ToAsT: A Heterogeneous Memory Management System

Programmability, Portability, Protection, and Performance

Maurice Bailleu*
Huawei Research
Edinburgh, United Kingdom

Dimitrios Stavrakakis
Technical University of Munich &
The University of Edinburgh

Rodrigo Rocha
Huawei Research
Edinburgh, United Kingdom

Munich, Germany

Soham Chakraborty
TU Delft
Delft, Netherlands

Abstract

Modern applications employ several heterogeneous memory types
for improved performance, security, and reliability. To manage
them, programmers must currently digress from the traditional
load/store interface and rely on various custom libraries specific to
each memory type, thus introducing programmability, performance,
portability, and protection challenges.

To overcome these challenges, we propose ToasT, a compiler-
based approach that offers a simplified programming model based
on the established load/store interface along with programmable
error-handling and memory consistency enforcement mechanisms
and a protection library for memory safety.

We implement ToasT in the Clang/LLVM compiler framework
accompanied by a runtime library, employing software storage
capabilities and hardware-based protection mechanisms. Our evalu-
ation based on four applications, which use heterogeneous memory
types, shows that ToasT improves the programmability, portability,
and protection of applications, while offering performance on par
with a hand-optimized version of the application.

Keywords

Heterogeneous memory, Memory management, Memory safety,
Memory protection, Programmability, Portability, Performance

ACM Reference Format:

Maurice Bailleu, Dimitrios Stavrakakis, Rodrigo Rocha, Soham Chakraborty,
Deepak Garg, and Pramod Bhatotia. 2024. ToAsT: A Heterogeneous Memory
Management System: Programmability, Portability, Protection, and Perfor-
mance. In International Conference on Parallel Architectures and Compilation
Techniques (PACT °24), October 14—16, 2024, Southern California, CA, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3656019.3676944

1 Introduction

“This work was done when affiliated with The University of Edinburgh

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0631-8/24/10

https://doi.org/10.1145/3656019.3676944

Deepak Garg
MPI-SWS
Saarbruecken, Germany

Pramod Bhatotia
Technical University of Munich
Munich, Germany

Modern applications employ heterogeneous memory types for
performance, security, reliability, and domain-specific computing [5,
25, 44, 50, 53]. These heterogeneous memory systems span almost
all aspects of the stack, e.g., network (RDMA [61]/DPDK [6]), stor-
age (SPDK [10]/persistent memory [8]), secure enclaves [9], and
accelerators [13]. Furthermore, NUMA [67] and the introduction of
CXL-capable [37] devices further create a memory hierarchy due
to their differences in access patterns and latency.

In theory, heterogeneous memory subsystems are accessible via
DMA, i.e., allowing read and write directly from and to memory re-
gions. However, in practice, these memory subsystems are accessed
via a range of subsystem-specific auxiliary libraries, which force
programmers to digress from the traditional load/store interface to
access byte-addressable memory regions [53, 61]. This library-based
approach leads to four significant challenges for heterogeneous
memory management (“The 4P challenges"): (i) Programmability,
(ii) Portability, (iii) Protection, and (iv) Performance.

Programmability challenges arise because programmers must
learn and understand the APIs and libraries for each memory tech-
nology separately [56]. Moreover, the library-based approach intro-
duces portability challenges when the underlying hardware evolves
with the introduction of new technologies. Current approaches
require a complete re-design of the software system to adapt to
a new heterogeneous memory subsystem. Programmers have to
rewrite their code to a great extent using different access patterns,
libraries, and APIs. This is a cuambersome and error-prone task.

Furthermore, heterogeneous memory management introduces
protection challenges as a programmer juggles different memory
regions. A potential error during application development can lead
to undesired code behaviors, such as sensitive information leakage
to untrusted devices or mistakenly persisting temporary data.

Lastly, developers are pressed to achieve optimal performance,
which is tough when they must deal with different libraries and their
varied interfaces. At the same time, in the context of concurrent
programs, it is important to ensure that the program remains correct
under subtle memory consistency and persistency models [57, 58].

We consider the following problem: How do we define a het-
erogeneous memory programming interface, which provides pro-
grammability, i.e., an easy-to-learn and understand interface, porta-
bility, i.e., minimizing the effort involved in changing underlying
technologies, protection against accidental data sharing between
different memory regions, while providing performance on par with
or exceeding existing libraries?

https://doi.org/10.1145/3656019.3676944
https://doi.org/10.1145/3656019.3676944

s struct sockaddr_in svr_addr, clt_addr;
. svr = socket(AF_INET, SOCK_STREAM, 0); |

s clt = accept(svr, &clt_addr, sizeof(clt_addr)); 8

11

) for (;;)

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Bailleu, et al.

event_loop(FILE log)
int svr, clt; > 1X, tx = get_queues()

s for (3)

svr_addr = init_server_addr(); poll(rx);

bind(svr, &svr_addr, sizeof(svr_addr));

listen(svr, 3); 7 if (is_write(buf))

char buf[msg_sz]; 9

//Waiting for data to arrive
read(clt, buf, msg_sz);

if (is_write(buf)) clflush(log);

event_loop(uint64_t « log)

//Waiting for data to arrive 4
char « buf = get_buf(rx);

//Storage pointer

uint64_t « log = next_log(buf, log_sz);
0 //Writing to storage device

«log = buf << 32 | len(buf);

//Makes writing visible

1 event_loop(T_log log)

21X, tx = get_queues();

s for (3)

//Waiting for data to arrive

T_net buf = get_buf(rx);

o if (is_write_request(+buf))

7 //Writing to storage device

8 log[idx++] = buf << 32 | len(buf);
write_response(tx)

Listing 3: Toast version of the

applications in Listings 1 & 2.

//Writing to storage device
write(log, buf, msg_sz);
//Acknowledge to clt

//Free buffer
char « extra = next_free_buf();
swap(buf, extra);

write(clt, rsp, rsp_sz); 17 write_response(tx);

Listing 1: Using POSIX API to write a Listing 2: .]JAccessing network and

network stream to a file.

Overall, due to the heterogeneous nature of the devices that
leverage DMA [37], designing a unified interface comes with in-
herent challenges. While heterogeneous memory can be accessed
over the memory bus, due to device-specific implementations, ad-
ditional actions might be required, including reading and writing
to specific memory addresses before or after the data transfer and
additional cache flushes. Furthermore, heterogeneous devices have
different sources of errors and faults, leading to vastly different
error-handling procedures. Moreover, these heterogeneous devices
present a range of memory consistency and persistency semantics,
incurring correctness issues for concurrent programs.

Current state-of-the-art approaches for API unification [13, 22,
42, 49, 70] mainly target specific device classes, e.g., GPUs/FPGAs,
and introduce one API per use-case, hindering programmability
and portability. Additionally, further approaches aim to optimize
memory accesses in shared memory systems [14, 19, 35, 41]. How-
ever, they neither provide support for different memory layouts
and access patterns nor explicit memory protection.

Notably, the emerging CXL technology [37] enables direct mem-
ory access in heterogeneous memory systems by relying on special-
ized CXL PCle-attached hardware bridge devices. Therefore, CXL
systems are restricted to the memory systems supporting these spe-
cialized hardware bridge devices. Moreover, CXL systems do not
support various memory types, such as secure enclave memory, NIC
memory (DPDK), SSD/NVMe memory (SPDK), etc. Finally, CXL
does not inherently provide any built-in protection mechanism.

To this end, we propose ToAsT, a simplified, generic programming
model based on the established load/store interface combined with
an error handling mechanism and a protection library to isolate
different memory regions. ToAST consists of a compiler, based on
Clang/LLVM [36, 68], and a run-time component. The compiler
component lowers a high-level load/store interface to our lower-
level run-time component. As part of our run-time component,
we introduce the abstraction of ToAsTPtr, a pointer associated
with a specific memory region that is manipulated using a single
uniform interface in the programming language. Under the hood,
considering the underlying memory consistency and persistency
models, the TOAST run-time transparently translates interface calls
to region-specific library calls. ToasT further provides optional

storage device with DMA [53].

programmable error-handling callback hooks to enable the pro-
grammer to handle memory device-specific errors.

ToasTPtrs lift library/device-specific calls to a device-indepen-
dent load/store interface at the language level. Thus, ToAST eases
programmability by reducing the technology-specific knowledge
required from the developer. ToasTPtrs are given semantics via a
configuration file, which can be easily adapted for different tech-
nologies, thus improving portability. Importantly, once a configura-
tion for a technology is correctly designed, the developer can reap
its benefits across applications without additional effort.

Lastly, ToAsT incorporates two protection mechanisms to pre-
vent programming errors related to unintended data sharing be-
tween memory regions; (i) a software-based mechanism designed
as capability storage and (ii) a hardware-based mechanism using
Intel’s Memory Protection Keys (MPK) [39].

We evaluate ToAsT on four representative applications that ac-
cess five different memory types via device-specific libraries: (a)
a secure in-memory key-value (KV) store [25], (b) a replication
protocol [23, 73], (c) a persistent shared log application [4] and (d)
a persistent KV store [69]. Our evaluation shows that ToAsT im-
proves programmability, portability, and protection of applications
while incurring a mean performance overhead of 4.9 % compared
to hand-optimized code. ToasT has been made publicly available
(https://github.com/TUM-DSE/Toast).

2 Motivation: The 4P Challenges

Modern applications employ multiple heterogeneous memory re-
gions. These regions differ in trust (TEEs), latency (NUMA, CXL),
and persistence (memory-mapped files and PM). Furthermore, appli-
cations often use DMA-capable devices (e.g., SPDK for SSDs, DPDK
for NICs), which comprise another source of heterogeneity in the
memory system. These devices expect specific data structures and
read/write patterns to reach their full potential. Thus, adopting a
new technology often requires that developers invest time to learn
new device-specific library APIs and leads to the rewriting of major
parts of an application to achieve the desired performance. Such
changes are invasive, time-consuming, and error-prone.

