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Abstract
We present the Quantum Virtual Machine (QVM), an end-to-
end generic system for scalable execution of large quantum
circuits with high fidelity on noisy and small quantum proces-
sors (QPUs) by leveraging gate virtualization. QVM exposes
a virtual circuit intermediate representation (IR) that extends
the notion of quantum circuits to incorporate gate virtual-
ization. Based on the virtual circuit as our IR, we propose
the QVM compiler—an extensible compiler infrastructure to
transpile avirtual circuit througha seriesofmodularoptimiza-
tion passes to produce a set of optimized circuit fragments.
Lastly, these transpiled circuit fragments are executed on
QPUs using our QVM runtime—a scalable and distributed
infrastructure to virtualize and execute circuit fragments on
a set of distributed QPUs.
We evaluate QVM on IBM’s 7- and 27-qubit QPUs. Our

evaluation shows that using our system, we can scale the
circuit sizes executable on QPUs up to double the size of the
QPUwhile improvingfidelity by 4.7× on average compared to
larger QPUs and that we can effectively reduce circuit depths
to only 40% of the original circuit depths.

1 Introduction
Quantum computers promise to solve otherwise intractable
problems in optimization [24], factorization [72], or quantum
simulation [34, 61]. However, the reliable operation of quan-
tum processing units (QPUs) is extremely challenging, as the
same properties that could lead to computational benefits
are also the main reason for uncontrollable noise and state-
decoherence during a quantum computation on a QPU[63].
This still severely limits the number of qubits and operations
we can run within the same quantum program.

Gate virtualization (GV)has recently beenproposed to scale
the size of quantum programs running with high fidelity on
small and noisy QPUs [44]. This technique virtualizes binary
qubit gates by sampling the gate with single qubit operations
instead. Theoretical work shows that GV allows quantum
circuits to be optimized to scale and improve fidelity in two
different dimensions: First, quantum circuits can be decom-
posed into multiple smaller circuit fragments to run on small
QPUs [44, 60, 62], and second, circuit depth can be reduced
to increase overall fidelity [10, 89].

However, the effectiveness of gate virtualization is severely
hampered by the lack of general and extensible procedures for

automatically applying and executing gate virtualization. Pre-
vious studieshaveprimarily concentratedonutilizinggatevir-
tualization through ad-hocmethods or on an individual appli-
cation level [9, 10, 89]. Moreover, the applicability of gate vir-
tualization suffers greatly from the high computational cost,
since virtualizing 𝑘 two-qubit gates comes with a quantum
circuit and classical post-processing overhead of O(6𝑘 ) [44].

To this end, we target the following research question:How
can we design a generic and extensible system that fully uti-
lizes the full potential of GV to scale the size of circuits that
can be executed with high fidelity on current QPUs, despite the
computational overhead?

To address this research question, in this work, we present
the Quantum Virtual Machine (QVM), a system for scalable
and reliable execution of quantum circuits on small and noisy
QPUs by fully leveraging GV. We make the following key
contributions:

• To enable the general and programmable application of
GV, and as the basis of ourwork,wepresent thevirtual
circuit IR (VC-IR). The VC-IR extends the quantum
circuit abstraction, manages virtual gates, decomposi-
tions into several smaller circuit fragments, and data
structures to efficiently analyze and apply GV (§ 4.2).

• To enable automatic and efficient GV that optimizes
a circuit with as little post-processing as possible, we
introduce theQVMCompiler, an extensible pipeline
for converting large quantum circuits into optimized
virtual circuits (§ 4). The compiler enables multiple
optimization passes that applyGVs based on the VC-IR.
We present three generic optimization passes for effi-
cient gate virtualization on arbitrary quantum circuits.
(1) The circuit cutter (§ 4.3) decomposes a circuit into
several smaller fragments to run on smaller QPUs, (2)
the dependency reducer (§ 4.4) reduces the dependen-
cieswithin a circuit to reduce errorpropagationand the
number of SWAP gates, and (3) the qubit reuser (§ 4.5)
applies a qubit reuse technique to reduce the width of
circuit fragments, enabling a trade-off between GV’s
overhead and circuit depth.

• To enable as many GVs as possible to benefit from its
opportunities, we present theQVMRuntime, a scal-
able system that can run a virtual circuit (VC) on a set
of QPUs and classical nodes (§ 5). The runtime uses the
core component of a virtualizer (§ 5.2) that instantiates
fragments of the VC and computes the result of the VC
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usinghighlyparallel post-processing.Thequantumcir-
cuits are executed in a scalablemanner on a distributed
set of QPUs using QVM’sQPUmanager (§ 5.3).

We implement QVM in Python by building on the Qiskit
framework [64]. For our compiler, in addition to heuristic
algorithms, we implement optimal passes using Answer Set
Programming following our optimization models [26].
We evaluate QVM on IBM’s 7- and 27-qubit QPUs and

simulators using various circuits used in popular quantum
algorithms [37, 65, 82]. Based on our analysis, we can execute
circuits with up to 2× the number of qubits of the QPU used
while improving fidelity by an average of 4.7× and up to 33.6×
(§ 6.1). Our intra-circuit dependency reduction techniques
reduce the depth of transpiled circuits on average to 64% of
the original circuit and increase fidelity by an average of 1.4×
and up to 5.2× (§ 6.2). Our dependency reducer also enables
the reuse of more qubits to reduce the width of circuits with
less virtualization overhead (§ 6.3). Our QVM runtime scales
and can be used to run large virtual circuits with lowmemory
requirements (§ 6.4-6.5).

2 Background andMotivation
2.1 Computational Model
We define a quantum computation by adopting the compu-
tational model of [60]. A quantum computation is defined
by a quantum circuit with𝑚 qubits and one- and two-qubit
gates, initialized with the |0⟩⊗𝑚 state (Fig. 1, (a)). All output
qubits are measured in the computational basis to obtain a
measurement bitstring 𝑥 ∈ {0, 1}𝑚 . We then apply a classical
post-processing function 𝑓 :𝑥→[−1, 1] to the bitstrings. We
aim to accurately approximate the expectation value E𝑥 𝑓 (𝑥)
of the function across the bitstrings.
In our work, we focus on measuring expectation values

of𝑚-qubit projection operators𝑂 =𝑃𝑦 , i.e., we measure the
expectation value ⟨𝑃𝑦⟩ of the observable 𝑃𝑦 . In our case, 𝑓
is therefore defined as 𝑓 (𝑥) = 1 if 𝑥 =𝑦, otherwise 𝑓 (𝑥) = 0.
This is the same as calculating the probability of obtaining a
certain output string𝑦, i.e., ⟨𝑃𝑦⟩ =𝑝 (𝑦). ⟨𝑃𝑦⟩ can, therefore,
be determined by sampling the quantum circuit many times
and calculating the ratio of the shots that returned 𝑦 to the
total number of shots.

2.2 Foundations of Gate Virtualization
Gate virtualization (GV) allows us to decompose two-qubit
gates into a combination of single-qubit gates [44]. We show
GV schematically in Fig. 1 (b). Instead of executing the orig-
inal circuit’s binary gate, we can calculate a weighted sum of
six circuit instances to estimate ⟨𝑂⟩. In each circuit instance
𝑖 , instead of the original two-qubit gate, we insert𝐴𝑖 and 𝐵𝑖 ,
which are either one-qubit unitary gates or projective mea-
surements. This allows us to decompose each instance 𝑖 into
two smaller, completely independent sub-circuits, which can

be sampled independently. We reconstruct the result with

⟨𝑂⟩=
6∑︁

𝑖=1
𝑐𝑖 ⟨𝑂⟩𝑖 =

6∑︁
𝑖=1

𝑐𝑖 ⟨𝑂1⟩𝑖 ⟨𝑂2⟩𝑖 , (1)

where ⟨𝑂⟩𝑖 is the result of each instance 𝑖 and𝑂 =𝑂1 ⊗𝑂2.
The exact proofs and formulas of GV for standard gates such
as CNOT or 𝑅𝑍𝑍 can be found in [44].
VirtualizingMulitple Gates.We now generalize GV to be
applied on 𝑘 gates in a circuit. We can think of adding a GV
of another gate in a circuit as performing an additional GV
for each instance of the original virtual gate.

