload. The data en-/decryption also contributes significantly to the total overhead,
especially inside SCONE, leading to up to 3.54× slowdown compared with the respective version
without encryption. An exception is the rtree inside SCONE with the read intensive workload.
The introduction of the encryption layer leads to a lower overhead due to the slower pace of data
fetching that reduces the EPC pressure and decreases the frequency of the cache cleanup.
Moreover, we note that the average overhead slightly increases when increasing the read ratio.

In the 90% Get workload, the throughput is 5.49-25.96× lower than PMDK while in the case of
50 % Get the respective values are 5.28-8.75×. Figure 5 confirms that the read operations contribute
significantly to the overhead compared to write operations in such cases. The number of reads is
much higher than the number of writes, as even put operations require a traversal of the index
to locate the update/insert positions. Thus, we can account this behaviour to the faster pace that
Anchor fetches PM data into their volatile buffers, causing higher EPC pressure and more frequent
cleanups of the object cache.

Finally, the higher overhead (7.54-25.96×) of rtree stems from the size of its nodes (4 KiB). While
PMDK only requires a partial direct read/write to a node, Anchor needs to fetch it entirely. This
copying compared with the PMDK’s direct read/write along with the increased EPC usage and
number of cleanups result in the significantly higher overheads for rtree when running in SCONE.
The EPC paging effect is highlighted through Table 2, which shows considerably lower overheads
for rtree with smaller memory footprint.
Overall, the overheads of Anchor mostly stem from the expensive EPC paging. However,

upcoming trusted computing paradigms such as confidential VMs (e.g. Intel TDX [58]) will eliminate
the limited EPC issue, thus leading to reduced overheads.
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8.3 Operation Performance

We evaluate Anchor using a microbenchmark based on pmembench [65] to assess the performance
of three operations supported by Anchor, namely alloc & init, update and free. We perform a
series of transactions where each transaction consists of multiple operations on different objects
selected with uniform access pattern. We vary the size of the objects to examine its impact. For
update and free operations, we pre-allocate the PM objects. We compare both (i) Anchor and (ii)
Native Anchor against PMDK.

Figure 6 shows the throughput of the memory management operations. In the case of allocation,
Anchor is 1.9-4.1× and 2.9-9.7× slower compared to native Anchor and PMDK, respectively. For
object deallocation, the respective slowdowns are 1.7-1.9× compared the native version and 4.7-5.3×
compared to PMDK. For both alloc and free, we observe that Anchor’s behaviour is similar to
PMDK’s with increasing object sizes. This is expected as de-/allocations only perform metadata
modifications which are not affected by the object size. In an update operation, Anchor needs
to perform an extra copy of the PM data inside the enclave, in case of a cache miss. This leads to
a smaller relative overhead (9.0× down to 5.4×) with the increasing size, as objects reside in the
cache and are updated in place before the TX commit phase, avoiding multiple costly copies.

8.4 Scalability

We next evaluate the scalability with increasing number of threads from 1 to 8, the maximum
number of cores in our server. Each thread maintains its own object set. We set the object size to
256 B and perform read and write operations.
Figure 7 shows Anchor’s scalability. The lower scalability rate for Anchor is mainly caused

by the frequent updates and look ups to locate each object’s metadata in the metadata index. It,
inevitably, increases the cost of each operation due to the mandatory lock usage which is expensive
in SCONE.

8.5 Effectiveness of Optimizations

We evaluate the effectiveness of our caching optimization using the ctree, btree and rbtree indices.
We use two YCSB workloads: one update- (50% Get) and one read-intensive (90% Get). We use
10M operations and key-value sizes equal to 8 B and 512 B, respectively.
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Index : ctree btree rbtree rtree hashmap
Object reads (M) 203.29 87.9 215.77 99.72 60.02
Hit ratio (%) 92.34 89.48 95.01 82.11 84.23

Table 3. Average cache hit ratio

PMDK Anchor
Operation Undo/redo log (B) Undo/redo log (B) manifest (B)
tx_alloc 1.66 3.68 77.41
tx_update 1049.32 1082.88 70.72
tx_free 1.66 3.68 71.63

Table 4. Write amplification normalised per object

Figure 8 reports the performance improvement of our object cache. We observe a performance
boost in most scenarios for our data structures. For the update-intensive workload (50% Get),
Anchor has up to 1.49× speedup compared to the non-optimized version. The performance gain
becomes more obvious in the read-dominated workload (90% Get) where Anchor’s throughput
improves up to 3.94×. For the case of btree with the write-intensive workload, we observe a small
performance loss due to EPC paging effects. Overall, our technique reduces the cost of the read
operation since it decreases the number of decryptions, as the content of an object can be directly
found in the volatile, protected object cache. Table 3 shows the cache hit ratio for the PM-indices
averaged across the three different workloads shown in Figure 4. We notice that all workloads
achieve more than 80 % hit rate, confirming the usefulness of this optimization.

8.6 PMWrite Amplification

We compute the PM write amplification as the total bytes of the manifest and the extra bytes
written to the logs in three basic memory management operations, namely alloc, update and free.
We performed a series of transactions on discrete 1024 B objects.

Table 4 lists the number of bytes PMDK and Anchor persist on average per object and operation
to the logs. Anchor persists 2.2× more data on average in the secure logs for alloc and free
operations. Both alloc and free involve only the redo log, whose entries for PMDK are 16 B and thus,
even a small addition of the trusted counter value and size to ensure the integrity and freshness
properties doubles their size. Note that as allocations and frees are performed via bitmap updates,
they can be merged, thus, multiple allocations/frees in a transaction can be recorded in a single
redo log entry. This factor is less remarkable in the update case where the object is snapshotted.
More specifically, the increase in the required bytes for the secure undo log of Anchor is 3.2%
on average and roots from the required metadata in the log entries. For each operation, Anchor
inevitably appends manifest entries at the commit phase to keep track of the updated integrity
signatures. Along with the user objects’ entries, metadata modifications need to be tracked in the
manifest as well as entries indicating the transactions’ phase.
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Manifest size (MiB) 96 138 224 266
Recovery time (s) 2.60 3.02 4.17 5.16

Table 5. Boot-up time with varying manifest size

Manifest size (MiB) 138 224
Log size (MiB) 0.98 4.88 0.98 4.88
Recovery time (s) 3.02 3.09 4.11 4.12

Table 6. Recovery time w/ varying manifest & log size
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8.7 Recovery Overheads

We measure Anchor’s recovery time, which is affected by two factors: (i) populating the metadata
index from the manifest (500k objects) and (ii) applying undo/redo logs. We assess the impact of
the manifest and undo/redo logs sizes.
Table 5 and Table 6 show the required time to open a pool, scan the manifest, reconstruct the

metadata index and perform the recovery, if needed. Table 5 highlights the effect of the manifest. As
the manifest size grows, the same applies to the boot-up time. It is expected, since each entry must
be verified, decrypted and checked against the expected counter value. In Table 6, we observe that
the size of the logged objects has a negligible impact on the recovery time. Even with a relatively
large (5MiB) log, the recovery time is barely increasing. The reason is that the manifest scan,
verification and metadata index restoration are dominating the boot-up.