For example, Listing 1 shows a code path that accepts network
packages and writes them to a log on a file system using the POSIX

https://github.com/TUM-DSE/Toast

ToAsT: A Heterogeneous Memory Management System

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Table 1: Memory types

Memory Types Persistence | Encryption Consistency type Access patterns Library required
DRAM Volatile Optional Architecture dependent Random None
Persistent memory Non-volatile Optional Configurable Random Yes (e.g., PMDK [8])
Kernel-bypass storage || Non-volatile Optional Configurable Sequential Yes (e.g., SPDK [10])
Enclave memory Volatile Encrypted | Architecture dependent Random Yes (e.g, Intel SGX SDK [86])
NIC memory Volatile Optional Protocol-dependent Sequential Yes (e.g., DPDK [6])
GPU memory Volatile Optional Architecture dependent | Sequential, highly-parallel Yes (e.g., CUDA [77])
’ Protection domain #1 ‘ Efficient resource access management is important when dealing
— with multiple memory regions. Currently, developers are responsi-
Application| | RegcnilR=gien Fesian ble for correctly handling the pointers returned by various libraries.
code forary #1 # | | #n Calling a library with a pointer from another can lead to informa-
C J tion leaks (e.g., revealed keys) or memory corruption (e.g., buffer
Y g y y p g
Memory type overflow attacks). Therefore, providing a form of memory region-

Figure 1: Virtual address space layout in ToasT

API. Listing 2 shows the same program based on non-blocking
communication between devices and CPU by introducing hetero-
geneous memory subsystems, i.e., Remote Direct Memory Access
(RDMA) and Persistent Memory (PM).

These modern technologies use different interfaces, which re-
sults in little code reuse between implementations. They also have
different abstractions for the user; on the one hand, POSIX pro-
vides common abstractions and on the other hand, the user has to
manually add polling and cache-line flushes to ensure correct code
behavior in the second implementation. Transitioning from one
technology to another requires addressing the following challenges:
Programmability. Programmers must familiarize themselves with
the libraries used in their application.For concurrent programs, de-
velopers must be aware of the concurrency primitives such as the
atomics in C/C++ or the locking mechanisms to write correct and ef-
ficient concurrent programs. Furthermore, each memory type needs
its memory allocator to ensure that the memory layout follows the
specifications of the underlying device. This imposes significant
programming challenges as each library creates pointers to its re-
spective memory regions, which can be stored and later reused from
other application parts. Pointers of two different libraries are con-
ceptually distinct. Still, they are not distinguished by the language’s
type system and can, therefore, be inadvertently confused by the
programmer, resulting in reliability and security vulnerabilities.
Portability. Adapting modern systems to use new technologies is
challenging. The APIs to handle each memory type or device might
be designed for or integrated with the application’s logic. This can
be mitigated through an abstraction layer. However, the design of
such a layer is a non-trivial task. On top of that, the developers
must carefully perform the deployment of an abstraction layer
throughout the application. Thus, an application gets strongly tied
to a specific abstraction layer, hindering portability.
Performance. The appeal of modern heterogeneous memory sys-
tems is their superior performance compared to conventional ab-
stractions. However, their focus on performance often leads to
a tight coupling of the application logic with the technology to
take advantage of techniques like zero-copy or asynchronous calls.
Moreover, these devices offer different memory consistency models
with varying performance properties. This requires careful opti-
mizations, which are often tedious and error-prone.

Protection.

level isolation is crucial to protect against pointer misuse, i.e., a
mechanism to ensure correct access to different memory regions
only via their respective library pointers.

3 Overview

Programming languages offer a well-known abstraction for ac-
cessing local memory, namely, the load/store model. Pointers are a
central part of this model, providing ease of programmability when
communicating with the local memory.

Device libraries often expose pointers to DMA’ed memory re-
gions to programmers to enable zero-copy operations. However,
this requires developers to use specific functions to access memory
safely. This, in turn, results in inconsistencies in the developer’s
mental model, as they have to interact with pointers in vastly dif-
ferent ways. Additionally, the idiosyncrasies of each memory type
(e.g., persistence granularity) as well as the different access patterns
they require (e.g., writing to network queues) make both the uni-
fication of the various memory types’ interfaces and the memory
type-specific error-handling process quite challenging. To highlight
the level of complexity, we present typical memory type examples
and their unique characteristics in Table 1.

3.1 The ToasT Programming Model

To provide similar levels of programmability, portability, and perfor-
mance as those offered by local memory, we propose ToAsT. ToAST
introduces the concepts of memory type, memory region and protec-
tion domain. A memory type is a set of address ranges in an address
space, which is accessed uniformly via a single set of API calls. A
memory type may be mapped to RAM, devices, or special memory
like PM or enclave memory. A memory region is an address range
in a memory type, e.g., the Tx/Rx queue for a NIC. A protection
domain is a set of access rights to address range mappings. Figure 1
shows the relationship between the different concepts.

ToAsT refines (annotates) the pointer type with the memory type,
thus creating a separate pointer type for every memory type. It
transparently injects code, calling the corresponding TOAST run-
time library (see § 4.5) for the annotated pointers to support normal
dereferencing while guaranteeing the right order of library calls.
On top of this, ToAsT provides memory protection mechanisms
to prevent accidental memory mishandling due to programming
errors. For the concurrent programs ToAsT provides an option to
specify the consistency model to be preserved for code generation.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Table 2: ToasT APIs and error handling routines

Runtime library APIs Description
write() Writes data to memory
read() Fetches data from memory

err_handler(stack,...) Called by the ToAsT runtime library in case

of an erroneous memory access

Error handling routines

retry() Retry the last operation
continue() Handler corrected the data
abort() Cleans up the current context, and returns

an invalid pointer

ToasTPtr. ToAsT’s programming model is based on the fact that
devices interact with the CPU over the memory bus with load/store
operations. Most programming languages offer these operations in
the form of assignments, e.g., the operator ‘=" in C. However, devel-
opers cannot use them directly when they interact with devices, as
devices are usually accessed via specific low-level libraries.

A ToasTPtr is a pointer to a memory region. ToasTPtrs contain,
in addition to the address, the memory type as well as the protection
domain, which enable ToAsT to check memory safety violations
when a ToasTPtr is dereferenced. The ToasT compiler transforms
pointer (de)references to read and write calls to the ToAsT runtime
library, which acts as a proxy layer between ToAasTPtr operations
and the low-level runtime library for different devices. Moreover,
for the concurrent programs, based on the consistency models
specified in the configuration, the ToasT compiler generates the
required library calls that enforce the desired consistency model.
Error handling. Error handling is an integral part of any applica-
tion. Pointers are notoriously bad at communicating errors as they
only have two states: the invalid null and the valid non-null. ToasT
allows developers to register error handlers. In case of an error (e.g.,
a device initialization error, a failed integrity check), ToasT calls the
respective error handler with a pointer to the program’s call stack, a
source code position, error information from the underlying device,
and a pointer to internal memory, e.g., transmission buffers, hash
values, etc., which can be used in the error handler to recover from
an error or to collect debug information.

An error handler returns one of the following states to ToAsT
(see Table 2): retry signals TOAST to retry the operation; continue
means that the handler corrected the error in the internal data,
and ToAsT returns the corrected data to the caller; abort instructs
ToAsT to clean up the current action and return an invalid pointer.
Device configuration. In ToasT, the developer defines the device
configuration once. It can then be reused across different appli-
cations seamlessly, provided that the ToasTPtrs referring to this
device are annotated correctly in the code. Thus, different projects
can adopt and combine existing configurations, promoting general-
ity and re-usability. Precisely, the device configuration includes (i)
the memory type, (ii) the name of the memory type’s proxy library,
and (iii) the header files to locate the appropriate library functions.
Workflow. Figure 2 presents the flow of a ToasT application and
Table 2 shows the ToasT API after the compiler transformation.
The developer provides the ToasT compiler with the code and a
configuration file with the information for interacting with memory
types. During compilation, the pointer (de)reference operations
are transformed into read() and write() calls to the ToAsT runtime

Bailleu, et al.

library (D. A dereference of a ToasTPtr is lowered to a call to the
ToasT proxy library (2), which performs the necessary checks. Then,
if the user enables the ToAsT protection mechanism, the appropriate
protection checks and access rights management operations are
executed) and ToAsT calls the underlying library @.

If the library returns normally, the ToAsT proxy provides the
DMA’ed area to the user’s code. If an error occurs, the proxy li-
brary informs the error handler registry (3, collects the necessary
information, and triggers an error handling event (6. The error
handler returns to the error registry either a retry, continue or abort
indication, which is forwarded to the proxy library. Finally, the
proxy library returns with either a valid or an invalid pointer.

ToAST requires a device-specific implementation of its proxy
library. However, this effort has to be done once per DMA-capable
device and is reusable across all applications.

3.2 System Model

Fault model. We assume data is shared between different software
components, e.g., libraries. However, not all components are allowed
to access all data. We consider each memory region dedicated to
a component part of a protection domain. We also assume that
accidental sharing of information across protection domains (e.g.,
without explicit pointer casting) is a critical fault. Importantly,
ToasT assumes that programmers do not have malicious intent and
only prevent inadvertent programming errors.