To formalize theQPDofmultiple gates in a circuit, let𝐺𝑣 be
the set of all virtual gates in a quantum circuit.We then define
acoefficientvector for eachvirtual gate𝑔∈𝐺𝑣 asc𝑔= (𝑐1,...,𝑐6).
We define the global coefficient vector as

C=
⊗
𝑔∈𝐺𝑣

c𝑔, (2)

i.e., the tensor product of all individual coefficient vectors 𝑐𝑔.
Therefore,C is a vector with |C|=6𝑘 entries. To reconstruct
the final results, we calculate

⟨𝑂⟩=
∑︁
𝑐𝑖 ∈C

𝑐𝑖

𝑓∏
𝑗=1

⟨𝑂 𝑗 ⟩𝑖 , (3)

which is the generalization of Eq. (1). Here 𝑓 is the number of
subcircuits, and ⟨𝑂 𝑗 ⟩𝑖 is the result of the 𝑗th subcircuit in the
𝑖th global instance. Wemust, therefore, calculate a sum over
|C| = 6𝑘 elements. Since in general |C| ≫ 𝑓 > |𝐺𝑣 |, we need
O(6𝑘 ) operations to calculate Eq. (3).
GV thus causes an exponential post-processing overhead

of O(6𝑘 ) [44]. This severely limits the number of gates that
can be virtualized within a circuit, meaning that we need to
find a good compromise between the additional runtime and
the benefits of GV, as described in the next section.

2.3 Opportunities of Gate Virtualization
State-of-the-art circuit transpilers [5] mainly focus on min-
imizing the circuit’s post-transpilation depth and number of
CNOTs. GV can be used effectively to reduce the width and
qubit dependencies in a circuit, leading to improved execution
fidelity for larger circuits on small QPUs, mostly at the cost
of computational overheads, as shown in previous ad-hoc
and theoretical work [44, 60, 70, 89]. In total, GV gives us
opportunities in the following two dimensions:
Cutting QuantumCircuits. By virtualizing binary gates,
a circuit can be divided into smaller subcircuits, each with
a lower number of qubits which can be run independently
on small and noisy QPUs [44, 60]. Circuits with lower widths
exhibit less qubit mapping and routing constraints, therefore
less post-transpilation CNOT operations and lower depth
[49]. Moreover, as recent work shows, the wire-cutting tech-
nique [60, 77] can also be modeled using gate virtualization
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(a) quantum circuit
(quantum computation)

(b) gate virtualization

Figure 1. Computational model and gate virtualization
(§ 2.2). (a) A quantum computation to estimate the expec-
tation value of an observable𝑂 . (b) Virtualizing a two-qubit
gate by computing a weighted sum over circuit instances
with single-qubit gates inserted (𝑂 =𝑂1⊗𝑂2)

[16]. Therefore, a system that is able to virtualize gates is a
complete solution for circuit cutting and knitting.
Reducing Qubit Dependencies.Gate virtualization can be
used to virtualize binary gates that cause qubit dependencies.
Virtualizing them and therefore reducing qubit dependencies
in a circuit has three-fold advantages: Firstly, by reducing the
propagation of errors through gates and qubits, fidelity can
be improved. Secondly, reducing intra-circuit dependencies
facilitates optimized qubit mapping and routing on QPUs
during the transpilation process, which leads to lower depth
and number of CNOTs. Lastly, fewer qubit dependencies en-
able the application of qubit-reuse [33], which could enable
a computationally efficient way to reduce circuit width.

To summarize, GV is a promising technique to improve the
execution accuracy and scaling of quantum circuits, as shown
in small ad-hoc examples in previous work. However, to fully
exploit the benefits of GV on arbitrary circuits despite the
exponential post-processing overhead, we need an automatic
and efficient application as well as a scalable execution of GV.

3 Overview
We aim to design a system that can scale the sizes of circuits
that canpractically be executed onQPUswithhighfidelity. To
realize this goal, gate virtualization (GV) is a promising tech-
nique that decomposes circuits into smaller circuit fragments
or reduces the intra-dependencies in the circuit. However,
dealing with the programming and exponential computa-
tional complexity of GV is challenging. We next discuss these
challenges and present our key ideas to address them.

3.1 Design Challenges and Key Ideas
Challenge #1: Programmability and Generality. The
promising technique of GV is a new and rather complex con-
cept. It is not trivial how to virtualize two-qubit gates using
single-qubit gates or how to keep track of the created circuit
fragments. Therefore, we must develop general abstractions
that implement the new virtualization techniques and allow
simple, automatic application to quantum circuits while al-
lowing straightforward integration into existing transpilation
and optimization infrastructures.

Virtual Circuit IR (VC-IR) as an Intermediate Represen-
tation:We introduce the virtual circuit IR (VC-IR) to enable a
unified optimization and execution process of large circuits
using gate virtualization. The VC-IR is an intermediate step
between any high-level circuit representation and smaller
optimized circuit fragments.
Challenge #2: Fidelity. The noisy circuit executions on
QPUs hinder the practicality of current quantum algorithms.
Every operation applied on a qubit incurs noise to the final
result, which propagates and amplifies throughout the cir-
cuit. To ensure higher fidelity in quantum computations, it
is essential to employ procedures that optimize the circuit’s
structure using the promising technique of gate virtualization.
This involves decomposing the circuit into smaller fragments,
reducing the circuit’s depth, and minimizing the number of
non-local operations or qubit dependencieswhileminimizing
the overhead of virtualization.
ACompiler for Optimal Gate Virtualization:We intro-
duce theQVMCompiler, a modular architecture designed to
compile circuits utilizing gate virtualization. The compiler
converts a quantum circuit into a VC, applies a customizable
series of optimization passes on the VC to take advantage
of gate virtualization opportunities, and prepares the VC for
execution on a distributed set of QPUs.
Challenge #3: Scalability. Gate virtualization incurs an
exponential overhead of O(6𝑘 ) for 𝑘 virtual gates, both in
quantum computation and in classical postprocessing (Fig. 1).
This overhead appears sinceweneed to execute the fragments
in O(6𝑘 ) instantiations, and then we need to post-process all
instantiation results to compute the final result. To maximize
the possible gate virtualizations, it is crucial to implement
highly parallel computation on multiple QPUs and classical
processors.
A Distributed Scalable Runtime:We present QVM Run-
time, a scalable system for executing virtual circuits. The
runtime efficiently instantiates the high amount of fragments,
distributes them between available QPUs for parallel quan-
tum processing, and uses a highly scalable parallel process to
post-process the fragment results.

