
SPP
Safe Persistent Pointers for Memory Safety

Dimitrios Stavrakakis, Alexandra Panfill
MJin Nam, Pramod Bhatotia

IEEE/IFIP DSN 2024

Memory safety

Memory safety violations : Illegal accesses to unintended memory regions

2

Spatial memory safety
e.g., buffer overflow, stack overflow

Temporal memory safety
e.g., dangling pointer, double free

Address space Address space

Allocated Freed

ptr ptr

Memory safety in practice

Prevalent in almost all low-level unsafe C/C++ code

Chromium project ¹
- 70% of vulnerabilities are memory safety problems

Microsoft ²
- 70% of vulnerabilities fixed in security patches are memory safety violations

Android ³
- 75% of vulnerabilities are memory safety issues

¹ Chromium project: https://www.chromium.org/Home/chromium-security/memory-safety
² Microsoft: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
³ Android: https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

3

https://www.chromium.org/Home/chromium-security/memory-safety
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

Persistent memory (PM) safety challenges

Memory safety approaches for PM are non-practical for production deployment

- Persistent memory programming model

- Durability & crash consistency

- Recovery code paths

- Performance & memory/storage overheads

Persistent memory management is susceptible to memory safety vulnerabilities

4

Problem statement

5

How to design a practical memory safety solution for PM
applications with minimal performance overheads?

SPP: Safe Persistent Pointers for Memory Safety

6

System properties:

- Spatial memory safety

- Transparency

- High coverage

- Crash consistency

Memory safety mechanism for PM-based applications

Performance

Outline

● Motivation

● Design

- Overview

- Challenges

- Example

- Persistent memory operations

● Implementation

● Evaluation

7

Design overview

8

SPP enforces a tagged pointer-based approach for memory safety

- Enhanced PM pointer representation
Persistent pointer representation

pool ID object offset object size

PM bit Overflow
bit Tag Virtual address- Native tagged pointer scheme

0x626364

PM bit
0

Overflow
bit

Tag
0 Virtual address- Implicit runtime checks

0x626364

Design challenges

9

#1 Performance & PM storage
overheads

#2 Transparent integration in existing
toolchains

#3 Crash consistency for PM safety
metadata

#4 Compatibility with existing
applications and libraries

Challenge #1: Performance & PM storage overheads

10

- PM pointer representation

- Pointer tracking

- Bound checks preemption

64 bits of PM safety metadata per object

omit checks for pointers to volatile memory

reduce the inserted runtime operations

Minimal PM safety metadata & optimized runtime instrumentation

Challenge #2: Integration in existing toolchains

11

SPP supports the PM API and memory intrinsic functions without modifications

- Transparent creation of the tagged pointers via the PM API

- Wrappers for PM management operations

- Wrappers for memory intrinsic functions

SPP

Challenge #3: Crash consistency for PM safety metadata

12

Crash-consistent (meta)data updates using atomic operations and transactions

- PM guarantees atomicity only for aligned 8-byte stores

- Atomic operations & software transactions

- Include PM safety metadata in transaction logs
Consistent
Meta(data)

Crash

Recovery

Challenge #4: Compatibility with applications/libraries

13

SPP masks the tagged pointers passed to external shared libraries/applications

- Pre-compiled shared libraries/applications

void* tagged_pm_ptr = pmemobj_direct(obj_id); //get tagged ptr
...
internal_foo(tagged_pm_ptr); //internal function call
…
external_foo(tagged_pm_ptr); //external function call
…

void* tagged_pm_ptr = pmemobj_direct(obj_id); //get tagged ptr
...
internal_foo(tagged_pm_ptr); //internal function call
…
clean_pm_ptr = __spp_cleantag(tagged_pm_ptr); //tag masking
external_foo(clean_pm_ptr); //external function call
…

Design overview - An example

14

SPP sets and updates the native pointer tag on pointer operations

1 0 FF FF D6 38-bit
virtual address- pm_ptr : pointer to a 42-bytes PM object

037626364

- pm_ptr += 21; // ptr gets out of bounds 1 1 00 00 00 38-bit
virtual address

037626364

+21 +21

1 0 FF FF EB 38-bit
virtual address- pm_ptr += 21; // ptr is in bounds

037626364

+21 +21

Design overview - PM layout

15

Virtual address space

Persistent
Memory

Design overview - PM layout

16

Virtual address space

Persistent
Memory Persistent memory pool

Persistent memory pool

Persistent memory pools are directly mapped to the virtual address space of an application

mmap()