Programming model. ToasT is designed for heterogeneous mem-
ory types with different access semantics. We assume that the sys-
tem has a unified address space, i.e., the address does not contain
information about the type of memory it refers to. In the underlying
system, memory is accessed via memory type-specific interfaces,
e.g., device-specific library APIs or specific CPU instructions, not
via direct, common assignment operations. Note that when porting
an application to ToAsT, its logic remains unchanged. The devel-
oper only needs to adapt memory accesses to use ToasTPtr and
incorporate device-specific error handling. If the application is opti-
mized to use specific hardware features (e.g., XPLine for PM), ToAsT
preserves the optimizations as the access patterns remain intact.
Importantly, the current ToAST prototype targets C/C++ applica-
tions. However, ToAST’s techniques are language-independent and
they can be implemented at the LLVM IR level. In this way, ToAsT
can still be applied to languages providing high-level abstractions.
Type system. ToasT modifies existing types of the type system.
However, since the original type can still exist in the code base,
ToAsT preserves the existing ones but also enriches the type collec-
tion of the language. Thus, it extends the language by embedding
information that results in transformed types while maintaining
the original ones for compatibility purposes.

Memory model. ToasTPtr does not enforce any memory ordering
specification for the shared memory accesses. Therefore, ToAsTPtr
seamlessly follows the memory consistency models enforced by the
underlying C/C++ concurrency primitives. Our framework allows
specifying a memory model from sequential consistency, release-
acquire, or relaxed by the programmers. Based on the specification,
ToasTPtr enforces memory orders of its internal memory accesses.

10

ToAsT: A Heterogeneous Memory Management System

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Binary

Toast runtime

A

Memory ‘

Protection |\ Host Ilb P—»{ Host mem\

ToastPtr @

Toast compiler

%\y Error 40 . |Error handler i
handler registry lib @
Net I|b P—»{ NIC
el GO ;"'Mé‘rﬁb‘r‘y'""g‘_"‘ ' ‘

Proxy lib

|
| Storage I|b H PMEM \
|\ Enclave I|b P—»{ Enclave \

K' access || ||

S ==/~ -

Figure 2: ToasT overview: The compiler creates the binary and links it with the runtime libraries (D). The binary dereferences a
ToasTPtr (2), which results in the proxy library communicating through the protection library 3) with the devices @. In an
error case, the proxy library informs the error handler registry 5), which collects information for the handler and calls it (6.

3.3 Example Revisited

We illustrate the ToAST programming model (Listing 3) using the
simple example from Section 2 that involves a network and a storage
interface. In this example, the programmer has to perform network
and storage management with different interfaces and semantics.
We observe that the actual task concerns only copying data received
from the network (e.g., sockets, NIC) to the storage (e.g., SSD, PM).

Listing 3 shows the example code of Listing 1 and Listing 2
transformed with ToasT. It abstracts away the POSIX APIs, and the
RDMA and PM library calls as well as the device-specific operations
(e.g., polling, flushing). The intended logical functionality becomes
decoupled from device-specific library calls, allowing the program-
mer to focus only on the logical operations when programming
and debugging. ToAsT relies on the configuration files to rewrite
the simplified code and produce the expected correct binary.
Config(uration) file. ToasT encapsulates the device configuration
in a config file that contains a set of rewriting rules for device-
specific library calls. Each pointer type is associated with a header
file that incorporates implementing the desired operations (e.g.,
pointer dereference, store operation). An example configuration
file for Listing 3 is shown below:

1 "network" : {
"header" : "toast_runtime/toast_network_ptr.h",
s "type" : "ToastNet:NetworkPtr",

i "consistency" : "[SC/RA/Relaxed/NA]"
s b
» "log" : {
"header" : "toast_runtime/toast_log_ptr.h",

s "type": "ToastLog:LogPtr",
"consistency" : "[SC/RA/Relaxed/NA]"
}

The configuration file needs to be created once per device type
and can be shared between projects. The underlying libraries can
also be modified depending on the use case. The ToAsT compiler
parses this file and considers the user annotations and the ToAsTPtr
attributes that provide the compiler with the device and operation
information. Then, the compiler replaces the respective operations
based on the rewriting rules given in the configuration header files.

4 Design & Implementation

4.1 Toast Compiler

ToAST requires pointer annotations for individual memory types.
We extend the list of attributes to support the namespace toast,
which contains pointer annotations, and the attribute toast::event
for event handler callbacks, i.e., error handling. Each attribute takes

an additional user-defined parameter, which further specializes
in the type of the ToasTPtr and event handler. Thus, ToasT lifts
knowledge of the pointer’s memory type into the type system.

Since different devices expose different APIs, the compiler has
to deal with various interfaces. The programmer provides a json
configuration file, which instructs the compiler to replace specific
ToasT annotations with calls to their respective libraries, which
are placed in an internal but easily extendable database.

The ToasT compiler is built into the clang frontend (v. 16). ToAsT
leverages clang’s code generation to hook its plugin and provide
warnings and errors in case of a misuse of its attributes. It initially
collects a list of pointers annotated by the programmer with an
attribute introduced by ToasT. Then, it internally changes the types
of these pointers to ToasTPtr. Thereafter, it scans the AST for uses
of the pointers, differentiating between read and write accesses.
This allows ToAsT to insert the corresponding read or write func-
tions and checks for each memory type. Additionally, the compiler
understands a set of common memory functions, like memcpy,
memset, strcpy, which are replaced with optimized library func-
tions, providing the user-familiar standard library functions with
optimized implementations.

Changing the types of pointers may have further implications,
e.g., the return type or an argument of a function may change. The
ToasT compiler tries to infer the necessary changes. The ToasT
compiler identifies these functions and creates a copy for every
ToasTPtr type calling the specific function, which is necessary
as the libraries contain different read/write calls. This feature also
incentivizes code reuse, as the same function can be used for various
memory types. The copies of the function are transformed the same
way as user-annotated pointer accesses. In cases where the ToasT
compiler cannot change the code itself, e.g., when the definition of
the function or the caller of the function is in a different compilation
unit, TOAST requires additional function signature annotations. The
ToasT compiler further registers functions that are annotated as
error handlers in the error handler registry of the runtime library.

ToasT allows users to define their attribute parameters. Thus,
a parameter is not coupled to a specific technology and can be as
generic as Net(work). The user supplies the ToAasT compiler with a
configuration file that maps the parameters to technologies. This
file provides the compiler with information about which library
calls and checks to perform. The compiler can find all code paths
where a ToasTPtr of a specific type is used by re-compiling the
whole code base. Then, it scans the AST to find patterns defined in
the configuration and adds the necessary function calls and checks.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

—>
Protection domain exit
MPK: disable_access (lib_id) Prevented memory access
CAP: return_capabilites()

Protection domain entry,
MPK: enable_access (lib_id)
CAP: check_capabilites()

Memory region #n

Access ' ; Access

’ Application Library #m

Library #n

main transition (green and blue arrows), the appropriate
capability checks or the enabling/disabling of the access for a
protection key are performed. ToasT further prevents access
to inappropriate protection domains (red arrows).

4.2 Memory Protection

ToAsT aims to prevent information leaks due to mixups between
pointer types and libraries. For this, ToasT defines protection do-
mains inside the virtual address space (VAS) of the application
compiled with the ToAasT compiler. We implement two different
versions of protection libraries in ToAasT, shown in Figure 3. The
ToAsT protection library intercepts every call that triggers a protec-
tion domain transition, e.g., library calls, and ToasTPtr dereferences.
Note that the mechanism of the actual transition depends on the
chosen configuration. The protection library also introduces appro-
priate checks to determine the validity of each memory access.

Memory safety model. ToasT partitions the memory into mem-
ory types, each one associated with its own protection domain.
These types are restricted to specific access patterns that can be
used to define a region where bound checking can be enforced.

At protection domain transitions, ToAsT checks pointers for
spatial and temporal validity, i.e., the pointer’s internal memory
type matches the memory type of the pointer’s address. Further,
the pointer’s protection domain should match the protection do-
main being transitioned into. ToAsT prevents the dereference of
the provided pointer in case these conditions are not fulfilled. A
programmer can explicitly transform any pointer with a pointer
type cast, thus supporting zero-copy approaches.

ToAsT does not enforce memory safety within a library, as this
requires instrumenting every dereference within the library, which
can cause significant overheads. Currently, ToAST only provides
protection against accesses in non-intended memory regions via
its protection mechanisms. However, TOAST can increase the safety
guarantees through its configuration, such as by enabling the MPK
protection library, to enforce safety inside the library as well.

I: Software-based capability storage. Capabilities are an efficient
method for resource management and fine-grained access control,
suitable for security-critical systems [29, 48, 52, 64, 65, 76, 90, 91].
A capability refers to an object or resource with its access rights.
When an application attempts to access a resource (e.g., storage)
managed by a capability, the system examines the current capability
rights and permits the access or aborts the operation based on them.

In ToAST, every pointer in the user code gets transformed into
a capability and is represented as a capability object (CapObj). A
capability has an epoch and an address. ToAST leverages the fact
that both x86 and ARM require the use of a canonical pointer form

Bailleu, et al.

Table 3: ToasTPtr accesses to library calls to x86 for consis-
tency and persistency specifications.

T

Conﬁgf)AST Access Library calls x86
W(x) W(x,SC) W(x);mfence

SC R(x) R(x,SC) R(x)

W(x) Wi(x,rel) W(x)

RA R(x) R(x,acq) R(x)

W(x) W(x,rlx) W(x)

Relaxed R(x) R(x,rlx) R(x)

W(x) W(x,NA) W(x)

Default ' —275 R(xNA) R
:;;S;Sée(’;;) W) | WeM)clflush(x) | Wx)clflush(x)
Pesr(s:izt\il)'lt, W(x) W(x,SC) W(x), mfence

and stores the epoch in the higher unused bits. Thus, the user
code cannot directly dereference a capability, as it is an invalid
memory address. Further, the address is still encapsulated in the
capability and allows correct pointer arithmetic operations. This is
similar to fat pointer approaches where metadata is encoded within
the enhanced pointer representation. However, ToAsT capabilities
have the same size as raw pointer on the corresponding platform.
Therefore, ToasTPtrs do not suffer from some of the disadvantages
of common fat pointer designs, such as the increased amount of
required memory or the additional cache pressure.