3.2 The QVM Framework
Based on the aforementioned key ideas, we propose the de-
sign of our Quantum Virtual Machine (QVM) framework,
an end-to-end system that exploits the full potential of gate
virtualization to achieve scalable execution of large circuit
with high fidelity (see Fig. 2). The QVM system builds on the
abstraction of a virtual circuit to utilize gate virtualization. It
consists of two main components: the QVM Compiler (§ 4)
and the QVM Runtime (§ 5).
QVMVirtual Circuit IR (VC-IR). The virtual circuit (VC)
abstraction extends the traditional quantum circuit abstrac-
tion (§ 4.2). For this, it incorporates the abstraction of virtual
gates and views the circuit as a collection of circuit fragments,
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Frontend
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QVM Compiler

optimized VC-IR

large circuit

Virtualizer
KnitterInstantiator

QPU Manager

Dependency
Reducer

Circuit
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Qubit
Reuser

Optimizervirtual circuit IR 
(VC-IR)

distributed virtualization code

Figure 2. Overview of the QVM framework (§ 3.2). The
Quantum Virtual Machine (QVM) consists of two main
components: QVM Compiler and QVM Runtime.

where each fragment is a circuit acting on a subset of qubits
of the original circuit.
QVMCompiler. The QVM compiler (Fig. 2, top) is respon-
sible for compiling a quantum circuit efficiently to a set of
smaller circuit fragments by using gate virtualization. The
compiler operates in three stages: (1) the frontend converts
the circuit into the VC-IR, (2) the virtual circuit optimizer ap-
plies gate virtualization to reduce circuit depth, width, and/or
intra-circuit dependencies, and (3) the distributed transpiler
prepares the circuit fragments for execution on a set of QPUs.
For the virtual circuit optimizer, we describe the implemen-
tation of three optimization passes of the circuit cutter, the
dependency reducer, and the qubit reuser, which are designed
to optimize arbitrary virtual circuits. Additionally, users can
easily plug in their own optimization passes, which modify
a virtual circuit, e.g., to efficiently optimize specific circuits
of a known structure.
QVMRuntime. TheQVM runtime (Fig. 2, bottom) is the sys-
tem responsible for the scalable execution of virtual circuits.
The runtime consists of the two components virtualizer and
the scheduler. The virtualizer is responsible for implementing
the gate virtualizations according to Fig. 1, using fragment
instantiation and parallel post-processing. The QPUmanager
is responsible for the parallel execution of the fragments on
a set of distributed QPUs.

4 The QVMCompiler
We now describe the design and implementation of our QVM
compiler. The QVM compiler is an extensible pipeline for the
efficient virtualization of gates and to prepare a large circuit
for executing a set of small QPUs.

virtual circuit (VC)

virtual gate

operation graph qubit graph

virtual circuit (VC)

Figure 3. Virtual Circuit IR (VC-IR) (§ 4.2).A virtual circuit
(VC) extends a quantum circuit by incorporating virtual
gates and managing the qubits in sets of fragments. The
VC-IR manages the operation graph𝐺𝑜𝑝 and the qubit graph
𝐺𝑞 for efficient analysis and manipulation with the VC-IR
API to apply GV.

4.1 Workflow of the QVMCompiler
Fig. 2 (top) shows theworkflowof theQVMcompiler. First, the
frontend of our compiler takes a (large) quantum circuit and
converts the circuit into the virtual circuit IR (VC-IR) (Fig. 3).
Then, the VC-IR is optimized using the optimizer. Each

compiler optimizationpass receives two inputs: themaximum
fragment size 𝑠 , which specifies the maximum width each
fragmentmust have, and a virtualization budget𝑏, which con-
strains the number of allowed gate virtualizations to limit the
maximum virtualization overhead. Typically, we choose 𝑠 as
the size of the largest available QPU to ensure every fragment
is executable by at least oneQPU. For our optimizer,wedesign
a pipeline of the following three generic optimization passes:
#1: Circuit Cutter (CC): First, the circuit cutter (CC) pass
(§ 4.3) aims to decompose the VC into fragments smaller than
𝑠 , using 𝑣 ≤𝑏 virtual gates, and sets the budget to 𝑏 =𝑏−𝑣 . If
CC fails to decompose the circuit within the given budget, no
gate is virtualized and we forward the VC to the next stage.
#2:DependencyReducer (DR): In thecasewhere thebudget
𝑏 is not yet exhausted by the circuit cutter pass, the depen-
dency reducer (DR) (§ 4.4) applies up to 𝑏 gate virtualizations
to reduce the dependencies between qubits and operations
within the VC to reduce noise propagation and circuit depth.
#3: Qubit Reuser (QR): Lastly, the qubit reuser (§ 4.5) reuses
qubits within individual fragments to further reduce circuit
width if the CC fails to reduce the fragment sizes sufficiently.
If the qubit reuser fails to reduce the width of any fragment
to 𝑠 , the optimization pipeline fails.

After theoptimizationphase, the codegenerator (CG) acts
as the backend of our compiler (§4.6) by extracting the frag-
ments as parameterized circuits, optimizing the circuits and
generating the inputs for the instantiation of each fragment.
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(c) optimized VC(b) graph partitioning(a) virtual circuit (VC)

Figure 4. Circuit Cutter (CC) (§ 4.3). The CC receives a
large virtual circuit (VC) with 𝑛𝑞 = 6 qubits and performs
a graph partitioning on the qubit graph𝐺𝑞 to dissect the VC
into fragments of size 𝑠 =3 by inserting virtual gates between
the partitions.

Next, we describe the QVM compiler stages in detail.

4.2 Virtual Circuit IR and Frontend
To enable easy integration and a simple workflow for gate vir-
tualization during compilation and runtime, QVM provides
the virtual circuit IR (VC-IR) (Fig. 3). In total, the VC-IR pro-
vides three main data structures: (1) A virtual circuit (VC),
which can contain virtual gates and consists of several frag-
ments, (2) an operation graph𝐺𝑜𝑝 and (3) a qubit graph𝐺𝑞 , as
described below:
Virtual Circuit and Virtual Gates.A VC extends the tradi-
tional abstraction of a quantum circuit by additionally incor-
porating the functionality of consisting of a set of fragments
and allowing virtual gates to be part of its instructions.
A fragment describes a subset of qubits that are not con-

nected to other qubits in the VC via a real two-qubit gate. We
implement fragments by using a separate qubit register for
each fragment.
A virtual gate expresses the notion of the virtualization

of a binary quantum gate (§ 2.2). A virtual gate is a binary
quantumgate that does not require a real connection between
its two qubits. Therefore, a conventional transpiler or circuit
optimizer would treat a virtual gate as two one-qubit gates.
Hence, a virtual gate has no influence on, e.g., the assign-
ment and routing of qubits. A virtual gate can be split into
two parameterized one-qubit gates, whose instantiations are
inserted during execution (§ 5.2).
Operation Graph. The operation graph𝐺𝑜𝑝 expresses the
gate dependencies of theVCas a directed acyclic graph (DAG).
𝐺𝑜𝑝 is a graph in which the vertices are the two-qubit gates of
the circuits, and the edges represent the direct dependencies
between the respective operations via a qubit wire. Therefore,
each edge contains the respective qubit as an attribute.
Qubit Graph. To efficiently represent the connections be-
tween qubits of a VC, we utilize the representation of a qubit
graph𝐺𝑞 , where the qubits are the vertices. An edge exists be-
tween two qubits when the qubits are connected with at least
one two-qubit gate. So, the connected subgraphsof𝐺𝑞 directly
correspond to the VC’s fragments. Each edge holds a weight
with the number of two-qubit gates between the two qubits.
Gate Virtualization API. To efficiently virtualize gates, the
VC-IR exposes two main functions:

• virt_gate(𝑔𝑥 ): Virtualizes the gate 𝑔𝑥 , removes 𝑔𝑥
from𝐺𝑜𝑝 and adds single-qubit gates instead. Decre-
ments the weight on the edge (𝑞𝑖 , 𝑞 𝑗 ) in𝐺𝑞 , where 𝑔𝑥
acts on 𝑞𝑖 and 𝑞 𝑗 .