8.8 Anchor’s Network Stack

Next, we evaluate the performance of Anchor’s Network Stack (NS). We use 6 different setups:
(i) iperf [71], (ii) Anchor-NS outside SCONE w/o Encryption, (iii) Anchor-NS outside SCONE w/
Encryption, (iv) iperf in SCONE, (v) Anchor-NS w/o Encryption and (vi) Anchor-NS varying the
data size per request. To simulate the behaviour of iperf in our implementation, we send requests
with a payload of the given data size. At the server, we count the number of arriving requests in a
certain timespan.
Figure 9 and 10 show Anchor’s NS throughput and latency. We notice that the encryption

overhead depends on the payload size. The overhead is higher for smaller payloads. The same
applies for the slowdown caused by SCONE. It is explained as each encryption induces a constant
overhead, i.e., for the encryption of a message header and writing of the authentication tag. In the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.



231:24 Dimitrios Stavrakakis et al.

native case iperf outperforms eRPC. However, the sockets approach is slower inside the enclave
due to syscalls which justifies our choice for eRPC.

9 RELATEDWORK

Persistent memory. PM systems are actively researched across several dimensions, such as
filesytems [32, 75, 82, 141], KV-stores [30, 76, 92, 140, 148], crash consistency & reliability [34, 110,
115, 146, 147, 149] and testing tools [28, 96–98]. In contrast to the prior work, our focus in on
building a secure PM library. Securing durable PM against data permanence attacks has been the
goal of several works [23, 24, 33, 95, 143, 145, 150, 151]. Unlike these systems, Anchor ensures
data freshness, does not require explicit distinction between volatile and PM data, and can easily
be adapted to work on existing platforms due to its intuitive programming model.
Secure storage systems. Building secure databases and storage systems in the cloud is crucial to
avoid undesirable accesses to sensitive data. Several works pursue this goal for single-node [16,
18, 26, 41, 86, 104, 114, 128, 138] and distributed settings [25, 100, 112, 137] based on different
TEEs-compatible designs. However, all these systems target traditional storage stacks with volatile
memory and block-based persistent storage, while Anchor focuses on PM, which introduces its
own, novel programming model.
Secure I/O stack. There exist several solutions for data transmission from TEEs over untrusted
networks. Kernel based approaches suffer from high overheads of world-switches due to system
calls [126]. Asynchronous system calls [22, 111] alleviate these overheads, but still require copying
data to and from the trusted environments. Further works [104, 116, 125] target security challenges
of one-sided RDMA. Anchor targets similar challenges for two-sided RDMA (RPCs) which has
been shown to be the most effective for the design of storage systems [78–81].

On the storage front, while the modern shielded execution frameworks have employed direct I/O
in the context of TEEs [25, 26, 104, 131, 132], they are incomptabile with PMwhich mandates remote
crash consistency. Anchor builds on the direct I/O mechanism, but ensures crash consistency for
data written to remote PM devices.
Remote PM access. Recent research efforts aim to expand the RDMA interfaces for PM to include
durability semantics; performance and crash consistency for remote operations [52, 53, 77, 84, 144].
Anchor’s secure network stack for PM is based on these advancements, where it adopts kernel-
bypass networking to achieve performance by avoiding the prohibitive overheads of system calls
and ensures crash consistency for remote PM accesses [125, 130].

10 CONCLUSION

In this paper, we present Anchor, a secure persistent memory library. Anchor allows for building
secure PM data management systems by offering a programming model similar to PMDK, while
preserving crash consistency through its formally verified secure logging protocol. To achieve
this, Anchor combines three, non-trivially compatible, recent hardware advancements; TEEs, PM,
and kernel-bypass networking. Anchor leverages the TEE provided by Intel SGX and designs a
PM management engine which builds on PMDK, enhanced with confidential and authenticated
data structures. It further integrates a secure kernel-bypass network stack based on eRPC and a
formally proven remote attestation protocol for trust establishment. Our evaluation using the YCSB
workloads over PM indices shows that Anchor incurs reasonable overheads.
Acknowledgements. We would like to sincerely thank Julian Pritzi for his immense assistance in
formally verifying the security protocols. This work was partially supported by a Schwerpunktpro-
gramm (SPP) (ID: 2377) from Deutsche Forschungsgemeinschaft (DFG), an ERC Starting Grant (ID:
101077577), and a UK RISE Grant from NCSC/GCHQ at the University of Edinburgh, UK.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.



Anchor: A Library for Building Secure Persistent Memory Systems 231:25

REFERENCES

[1] [n. d.]. Arm Confidential Compute Architecture. https://www.arm.com/why-arm/architecture/security-features/arm-
confidential-compute-architecture. Last accessed: May 2021.

[2] [n. d.]. CXL Software ecosystem. https://github.com/pmem/pmem.github.io/blob/main/content/blog/2023/cxl-blog-
post.md.

[3] [n. d.]. How long does it take to make a context switch? https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-
make-context.html. Last accessed: Jan, 2021.

[4] [n. d.]. Intel Corporation. Attestation Service for Intel Software GuardExtensions (Intel SGX): API Documentation.
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf.