ToasT’s capability protection mechanism splits the address into
indices to a multi-level table with a configurable width, inspired by
the multi-level page table design. Each table level includes metadata,
i.e. a CapObj, to infer the access rights and check whether the
memory region was revoked, or a pointer to the next level. A CapObj
contains (i) the epoch in which the memory region was created,
(ii) its access rights, i.e., R/W access, (iii) the prefix of the capability
to convert it to its canonical form, and (iv) a protection domain ID.

For a capability to be valid, its corresponding CapObj must have

the same protection domain ID as the capability. The capability’s
protection domain ID is stored in its type and, therefore does not
add extra data to the run time. Furthermore, the epoch of the capa-
bility should be equal to the epoch of the CapObj, and the epoch
that is stored with every protection domain. This allows ToAsT to
perform fast revocation of memory regions and only requires delet-
ing CapObj from the capability storage in the event of an overflow
of the epoch counter, which should happen very rarely. Note that
ToasT increments the epoch of a protection domain whenever it
is completely removed from the current execution, e.g., unloading
the corresponding library or re-initializing it.
II: Hardware-assisted protection. MPK [39] is an x86 ISA exten-
sion allowing page-level access control. It leverages 4 bits of every
page-table entry for a tag. The allocation and release of a protection
key and the page tagging operation require elevated privileges and,
therefore, are performed via system calls. However, a process can
change the granted permissions for the pages tagged with a specific
key in userspace by updating a special register (PKRU).

ToasT assigns each protection domain its memory protection
key. Additionally, every protection domain has its unique allocator
per application thread. This implies that each library operates in
different address ranges. Toast’s MPK-based protection library

ToAsT: A Heterogeneous Memory Management System

leverages this region segregation and intercepts the allocation func-
tions (e.g., malloc, realloc, free) and the mmap/munmap operations.
In this way, ToAST can tag the pages that a library allocates or maps
with the appropriate memory protection key.

On a protection domain transition, ToasT identifies the protec-
tion key of the new protection domain and enables access for the
memory regions tagged with this specific key while disabling the
rest. Protection key 0 is an exception as it is never disabled. It pro-
vides metadata essential for the program’s execution. With this
approach, access to a memory region belonging to a different pro-
tection domain results in a segmentation fault triggered by MPK.
Since MPK’s access control is thread-local, application threads can
legitimately interact with different libraries simultaneously.

Currently, ToAST supports up to 15 protection domains per appli-
cation, equal to the available memory protection keys excluding the
default one. This limitation can be lifted using software tools [80].

4.3 Memory Consistency Enforcement

Memory consistency models provide a contract between the pro-
grammer and the underlying system. This also applies to the ToasT-
Ptr while it accesses shared memory in a concurrent program. Pro-
grammers may specify a particular memory consistency model in
the configuration file for the ToasTPtr accesses. Next, the ToasTPtr
compiler generates code for the respective platform, following the
translations in Table 3. Currently, our configuration file allows the
programmer to specify a memory model in sequential consistency
(SC), release-acquire (RA), and relaxed (Rlx). Given these models,
ToasTPtr generates C/C++ atomic access library calls [57, 58] that
finally generate respective x86 instructions as shown in Table 3.
Note that, ToasT does not currently provide a mechanism to ensure
memory consistency across heterogeneous memory regions. How-
ever, ToasT could be extended to support special fences spanning
multi-memory regions, enforced by the runtime library.

For SC configuration, a write (W) access by ToasTPtr is trans-
lated to an atomic write access with SC memory order that in turn
generates a write access with a trailing mfence in x86 [2]. An SC
read (R) access by ToasTPtr is translated to an atomic read with
SC order that finally generates a read instruction in x86 [2]. For
RA configurations, the release-write and acquire-read operations
by ToAasTPtr result in respective library calls and generate write
and read accesses in x86. Similarly, for Rlx configuration, the mem-
ory accesses by ToasTPtr result in respective memory accesses
with memory order relaxed (rlx) and finally generate the respective
memory access instructions in x86 [2]. By default, the ToasTPtr
accesses result in non-atomic (NA) memory accesses that generate
write and read instructions in x86 [2]. Following these translation
schemes, the generated program follows the x86-TSO model [79].

In addition, if a memory location is marked as persistent, then
the persistent non-SC write accesses by ToasTPtr generate trailing
clflush operations on the same location along with the respective
write operations. As an mfence is stronger than clflush operation,
we do not generate clflush operations for persistent SC accesses. In
this case, the generated x86 program follows the Px86 persistent
x86-TSO model [84].

4.4 Crash Consistency and Thread Safety

Crash consistency. ToAsT preserves the crash consistency proper-
ties of the underlying invoked libraries. ToasT allows the developers

PACT ’24, October 14-16, 2024, Southern California, CA, USA

void PM_write(toast_ptr_type «ptr, toast_ptr_type new_data) const {

> TX_BEGIN(pm_pool) { /= pm_pool is set at the init phase of TOAST /

3 /+ the actual transaction code... «/

1 PM_snapshot_direct(pm_pool, ptr, sizeof(ptr));
«ptr = new_data;

} TX_ONABORT {

/= executed only if the transaction fails or is aborted by an error »/
/+ __option___ = retry, continue or abort «/
call_PM_event_handler(__option__, {pm_pool, ptr, sizeof(+ptr)});

0 }TX_END

i}

Listing 4: Error handling and crash consistency in ToasT.

to tailor read and write operations (i.e., ld/st) to the device-specific
library calls. Thus, they are eligible to use the appropriate APIs,
based on the desired crash consistency guarantees, to interact with
the storage or even encapsulate storage modifications within trans-
actions, depending on the chosen framework (e.g., SPDK, PMDK).
With this approach, ToAsT can maintain the crash consistency prop-
erties, regardless of the granularity of the device, if the suitable
device-specific library is chosen.

For instance, in case of updates in PM that exceed the atomicity
boundary of 8 bytes, ToAST can wrap PM modifications inside soft-
ware transactions provided by PMDK [8, 40] through the ToasT PM
pointer implementation specified in the configuration file, which, in
turn, ensures that the updates are performed in a crash-consistent
manner. This process is shown in Listing 4. The PM_write func-
tion is invoked when the ToasT application updates a PM object
through a PM pointer (ptr). First, a PMDK transaction is initiated
(Line 2), where the content of the object is snapshotted in the undo
log (Line 4) before its actual update (Line 5). This snapshot ensures
that in case of a crash, the application can recover the object to a
consistent state. In case of a transaction abort (Line 6), ToAsT calls
the registered event handler (Line 8) with one of the retry, continue
or abort options (Table 2) accompanied with error-related data.
However, note that ToasT is generally designed to target memory
systems beyond persistence (e.g., NIC, SGX enclave memory).
Thread safety. ToasT inherently provides the same thread-safety
guarantees with the underlying device-specific libraries. While it
does not introduce any additional race conditions, it cannot pro-
vide data isolation without the intervention of the developers. It
remains a developer’s responsibility to ensure that the performed
reads/writes to a memory region are properly synchronized. ToasT
does not interfere with the traditional locking mechanisms (e.g.,
mutex). Thus, the programmers can effortlessly leverage them out
of the box when implementing the desired ToasTPtr operations, as
they do in typical applications. Note that if sophisticated locking
mechanisms are required by a library, their logic needs to be embed-
ded into ToAsT runtime, which will be reflected in the injected code
through the ToasT compiler. This design choice enhances the de-
velopers’ flexibility, allows for synchronization optimizations (e.g.,
by only placing locks wherever they are mandatory), and promotes
compatibility with existing applications.

4.5 ToasTt Runtime Library

The runtime library implements a unified API for different memory
types and inserts necessary run-time checks. Implementing the
runtime library depends on the configuration of the technologies
chosen by the system designer.The API is implemented once for

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Bailleu, et al.

Table 4: Toast case-studies (§ 5) with memory types and LoC for the original version compared with the ToasT version.

Memory types LoC
NIC Unprotected PM Enclave DRAM Original ToAsT Reduction
Secure in-memory KVS v v 110 105 45%
Replication protocol v v v 893 852 4.6%
Persistent log v v v 123 120 2.4%
Persistent KVS v v v 225 182 19.1%

Higher is better 1

w

N

= ABD
{ =71 ABD w/ NetPtr
[ZZ] ABD w/ NetPtr w/ HostPtr
1 LT 2 4 1 Lo /) "" ""'
99 95 90 50
Read ratio [%]
Figure 4: Overhead of ToasTPtr on the throughput of the

replication protocol with ToasTPtr using the YCSB bench-
mark for different read/write ratios.

Rate [MOp/s]
=

each supported technology and can be reused in different projects.
To decrease the implementation effort, ToAasT provides templates
for commonly used patterns, which can be combined and extended.

Furthermore, the runtime library contains a map of registered
error handlers. The runtime library invokes the error handler with
appropriate parameters, handles its return code, and implements
the retry and abort functionalities.

By factoring the low-level implementation into a runtime library
(instead of implementing it directly in the compiler), we increase
the extensibility of ToasT, as this makes the addition of a new
device technology easier. Additionally, to stay compatible with as
many code bases as possible, the ToasT runtime library does not
use any libraries except the C++ standard library.