• virt_between(𝑞𝑖 , 𝑞 𝑗 ): Virtualizes every gate which
acts on the qubits 𝑞𝑖 and 𝑞 𝑗 . Removes the edge (𝑞𝑖 , 𝑞 𝑗 )
from𝐺𝑞 , and updates𝐺𝑜𝑝 accordingly.

Fig. 3 shows an example of calling virt_between(𝑞𝑖 , 𝑞 𝑗 ).
Frontend: Virtual Circuit Generation. The frontend of
the QVM compiler generates the VC-IR from an input circuit.
The VC is initially a copy of the original circuit, i.e. a VC that
consists of one fragment and no virtual gates. We generate
𝐺𝑜𝑝 and𝐺𝑞 by traversing the operations of the original circuit.

4.3 Circuit Cutter (CC)
The aim of the Circuit Cutter (CC) optimization pass is to
split the VC into several fragments so that each fragment
has 𝑠 or fewer qubits, while using as minimal virtual gates
as possible to minimize the computational overhead (Fig. 4).
For this purpose, the CC performs a graph partitioning on the
qubit-graph𝐺𝑞 as follows:
Circuit CutterModel.We assign the vertices 𝑞𝑥 ∈𝑉𝑞 of the
qubit graph𝐺𝑞 = (𝑉𝑞, 𝐸𝑞) into at least 𝑓 = ⌈𝑛𝑞/𝑠⌉ subsets𝐹 𝑗 .Ac-
cording to this mapping, 𝐸𝑐𝑢𝑡 = {(𝑞𝑥 ,𝑞𝑦) : 𝑞𝑥 ∈𝐹 𝑗 , 𝑞𝑦 ∈𝐹𝑖 , 𝐹 𝑗 ≠
𝐹𝑖 } is the set of all edges that need tobe removed todecompose
the𝐺𝑞 into independent subgraphs. In our cutting model, we
find a solution that minimizes

∑
(𝑞𝑥 ,𝑞𝑦 ) ∈𝐸𝑐𝑢𝑡𝑤 (𝑞𝑥 ,𝑞𝑦), where

𝑤 (𝑞𝑥 ,𝑞𝑦) is the weight of the respective edge (𝑞𝑥 ,𝑞𝑦) ∈𝐸𝑐𝑢𝑡 .
Amongst all possible optimal solutions that amount to the
weight, we choose a solution that minimizes

∑
𝑗 |𝐹 𝑗 |2, such

thatwe favor the solution thatdistributes thenumberofqubits
evenly across the fragments. The subsets 𝐹 𝑗 correspond to
fragments of the resulting optimized VC.
We implement the model with Answer Set Programming

(ASP) using the Clingo solver to find an optimal solution
[1, 26]. For each (𝑞𝑥 ,𝑞𝑦) ∈𝐸𝑐𝑢𝑡 we call virt_between(𝑞𝑥 , 𝑞𝑦)
to update the VC-IR according to the solution of the model.
Greedy Circuit Cutter. In addition to the procedure that
finds an optimal solution for our model, we also implement
a CC that uses an efficient heuristic approach based on the
greedyKernigan-Linbisectionalgorithm[35] toenableshorter
compilation times for large circuits. To decompose a VC into
multiple fragments of size 𝑠 or less, we iteratively apply the
Kernighan-Lin bisection to the currently largest connected
subgraph of𝐺𝑞 . The bisection determines two distinct sets of
vertices𝑉1 and𝑉2 such that |𝑉1 | ≈ |𝑉2 |, and the sum of weights
of the edges between the two sets of vertices is as minimal
as possible. Then we call virt_between(𝑞𝑥 , 𝑞𝑦) for each (𝑞𝑥 ,
𝑞𝑦), where 𝑞𝑥 ∈𝑉1 and 𝑞𝑦 ∈𝑉2. We apply this iteration until
each fragment of the VC has less than 𝑠 qubits.

Note that in the partitioning algorithms for gate virtualiza-
tion, the search space scales only one-dimensionally with the
number of qubits in the circuit andnot alsowith thenumber of
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(a) Dependency Reducer (b) Qubit Reuser

Figure 5.Dependency Reducer (DR) and Qubit Reuser (QR) (§ 4.4-4.5). (a) The greedy DR iteratively virtualizes gates to reduce
the number of qubit-dependencies in a circuit. (b) Because of reduced qubit dependencies, the QR can reuse qubits to reduce the
circuit width.

binary gates in the circuit, as is the casewithwire-cutting [77].
Since the number of binary gates in a circuit is typicallymuch
larger than the number of qubits, our gate-cutting techniques
are generally much more efficient than their wire-cutting
counterparts. This makes optimal graph partitioning for gate
virtualization a suitable option for current quantum algo-
rithms with hundreds of qubits and few partitions, where the
circuit cutting time is negligible compared to execution time.

4.4 Dependency Reducer (DR)
The Dependency Reducer (DR) reduces the number of cir-
cuit intra-dependencies circuit using as few virtual gates as
possible

The dependencies between qubits and operations are best
illustratedwith the VC-IR’s operation graph𝐺𝑜𝑝 . An example
of a𝐺𝑜𝑝 in the context of qubit dependencies is shown in Fig.
5 (a). In this example, every qubit 𝑞𝑖 is dependent on every
other qubit 𝑞 𝑗 , since some gate 𝑔𝑥 acting on 𝑞𝑖 depends on
a gate 𝑔𝑦 acting on 𝑞 𝑗 [33]. This means that noise occurring
on one qubit could also propagate to all other qubits in the
circuit, amplifying overall errors.

As shown in Fig. 5, theDR can reduce the intra-dependency
of the circuit by inserting virtual gates into the circuit while
being constrained by the budget 𝑏 of the maximum gate vir-
tualizations. To reduce the qubit-dependencies as efficiently
as possible, we adhere to the following model:
DependencyReducerModel.Weaim tominimize the num-
ber of qubit-dependencies by virtualizing gates in the VC-IR.
A qubit 𝑞𝑖 is dependent on another qubit 𝑞 𝑗 if there exists a
path in 𝐺𝑜𝑝 from a gate 𝑔𝑥 acting on 𝑞 𝑗 to a gate 𝑔𝑦 acting
on 𝑞𝑖 . Let 𝐷𝑞 = {(𝑞𝑖 ,𝑞 𝑗 ) : 𝑞𝑖 depends on 𝑞 𝑗 } be the set of all
qubit-dependencies. We need to find a set𝐺𝑣𝑖𝑟𝑡 of gates that,
when removed from𝐺𝑜𝑝 , minimize the number of qubit de-
pendencies |𝐷𝑞 | the most. If multiple optimal solutions exist,
we choose a solution that minimizes |𝐺𝑣𝑖𝑟𝑡 |. We implement
this model using Answer Set Programming (ASP) and use the
Clingo solver to solve for an optimal solution [1, 26].
Greedy Dependency Reducer. For circuits with a large
number of gates, we additionally design an efficient greedy
DR (G-DR) algorithm (Fig. 5). The algorithmworks as follows:

First, we determine the most critical binary gate in the cir-
cuit, i.e., the binary gate that, when virtualized, can reduce
the most intra-circuit dependencies. For this, we label every
binary gate𝑔𝑥 in the circuitwith cost𝑑𝑖 . This cost is defined as

(a) virtual circuit (VC) (b) optimized fragments

Figure 6. Code Generator (CG) (§ 4.6). The CG generates
distributed virtualization code in form of parameterized
fragments.