[5] [n. d.]. Intel DPDK. http://dpdk.org/. Last accessed: Jan, 2021.
[6] [n. d.]. Intel, “SGX documentation: sgx create monotonic counter". https://software.intel.com/en-us/sgx-sdk-dev-

reference-sgx-create-monotonic-counter/. Last accessed: Dec, 2018.
[7] [n. d.]. Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-us/sgx. Last accessed: Jan, 2021.
[8] [n. d.]. OpenSSL library. https://openssl.org. https://openssl.org Last accessed: Jan, 2021.
[9] [n. d.]. PMDK - object and pool recovery tests. https://github.com/pmem/pmdk/tree/stable-1.8/src/test/obj_recovery.
[10] [n. d.]. PMDK - unit test for pool recovery. https://github.com/pmem/pmdk/blob/stable-1.8/src/test/obj_recovery/ob

j_recovery.c.
[11] [n. d.]. PMDK - unit test for store reordering. https://github.com/pmem/pmdk/blob/stable-1.8/src/test/obj_reorder_b

asic/obj_reorder_basic.c.
[12] [n. d.]. The pmreorder utility. https://pmem.io/pmdk/pmreorder/.
[13] [n. d.]. Tamarin TLS handshake proof. https://github.com/tamarin-prover/tamarin-prover/blob/develop/examples/c

lassic/TLS_Handshake.spthy.
[14] [n. d.]. Valgrind: an enhanced version for pmem. https://github.com/pmem/valgrind.
[15] [n. d.]. YCSB. https://github.com/brianfrankcooper/YCSB. Last accessed: Jan, 2021.
[16] 2022. A Log-Structured Merge Tree-aware Message Authentication Scheme for Persistent Key-Value Stores. In

20th USENIX Conference on File and Storage Technologies (FAST 22). USENIX Association, Santa Clara, CA, 363–380.
https://www.usenix.org/conference/fast22/presentation/kim-igjae

[17] October 27, 2023. Intel Software Guard Extensions Remote Attestation End-to-End Example. https://software.intel.c
om/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-
to-end-example.html. Last accessed: October 27, 2023.

[18] Adil Ahmad, Kyungtae Kim, Muhammad Sarfaraz, and Byoungyoung Lee. 2018. OBLIVIATE: A Data Oblivious
Filesystem for Intel SGX. https://doi.org/10.14722/ndss.2018.23296

[19] AMD. [n. d.]. AMD Secure Encrypted Virtualization (SEV). https://developer.amd.com/sev/. https://developer.amd.
com/sev/ Last accessed: Jan, 2021.

[20] Apache. October 27, 2023. Apache Crail (incubating). https://github.com/apache/incubator-crail.
[21] ARM. [n. d.]. Building a Secure System using TrustZone Technology. http://infocenter.arm.com/help/topic/com.arm.

doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf. http://infocenter.arm.com/hel
p/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf Last accessed:
Jan, 2021.

[22] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya
Muthukumaran, Dan O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 689–703.

[23] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne. 2016. Silent Shredder: Zero-Cost
Shredding for Secure Non-Volatile Main Memory Controllers. SIGARCH Comput. Archit. News 44, 2 (March 2016),
263–276. https://doi.org/10.1145/2980024.2872377

[24] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair. 2019. Triad-NVM: Persistency for Integrity-
Protected and Encrypted Non-Volatile Memories. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). 104–115.

[25] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay Nagarajan, and Pramod Bhatotia. 2021.
Avocado: A Secure In-Memory Distributed Storage System. In 2021 USENIX Annual Technical Conference (ATC’21).

[26] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda, and Kapil Vaswani. 2019. Speicher:
Securing LSM-Based Key-Value Stores Using Shielded Execution. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies (Boston, MA, USA) (FAST’19). USENIX Association, USA, 173–190.

[27] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applications from an Untrusted Cloud with
Haven. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://github.com/pmem/pmem.github.io/blob/main/content/blog/2023/cxl-blog-post.md
https://github.com/pmem/pmem.github.io/blob/main/content/blog/2023/cxl-blog-post.md
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
http://dpdk.org/
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter/
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter/
https://software.intel.com/en-us/sgx
https://openssl.org
https://github.com/pmem/pmdk/tree/stable-1.8/src/test/obj_recovery
https://github.com/pmem/pmdk/blob/stable-1.8/src/test/obj_recovery/obj_recovery.c
https://github.com/pmem/pmdk/blob/stable-1.8/src/test/obj_recovery/obj_recovery.c
https://github.com/pmem/pmdk/blob/stable-1.8/src/test/obj_reorder_basic/obj_reorder_basic.c
https://github.com/pmem/pmdk/blob/stable-1.8/src/test/obj_reorder_basic/obj_reorder_basic.c
https://pmem.io/pmdk/pmreorder/
https://github.com/tamarin-prover/tamarin-prover/blob/develop/examples/classic/TLS_Handshake.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/examples/classic/TLS_Handshake.spthy
https://github.com/pmem/valgrind
https://github.com/brianfrankcooper/YCSB
https://www.usenix.org/conference/fast22/presentation/kim-igjae
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://doi.org/10.14722/ndss.2018.23296
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://github.com/apache/incubator-crail
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://doi.org/10.1145/2980024.2872377


231:26 Dimitrios Stavrakakis et al.

[28] Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia. 2022. SafePM: A Sanitizer for
Persistent Memory. In Proceedings of the Seventeenth European Conference on Computer Systems (Rennes, France)
(EuroSys ’22). ACM, NY, NY, USA, 506–524. https://doi.org/10.1145/3492321.3519574

[29] Ruining Chen and Guoao Sun. 2018. A Survey of Kernel-Bypass Techniques in Network Stack. In Proceedings of the
2018 2nd International Conference on Computer Science and Artificial Intelligence (Shenzhen, China) (CSAI ’18). ACM,
NY, NY, USA, 474–477. https://doi.org/10.1145/3297156.3297242

[30] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent Memory (ASPLOS ’20). ACM, NY, NY, USA, 1077–1091. https:
//doi.org/10.1145/3373376.3378515

[31] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured
Key-Value Storage Engine for Persistent Memory. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). ACM,
NY, NY, USA, 1077–1091. https://doi.org/10.1145/3373376.3378515

[32] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. 2018. HiNFS: A Persistent Memory File System with Both Buffering
and Direct-Access. ACM Trans. Storage 14, 1, Article 4 (April 2018), 30 pages. https://doi.org/10.1145/3204454

[33] Siddhartha Chhabra and Yan Solihin. 2011. i-NVMM: A secure non-volatile main memory system with incremental
encryption. In 2011 38th Annual International Symposium on Computer Architecture (ISCA). 177–188. https://doi.org/
10.1145/2000064.2000086

[34] Brian Choi, Randal Burns, and Peng Huang. 2021. Understanding and Dealing with Hard Faults in Persistent Memory
Systems. In Proceedings of the Sixteenth European Conference on Computer Systems (Online Event, United Kingdom)
(EuroSys ’21). ACM, NY, NY, USA, 441–457. https://doi.org/10.1145/3447786.3456252

[35] Alibaba Cloud. [n. d.]. Alibaba Cloud’s Next-Generation Security Makes Gartner’s Report. https://www.alibabacloud
.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367. Last accessed: Jan, 2021.

