SPP

Safe Persistent Pointers for Memory Safety

Dimitrios Stavrakakis, Alexandra Panfill
MJin Nam, Pramod Bhatotia

Technische
Universitat
Minchen

IEEE/IFIP DSN 2024

Memory safety TI_ITI

Memory safety violations : lllegal accesses to unintended memory regions

Spatial memory safety Temporal memory safety
e.g., buffer overflow, stack overflow e.g., dangling pointer, double free
ptr ptr
Allocated Freed

Address space Address space

Memory safety in practice

Prevalent in almost all low-level unsafe C/C++ code

@ Chromium project

- 70% of vulnerabilities are memory safety problems

=. Microsoft 2

- 70% of vulnerabilities fixed in security patches are memory safety violations

Android 3

- 75% of vulnerabilities are memory safety issues

' Chromium project: https://www.chromium.org/Home/chromium-security/memory-safety
2 Microsoft: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
3 Android: https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

https://www.chromium.org/Home/chromium-security/memory-safety
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

Persistent memory (PM) safety challenges TUTI

Persistent memory management is susceptible to memory safety vulnerabilities

- Persistent memory programming model

m - Durability & crash consistency
EED,
Flash SSD

- Performance & memory/storage overheads
Magnetic HDD

[Memory safety approaches for PM are non-practical for production deployment }

- Recovery code paths

4

Problem statement TUTI

a)
How to design a practical memory safety solution for PM

applications with minimal performance overheads?

SPP: Safe Persistent Pointers for Memory Safety TUTI

L Memory safety mechanism for PM-based applications J

System properties:

- Spatial memory safety
T e

ransparency Performance
- High coverage

- Crash consistency

Outline
Metivati

e Design
- Overview
- Challenges
- Example

- Persistent memory operations

e Implementation

e FEvaluation

Design overview

TUTI

SPP enforces a ta

Enhanced PM pointer representation

Native tagged pointer scheme

Implicit runtime checks

ed pointer-based a

roach for memory safety

Persistent pointer representation

[pool ID] [object oﬁset] [object size]
PM bit Ovebr;ftlow Tag | Virtual address
64 63 62 o]

Over.ﬂow a8 Virtual address
0 bit 0
64 63 62 0

Design challenges

TUTI

a)
#1 Performance & PM storage
overheads
AN /
a)
#3 Crash consistency for PM safety
metadata
AN /

[N
#2 Transparent integration in existing
toolchains
g)
a N

#4 Compatibility with existing
applications and libraries

Challenge #1: Performance & PM storage overheads TI.ITI

- PM pointer representation > 64 bits of PM safety metadata per object
- Pointer tracking > omit checks for pointers to volatile memory

- Bound checks preemption [>reduce the inserted runtime operations

[Minimal PM safety metadata & optimized runtime instrumentation }

10

Challenge #2: Integration in existing toolchains TI_ITI

- Transparent creation of the tagged pointers via the PM API SPP

- Wrappers for PM management operations q l

- Wrappers for memory intrinsic functions b

[SPP supports the PM APl and memory intrinsic functions without modifications }

Challenge #3: Crash consistency for PM safety metadata TI.ITI

- PM guarantees atomicity only for aligned 8-byte stores A‘
Crash)

1
~

[Crash-consistent (meta)data updates using atomic operations and transactions }

- Atomic operations & software transactions Recovery

Consistent

- Include PM safety metadata in transaction logs Meta(data)

Challenge #4: Compatibility with applications/libraries TI.ITI

Pre-compiled shared libraries/applications
void* tagged pm_ptr = pmemobj direct(obj_id); //get tagged ptr
internal _foo(tagged pm_ptr); //internal function call

;%mnnme(waggsﬁmmemragﬂmgga@ﬁm_moh felig masking

external foo(clean pm_ptr); //external function call

[SPP masks the tagged pointers passed to external shared libraries/applications }

13

Design overview - An example

TUTI

pm_ptr: pointer to a 42-bytes PM object

pm_ptr +=21; /[ptris in bounds

pm_ptr += 21; /[ptr gets out of bounds

i R

38-bit

1 EEENEEERDE virtual address
64 63 62 +21 37 +21
38-bit

1 gl FERREB virtual address
64 63 62 +21 37 +21
1|1 | ooooo0 38-bit

virtual address

64 63 62

37

14

Design overview - PM layout

Virtual address space

Persistent
Memory

15

Design overview - PM layout

Virtual address space

Persistent memory pool

mmap()

Persistent
Memory

Persistent memory pool

[Persistent memory pools are directly mapped to the virtual address space of an application }