𝑑𝑖 =𝑎𝑛𝑐 (𝑔𝑥 ) ·𝑑𝑒𝑠𝑐 (𝑔𝑥 ), where 𝑎𝑛𝑐 (𝑔𝑥 ) is the number of ances-
tors, and 𝑑𝑒𝑠𝑐 (𝑔𝑥 ) is the number of descendants of 𝑔𝑥 . There-
fore, the gate with the highest cost depends on most other
gates in the circuit and is, therefore,most likely responsible for
a large amount of qubit and gate dependencies. Then, we call
virt_gate(𝑔𝑥 ) on the most-critical gate 𝑔𝑥 to virtualize the
gate in the VC and remove the two-qubit gate from𝐺𝑜𝑝 . If two
or more gates have the same cost, we choose a gate randomly.
We decrement the budget 𝑏, and repeat the process until 𝑏=0.

In the example from Fig. 5 (a), the G-DRwould virtualize
𝑔3 first, since it has the highest single cost of 𝑑3 = 𝑎𝑛𝑐 (𝑔3) ·
𝑑𝑒𝑠𝑐 (𝑔3) = 3 · 2 = 6. In this single iteration of G-DR, we can
reduce the number of qubit dependencies from 12 to 11 since
now 𝑞2 does not depend on 𝑞1 anymore. This means that er-
rors of 𝑞1 cannot propagate to 𝑞2. It also reduces the cost of
all the gates in the circuit, meaning that the gates depend on
significantly fewer other gates and are, therefore, less likely
to amplify overall noise.

Note that our G-DR computes the number of ancestors for
each node in a single traversal of𝐺𝑔 in topological order. Sim-
ilarly, the number of descendants of each node is computed
in a single traversal in reversed order. Therefore, the time
complexity of G-DR is O(2 ·𝑛𝑣 · |𝑉𝑔 |), where |𝑉𝑔 | is the set of
nodes in𝐺𝑔. Thus, the algorithm has linear time complexity
in the number of gates in the circuit.

4.5 Qubit Reuser (QR)
In the final pass of the optimizer, we apply the qubit reuser
on individual fragments to reduce their width further, in case
their width still exceeds the maximal size 𝑠 . To this end, the
qubit reuser first checkswhether each fragment in the VC has
a width of 𝑠 or less. For each fragment with a width greater
than 𝑠 , the qubit reuser applies a qubit reuse procedure to re-
duce the width to 𝑠 to ensure that each fragment can execute
on the available QPUs. We can reuse a qubit 𝑞𝑖 for another
qubit 𝑞 𝑗 if 𝑞𝑖 does not depend on 𝑞 𝑗 by inserting a mid-circuit
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Figure 7.Workflow of the QVMRuntime (§ 5). (1) The instantiator generates the instantiations inserted into the placeholder gates
of the compiled fragments. (2) The QPUmanager runs the instances on distributed QPUs in parallel. (3) The knitter reconstructs
the probability distribution of the original circuit by merging and then knitting the instances in highly parallelizable steps.
measurement and resetting the qubit [33]. Fig. 5 (b) shows
this qubit reuse pass, where we can reuse 𝑞2 for 𝑞1 since 𝑞2
does not depend on 𝑞1, with𝑂 =𝑂1⊗𝑂2
The appropriate level of qubit reuse may only be possible

through the preceding DR pass, which reduces the number
of dependent qubit pairs as shown by the example of Fig. 5.
Similar reduction in width by circuit cutting would have re-
quired two virtual gates (or twowire cuts [60, 77]). Therefore,
in our example, reducing dependencies and reusing qubits is
themost efficient solution in terms of virtualization overhead:
we reduce thewidth of the circuit to 𝑠 =3with a virtualization
budget of only 𝑏 = 1. Note that the QR does not affect the
execution of the VC on a distributed set of QPUs, since the QR
only considers the reuse of qubits within the same fragment.

4.6 Code Generator (CG)
The final step of the QVM compiler is generating the code in
the form of circuits, which can be executed by the QVM run-
time (Fig. 6). To do so,wefirst extract each fragment as an indi-
vidual circuit from the VC by collecting all operations on the
respective qubit register. In these extracted circuits, we insert
placeholder gates at the qubits of the virtual gates. The place-
holder gates are parameterized gates, which can be instanti-
atedwith the actual gates thatweneed to insert to reconstruct
theresult (§2.2). For the instantiation, theCGcreatesaparame-
ter vector for each placeholder gate, which describes the gates
to be inserted for the respective instance of the virtual gate.
Finally, the code-generator runs a set of standard circuit opti-
mizationpasses tooptimize the individual circuits.Thismeans
the heavy optimizationmust be executed only once, reducing
the just-in-time transpilation time before instance execution.

5 The QVMRuntime
We next describe the QVM runtime, a system for the scalable
execution of virtualized circuits.

5.1 Workflow of the QVMRuntime
Fig. 7 shows the workflow of the QVM runtime. As the first
step, we pass optimized fragment circuits generated by the

QVM compiler to the virtualizer. Here, the instantiator gen-
erates the instances of each circuit and passes them together
with the fragments to the QPUmanager. TheQPUmanager
then executes the fragments with each given instantiation on
the distributed set of QPUs. The results are returned to the
knitter component of the virtualizer, where the final result is
reconstructed through parallel classical post-processing.

5.2 Virtualizer
The virtualizer implements the logic for executing virtual
gates. For this purpose, the virtualizer consists of two com-
ponents, the instantiator (Fig. 7, Step 1) and the knitter (Fig.
7, Step 3).
Instantiator. The instantiator is responsible for creating in-
stances of gates that must be inserted into the fragment. For
this purpose, the instantiator creates 6𝑘 𝑗 instances for each
fragment 𝐹 𝑗 , where 𝑘 𝑗 is the number of virtual gates that act
on thequbits of 𝐹 𝑗 . The instances are described as assignments
to the parameterized gates and include every possible combi-
nation of the total 6𝑘 𝑗 combinations of each fragment. These
assignments are essentially the tensor-product of the param-
eter vectors of the generated code for each fragment (Fig. 6).
Knitter. The knitter takes the results of the probability dis-
tribution of all fragment instances and calculates the final
result of the original circuit by applying the formulas for gate
virtualization with highly parallel processing. (Section 2.2).
The results are given as vectors for each fragment 𝐹 𝑗 with
entries ⟨𝑂 𝑗 ⟩𝑖 with 𝑖 =1,...,6𝑘 𝑗 . To knit the results, the knitter
distributes the result vectors of each fragment to the available
classical nodes, where each node is given the task of comput-
ing a part of the global 6𝑘 instances. We determine this part
by assigning an equal part of the global coefficient vectorC
to each node (Eq. 2). In the example of Fig. 7, we divide the
coefficient vector C into two parts C1 and C2 and calculate
the partial sum at each node over the instances corresponding
to each coefficient. Finally, we calculate the sum of the two
partial results to obtain the final result ⟨𝑂⟩. In this way, we
are able to linearly scale the post-processing of the circuit
virtualization with respect to the number of cores used.
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Figure 9. Circuit Cutter (§ 6.1). Fidelity of running QVMwith the circuit cutter compiler on IBM Perth and IBM Kolkata.
Extensibilty.We implement a virtualizer for gate virtualiza-
tion as presented in [44]. However, the design of our virtual-
izer also allows us to implement other divide-and-conquer
techniques effectively [8, 77]. Such techniques all follow the
same workflow of our virtualizer and could, therefore, be
easily integrated into the QVM runtime.