Design overview - PM allocation

17

Virtual address space

Persistent
Memory PM pool

PM pool

SPP allocates the object and atomically sets the object size field

PM object

PM object

SPP PMEMoid
pool ID

object offset
object size

SPP PMEMoid

Design overview - PM access

18

Virtual
address

space

Persistent
Memory PM pool

PM pool

PM object

SPP PMEMoid
pool ID

object offset
object size

PM objectSPP PMEMoid

SPP

SPP tagged
pointer

On a memory access SPP preserves the overflow bit and performs an implicit bounds check

Overflow
bit

0 1

Outline

● Motivation

● Design

● Implementation

● Evaluation

19

Implementation

- SPP pointer representation – minimization of space overheads & runtime checks!

20

SPP is built on PMDK¹ and LLVM²

- Transformation & LTO compiler passes – performance & compatibility!

- PMDK programming model – transparent support!

- Crash consistency via PMDK transactions & atomic operations

¹Persistent memory development kit (PMDK): https://github.com/pmem/pmdk
²LLVM: https://github.com/llvm/llvm-project

https://github.com/pmem/pmdk
https://github.com/llvm/llvm-project

SPP hardening workflow

21

PM
application LLVM IR Transformed

LLVM IR
SPP
pass

The PM application is instrumented through the static analysis SPP pass
that inserts the tag management operations

Compilation phase

SPP LTO
pass

Linking phase

The transformed application is optimized via the SPP LTO pass eliminating redundant checks

Binary

PMDK with
SPP wrappers

SPP
runtime
library

External
libraries

The application is finally linked with SPP runtime library, PMDK and external libraries

Outline

● Motivation

● Design

● Implementation

● Evaluation

22

Evaluation

- What is the performance overhead of SPP?

- Persistent memory KV store (pmemkv), PM phoenix benchmark suite

- How much PM space overhead does SPP introduce?

- Persistent indices (ctree, rtree, rbtree, hashmap)

- How robust is SPP in detecting memory safety vulnerabilities?

- RIPE benchmark framework

23

Evaluation

- Experimental setup:

- Dual socket Intel Xeon Gold 6326 CPU (16 cores)

- 64 GB DRAM / socket

- 1 TB Intel Optane DC DIMMs / socket

- PM configured in App-Direct mode

24

- Variants:

- PMDK→No memory safety

- SafePM→Application hardened with SafePM

- SPP→ Application hardened with SPP

Performance overhead

25

SPP incurs notably lower performance overheads compared to SafePM

H
ig

he
r i

s
be

tt
er

Persistent KV-store benchmark, 10M ops, 50% reads / 50% writes

Performance overhead

26

SPP introduces minimal performance overheads even in CPU intensive scenarios

PM Phoenix benchmark, 8 threads, largest dataset for each benchmark

Lo
w

er
 is

 b
et

te
r

Space overhead

27

Lo
w

er
 is

 b
et

te
r

Persistent indices, insert/get workloads, relative to PMDK

SPP does not introduce significant PM space overhead on average

Efficiency

28

SPP is an efficient memory safety solution for PM with low performance overheads

Variant Exploitable PM buffer overflows

PMDK 83

memcheck 20

SafePM 6

SPP 4

RIPE benchmark, 223 buffer overflow exploits

Summary

29

Try it out!
https://github.com/dimstav23/SPP

Current PM memory safety approaches are designed for debugging purposes
● high performance overheads

● considerable PM storage overheads

Safe Persistent Pointers (SPP):
● comprehensive spatial memory safety

● low performance & PM storage overheads

● no source code modifications

● crash consistency & durability

Paper Code

https://github.com/dimstav23/SPP

Sources

[1] PM hierarchy image,
https://www.starwindsoftware.com/blog/persistent-memory-in-vmware-vsphere-6-7-w
hat-is-it-how-fast-is-it

30

https://www.starwindsoftware.com/blog/persistent-memory-in-vmware-vsphere-6-7-what-is-it-how-fast-is-it
https://www.starwindsoftware.com/blog/persistent-memory-in-vmware-vsphere-6-7-what-is-it-how-fast-is-it