[36] CXL™ Consortium. October 27, 2023. Compute Express Link™: The Breakthrough CPU-to-Device Interconnect.
https://www.computeexpresslink.org/.

[37] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud computing (SoCC).

[38] George Copeland, Tom Keller, Ravi Krishnamurthy, and Marc Smith. 1989. The case for safe RAM. VLDB.
[39] CRN. 2013. The ten biggest cloud outages of 2013. https://www.crn.com/slide-shows/cloud/240165024/the-10-

biggest-cloud-outages-of-2013.htm. https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-
outages-of-2013.htm Last accessed: Dec, 2018.

[40] Dana Neustadter - Synopsys. [n. d.]. Protecting Data over PCIe & CXL in Cloud Computing. https://www.chipestimate
.com/Protecting--Data--over--PCIe--and--CXL---in--Cloud-Computing/Synopsys/Technical-Article/2021/08/10.
https://www.chipestimate.com/Protecting--Data--over--PCIe--and--CXL---in--Cloud-Computing/Synopsys/Tec
hnical-Article/2021/08/10

[41] Bernard Dickens III, Haryadi S. Gunawi, Ariel J. Feldman, and Henry Hoffmann. 2018. StrongBox: Confidentiality,
Integrity, and Performance Using Stream Ciphers for Full Drive Encryption. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

[42] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE Transactions on Information Theory (1983).
[43] Chet Douglas. 2020. RDMAwith PMEM, Software mechanisms for enabling access to remote persistent memory. https:

//www.snia.org/sites/default/f iles/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf.
https://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf

[44] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast Remote Memory.
In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14).

[45] Gunawi et al. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC).

[46] Dimitra Giantsidi, Maurice Bailleu, Natacha Crooks, and Pramod Bhatotia. 2022. Treaty: Secure Distributed Trans-
actions. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 14–27.
https://doi.org/10.1109/DSN53405.2022.00015

[47] Garth Goodson and Bianca Schroeder. 2008. An Analysis of Data Corruption in the Storage Stack. In 6th USENIX
Conference on File and Storage Technologies (FAST 08). USENIX Association, San Jose, CA. https://www.usenix.org/c
onference/fast-08/analysis-data-corruption-storage-stack

[48] Google Confidential VMs [n. d.]. Introducing Google Cloud Confidential Computing with Confidential VMs. https:
//cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-
confidential-vms. https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-
computing-with-confidential-vms Last accessed: Jan, 2021.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://doi.org/10.1145/3492321.3519574
https://doi.org/10.1145/3297156.3297242
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3204454
https://doi.org/10.1145/2000064.2000086
https://doi.org/10.1145/2000064.2000086
https://doi.org/10.1145/3447786.3456252
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.computeexpresslink.org/
https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm
https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm
https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm
https://www.crn.com/slide-shows/cloud/240165024/the-10-biggest-cloud-outages-of-2013.htm
https://www.chipestimate.com/Protecting--Data--over--PCIe--and--CXL---in--Cloud-Computing/Synopsys/Technical-Article/2021/08/10
https://www.chipestimate.com/Protecting--Data--over--PCIe--and--CXL---in--Cloud-Computing/Synopsys/Technical-Article/2021/08/10
https://www.chipestimate.com/Protecting--Data--over--PCIe--and--CXL---in--Cloud-Computing/Synopsys/Technical-Article/2021/08/10
https://www.chipestimate.com/Protecting--Data--over--PCIe--and--CXL---in--Cloud-Computing/Synopsys/Technical-Article/2021/08/10
https://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
https://doi.org/10.1109/DSN53405.2022.00015
https://www.usenix.org/conference/fast-08/analysis-data-corruption-storage-stack
https://www.usenix.org/conference/fast-08/analysis-data-corruption-storage-stack
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms


Anchor: A Library for Building Secure Persistent Memory Systems 231:27

[49] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. 2016. RDMA
over Commodity Ethernet at Scale. In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil)
(SIGCOMM ’16). 202–215.

[50] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution Side Channels for Untrusted Operating
Systems. In Proceedings of the USENIX Annual Technical Conference (ATC).

[51] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012. MegaPipe: A New Programming Interface
for Scalable Network I/O. In 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12).

[52] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. 2018. PASTE: A Network Programming Interface
for Non-Volatile Main Memory. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI
18). Renton, WA, 17–33. https://www.usenix.org/conference/nsdi18/presentation/honda

[53] Haixin Huang, Kaixin Huang, Litong You, and Linpeng Huang. 2018. Forca: Fast and Atomic Remote Direct Access
to Persistent Memory. In 2018 IEEE 36th International Conference on Computer Design (ICCD). 246–249. https:
//doi.org/10.1109/ICCD.2018.00045

[54] IBM. 2021. Confidential computing on IBM Cloud. https://www.ibm.com/cloud/conf idential-computing.
https://www.ibm.com/cloud/confidential-computing

[55] IBM. October 27, 2023. Analytics infrastructure: High-performance I/O architecture. https://www.zurich.ibm.com/cci
/analytics/crail.html?lnk=hm.

[56] infradead. 2021. Direct Access for files. https://www.infradead.org/~mchehab/kernel_docs/filesystems/dax.html.
https://www.infradead.org/~mchehab/kernel_docs/filesystems/dax.html

[57] Intel. [n. d.]. Intel Optane Technology. https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-
bringing-3d-xpoint-memory-to-storage-and-memory-products/.