16

Design overview - PM allocation

Persistent
Memory

Virtual address space

SPP PMEMoid PM object PM pool
SPP PMEMoid
([poolID | .
(object offset PM object PM pool
(_object size |

SPP allocates the object and atomically sets the object size field

17

Design overview - PM access

SPP tagged __Overflow
pointer bit E(b Eb
SPP PMEMoid PM object PM pool
SPP
SPP PMEMoid
Persistent ([poollD | .
Memory [object offset | PM object PM pool
(_object size |

TUTI

Virtual
address
space

[On a memory access SPP preserves the overflow bit and performs an implicit bounds check }

18

Outline

Metivati
+—Design
e Implementation

e FEvaluation

19

Implementation TI.ITI

E . }

- SPP pointer representation — minimization of space overheads & runtime checks!

- Transformation & LTO compiler passes — performance & compatibility!
- PMDK programming model — transparent support!

- Crash consistency via PMDK transactions & atomic operations

"Persistent memory development kit (PMDK): https://github.com/pmem/pmdk
2LLVM: https://github.com/llvm/llvm-project

20

https://github.com/pmem/pmdk
https://github.com/llvm/llvm-project

SPP hardening workflow TI_ITI

Compilation phase Linking phase

SPP :
: runtime :
: library :
. _SPPLTO ; .
: . Binary
: pass :
| PMDK with External |:
.| SPP wrappers libraries |:

[The application is finally linked with SPP runtime library, PMDK and external libraries }

PM
application

Transformed
LLVM IR

~ LLVM IR

21

Outline

Mot
+—Design
o—impltementation

e FEvaluation

22

Evaluation

- Whatis the performance overhead of SPP?

Persistent memory KV store (pmemkv), PM phoenix benchmark suite

- How much PM space overhead does SPP introduce?

Persistent indices (ctree, rtree, rbtree, hashmap)

- How robust is SPP in detecting memory safety vulnerabilities?

RIPE benchmark framework

23

Evaluation

- Experimental setup:
- Dual socket Intel Xeon Gold 6326 CPU (16 cores)
- 64 GB DRAM / socket
- 1TB Intel Optane DC DIMMs [socket

- PM configured in App-Direct mode

- Variants:
- PMDK—No memory safety
- SafePM—Application hardened with SafePM
- SPP— Application hardened with SPP

24

Performance overhead TI.ITI

Persistent KV-store benchmark, 10M ops, 50% reads [50% writes

leb

1 Il PMDK
pm SafePM
| W SPP

N
n

-

N
o

Throughput (Ops/sec)
Higher is better

0.0 -

1 2 4 8 16
Threads

[SPP incurs notably lower performance overheads compared to SafePM J
25

Performance overhead TI_ITI

PM Phoenix benchmark, 8 threads, largest dataset for each benchmark

s PMDK
8- I SafePM
— B SPP
2,
Q | .
£ 61 et
v +
= w
O Q
=M 0
3 5
i 2
21 o
-l
y
0_
histogram kmeans linear matrix pca string word
regression multiply match count
Benchmark

SPP introduces minimal performance overheads even in CPU intensive scenarios

26

Space overhead

Persistent indices, insert/get workloads, relative to PMDK

] insert - SafePM

[

3 BN insert- SPP
X B get - SafePM
T 7 BB get - SPP .
D s+ &
S +
e v
g 0
> 20
o R4
Qs o
©
5. S
& —

5 y

0

ctree rtree rbtree hashmap
-Data structure—

SPP does not introduce significant PM space overhead on average

27

Efficiency TI.ITI

RIPE benchmark, 223 buffer overflow exploits

Exploitable PM buffer overflows

Variant

PMDK 83
memcheck 20
SafePM 6
SPP 4

[SPP is an efficient memory safety solution for PM with low performance overheads}
28

Summary TI.ITI

Current PM memory safety approaches are designed for debugging purposes
e high performance overheads

e considerable PM storage overheads

Safe Persistent Pointers (SPP):
e comprehensive spatial memory safety

Code

e |ow performance & PM storage overheads
® no source code modifications

e crash consistency & durability

Try it Out! Code Dataset
Reproducibl Reproducibl
https://github.com/dimstav23/SPP NS eproducible

https://github.com/dimstav23/SPP

Sources TI_ITI

[1] PM hierarchy image,
https://www.starwindsoftware.com/blog/persistent-memory-in-vmware-vsphere-6-7-w
hat-is-it-how-fast-is-it

30

https://www.starwindsoftware.com/blog/persistent-memory-in-vmware-vsphere-6-7-what-is-it-how-fast-is-it
https://www.starwindsoftware.com/blog/persistent-memory-in-vmware-vsphere-6-7-what-is-it-how-fast-is-it