5.3 QPUManager
TheQPUmanager is responsible for a scalable executionof the
6𝑘 𝑗 instances of each circuit fragment 𝐹 𝑗 on a set of distributed
QPUs, returning the result-vector for each fragment (Fig. 5,
Step 2). For this, the QPUmanager receives an optimized cir-
cuit fragment (§ 4.6) and all instance combinations generated
by the instantiator. To execute a fragment, the QPU-manager
does the following steps:
Step 1: For each QPU𝑄𝑃𝑈𝑖 with enough qubits to run the
circuit, we transpile the circuit to, including mapping and
routing on the physical qubits of𝑄𝑃𝑈𝑖 . Note that this has to
be done only once for eachWe then compute the estimated
probability of success 𝑒𝑠𝑝 (𝑄𝑃𝑈𝑖 ) of executing the circuit on
that QPU. This is done by computing the cost of the errors
induced by the gates andmeasurements on the assigned phys-
ical qubits, as described in [49].
Step 2:We normalize the current job queue sizes of the QPUs
by dividing the length of each job queue by the length of the
maximum job queue. This yields a relative waiting time as
𝑤 (𝑄𝑃𝑈𝑖 ) ∈ [0,1],where ahighervaluemeans a longerwaiting
time for the job.
Step 3: We compute the score 𝑠𝑖 for each QPU, where 𝑐𝑖 =
𝛼 · (1−𝑤 (𝑄𝑃𝑈𝑖 )) +𝛽 ·𝑒𝑠𝑝 (𝑄𝑃𝑈𝑖 ), and choose the QPU with
the highest score to execute the corresponding fragment. The
user can choose 𝛼 and 𝛽 to provide either fast runtime or less
noisy results.
Step 4: Finally, for each instance combination, we insert the
instantiation into the transpiled fragment for the selected

QPU, resulting in a total of 6𝑘 𝑗 circuits when 𝑘 𝑗 gates act in
the respective fragment 𝐹 𝑗 . These circuits are then sent to the
QPU as a job for execution, and the results are returned to the
virtualizer.

Our strategy of incorporating queue times and estimated
probabilities of success into the QPUmanager can be easily
applied to the current cloud-centric quantum infrastructure,
where our QPU manager would be a client for some quan-
tum resources offered by cloud providers [67]. Our solution
is currently the most efficient, as there is little control over
the cloud providers’ internal queues.

6 Evaluation
Experimental Setup. We conduct three types of experi-
ments: (1) circuit transpilation with and without QVM’s com-
piler to measure the circuit’s properties post-compilation, (2)
runs on real QPUs for measuring the circuit’s fidelity, and
(3) classical simulation of large circuits cut into fragments of
different sizes. For (2) we conduct our experiments on Falcon
r5.11H QPUs, namely the 7-qubit IBM Perth and the 27-qubit
IBMQKolkata. For (1) and (3)we use theQiskit Transpiler and
QiskitAer [4, 5], respectively, andrunonour local classicalma-
chines. For classical tasks, i.e., transpilation, post-processing
(knitting), and simulation, we use a server with a 64-core
AMD EPYC 7713P processor and 512 GB ECCmemory.
Framework and Configuration. We use the Qiskit [64]
Python SDK version 0.41.0 for quantum circuits and simu-
lations. We transpile any quantum circuit we run with the
highest optimization level O3 and run with 20,000 shots. To
get a meaningful measurement of the fidelity or circuit prop-
erties on real QPUs,we runQVMonly on a singleQPU.When
we benchmark the performance of the QVM runtime with
simulators, we utilize every system core.

8



8 10 12
0.0

0.5

1.0

Re
l. 

Nu
m

be
r o

f C
NO

Ts

0.52 0.70 0.87
(a) CNOTs (vs. CutQC)

8 10 12
0.0

0.5

1.0

Re
l. 

De
pt

h

0.83 0.95 0.98
(b) Depth (vs. CutQC)

Number of Qubits

Lower is better 

W-State QSVM TL-1 HS-1 HS-2 VQE-1 VQE-2 QAOA-2

Figure10.CircuitCuttervs.CutQC(§6.1).RelativenumberofCNOTgatesandfragmentdepthcompared toCutQCon IBMKolkata.

8 10 12
0.0

0.5

1.0

Fid
el

ity

HS-1

8 10 12

HS-2

8 10 12

TL-1

8 10 12

VQE-1

8 10 12

VQE-2

8 10 12

QSVM

8 10 12

QAOA-2
Higher is better 

Number of QubitsQVM CutQC Baseline
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Benchmarks. We study QVM on a set of circuits used in
the state-of-the-art benchmark suits Supermarq [82], MQT-
Bench [65], and QASM-Bench [37]. These circuits can be
scaled both in the number of qubits and depth. Specifically,
we study:W-State, Bernstein Vazirani (BV) , Quantum Sup-
port VectorMachine (QSVM), Hamiltonian Simulation (HS-𝑡 ),
Two Local Ansatz (TL-𝑛) with circular entanglement, Varia-
tional Quantum Eigensolver (VQE-𝑛) with a Real-Amplitudes
ansatz of linear entanglement, Approximate Optimization Al-
gorithm (QAOA-𝑑) with regular graphs of degree 𝑑 ∈ {2,3,4}
and barbell graphs (QAOA-B). HS, VQE, and TL are scalable
in their circuit layers 𝑡 or 𝑛, respectively.
Metrics.We evaluate the following metrics.

• Fidelity: We use the Hellinger fidelity to measure how
close a noisy result is to the desired ground truth of
a quantum circuit. The Hellinger fidelity is calculated

as
(
1−𝐻

(
𝑃𝑖𝑑𝑒𝑎𝑙 ,𝑃𝑛𝑜𝑖𝑠𝑦

)2)2 ↦→ [0, 1], where 𝐻 is the
Hellinger distance between two probability distribu-
tions [32].

• CircuitProperties:NumberofCNOT gates,depth and
the number of qubit dependencies. When a VC contains
more than one fragment, we use the fragment with
theworst property (i.e., maximal depth, dependecies,
number of CNOTs)

• Execution Time: The execution time of a VC in sec-
onds.

• EstimatedSuccessProbability:Weuse theestimated
success probability (ESP) metric to measure the esti-
mated fidelity on larger quantum systems. We define
the ESP as

∏
𝑖 (1 − 𝑒𝑖 ), where 𝑒𝑖 is the error of the 𝑖-

th operation in the circuit [48]. If a VC has multiple
fragments, we report the minimum ESP.

Baseline.Weuse theQiskit transpiler [5]withO3 andCutQC
as our baselines for circuit compilation and runtime evalua-
tion [10, 77].