[58] Intel. [n. d.]. Software Enabling for Intel® TDX in Support of TEE-I/O. https://cdrdv2-public.intel.com/742542/softwa
re-enabling-for-tdx-tee-io-fixed.pdf. https://cdrdv2-public.intel.com/742542/software-enabling-for-tdx-tee-io-
fixed.pdf

[59] Intel. 2019. Persistent Memory Replication Over Traditional RDMA Part 1: Understanding Remote Persistent Memory.
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-
rdma-part-1-understanding-remote-persistent.html. https://software.intel.com/content/www/us/en/develop/article
s/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html

[60] Intel. 2021. Intel® Optane™ Persistent Memory. https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html. https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html

[61] Intel. 2021. Intel® Optane™ Persistent Memory Product Brief. https://www.intel.com/content/www/us/e
n/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html.
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-
dc-persistent-memory-brief.html

[62] Intel. 2021. Persistent Memory Development Kit. https://pmem.io/pmdk/. https://pmem.io/pmdk/
[63] Intel. 2021. Persistent Memory Development Kit : libpmemobj - persistent memory transactional object store.

https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html. https://pmem.io/pmdk/manpages/li
nux/master/libpmemobj/libpmemobj.7.html

[64] Intel. 2021. PMDK Internals: Important Algorithms and Data Structures. https://link.springer.com/chapter/10.1007/978-
1-4842-4932-1_16. https://link.springer.com/chapter/10.1007/978-1-4842-4932-1_16

[65] Intel. 2021. pmembench: PMDK benchmark framework. https://github.com/pmem/pmdk/blob/master/src/benchmark
s/pmembench.cpp. https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp

[66] Intel. 2023. Intel® Trust Domain Extensions (Intel® TDX). https://www.intel.com/content/www/us/en/developer/ar
ticles/technical/intel-trust-domain-extensions.html. https://www.intel.com/content/www/us/en/developer/articles/t
echnical/intel-trust-domain-extensions.html

[67] Intel. 2023. The librpma library. https://pmem.io/rpma/. https://pmem.io/rpma/
[68] Intel. October 27, 2023. Can Intel® SGX and Intel® Optane™ Persistent Memory 200 Series Be Used on the Same

Platform? https://www.intel.com/content/www/us/en/support/articles/000059500/memory-and-storage/intel-
optane-persistent-memory.html.

[69] Intel. October 27, 2023. Intel SGX + DC Persistent Memory. https://community.intel.com/t5/Intel-Software-Guard-
Extensions/Intel-SGX-DC-Persistent-Memory/td-p/1286085?profile.language=en.

[70] Intel. October 27, 2023. Leveraging RDMA Technologies to Accelerate Ceph* Storage Solutions. https://www.intel.co
m/content/www/us/en/developer/articles/technical/leveraging-rdma-technologies-to-accelerate-ceph-storage-
solutions.html.

[71] iperf, network, UDP, TCP [n. d.]. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.
https://iperf.fr/ Last accessed: Aug, 2020.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://www.usenix.org/conference/nsdi18/presentation/honda
https://doi.org/10.1109/ICCD.2018.00045
https://doi.org/10.1109/ICCD.2018.00045
https://www.ibm.com/cloud/confidential-computing
https://www.ibm.com/cloud/confidential-computing
https://www.zurich.ibm.com/cci/analytics/crail.html?lnk=hm
https://www.zurich.ibm.com/cci/analytics/crail.html?lnk=hm
https://www.infradead.org/~mchehab/kernel_docs/filesystems/dax.html
https://www.infradead.org/~mchehab/kernel_docs/filesystems/dax.html
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://cdrdv2-public.intel.com/742542/software-enabling-for-tdx-tee-io-fixed.pdf
https://cdrdv2-public.intel.com/742542/software-enabling-for-tdx-tee-io-fixed.pdf
https://cdrdv2-public.intel.com/742542/software-enabling-for-tdx-tee-io-fixed.pdf
https://cdrdv2-public.intel.com/742542/software-enabling-for-tdx-tee-io-fixed.pdf
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://link.springer.com/chapter/10.1007/978-1-4842-4932-1_16
https://link.springer.com/chapter/10.1007/978-1-4842-4932-1_16
https://link.springer.com/chapter/10.1007/978-1-4842-4932-1_16
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://github.com/pmem/pmdk/blob/master/src/benchmarks/pmembench.cpp
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://pmem.io/rpma/
https://pmem.io/rpma/
https://www.intel.com/content/www/us/en/support/articles/000059500/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000059500/memory-and-storage/intel-optane-persistent-memory.html
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Intel-SGX-DC-Persistent-Memory/td-p/1286085?profile.language=en
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Intel-SGX-DC-Persistent-Memory/td-p/1286085?profile.language=en
https://www.intel.com/content/www/us/en/developer/articles/technical/leveraging-rdma-technologies-to-accelerate-ceph-storage-solutions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/leveraging-rdma-technologies-to-accelerate-ceph-storage-solutions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/leveraging-rdma-technologies-to-accelerate-ceph-storage-solutions.html
https://iperf.fr/
https://iperf.fr/


231:28 Dimitrios Stavrakakis et al.

[72] Nusrat Sharmin Islam, Md. Wasi-ur Rahman, Xiaoyi Lu, and Dhabaleswar K. Panda. 2016. High Performance Design
for HDFS with Byte-Addressability of NVM and RDMA. In Proceedings of the 2016 International Conference on
Supercomputing (Istanbul, Turkey) (ICS ’16). ACM, NY, NY, USA, Article 8, 14 pages. https://doi.org/10.1145/2925426.
2926290

[73] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo
Park. 2014. MTCP: A Highly Scalable User-Level TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementationi (NSDI).

[74] Jérôme Glisse / Google. 2023. CXL Confidential Computing. https://lpc.events/event/16/contributions/1250/attachm
ents/1125/2158/LPC2022%20CXL%20Confidential%20Computing.pdf. https://lpc.events/event/16/contributions/1250
/attachments/1125/2158/LPC2022%20CXL%20Confidential%20Computing.pdf

[75] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS:
Reducing Software Overhead in File Systems for Persistent Memory. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). ACM, NY, NY, USA, 494–508. https:
//doi.org/10.1145/3341301.3359631

[76] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young ri Choi. 2019. SLM-DB: Single-Level
Key-Value Store with Persistent Memory. In 17th USENIX Conference on File and Storage Technologies (FAST 19).
USENIX Association, Boston, MA, 191–205. https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet

[77] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges and Solutions for Fast Remote Persistent
Memory Access. In Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
ACM, NY, NY, USA, 105–119. https://doi.org/10.1145/3419111.3421294

[78] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can be General and Fast. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

[79] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA Efficiently for Key-Value Services. In
Proceedings of the 2014 ACM Conference on SIGCOMM (Chicago, Illinois, USA) (SIGCOMM ’14). ACM, NY, NY, USA,
295–306. https://doi.org/10.1145/2619239.2626299

[80] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines for High Performance RDMA
Systems. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX Association, Denver, CO, 437–450.
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[81] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable and Simple Distributed Transactions
with Two-Sided (RDMA) Datagram RPCs. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16).

