Gramine-TDX

A Lightweight OS Kernel for Confidential VMs

Dmitrii Kuvaiskii, **Dimitrios Stavrakakis**, Kailun Qin, Cedric Xing, Pramod Bhatotia, Mona Vij

ACM CCS 2024

Confidential Virtual Machines (CVMs)

intel TIM

Problem statement

How to design a **generic, minimal, security-first** kernel for confidential VMs with a **small attack surface**?

A Lightweight OS Kernel for Confidential VMs

Design goals:

- Minimal attack surface
- Small Trusted Computing Base (TCB)
- Support of diverse applications, frameworks and languages
- Ease of use and deployment

intel TM

Motivation

- Design
- Implementation
- Evaluation

Design – Intel TDX

intel TM

Design – Strawman design

intel TM

Design – Gramine LibOS

- Mature confidential computing project
- Active development for the last ~10 years
- Modular design
- Offloads functionalities to the host
- Manifest file for security configuration

Design – Challenges

<u>#1 Preserve a small TCB</u>

#2 Minimal interface & hardening

#3 Practical cloud deployment

Design – Challenges

#1 Preserve a small TCB

Simplistic implementation of OS primitives Include **the bare minimum** virtio drivers

<u>#2 Minimal interface & hardening</u>

#3 Practical cloud deployment

Design – Challenges

#1 Preserve a small TCB

Simplistic implementation of OS primitives Include **the bare minimum** virtio drivers

<u>#2 Minimal interface & hardening</u>

Expose **limited** entry points **Verify** against known hashes/values

#3 Practical cloud deployment

Design – Challenges

#1 Preserve a small TCB

Simplistic implementation of OS primitives Include **the bare minimum** virtio drivers

<u>#2 Minimal interface & hardening</u>

Expose **limited** entry points **Verify** against known hashes/values

#3 Practical cloud deployment

Hypervisor-agnostic design Standardized virtio devices and VM techniques

Hypervisor

intel. TIM

intel. TIM

intel TIM

intel TM

Motivation

- Implementation
- Evaluation

Implementation

intel TM

- TDX-Backend written from scratch (~17K LoC)
- Reuse of **70**% of Gramine code
- Minimal implementation of only **3 drivers**
- Use **TD-Shim** as the Virtual BIOS

Implementation – Security analysis

intel. TM

- Minimized attack surface
 - Limited entry points for untrusted inputs & use of trusted HW primitives (e.g., CPUID)
- Input validation and hardening
 - Inputs are verified against expected ranges/values and known safe hashes
- Confidentiality and integrity
 - Protection of code and data via the TEE, files via the manifest and networking via TLS
- Secure measurement of software stack
 - Intel TDX remote attestation ensures trust in the running environment

Motivation

- Design
- Implementation
- Evaluation

intel. TM

Security evaluation

Kernel	Binary (MB)	LoC	#inputs
Ubuntu 22.04 v5.19	68	~2M	15628
Intel TDX v5.19	56	~2M	1098
Firecracker v6.1	27	~1M	911
Gramine-TDX	1.2	57K	177

Security evaluation

Kernel	Binary (MB)	LoC	#inputs
Ubuntu 22.04 v5.19	68	~2M	15628
Intel TDX v5.19	56	~2M	1098
Firecracker v6.1	27	~1M	911
Gramine-TDX	1.2	57K	177

Security evaluation

Kernel	Binary (MB)	LoC	#inputs
Ubuntu 22.04 v5.19	68	~2M	15628
Intel TDX v5.19	56	~2M	1098
Firecracker v6.1	27	~1M	911
Gramine-TDX	1.2	57K	177

Gramine-TDX is ~50× smaller than the Linux kernel and has a minimal attack surface

Performance evaluation

intel TLM

What is the performance impact of Gramine-TDX in:

- CPU-intensive applications
 - PyTorch, OpenVINO, TensorFlow, candle, Blender, Image processing apps
- Storage & network I/O intensive applications
 - SQLite, Redis, Memcached, lighttpd
- System operations
 - UnixBench
- Boot time
 - Microbenchmarks

Performance evaluation

intel TLM

What is the performance impact of Gramine-TDX in:

- CPU-intensive applications
 - PyTorch, OpenVINO, TensorFlow, candle, Blender, Image processing apps
- Storage & network I/O intensive applications
 - SQLite, Redis, Memcached, lighttpd
- System operations
 - UnixBench
- Boot time
 - Microbenchmarks

Performance evaluation

intel TM

- Experimental setup:
 - Intel Xeon Platinum 8570 PU (3.60GHz, 56 cores)
 - 1 TB (16 channels x 64 GB) DRAM
 - Intel TDX Module v1.5
 - Host & Guest: Intel TDX-enabled Linux kernel v6.8
- Variants:
 - \circ Native \rightarrow Bare-metal execution
 - \circ Normal VM \rightarrow Execution in standard VM with Linux kernel
 - \circ Intel TDX VM \rightarrow Execution in Intel TDX VM with Linux kernel
 - Gramine-TDX → Execution in Intel TDX VM with Gramine-TDX kernel

CPU intensive applications

Tensorflow app using the BERT Large model

CPU intensive applications

Tensorflow app using the BERT Large model

Gramine-TDX incurs minimal overheads in CPU intensive applications

Storage I/O intensive applications

SQLite kvtest workloads using files backed by different filesystems (ext4, tmpfs)

Storage I/O intensive applications

SQLite kvtest workloads using files backed by different filesystems (ext4, tmpfs)

Gramine-TDX pays a high performance tax for file I/O done through its virtio-fs driver

Network I/O intensive applications

intel TIM

Redis server throughput (redis-benchmark, default settings)

Network I/O intensive applications

intel TIT

Redis server throughput (redis-benchmark, default settings)

Gramine-TDX can incur considerable overheads in network I/O intensive applications

How to design a **minimal, security-first** kernel for confidential VMs with a **small attack surface**?

Gramine-TDX: A Lightweight OS Kernel for Confidential VMs

- Minimal attack surface
- Small Trusted Computing Base (TCB)
- Compatibility with diverse applications, frameworks, and languages
- Easy to use and deploy

Try it out!

https://github.com/gramineproject/gramine-tdx