5 Application Case-studies

To evaluate ToAsT, we port four representative applications that
use different memory areas (see Table 4). These applications cover
typical programming scenarios using heterogeneous memory types
and, thus, can highlight ToasT’s achieved properties.

Secure in-memory KVS. The adoption of trusted hardware re-
sulted in a redesign of secure KVSes [25, 26, 63] to place keys and
values in different memory areas to alleviate the memory restric-
tions of TEEs and improve their performance. We port a secure in-
memory KVS [25] that accesses both enclave memory in TEEs and
untrusted host memory. The in-memory KVS judiciously partitions
the keys (enclave memory) and values (untrusted host memory)
using pointer-based data-structures, e.g., skip lists [82]. We replace
these pointers with ToasTPtrs to manage the memory accesses the
data in the untrusted memory, while preventing information leaks.
Replication protocol. Replication is a standard recipe for fault
tolerance. To this end, we adapt an implementation of the ABD
replication protocol [23, 73], based on the Avocapo project [25], to
ToasTt. To provide a secure distributed in-memory KVS, the secure
network stack differentiates between the untrusted NIC and trusted
enclave memory. It further uses untrusted host memory to store
a copy of the requested values, preventing value lifetime inconsis-
tencies and enclave pressure. We port the ABD implementation to

use ToasTPtr for both the network interface and the untrusted host
memory buffers.

Persistent distributed shared log. Shared logs are used to es-
tablish the order of operations in distributed systems [27, 59]. The
distributed servers are able to read/write entries from/to the log,
which is also replicated over multiple nodes, guaranteeing fault
tolerance. We port a persistent shared log implementation [60] to
ToasTPtr. Our log application [4] uses sockets for network commu-
nication between the system’s nodes and PM as storage. We port
both to use ToAsTPtr.

Persistent KVS. Persistent KVSs are used to store large amounts
of data in storage devices (e.g. HDDs, SSDs). Persistent storage
technologies present a high overhead compared to in-memory so-
lutions, leading to the emergence of new technologies On top of
that, persistent KVSs require fast networking to communicate with
clients [8, 10], like PM, and userspace drivers, like SPDK [10]. Like
storage technologies, network stacks have shifted to userspace [6,
44], which requires applications to differentiate between pointers
to storage, network devices, and normal memory. As our use case,
we port a MICA implementation [69] running with eRPC [60]. Here,
we adapt the network stack to use TOAST.

6 Evaluation

We evaluate ToAsT across four axes: programmability (§ 6.2), per-
formance (§ 6.3), portability (§ 6.4) and protection (§ 6.5).

6.1 Experimental Setup

Experimental testbed. We perform our experiments on a clus-
ter of 5 machines with Intel(R) Core(TM) i9-9900K CPUs, each
with 8 cores (16 HT), 64 GiB memory, 32KiB (L1D, L1I), 256 KiB
(L2), 16 MiB (L3) caches, and Intel Corporation Ethernet Controller
XL710 for 40GbE QSFP+ (rev 02) NICs.

We measure the performance of the in-memory KVS from our

case study and run the micro-benchmark for the protection libraries
on a machine with an Intel(R) Xeon Gold(TM) 5317 CPU, with 12
cores (24 HT), 256 GiB memory, 512 KiB (L1D), 384 KiB (L1I), 15 MiB
(L2), 18 MiB (L3) caches, as the 19-9900K of our networking setup
does not support MPK.
Methodology and baseline. As Section 5 explains, we port four
applications to use ToasT. We measure ToAsT’s overhead by com-
paring the performance of ToAST versions to that of unmodified
versions. We use the YCSB [16, 38] benchmark for the replication
protocol and the in-memory KVS. We perform experiments with
various read/write ratios (100%, 99%, 90%, 50%, 0% R) and different
value sizes (128 B—2KiB). For the persistent shared log and persis-
tent KVS, we use the benchmarks provided by the applications.

ToAsT: A Heterogeneous Memory Management System

Higher is better

w

N

1 ABD
4 & ABD w/ NetPtr
773 ABD w/ NetPtr w/ HostPtr

L beelZ 4 |_leet 2] Lo le Eia

128 256 512 1024 2048
Value size [B]

Figure 5: Overhead of ToasTPtr on the throughput of the
replication protocol with ToasTPtr being used for the net-
working or networking and unprotected memory in the YCSB
benchmark for different value sizes.

Rate [MOp/s]
—

6.2 Programmability

Q1: How easy is designing applications using the ToASTPtr abstrac-
tion? To answer this question, we count the lines of code (LoC)
modified in ToAsT compared to the original hand-written version
for each ToAsT use case (see Table 4).

The ToAsT version reduces the number of LoC in every applica-
tion by 2.4 %-19.1 %. Further, ToasT simplifies or eliminates compli-
cated function calls for buffer resizing or message enqueueing.

Q1 takeaway: Besides reducing LoC, ToasT also improves pro-
grammability by allowing the programmer to manage DMA-
capable devices used in an application with the same interface,
instead of having to learn and employ device-specific APIs.

6.3 Performance

Q2: What is the overhead of using ToAST compared to manually opti-
mized code? To answer this question, we compare ToAsT versions of
our four applications to the hand-optimized (unmodified original)
versions by measuring their throughput.

Secure in-memory KVS. We run the YCSB benchmark with
400 MOps over 10 M distinct keys following a uniform key dis-
tribution with different read-write ratios.

In a read heavy workload (99 % reads), the overhead introduced
by ToasTPtr is 2.8 % which increases to 11.9 % for write heavy
workloads of 50 % writes and reads. This overhead is mainly due
to ToAsT not caching decrypted data in the trusted memory but
repeatedly decrypting it on every access. As a write can generate
two accesses to the same buffer, this effect is more noticeable in
write-intensive workloads. ToAasT’s overhead could be reduced by
creating temporary objects with lifetimes greater than individual
operations. Precisely, ToAsT can be extended to allow for caching of
values to optimize data transfers. However, the current prototype
does not use such a technique, as this optimization would affect the
synchronization semantics among threads, which mandates careful
consideration.

Replication protocol. We compare the performance of the hand-
optimized ABD replication protocol to two TOAST counterparts. One
counterpart uses ToAsTPtr to access the NIC to perform network
communication, while the other uses ToasTPtr to access unpro-
tected memory for its internal KVS. We run the YCSB benchmark
with different read/write ratios (Fig. 4) and different value sizes
(Fig. 5). We run the protocol on all five servers. The benchmarks
were configured with 1.2 GOp over 2.5 M distinct keys following a
uniform key distribution. We measure the overhead of ToasTPtr
on the performance of ABD for the read ratios of 99 %, 95 %, 90 %,
and 50 % with a value size of 128 B. The overhead of ToasT for the

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Higher is better 1

11.50

C In-memory KV

223 In-memory KV w/ ToastPtr
jeisivs 1 ! sy

100 50 0
Read ratio [%]

Figure 6: Overhead of ToasTPtr on persistent KVS compared
to hand optimized version for different read ratios.

Rate [MOp/s]
= -
= =
B B
o w

11.35

Lower is better |

F10 .

£ g [Native

% 61 = Cap protection
v 44 ZZ]1 MPK protection
>

2 21

j.; 0 0 o Ml X 7 Bl e 0 M v 7]

16 64 4i<i 64iki 2 Mi

Buffer size [B]
Figure 7: Runtime overhead of ToAsT protection mechanisms
w.r.t. to the native execution for protection domain transi-
tions performing a memcpy with various buffer sizes.

networking library is 0.84 % for a read ratio of 99 %, which shrinks
down to 0.23 % as the write ratio increases to 50 %. Using TOASTPtr
also for the unprotected memory increases the overhead to 13.2 %
and 13.8 % for read ratios of 50 % and 99 %, respectively. Like the
secure in-memory KVS, the increased overhead of ToAsTPtr for
unprotected memory is due to the caching of data in protected
memory in the hand-optimized version of the ABD protocol.

The overhead of the NIC-only use of ToasTPtr is generally not
affected by the value size and is stable between 0.6 and 0.8 % until
the value size exceeds the MTU size (1500 B) of the network packets,
e.g., at value size 2KiB, the overhead is 1.5 %. Exceeding the MTU
size requires making an additional copy of each value (in eRPC) to
split into multiple packets.

Shared log. We run the shared log application with 1 server thread
and 2 clients, each having 8 threads, the largest configuration the
benchmark allowed. The entry size ranges from 64 B to 2 KiB. Fig-
ure 8 shows the throughput of both the original and the ToasT
version. ToAsT performs on par with the original version for all log
entry sizes, with a mean performance difference of around 1.8 %.
Persistent KVS. We measure the throughput of the persistent
KVS using a server application with 16 threads and 4 clients each
with 16 threads to generate the workload. We used a uniform key
distribution and read-ratio of 0 %, 50 %, 100 %. Figure 6 shows that
the original and ToAsT versions have similar performance.

Q2 takeaway: ToasT introduces negligible performance over-
head on the ported applications (< 2.8 % relative to the original
version). However, since ToAST provides a generic program-
ming model without specialized optimizations (e.g., selective
data caching), higher overheads can be observed in some cases.

6.4 Portability

Q3: How easy is it to switch underlying technologies with TOAST?
To evaluate this, we present two case studies of the network and
storage libraries.

Network library. We highlight the portability of the network stack
from traditional sockets to eRPC [60] for the persistent shared log.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

The ToasT version requires changing 71 LoC, while porting the
original code requires changes in 141 LoC. This 50 % decrease occurs
due to the different implementations of asynchronous calls between
the versions. ToasT’s 71 LoC can be reduced further by introducing
a unified asynchronous call interface in a future ToAsT version.
Storage library. We port the same persistent shared log library
from using memory-mapped files to using a PM library (PMDK [8]).
The ToAsT version requires changes to 19 lines, all in the initial-
ization phase. The hand-written port requires the same changes
and an additional 20 LoC in the storage backend logic, including
changing specialized memcpy and synchronization methods.