6.1 Circuit Cutter
RQ1:How well does QVM’s circuit cutter allow scaling of cir-
cuits that can run on noisy QPUs with acceptable fidelity? We
evaluate the impact of the circuit cutter on the CNOT count
and depth of transpiled circuits and the fidelity of running
virtual circuits using our optimal graph partitioning model.
Impact onNumber ofCNOTs andCircuitDepth. In Fig. 8,
we study the maximum number of CNOTs and circuit depths
of the fragments after compilation with our circuit cutter
with a maximum of three virtual gates. Each virtual circuit is
decomposed into fragments of a maximum of 13 qubits, and
the fragments are transpiled for the 27-qubit IBMQ Kolkata
QPU. The results in Fig. 8 (a) show that the number of CNOTs
decreases by 41% on average. Fig. 8 (b) shows that the circuit
depth decreases by 56% on average. This shows that it is pos-
sible to almost double the size of the circuits running with
high fidelity on the given QPU since the number of CNOTs
and circuit depth is approximately halved.
Impact on Fidelity.The impact of usingQVMon the fidelity
of the execution is shown in Fig. 9. Here, the circuit cutter de-
composes the circuits into fragments of maximally 7 qubits in
order to theoretically fit the small 7-qubit IBMQPUs. The frag-
ments are run on both the 7-qubit IBM Perth and the 27-qubit
IBM Kolkata QPUs, and compared to the baseline fidelity of
running the circuits on IBM Kolkata. We run the experiment
for various benchmarks with sizes of 10 and 14 qubits. We
observe that the fidelity of running the circuit on IBMKolkata
improves the fidelity by 4.7× on average and up to 33.6×. E.g.
for the VQE-2 benchmark, the fidelity of the benchmark goes
to zero,whileQVMcan still create higher fidelities. Compared
to the baseline, running QVM on the IBM Perth improves the
fidelity by 2.1× on average and up to 10.6×. Therefore we
show that QVM can reliably simulate a larger QPU using
smaller noisy QPUs while producing higher fidelity. This is
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despite IBM Perth having a median of 2.3× higher readout
and 1.2× higher CNOT error during our experiments.
Comparsion toCutQC. In Fig. 10 and 11we compare the cir-
cuit cutter of QVMwith CutQC.We run the QVM and CutQC
circuit cutters with the same configuration to generate circuit
fragments of up to 7 qubits and compile and run the fragments
on the IBM Kolkata QPU.We use several benchmarks of sizes
of 8-12 qubits. We find that, compared to CutQC, QVM only
produces 70% of the CNOTs on average, since gate virtualiza-
tion allows a reduction of the qubit connectivity significantly
compared to CutQC (Fig. 10 (a)). QVMachieves similar circuit
depth reduction as CutQC as both can cut the circuits into
significantly smaller fragments (Fig. 10 (b)).

A look at thefidelity benchmark (Fig. 11) shows thatCutQC
and QVM achieve similar fidelity and significantly outper-
form the Qiskit baseline, with QVM achieving on average 1%
higherfidelity thanCutQC.Wesuspect the relatively small im-
provement despite the promising results in circuit properties
is due to the noisy mid-circuit measurements with an error
of ≥ 10−2, which we need to perform to virtualize gates. With
less measurement noise, QVMwill likely perform similar or
better to CutQC.
We conclude that both QVM and CutQC, with their dif-

ferent techniques, are efficient in-circuit cutting and should
ideally be used together in future work to take advantage of
both methods with their respective benefits [13], especially
since we will likely be able to mitigate the mid-circuit mea-
surement errors [30].
RQ1 takeaway: With the circuit cutter, we reliably scale
the size of circuits that can be run on noisy QPUs, up to 2×,
improving the overall fidelity 4.7× on average and up to 33.6×
due to significant depth and CNOT gate reduction.

6.2 Dependency Reducer
RQ2: By howmuch does the dependency reducer (DR) decrease
the number of dependencies within the circuit, improving the
fidelity of running the circuit on noisy QPUs? For this experi-
ment, we evaluate DR with a maximum of three virtual gates
on several benchmarks with different circuit sizes on IBM
Kolkata.
ImpactonQubitDependenciesandCircuitDepth.Fig. 12
(a) shows theeffectofDRon thenumberofqubit dependencies
in the logical circuit, compared to the baseline of the circuit
withoutDR.Onaverage, thenumberof qubit dependencies de-
creases by 58%. This shows that the DR can effectively resolve
the dependencies between qubits, reducing noise propaga-
tion through the circuit. As Fig. 12 (b) shows, the depth of the
circuits transpiled for IBM Kolkata decreases significantly by
64% on average. This is due to the transpiler having fewer
constraints on circuit mapping and routing after applyingDR,
resulting in a transpiled circuit with less depth.
Impact on Fidelity.We analyze the fidelity of our baseline
and compared it to the DR in Fig. 13, utilizing only one virtual
gate. Our results indicate an average increase in fidelity of 36%
and up to 5.2×. However, the noisymid-circuit measurements
needed for gate virtualization could limit the improvement
in fidelity. These measurements typically induce significant
noise, which affects the overall fidelity of virtual circuit ex-
ecution [73, 89].
RQ2 takeaway:TheDRdecreases the dependencies between
qubits by 58% and circuit depth by 64% using at most three
virtual gates. This also leads to an average increase in fidelity
by 36% and up to 5.2×, using only one virtual gate.
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6.3 Tradeoffs with the Qubit Reuser
RQ3:What is the effect of using the qubit reuser (QR) to reduce
the width of the circuit fragments further? We show the trade-
offs of using theCC alone against theDR andQR to reduce the
width of circuits to run on small QPUs. To show this tradeoff,
we compile circuits with different optimizer configurations,
such that each fragment’s width is maximally five qubits.
Circuit-Cutter vs. Qubit-Reuse. In Fig. 14 (top), we com-
pare the effects of using either the CC or the QR to reduce the
width of a virtual circuit on the circuit depth of the transpiled
fragments. Our results show that the CC compiles the cir-
cuits to only 37% compared to QR on average. This is because
the CC can break down the circuit into smaller fragments
with reduced width while only incurring a maximum of two
virtual gates. The QR, however, increases the depth of the
circuit substantially while reusing qubits, which in turn will
reduce overall fidelity. So, there is a tradeoff between using
gate virtualization to reduce the depth against using qubit
reuse without overhead but with more depth.
Combining Dependency Reducer and Qubit-Reuse. In
Fig. 14 (bottom), we show how the CC pass compares to the
DR and QR passes to reduce circuit width. For this, we choose
benchmarkswhere, without ourDR, qubit-reusewould be im-
possible since every qubit depends on every other qubit in the
circuit. We apply the QR on the reduced-dependency circuit
produced by the DR. Like before, we aim to reduce the circuit
width to five qubits. The CC uses at most three, and the DR
usesonevirtual gate,witha36× lowervirtualizationoverhead.
Although using DR & QR incurs a low overhead, it also leads
to a significantly higher depth than CC. This means that the
virtual circuit usingDR&QRhas 3.2×moredepth than thevir-
tual circuit of CC, which could negatively impact the fidelity.
RQ3 takeaway:We find a trade-off between overhead and
noise when using the CC or DR &QR to reduce the width of
quantumcircuits.While theCCproduces circuitswith smaller
depths, combining DR and QR allows lower virtualization
overhead.

6.4 QVMEnd-to-end Runtime Analysis
RQ4: How scalable is QVM’s runtime and how does QVM com-
pare to classical simulations without cutting & knitting and
CutQC? We study the HS-1 benchmark and use the circuit
cutter (CC) to compile a VC for a QPU of up to 𝑠 qubits.
Fig. 15 (a) illustrates the end-to-end runtime needed to

simulateHS-1 after cutting the circuit into fragments that fit
QPUs of sizes 𝑠 ∈ {15,20,25}. As the full circuit size increases,
the runtime also increases, but the growth rate varies among
fragment sizes. The smallest fragment size is the fastest, as the
simulation overhead outweighs the knitting overhead, even
if the circuit has 100 qubits and is cut with five virtual gates.
This is evident in Fig. 15 (b) as well, which shows the runtime
breakdown for simulating the 70-qubitHS-1. As 𝑠 increases,
there is a shift in the runtime from knitting to simulation time.
The compilation time remains relatively constant.

Fig. 15 (c) shows the scalability of the knitter (§ 5.2) with its
parallelism. We generate knit workloads for 1-4 virtual gates
for the 70-qubitHS-1 benchmark and scale the number from
1 to 32 threads. We observe near-linear scalability with an
increasing number of threads, allowing a speedup of up to
25.6× for 32 threads.