[82] Chandan Kalita, G. Barua, and Priya Sehgal. 2018. DurableFS: A File System for Persistent Memory. ArXiv
abs/1811.00757 (2018).

[83] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. Re-
designing LSMs for Nonvolatile Memory with NoveLSM. In 2018 USENIX Annual Technical Conference (USENIX ATC
18). USENIX Association, Boston, MA, 993–1005. https://www.usenix.org/conference/atc18/presentation/kannan

[84] Sanidhya Kashyap, Dai Qin, Steve Byan, Virendra J. Marathe, and Sanketh Nalli. 2019. Correct, Fast Remote Persistence.
CoRR abs/1909.02092 (2019). arXiv:1909.02092 http://arxiv.org/abs/1909.02092

[85] The Linux kernel archives. 2021. DAX - Direct access for files. https://www.kernel.org/doc/Documentation/filesyste
ms/dax.txt. https://www.kernel.org/doc/Documentation/filesystems/dax.txt

[86] Taehoon Kim, Joongun Park, JaewookWoo, Seungheun Jeon, and Jaehyuk Huh. 2019. ShieldStore: Shielded In-Memory
Key-Value Storage with SGX. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys).

[87] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative
Execution. In 40th IEEE Symposium on Security and Privacy (S&P).

[88] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2016. HAFT: Hardware-Assisted
Fault Tolerance. In Proceedings of the Eleventh European Conference on Computer Systems (London, United Kingdom)
(EuroSys ’16). ACM, NY, NY, USA, Article 25, 17 pages. https://doi.org/10.1145/2901318.2901339

[89] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. 1991. The ObjectStore database system. Commun.
ACM 34, 10 (1991), 50–63.

[90] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger. 2010.
Phase-Change Technology and the Future of Main Memory. IEEE Micro 30, 1 (2010), 143–143. https://doi.org/10.110
9/MM.2010.24

[91] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. 2020. Keystone: an open framework
for architecting trusted execution environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://doi.org/10.1145/2925426.2926290
https://doi.org/10.1145/2925426.2926290
https://lpc.events/event/16/contributions/1250/attachments/1125/2158/LPC2022%20CXL%20Confidential%20Computing.pdf
https://lpc.events/event/16/contributions/1250/attachments/1125/2158/LPC2022%20CXL%20Confidential%20Computing.pdf
https://lpc.events/event/16/contributions/1250/attachments/1125/2158/LPC2022%20CXL%20Confidential%20Computing.pdf
https://lpc.events/event/16/contributions/1250/attachments/1125/2158/LPC2022%20CXL%20Confidential%20Computing.pdf
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/2619239.2626299
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc18/presentation/kannan
https://arxiv.org/abs/1909.02092
http://arxiv.org/abs/1909.02092
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.1145/2901318.2901339
https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1109/MM.2010.24


Anchor: A Library for Building Secure Persistent Memory Systems 231:29

[92] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. Recipe: Converting
Concurrent DRAM Indexes to Persistent-Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). ACM, NY, NY, USA, 462–477. https://doi.org/10.1145/33
41301.3359635

[93] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018. LeanStore: In-Memory Data
Management beyond Main Memory. In 2018 IEEE 34th International Conference on Data Engineering (ICDE). 185–196.
https://doi.org/10.1109/ICDE.2018.00026

[94] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory
from User Space. In 27th USENIX Security Symposium (USENIX Security 18).

[95] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash Consistency in Encrypted Non-volatile Main
Memory Systems. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). 310–323.
https://doi.org/10.1109/HPCA.2018.00035

[96] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz: Test Case Generation for Persistent
Memory Programs. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). ACM, NY, NY, USA, 487–502. https://doi.org/10.114
5/3445814.3446691

[97] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli, and Samira Khan. 2020. Cross-
Failure Bug Detection in Persistent Memory Programs. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). ACM,
NY, NY, USA, 1187–1202. https://doi.org/10.1145/3373376.3378452

[98] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. 2019. PMTest: A Fast and Flexible Testing
Framework for Persistent Memory Programs. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, NY,
NY, USA, 411–425. https://doi.org/10.1145/3297858.3304015

[99] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled Distributed Persistent Memory
File System. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA,
773–785. https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu

[100] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin, and Michael Walfish. 2011.
Depot: Cloud Storage with Minimal Trust. In ACM Transactions on Computer Systems. http://dl.acm.org/citation.cf
m?doid=2063509.2063512

[101] PCPerspective Allyn Malventano. 2017. How 3D XPoint Phase-Change Memory Works. https://pcper.com/2017/06/
how-3d-xpoint-phase-change-memory-works/. https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-
works/

[102] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, Arthur Gervais, Ari Juels, and Srdjan
Capkun. 2017. ROTE: Rollback Protection for Trusted Execution. In 26th USENIX Security Symposium (USENIX
Security).

[103] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The TAMARIN Prover for the Symbolic Analysis
of Security Protocols. In Proceedings of the 25th International Conference on Computer Aided Verification (CAV).

[104] Ines Messadi, Shivananda Neumann, Nico Weichbrodt, Lennart Almstedt, Mohammad Mahhouk, and Rüdiger Kapitza.
2021. Precursor: A Fast, Client-Centric and Trusted Key-Value Store Using RDMA and Intel SGX. In Proceedings
of the 22nd International Middleware Conference (Québec city, Canada) (Middleware ’21). ACM, NY, NY, USA, 1–13.
https://doi.org/10.1145/3464298.3476129

[105] Micron. October 27, 2023. NVDIMM. https://www.micron.com/products/dram-modules/nvdimm.
[106] Jakub Szymaszek Microsoft. 2021. Always Encrypted with secure enclaves now generally available in Azure SQL

Database. https://techcommunity.microsoft.com/t5/azure-sql/always-encrypted-with-secure-enclaves-now-
generally-available-in/ba-p/2502560. https://techcommunity.microsoft.com/t5/azure-sql/always-encrypted-with-
secure-enclaves-now-generally-available-in/ba-p/2502560

[107] Microsoft Azure. [n. d.]. Azure confidential computing. https://azure.microsoft.com/en-us/solutions/confidential-
compute/.