Q3 takeaway: ToasT significantly simplifies the porting pro-
cess of an application to use a different underlying technology.
Our experiments show that ToAsT can reduce the number of
modified LoC by up to 50 %.

6.5 Protection

Q4: What are the implications and trade-offs, in terms of perfor-
mance and safety, of TOAST’s protection mechanisms? To provide
an answer, we evaluate the performance overheads introduced by
the capability- and Intel MPK-based protection mechanisms (§ 4.2).
First, we design a microbenchmark that repeatedly performs calls
to a wrapped memcpy function through a linked library call, thus
performing protection domain transitions. Our microbenchmark
uses two protection domains. Each memcpy function call operates
on memory regions accessible from the protection domain of its call
site. Additionally, we apply the protection mechanisms to the ToAsT
skip list and shared log. Note that, like the MPK-based version, the
capability-based version is configured to provide protection guar-
antees at a page-size granularity in our experiments.
Microbenchmark. We configure our microbenchmark to copy
20 GB of data between protection domains. We vary the copied
buffer size to highlight the cost of the domain transitions. Experi-
ments with smaller buffer sizes require more memcpy operations
and, consequently, more transitions to the protection domain of
the linked library. We measure the total time required till all the
data has been copied. The presented results indicate the mean of
100 runs for each configuration.

Figure 7 illustrates the relative slowdown of the capability- and
MPK-based protection libraries compared to the native execution
of our microbenchmark. For small buffer sizes (16 B and 64 B), the
capability protection mechanism is 4.46-4.81x slower than the base-
line. The respective values for the MPK version are 8.69-9.85X. This
large slowdown is caused by the frequent, short-running transi-
tions between the protection domains, which, in turn, result in
more checks and pointer cleanups in the capability version and
more costly updates of the PKRU that can lead to pipeline stalls in
the MPK version. However, as the buffer size increases, the ToAsT
protection mechanisms induce lower overheads. When copies are
performed at the granularity of a page (4 kB), the overheads are
41% and 60 %, for the capability- and the MPK-based approach,
respectively. Lastly, we observe that for even larger buffers (64 kB
and 2 MB), ToasT’s protection libraries incur only 1-7 % slowdown
since the domain transition overhead is dominated by the longer
memcpy operations.

Bailleu, et al.
Higher is better 1
— | B -%- native
w1) Y . .
8_ '*\a*\ native w/ protection
=3 \\ —+— toast
o \\ ~*- toast w/ protection
T 24
o e ———
— "
0 500 1000 1500 2000

Entry size [B]
Figure 8: Throughput of shared log for different log entry
sizes with and without protection library enabled.

Higher is better 1

1 3 Native

1 E==1 ToastPtr
1 ZZ4 ToastPtr w/ Cap
1 =3 ToastPtr w/ MPK

1 Lz A 1 1 WAL "" ""
99 95 90 50
Read ratio [%]
Figure 9: Overhead of different protection library implemen-

tation for the in-memory KVS for various read ratios.

Rate [MOp/s]
H N WA UO N ©

Shared log. We run the shared log application with a setup identical
to that of § 6.3. We divide the shared log application into networking
and storage protection domains, with the networking buffer having
to pass through the protection domain switch. To evaluate the
overhead of the protection domain switch, we run the benchmark
in four configurations: the original shared log application, the same
application without ToasTPtr but with the protection library, the
application with ToasTPtr but without the protection library, and
a configuration using both ToasTPtr and protection library. We
execute the experiments as described in § 6.1.

Figure 8 shows the overhead of the capability-based protection
library in the shared log application. The capability protection
library adds 2.2 to 2.5 % overhead to the native solution. The capa-
bility protection library version even performs slightly better than
the unprotected ToAsT version having 1.5 to 2.5 % higher average
throughput. The low overhead of the capability version in this ap-
plication is expected, as most memory is allocated by the user code
and then supplied to libraries.

Secure in-memory KVS. We run the YCSB benchmark with
400 MOps sampled uniformly from 10 M distinct keys. Figure 9
shows the overhead of the different protection libraries for different
read-write ratios, with a key size of 8 B and value size of 128 B. The
capability version has an overhead of 1.5 % for the 99 % read work-
load. With higher write ratios, the overhead shrinks to 0.3 %. The
difference in the overhead of the capability version in read-heavy
workloads compared to write-heavy workloads is mainly due to
read operations having to perform a full capability storage lookup
as the library provides the read buffer and, therefore, needs to be
transformed into a capability. However, write operations can as-
sume a fast path as the write buffer is allocated in the user code, and
the user explicitly provides the buffer to the library. This does not
require a costly lookup and rewriting of the pointer. The MPK-based
protection library version incurs a slowdown of 11.0 — 37.3 % for the
various workloads. We observe that the overhead decreases as the
read ratio increases. This is expected as the fewer put operations

ToAsT: A Heterogeneous Memory Management System

imply less frequent memory allocations and a smaller application
memory footprint, leading to fewer page tagging operations.

Q4 takeaway: ToasT allows developers to choose which protec-
tion mechanism suits their application better depending on the
memory access patterns and the desired memory-safety granu-
larity. The overheads of the mechanisms will vary for each case
but remain reasonable.

7 Related Work

OS memory management. The OS provides drivers to commu-
nicate with devices [7, 12] on the kernel side and sockets/file de-
scriptors on the userspace side. However, modern systems prefer
userspace libraries to directly communicate with the device and
manage heterogeneous memory areas for improved performance,
as in DPDK [6], RDMA [44, 50, 61] and eRPC [60] for remote calls,
SPDK [10] for SSDs, or PMDK [8] for PM. However, there is no
unifying abstraction across these libraries.

Unified API efforts like oneapi [13, 22], memif [70], EXOCHI [89]
and SYCL [42, 49] focus on specific device classes, e.g., GPUs/FPGAs,
and introduce one API per use-case. While our idea of unifying
APIs is similar, ToasT goes further by lifting the communication
completely into the compiler and removing special API calls, while
also considering the safety aspect.

Additionally, ToAsT strives to be generic (i.e., handle every type
of device that can be mapped to memory). Further, if ToAsT is
implemented on the LLVM IR level, it can be language agnostic
and be used in various toolchains. On the other hand, systems such
as SYCL [42, 49] or EXOCHI [89] aim to provide a programming
framework for heterogeneous accelerators and are strongly binded
to C/C++ applications.

On top of that, ToasT complements CXL [37] in terms of (i)
memory types and (ii) access properties. Firstly, TOAST targets
a broader range of memory types that are beyond supported by
CXL devices, including, but not limited to, secure enclave memory
regions, NIC memory or SPDK buffers. Secondly, CXL devices do
not provide access properties such as a protection mechanism.

Memory Consistency and persistency. Memory consistency
models are widely studied for C/C++ programming languages [28,
34, 62, 66], compilers [32, 33, 75], and architectures [20, 21, 79, 83].
Based on these models, compiler transformations and mappings to
the architectures are proven correct for different models including
x86 [28, 81, 85]. These results have resulted in the mapping schemes
in [2] which we follow in ToasT’s approach. More recently, per-
sistency properties in the Intel x86 architecture are explored and
the properties of the persistent accesses are formalized in Px86 [84]
which we follow in the ToAsT compiler.
Compiler-based memory management. Compiler-based ap-
proaches are used in shared memory systems to optimize memory
accesses, e.g., UPC [35], OpenMP [14], HPF [19], OpenCL SVM [41].
In particular, OpenCL SVM enables the host and device portions
of an OpenCL application to seamlessly share pointers and com-
plex pointer-containing data structures. However, SVM is strictly
restricted to the OpenCL programming model.

Other research has looked into using DMA support in the com-
piler for heterogeneous compute units [45], static analysis [24],
compiler-based approaches [47, 74], secure memory management

PACT ’24, October 14-16, 2024, Southern California, CA, USA

[71, 78], or even programming language Verona [15]. However,
none of these approaches deals with different memory layouts and
access patterns based on heterogeneous memory types.
Software-based protection and isolation. Software capabilities
have been studied for intra-process memory isolation by intro-
ducing capabilities to memory areas and system calls to either
threads [31, 72] or objects that can be held by a thread [55]. Two
other common techniques to provide isolation are Software Fault
Isolation (SFI) [88] and Control-Flow Integrity (CFI) [18]. Other
software-based approaches rely on sandboxing to prevent illegal
accesses, which cannot be proven correct statically [46, 51, 94].
ToAsT does not provide strict memory isolation between differ-
ent components. Instead, it aims at preventing erroneous sharing
of sensitive data. It limits code injection to protection domain tran-
sitions and does not require every access to be secured, reducing
the amount of injected code and performance overhead, while also
being easier to integrate.
Hardware-based protection and isolation. CHERI [91], IBM Sys-
tem 38 [30, 54], M-Machine [43] and ARM MTE [1] are examples
of hardware support for fat pointers. Other hardware approaches
are Page Groups, e.g. HP PA-RISC [17], Intel MPK [11] and ARM
Domains [3] that tag memory areas, and Mondrian Memory Pro-
tection [92] that separates access rights from translation metadata.
These approaches can force access to specific memory regions to go
through designated access control gates, thus preventing erroneous
accesses. Another hardware-based approach is capability storage
systems, such as Intel iAPX 432 [93] and CODOM [87]. This is dif-
ferent from fat pointer schemes, as metadata is stored in multi-level
tables. In contrast to these approaches, ToAsT capabilities do not
require hardware support. Further, ToasT protection aims to unify
the access APIs of different kinds of memory, while maintaining
easy-to-use for the programmer.