We show thememory required to simulateHS-1with a cho-
sen QPU size of 20 qubits in Fig. 15 (d). While the baselines,
Qiskit Aer statevector, and CutQCwith full definition query
[77], exhibit exponentially growing memory for linearly in-
creasing circuit sizes, QVMmaintains a slightly increasing
memory requirement by utilizing sparse quasi-probability
distributions. In contrast, CutQC and simulations operate on
tensors that need to cover the entire sample space.

Finally, in Fig. 15 (e), we compare the runtimes of QVMand
CutQC.We are limited to comparing on small examples, due
to CutQC’s memory limitations. In particular, we perform
20-qubit circuits forHS-1with simulated QPUs of 8-12 qubits.
We observe similar runtimes for the QPU size of 8 qubits, as
QVMspendsmore time to simulate a larger number of circuits
due to the higher circuit cost [60, 77]. However, with a QPU
size of 10 and 12 qubits, QVM clearly outperforms CutQC,
as it achieves a significant acceleration in knitting due to its
more efficient memory utilization.
RQ4 takeaway:QVM enables simulating large circuits on
classical simulators. It can handle circuit sizes of up to 100
qubits or five virtualized gates while maintaining acceptable
runtime (∼ 1.5 hours) and relatively very low memory con-
sumption. QVM’s knitter allows it to scale linearly through
its high parallelization..

6.5 QVM at Practical Scale
RQ5:How does QVM behave on a practical scale with circuits
of hundreds of qubits? Wewould need hundreds to thousands
of high-fidelity qubits to demonstrate quantum advantage.
However, current QPUs with hundreds of qubits cannot reli-
ably execute circuits with tens of qubits and higher depth. To
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Figure 16.QVM at practical scale with 500 qubit VQE circuits (§ 6.5). (a) Relative number of CNOTs and circuit depth of the
compiled VQE-2 benchmark. (b) Estimated success probability (ESP) with VQE-1 and VQE-2. (c) The overheads of circuit instances
and classical postprocessing with and without parallel processing on 32 cores (linear speedup).
investigate how QVMwould behave on a practical scale, we
evaluate the impact of QVM on 500-qubit VQE circuits on a
heavy-hex lattice QPU with 883 physical qubits, which is the
typical chip layout for current IBMQPUs [3].
ImpactonNumberofCNOTsandCircuitDepth. InFig. 16
(a)we show the effects of the number ofCNOTs and the circuit
depth of the VQE-2 benchmark. We see that using a budget
of two virtual gates reduces the number of CNOTs and the
circuit depth by 2×, and using up to 10 virtual gates reduces
the numbers by 6×. We see a diminishing improving impact
on higher virtualization budgets.
ImpactonEstimatedSuccessProbability.Fig. 16 (b) shows
the estimated success probability (ESP) of the benchmarks
VQE-1 and VQE-2. We find that the baseline without virtual
gates achieves anESPofonly30%and16%, respectively,which
leads to unusable results. When using only two virtual gates,
the ESP more than doubles and shows improvements, reach-
ing 90% and 74% with 10 virtual gates. This shows that with
QVM, we only need a handful of virtual gates to significantly
improve the ESP, which could lead to usable results of quan-
tum computation.
Impact on Processing Overhead. The virtualization costs
incurred using virtual gates to improve circuit fidelity are
shown in Fig. 16 (c). The number of circuits that need to be in-
stantiated and executed increases exponentially with a small
number of virtual gates but then only starts to grow linearly
with the number of fragments since we only instantiate as
many circuits as correspond to the number of gates in the
respective fragment (§ 5.2). Theclassical post-processingover-
head grows exponentially with O(6𝑘 ), meaning that adding

two more virtual gates in the same configuration results in a
runtime increase of 36×. Since the QVM runtime provides an
almost linear speedup (§ 6.4), we can distribute the knitting
across dozens of cores,which significantlymitigates this over-
head for a small number of 4-6 virtual gates. This is shown in
Fig. 16 (c) as an example of (perfect) linear scaling in classical
post-processing with 32 cores.
RQ5 takeaway: For large-scale algorithms, QVM achieves
high estimated success probability (ESP) while using only a
handful of virtual gates for which our runtime can achieve
significant speedups through parallelization. We therefore
find a trade-off between fidelity and quantum-classical co-
processing resources.

7 RelatedWork
QuantumTranspilers and ErrorMitigation.We can cat-
egorize quantum circuit transpilation techniques as (1) qubit
mapping and routing [38, 45, 46, 55, 58, 74, 79, 81, 87, 90, 92],
(2) instruction/pulse scheduling [19, 29, 47, 71, 75, 83, 91] and
(3) gate optimization/decomposition [18, 40, 55, 59, 71, 88].
Finally, there is work on post-execution processing, readout
improvement, and error correction [14, 17, 20, 42, 43, 56, 57,
78, 80]. Theseproposals are orthogonal to ourwork and canbe
integrated into QVM. This is especially the case for measure-
ment error mitigation, which can help to improve the fidelity
of the mid-circuit measurements during execution [73, 89].
Circuit Cutting and Knitting. Circuit cutting & knitting
is the process of breaking down a large quantum circuit into
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smaller sub-circuits that can be executed separately, then syn-
thesizing the results to obtain the result of the original circuit.
Circuit cutting can be divided into gate virtualization (§ 2.2)
andwire cutting [15, 16, 60, 77, 85]. While wire cutting opti-
mizes circuits for small QPUs with reduced noise, it is limited
in reducing qubit dependencies. Our work proposes a generic
architecture for gate virtualization. Furthermore,wire cutting
can be simulated using gate virtualization [10, 16].
Qubit Reuse. Qubit reuse can be classified into two cate-
gories, namely ancilla reuse using uncomputation [11], and
reuse through dynamic circuits [2, 6].Work such as [12, 23, 54]
utilize uncomputation to reclaim ancilla qubits. In contrast,
work such as [22, 33, 53, 69] exploit the newly supported
dynamic circuits with mid-circuit measurements and mid-
circuit reset operations to reuse qubits. However, applying
these techniques on densely connected circuits can be imprac-
tical due to the large number of qubit dependencies [33, 82].
By first applying QVM’s DR pass (§ 4.4), qubit reuse can be
practically applied with enhanced efficiency.
Application-specific Optimizations.Application-specific
circuit optimizations go beyond generic strategies and target
the unique characteristics of a particular algorithm or cir-
cuit structure in order to improve fidelity [7, 8, 27, 28, 31, 36,
39, 68, 76, 84]. Our work tries to build a generic and extensi-
ble framework to incorporate different application-specific
optimizations in the context of gate virtualization.
QuantumCloudComputing.This area addresses quantum
circuit multi-programming [21, 41, 51, 52], quantum resource
management/scheduling [66, 67, 86], and quantum serverless
[25, 50]. Ourwork is complimentary to these proposals, QVM
proposes a scalable infrastructure for supporting gate virtual-
ization optimizations, which can be incorporated by quantum
cloud environments.

8 Conclusion
We introduce theQuantumVirtualMachine (QVM), a generic
system for scalable, high-fidelity execution of large circuits on
noisy and small QPUs by leveraging gate virtualization. QVM
extends the quantum circuit abstraction with the virtual cir-
cuit IR, which forms the foundation for the QVMCompiler—a
modular compiler infrastructure for implementing a series of
optimization passes to generate smaller, optimized fragments.
These fragments are virtualized and executed using our QVM
Runtime—a distributed and scalable system to execute and
post-process the instantiated circuit fragments in a highly
parallel manner on a distributed set of QPUs. Our evaluation
on IBM’s 7- and 27-qubit QPUs of QVM demonstrates practi-
cal scaling of circuitswith sizes up to double theQPU capacity
while significantly improving fidelity.
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