[108] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens. 2020. Plundervolt:
Software-based Fault Injection Attacks against Intel SGX. In Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20).

[109] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok Nam. 2019. Write-Optimized Dynamic
Hashing for Persistent Memory. In 17th USENIX Conference on File and Storage Technologies (FAST 19). USENIX
Association, Boston, MA, 31–44. https://www.usenix.org/conference/fast19/presentation/nam

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1109/HPCA.2018.00035
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
http://dl.acm.org/citation.cfm?doid=2063509.2063512
http://dl.acm.org/citation.cfm?doid=2063509.2063512
https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-works/
https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-works/
https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-works/
https://pcper.com/2017/06/how-3d-xpoint-phase-change-memory-works/
https://doi.org/10.1145/3464298.3476129
https://www.micron.com/products/dram-modules/nvdimm
https://techcommunity.microsoft.com/t5/azure-sql/always-encrypted-with-secure-enclaves-now-generally-available-in/ba-p/2502560
https://techcommunity.microsoft.com/t5/azure-sql/always-encrypted-with-secure-enclaves-now-generally-available-in/ba-p/2502560
https://techcommunity.microsoft.com/t5/azure-sql/always-encrypted-with-secure-enclaves-now-generally-available-in/ba-p/2502560
https://techcommunity.microsoft.com/t5/azure-sql/always-encrypted-with-secure-enclaves-now-generally-available-in/ba-p/2502560
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.usenix.org/conference/fast19/presentation/nam


231:30 Dimitrios Stavrakakis et al.

[110] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: Healing Persistent Memory Bugs without Doing Any
Harm. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (Virtual, USA) (ASPLOS 2021). ACM, NY, NY, USA, 401–414. https://doi.org/10.1145/3445814.
3446694

[111] Meni Orenbach, Marina Minkin, Pavel Lifshits, and Mark Silberstein. 2017. Eleos: ExitLess OS services for SGX
enclaves. In Proceedings of the 12th ACM European ACM Conference in Computer Systems (EuroSys).

[112] Raluca Ada Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang. 2011. Enabling Security in Cloud
Storage SLAs with CloudProof. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC).

[113] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui, Vasily A. Sartakov, and Peter
Pietzuch. 2019. SGX-LKL: Securing the Host OS Interface for Trusted Execution. arXiv:1908.11143 [cs.OS]

[114] C. Priebe, K. Vaswani, and M. Costa. 2018. EnclaveDB: A Secure Database using SGX (S&P). In IEEE Symposium on
Security and Privacy.

[115] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu. 2015. ThyNVM: Enabling
Software-Transparent Crash Consistency in Persistent Memory Systems. In Proceedings of the 48th International
Symposium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). ACM, NY, NY, USA, 672–685. https://doi.org/10.114
5/2830772.2830802

[116] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler. 2021. ReDMArk: Bypassing RDMA
Security Mechanisms. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 4277–4292.
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger

[117] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. 2009. Towards Trusted Cloud Computing. In Proceedings
of the 2009 Conference on Hot Topics in Cloud Computing (San Diego, California) (HotCloud’09). USENIX Association,
USA, Article 3.

[118] Nuno Santos, Rodrigo Rodrigues, and Bryan Ford. 2012. Enhancing the OS against Security Threats in System
Administration. In Proceedings of the 13th International Middleware Conference (Middleware).

[119] Steve Scargall. 2020. Debugging Persistent Memory Applications. Apress, Berkeley, CA, 207–260. https://doi.org/10.1
007/978-1-4842-4932-1_12

[120] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast
Address Sanity Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston,
MA, 309–318. https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

[121] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed Shared Persistent Memory. In Proceedings of the
2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17). ACM, NY, NY, USA, 323–337. https:
//doi.org/10.1145/3127479.3128610

[122] Jonathan S Shapiro, Jonathan M Smith, and David J Farber. 1999. EROS: a fast capability system. In Proceedings of the
seventeenth ACM symposium on Operating systems principles. 170–185.

[123] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. PANOPLY: Low-TCB Linux Applications with
SGX Enclaves. In Proceedings of the Network and Distributed System Security Symposium (NDSS).

[124] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu, Junru Li, and Youyou Lu. 2020. TH-DPMS: Design and Implemen-
tation of an RDMA-Enabled Distributed Persistent Memory Storage System. ACM Trans. Storage 16, 4, Article 24 (Oct.
2020), 31 pages. https://doi.org/10.1145/3412852

[125] Anna Kornfeld Simpson, Adriana Szekeres, Jacob Nelson, and Irene Zhang. 2020. Securing RDMA for High-
Performance Datacenter Storage Systems. In 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud).

[126] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling with Exception-less System Calls. In
Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[127] Xinyang (Kevin) Song, Sihang Liu, and Gennady Pekhimenko. October 27, 2023. Persistent Memory – A New Hope.
https://www.sigarch.org/persistent-memory-a-new-hope/#:~:text=Recently%2C%20Intel%20announced%20the%2
0cancellation,the%20consumer%2Dgrade%20Optane%20SSDs..

[128] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-Native Storage Engines for Practical
Encrypted Databases. Proc. VLDB Endow. 14, 6 (Feb. 2021), 1019–1032. https://doi.org/10.14778/3447689.3447705

[129] László Szekeres, M. Payer, Tao Wei, and D. Song. 2013. SoK: Eternal War in Memory. 2013 IEEE Symposium on Security
and Privacy (2013), 48–62.