8 Conclusion

We present ToAsT, a compiler-based abstraction for heterogeneous
memory management. TOAST builds on the observation that al-
though accesses to heterogeneous memory require different li-
braries with vastly different interfaces, all interfaces essentially
perform the same basic task of loading data from or storing data in
a memory region. ToAsT makes this uniform for the programmer
by introducing the abstractions of memory types and the pointer
type ToasTPtr, that work with familiar load and store operations.
Further, ToasT provides programmable error handling callbacks
and memory consistency enforcement mechanisms as part of its
programming model. Lastly, ToasT offers a selection of protec-
tion libraries to prevent accidental memory handling errors by
developers. Our evaluation based on four applications, which use
heterogeneous memory types, shows that TOAST improves pro-
grammability, offers memory safety, and eases portability to new
libraries/memory types, with low to moderate overhead relative to
hand-optimized code.

Software availability. ToAsT is publicly available along with its
entire setup (https://github.com/TUM-DSE/Toast).

https://github.com/TUM-DSE/Toast

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Acknowledgments

We

thank our shepherd and the anonymous reviewers for their

helpful comments. This work was partially supported by a Schw-
erpunktprogramm (SPP) (ID: 2377) from Deutsche Forschungsge-
meinschaft (DFG) and an ERC Starting Grant (ID: 101077577).

References

(1]

(2]

=

[10]
[11]

[12]

==
LA

[15]

[16
[17

[18

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28

[n.d.]. Armv 8.5 - A: Memory Tagging Extension. https://documentation-
service.arm.com/static/624ea580caabfd7b3c13e23f?token=. Last accessed: Oct
2020.

[n.d.]. C/C++11 mappings to processors. https://www.cl.cam.ac.uk/~pes20/cpp/
cppOxmappings.html.

[n.d.]. Domains. https://developer.arm.com/documentation/ddi0211/k/memory-
management-unit/memory-access-control/domains. Last accessed: Oct 2020.
[n.d.]. eRPC: a log store application. https://github.com/erpc-io/eRPC/tree/
master/apps/log. https://github.com/erpc-io/eRPC/tree/master/apps/log Last
accessed: Jan, 2022.

[n.d.]. eRPC-Raft. https://github.com/erpc-io/eRPC/tree/master/apps/smr.
[n.d.]. Intel DPDK. http://dpdk.org/.

[n.d.]. Intel Network Adapter Driver for PCle* 40 Gigabit Ethernet Network
Connections under Linux™. https://www.intel.com/content/www/us/en/
download/18026/intel-network-adapter-driver-for-pcie-40-gigabit-ethernet-
network-connections-under-linux.html. Last accessed: Jan, 2022.

[n.d.]. Intel Persistent Memory Development Kit (PMDK). https://pmem.io/
pmdk/.

[n.d.]. Intel Software Guard Extensions (Intel SGX). https://software.intel.com/
en-us/sgx.

[n.d.]. Intel Storage Performance Development Kit. http://www.spdk.io.

[n.d.]. Intel® 64 and IA-32 Architectures Software Developer Manuals. https:
//software.intel.com/content/www/us/en/develop/articles/intel-sdm.html. Last
accessed: Oct 2020.

[n.d.]. Linux* Base Driver for Intel Gigabit Ethernet Network Connec-
tions. https://www.intel.com/content/www/us/en/support/articles/000005480/
ethernet-products.html. Last accessed: Jan, 2022.

[n.d.]. oneAPL https://www.oneapi.com/. Last accessed: Dec, 2021.

[n.d.]. OpenMP: The OpenMP API specification for parallel programming. https:
//www.openmp.org/. Last accessed: Dec 2021.

[n.d.]. Project Verona: Research programming language for concurrent owner-
ship. https://microsoft.github.io/verona/. Last accessed: Oct, 2022.

[n.d.]. YCSB. https://github.com/brianfrankcooper/YCSB.

1990. PA-RISC 1.1 Architecture and Instruction Set: Reference Manual. Hewlett
Packard. https://books.google.de/books?id=UahBuAAACAA]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-Flow
Integrity Principles, Implementations, and Applications. (2009).

V. Adve, Guohua Jin, J. Mellor-Crummey, and Qing Yi. 1998. High Performance
Fortran Compilation Techniques for Parallelizing Scientific Codes. In SC "98:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing.

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc
Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM
Trans. Program. Lang. Syst. 43, 2, Article 8 (2021), 54 pages. https://doi.org/10.
1145/3458926

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: mod-
elling, simulation, testing, and data-mining for weak memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1-7:74. https://doi.org/10.1145/2627752
J.Gold Associates. [n. d.]. oneAPI: Software Abstraction for a Heterogeneous Com-
puting World. https://jgoldassociates.com/White_Papers/OneAPI_Whitepaper.
pdf.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly
in Message-passing Systems. J. ACM (1995).

Oren Avissar, Rajeev Barua, and Dave Stewart. 2001. Heterogeneous Memory
Management for Embedded Systems. In Proceedings of the 2001 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems (CASE 01).
Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay Na-
garajan, and Pramod Bhatotia. 2021. Avocado: A Secure In-Memory Distributed
Storage System. In 2021 USENIX Annual Technical Conference (ATC’21).
Maurice Bailleu, Jorg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. 2019. SPEICHER: Securing LSM-based Key-Value Stores using
Shielded Execution. In 17th USENIX Conference on File and Storage Technologies
(FAST).

Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran,
Michael Wei, and Ted Wobber. 2013. CORFU: A Distributed Shared Log. (2013).
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ concurrency. In POPL’11. ACM, 55-66. https://doi.org/10.
1145/1926385.1926394

[29

[30

(31]

'w
£,

[33

(34

[35

[36

(37]

'@
&

[39

[40

[41

[42

S
&

[44

[45

=
&

~
=

=
&

[52

[53

Bailleu, et al.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(Big Sky, Montana, USA) (SOSP '09). Association for Computing Machinery, New
York, NY, USA, 29-44. https://doi.org/10.1145/1629575.1629579

Viktors Berstis. 1980. In Proceedings of the 7th Annual Symposium on Computer
Architecture (ISCA ’80). http://doi.acm.org/10.1145/800053.801932

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-Privilege Compartments. (2008).

Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimizations of
concurrent C/C++ programs. In CGO’16. ACM, 216-226. https://doi.org/10.1145/
2854038.2854051

Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the Concurrency
Semantics of an LLVM Fragment. In CGO ’17. IEEE, 100-110.

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with
Event Structures. 3, POPL (2019). https://doi.org/10.1145/3290383

Wei-Yu Chen, C. Iancu, and K. Yelick. 2005. Communication optimizations
for fine-grained UPC applications. In 14th International Conference on Parallel
Architectures and Compilation Techniques (PACT’05).

Clang: a C language family frontend for LLVM [n. d.]. Clang: a C language family
frontend for LLVM. https://clang.llvm.org/. https://clang.llvm.org/ Last accessed:
Jan, 2021.

CXL™ Consortium. August 29, 2024. Compute Express Link™: The Breakthrough
CPU-to-Device Interconnect. https://www.computeexpresslink.org/.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud computing (SoCC).

LWN-Jonathan Corbet. [n. d.]. Memory Protection Keys. https://lwn.net/Articles/
643797/. https://lwn.net/Articles/643797/ Last accessed: Oct, 2022.

Intel Corporation. [n.d.]. C++ Transactions for Persistent Memory Program-
ming. https://www.intel.com/content/www/us/en/developer/articles/technical/c-
plus-plus-transactions-for-persistent-memory-programming.html.

Intel Corporation. [n.d.]. OpenCL™ 2.0 Shared Virtual Memory Overview.
https://www.intel.com/content/www/us/en/developer/articles/technical/
opencl-20-shared-virtual-memory- overview.html.

Intel Corporation. [n.d.]. What is SYCL? Quick Guide to SYCL Implementa-
tions. https://www.intel.com/content/www/us/en/developer/articles/technical/
quick-guide-to-sycl-implementations.html#gs.56e52p.

William] Dally, Stephen W Keckler, Nick Carter, Andrew Chang, Marco Fillo,
and Whay S Lee. 1994. M-Machine architecture v1. Technical Report. 0. Technical
Report-MIT Concurrent VLSI Architecture Memo 58, Massachusetts Institute of
Technology.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
2014. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

Alexandre Eichenberger, K. O’Brien, Peng Wu, Tong Chen, P. Oden, Dan Prener,
J.C. Shepherd, Byoungro So, Zehra Sura, A. Wang, Tao Zhang, Peng Zhao, and
Michael Gschwind. 2005. Optimizing Compiler for the CELL Processor. In 14th
International Conference on Parallel Architectures and Compilation Techniques
(PACT?05).

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C.
Necula. 2006. XFI: Software Guards for System Address Spaces. In 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 06).

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. 2021. Enclosure: Language-Based Restriction of Untrusted Libraries. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS °21 (Virtual, USA).
Google. [n.d.]. Fuchsia. https://fuchsia.dev/. https://fuchsia.dev/ Last accessed:
Oct, 2022.

The Khronos® Group. [n.d.]. SYCL Overview. https://www.khronos.org/sycl/.
Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In Pro-
ceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SSGCOMM
’16). 202-215.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the Web
up to Speed with WebAssembly. SIGPLAN Not. (2017).

Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Hartig. 2019.
SemperOS: A Distributed Capability System. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 709-722. https:
//www.usenix.org/conference/atc19/presentation/hille

Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. 2018. PASTE: A
Network Programming Interface for Non-Volatile Main Memory. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman. 1981. IBM System/38
Support for Capability-Based Addressing. In ISCA.

https://documentation-service.arm.com/static/624ea580caabfd7b3c13e23f?token=
https://documentation-service.arm.com/static/624ea580caabfd7b3c13e23f?token=
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://developer.arm.com/documentation/ddi0211/k/memory-management-unit/memory-access-control/domains
https://developer.arm.com/documentation/ddi0211/k/memory-management-unit/memory-access-control/domains
https://github.com/erpc-io/eRPC/tree/master/apps/log
https://github.com/erpc-io/eRPC/tree/master/apps/log
https://github.com/erpc-io/eRPC/tree/master/apps/log
https://github.com/erpc-io/eRPC/tree/master/apps/smr
http://dpdk.org/
https://www.intel.com/content/www/us/en/download/18026/intel-network-adapter-driver-for-pcie-40-gigabit-ethernet-network-connections-under-linux.html
https://www.intel.com/content/www/us/en/download/18026/intel-network-adapter-driver-for-pcie-40-gigabit-ethernet-network-connections-under-linux.html
https://www.intel.com/content/www/us/en/download/18026/intel-network-adapter-driver-for-pcie-40-gigabit-ethernet-network-connections-under-linux.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://www.spdk.io
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/support/ articles/000005480/ethernet-products.html
https://www.intel.com/content/www/us/en/support/ articles/000005480/ethernet-products.html
https://www.oneapi.com/
https://www.openmp.org/
https://www.openmp.org/
https://microsoft.github.io/verona/
https://github.com/brianfrankcooper/YCSB
https://books.google.de/books?id=UahBuAAACAAJ
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://jgoldassociates.com/ White_Papers/OneAPI_Whitepaper.pdf
https://jgoldassociates.com/ White_Papers/OneAPI_Whitepaper.pdf
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/800053.801932
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/3290383
https://clang.llvm.org/
https://clang.llvm.org/
https://www.computeexpresslink.org/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://www.intel.com/content/www/us/en/developer/articles/technical/c-plus-plus-transactions-for-persistent-memory-programming.html
https://www.intel.com/content/www/us/en/developer/articles/technical/c-plus-plus-transactions-for-persistent-memory-programming.html
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/quick-guide-to-sycl-implementations.html#gs.56e52p
https://www.intel.com/content/www/us/en/developer/articles/technical/quick-guide-to-sycl-implementations.html#gs.56e52p
https://fuchsia.dev/
https://fuchsia.dev/
https://www.khronos.org/sycl/
https://www.usenix.org/conference/atc19/presentation/hille
https://www.usenix.org/conference/atc19/presentation/hille

ToAsT: A Heterogeneous Memory Management System

[55] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.
2016. Enforcing Least Privilege Memory Views for Multithreaded Applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security.

[56] J.Huang, X. Ouyang, J. Jose, M. Wasi-ur-Rahman, H. Wang, M. Luo, H. Subramoni,
C. Murthy, and D. K. Panda. 2012. High-Performance Design of HBase with
RDMA over InfiniBand. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium (IPDPS).

] ISO/IEC 14882. 2011. Programming Language C++.

[58] ISO/IEC 9899. 2011. Programming Language C.

] Minwen Ji, Alistair Veitch, and John Wilkes. 2003. Seneca: Remote Mirroring
Done Write. In 2003 USENIX Annual Technical Conference (USENIX ATC 03).
[60] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can

be General and Fast. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[61] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO, 437-450. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[62] Jeehoon Kang, Hur, Chung-Kil, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A promising semantics for relaxed-memory concurrency. In POPL’17. ACM.

[63] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk Huh.

2019. ShieldStore: Shielded In-Memory Key-Value Storage with SGX. In Proceed-

ings of the Fourteenth EuroSys Conference 2019 (EuroSys).

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. SeL4: Formal

Verification of an Operating-System Kernel. Commun. ACM 53, 6 (jun 2010),

107-115. https://doi.org/10.1145/1743546.1743574

[65] Genode Labs. [n.d.]. Genode. https://genode.org/. https://genode.org/ Last

accessed: Oct, 2022.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.

2017. Repairing Sequential Consistency in C/C++11. In PLDI 2017. 618-632.

https://doi.org/10.1145/3062341.3062352

[67] R.P.LaRowe, C.S. Ellis, and M.A. Holliday. 1992. Evaluation of NUMA memory

management through modeling and measurements. IEEE Transactions on Parallel

and Distributed Systems.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis and Transformation. In CGO. San Jose, CA, USA,

75-88.

[69] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14). USENIX
Association, Seattle, WA, 429-444. https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/lim

[70] Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards Programming Heteroge-
neous Memory Asynchronously. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’16).

[71] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Ridiger
Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic Appli-
cation Partitioning for Intel SGX. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference.

[72] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Ab-
straction for Safety and Performance. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16).

[73] N. A.Lynch and A. A. Shvartsman. 1997. Robust emulation of shared memory

using dynamic quorum-acknowledged broadcasts. In Proceedings of IEEE 27th

International Symposium on Fault Tolerant Computing (FtCS).

Deepak Majeti, Rajkishore Barik, Jisheng Zhao, Max Grossman, Vivek Sarkar,

Dieter Mey, Michael Alexander, Paolo Bientinesi, Mario Cannataro, Carsten

Clauss, Alexandru Costan, Gabor Kecskemeti, Christine Morin, Laura Ricci, Julio

Sahuquillo, Martin Schulz, Vittorio Scarano, Stephen L. Scott, and Josef Weiden-

dorfer. 2014. Compiler-Driven Data Layout Transformation for Heterogeneous

Platforms. In Euro-Par 2013: Parallel Processing Workshops. Springer Berlin Hei-

delberg.

[75] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
testing via a theory of sound optimisations in the C11/C++11 memory model. In
PLDIr'13. ACM, 187-196. https://doi.org/10.1145/2491956.2491967

[76] R. M. Needham and R. D.H. Walker. 1977. The Cambridge CAP Computer and

Its Protection System. In Proceedings of the Sixth ACM Symposium on Operating

Systems Principles (West Lafayette, Indiana, USA) (SOSP ’77). Association for

Computing Machinery, New York, NY, USA, 1-10. https://doi.org/10.1145/

800214.806541

NVIDIA. [n.d.]. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit.

[64

[66

[68

[74

[77

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark Silberstein. 2019.
CoSMIX: A Compiler-based System for Secure Memory Instrumentation and
Execution in Enclaves. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19).

Scott Owens. 2010. Reasoning about the Implementation of Concurrency Ab-
stractions on x86-TSO. In ECOOP. 478-503.

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 241-254. https://www.usenix.org/conference/atc19/presentation/
park-soyeon

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap
between Programming Languages and Hardware Weak Memory Models. Proc.
ACM Program. Lang. 3, POPL (2019). https://doi.org/10.1145/3290382

William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Communication of ACM (CACM) (1990).

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and
Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic
and operational models for ARMv8. PACMPL 2, POPL (2018), 19:1-19:29. https:
//doi.org/10.1145/3158107

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019. Persistency
Semantics of the Intel-X86 Architecture. Proc. ACM Program. Lang. 4, POPL,
Article 11 (dec 2019), 31 pages. https://doi.org/10.1145/3371079

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc
Maranget, Jade Alglave, and Derek Williams. 2012. Synchronising C/C++ and
POWER. In PLDI'12. ACM, 311-322. https://doi.org/10.1145/2254064.2254102
sdk, sgx, intel [n.d.]. Intel Software Guard Extensions SDK for Linux. https:
//01.org/intel-softwareguard-extensions. https://01.org/intel-softwareguard-
extensions

Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2014. CODOMs: Protecting software with Code-centric memory Domains. In
2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).
Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. (1993).

Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian,
Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. 2007. EXOCHI:
architecture and programming environment for a heterogeneous multi-core
multithreaded system. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation (San Diego, California, USA)
(PLDI ’07). Association for Computing Machinery, New York, NY, USA, 156-166.
https://doi.org/10.1145/1250734.1250753

Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2012.
A Taste of Capsicum: Practical Capabilities for UNIX. Commun. ACM 55, 3 (mar
2012), 97-104. https://doi.org/10.1145/2093548.2093572

Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In 2015 IEEE Symposium on Security
and Privacy.

Emmett Witchel, Junghwan Rhee, and Krste Asanovi¢. 2005. Mondrix: Memory
Isolation for Linux Using Mondriaan Memory Protection. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles.

Ian H. Witten and John G. Cleary. 1983. An introduction to the architecture of
the Intel iAPX 432. Software & Microsystems (1983).

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client:
A Sandbox for Portable, Untrusted x86 Native Code. In 2009 30th IEEE Symposium
on Security and Privacy.

https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1145/1743546.1743574
https://genode.org/
https://genode.org/
https://doi.org/10.1145/3062341.3062352
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1145/800214.806541
https://doi.org/10.1145/800214.806541
https://developer.nvidia.com/cuda-toolkit
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3371079
https://doi.org/10.1145/2254064.2254102
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://doi.org/10.1145/1250734.1250753
https://doi.org/10.1145/2093548.2093572

	Abstract
	1 Introduction
	2 Motivation: The 4P Challenges
	3 Overview
	3.1 The Toast Programming Model
	3.2 System Model
	3.3 Example Revisited

	4 Design & Implementation
	4.1 Toast Compiler
	4.2 Memory Protection
	4.3 Memory Consistency Enforcement
	4.4 Crash Consistency and Thread Safety
	4.5 Toast Runtime Library

	5 Application Case-studies
	6 Evaluation
	6.1 Experimental Setup
	6.2 Programmability
	6.3 Performance
	6.4 Portability
	6.5 Protection

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