[130] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler. 2020. sRDMA – Efficient NIC-based
Authentication and Encryption for Remote Direct Memory Access. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 691–704. https://www.usenix.org/conference/atc20/presentation/taranov

[131] Jörg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod Bhatotia, and Peter Pietzuch. 2021. Rkt-Io: A
Direct I/O Stack for Shielded Execution. In Proceedings of the Sixteenth European Conference on Computer Systems
(ACM EuroSys 21).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://doi.org/10.1145/3445814.3446694
https://doi.org/10.1145/3445814.3446694
https://arxiv.org/abs/1908.11143
https://doi.org/10.1145/2830772.2830802
https://doi.org/10.1145/2830772.2830802
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://doi.org/10.1007/978-1-4842-4932-1_12
https://doi.org/10.1007/978-1-4842-4932-1_12
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/3412852
https://www.sigarch.org/persistent-memory-a-new-hope/##:~:text=Recently%2C%20Intel%20announced%20the%20cancellation,the%20consumer%2Dgrade%20Optane%20SSDs.
https://www.sigarch.org/persistent-memory-a-new-hope/##:~:text=Recently%2C%20Intel%20announced%20the%20cancellation,the%20consumer%2Dgrade%20Optane%20SSDs.
https://doi.org/10.14778/3447689.3447705
https://www.usenix.org/conference/atc20/presentation/taranov


Anchor: A Library for Building Secure Persistent Memory Systems 231:31

[132] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof Fetzer. 2018. ShieldBox:
Secure Middleboxes using Shielded Execution. In Proceedings of the ACM SIGCOMM Symposium on SDN Research
(SOSR).

[133] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In Proceedings of the 27th USENIX Security Symposium (USENIX Security).

[134] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020. SGAxe: How SGX Fails in Practice.
https://sgaxeattack.com/.

[135] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020. CacheOut: Leaking
Data on Intel CPUs via Cache Evictions. arXiv:2006.13353 [cs.CR]

[136] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight Persistent Memory. SIGARCH
Comput. Archit. News 39, 1 (March 2011), 91–104. https://doi.org/10.1145/1961295.1950379

[137] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and Mike
Dahlin. 2013. Robustness in the Salus Scalable Block Store. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[138] Carsten Weinhold and Hermann Härtig. 2011. jVPFS: Adding Robustness to a Secure Stacked File System with
Untrusted Local Storage Components. In Proceedings of the USENIX Annual Technical Conference (ATC).

[139] Yinjun Wu, Kwanghyun Park, Rathijit Sen, Brian Kroth, and Jaeyoung Do. 2020. Lessons Learned from the Early
Performance Evaluation of Intel Optane DC Persistent Memory in DBMS. In Proceedings of the 16th International
Workshop on Data Management on New Hardware (Portland, Oregon) (DaMoN ’20). ACM, NY, NY, USA, Article 14,
3 pages. https://doi.org/10.1145/3399666.3399898

[140] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index Key-Value Store for DRAM-NVM
Memory Systems. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 349–362. https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia

[141] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories. In 14th USENIX Conference on File and Storage Technologies (FAST 16). USENIX Association, Santa Clara,
CA, 323–338. https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[142] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland).

[143] Fan Yang, Youmin Chen, Haiyu Mao, Youyou Lu, and Jiwu Shu. 2020. ShieldNVM: An Efficient and Fast Recoverable
System for Secure Non-Volatile Memory. ACM Trans. Storage 16, 2, Article 12 (May 2020), 31 pages. https:
//doi.org/10.1145/3381835

[144] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR: Rethinking RDMANetworking for Scalable Persistent
Memory. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20). USENIX Association,
Santa Clara, CA, 111–125. https://www.usenix.org/conference/nsdi20/presentation/yang

[145] Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. 2015. DEUCE: Write-Efficient Encryption for Non-Volatile
Memories. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages
and Operating Systems (Istanbul, Turkey) (ASPLOS ’15). ACM, NY, NY, USA, 33–44. https://doi.org/10.1145/2694344.
2694387

[146] L. Zhang. 2019. Building Reliable Software for Persistent Memory.
[147] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant Persistent Memory Programming Library. In

Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC
’19). USENIX Association, USA, 897–911.

[148] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021. ChameleonDB: A Key-Value Store for Optane
Persistent Memory. In Proceedings of the Sixteenth European Conference on Computer Systems (Online Event, United
Kingdom) (EuroSys ’21). ACM, NY, NY, USA, 194–209. https://doi.org/10.1145/3447786.3456237

[149] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. 2015. Mojim: A Reliable and Highly-Available
Non-Volatile Memory System. SIGARCH Comput. Archit. News 43, 1 (March 2015), 3–18. https://doi.org/10.1145/2786
763.2694370

[150] Pengfei Zuo and Yu Hua. 2018. SecPM: a Secure and Persistent Memory System for Non-volatile Memory. In
10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 18). USENIX Association, Boston, MA.
https://www.usenix.org/conference/hotstorage18/presentation/zuo

[151] Pengfei Zuo, Yu Hua, and Yuan Xie. 2019. SuperMem: Enabling Application-Transparent Secure Persistent Memory
with Low Overheads. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(Columbus, OH, USA) (MICRO ’52). ACM, NY, NY, USA, 479–492. https://doi.org/10.1145/3352460.3358290

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 231. Publication date: December 2023.

https://sgaxeattack.com/
https://arxiv.org/abs/2006.13353
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1145/3399666.3399898
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://doi.org/10.1145/3381835
https://doi.org/10.1145/3381835
https://www.usenix.org/conference/nsdi20/presentation/yang
https://doi.org/10.1145/2694344.2694387
https://doi.org/10.1145/2694344.2694387
https://doi.org/10.1145/3447786.3456237
https://doi.org/10.1145/2786763.2694370
https://doi.org/10.1145/2786763.2694370
https://www.usenix.org/conference/hotstorage18/presentation/zuo
https://doi.org/10.1145/3352460.3358290

	Abstract
	1 Introduction
	2 Background
	2.1 Disaggregated Systems & Persistent Memory
	2.2 Confidential Computing

	3 System Model
	4 Overview
	4.1 System Overview
	4.2 Anchor System APIs
	4.3 Design Challenges and Key Ideas

	5 System Design and Implementation
	5.1 Persistent Data Structures
	5.2 PM Management Engine
	5.3 In-memory Data Structures
	5.4 Network Stack
	5.5 Asynchronous Trusted Counters
	5.6 Attestation and Key Management (AKM)

	6 System operations
	6.1 Transactions
	6.2 System Bootstrap and Recovery
	6.3 Manifest Compaction
	6.4 Network Operations

	7 Security analysis
	7.1 Dynamic Analysis for Security Issues
	7.2 Formal Verification of Security Protocols

	8 Evaluation
	8.1 Experimental Setup
	8.2 Persistent Indices
	8.3 Operation Performance
	8.4 Scalability
	8.5 Effectiveness of Optimizations
	8.6 PM Write Amplification
	8.7 Recovery Overheads
	8.8 Anchor's Network Stack

	9 Related Work
	10 Conclusion
	References

