
Gramine-TDX: A Lightweight OS Kernel for Confidential VMs
Dmitrii Kuvaiskii∗

Intel Labs
Neubiberg, Germany

Dimitrios Stavrakakis∗†
The University of Edinburgh
Edinburgh, United Kingdom

Technical University of Munich
Munich, Germany

Kailun Qin
Intel Corporation
Shanghai, China

Shanghai Jiao Tong University
Shanghai, China

Cedric Xing
Intel Corporation

Santa Clara, United States

Pramod Bhatotia
Technical University of Munich

Munich, Germany

Mona Vij
Intel Labs

Hilsboro, United States

ABSTRACT

While Confidential Virtual Machines (CVMs) have emerged as a
prominent way for hardware-assisted confidential computing, their
primary usage is not suitable for small, specialized, security-critical
workloads, i.e., legacy VMs with their conventional OS distributions
result in a large trusted computing base.

In this paper, we present the Gramine-TDXOS kernel to execute
slim, single-purpose, security-first, unmodified Linux workloads
with a minimal attack surface. In comparison to a typical Linux ker-
nel, Gramine-TDX’s codebase is ∼ 50× less in binary size and has a
significantly smaller attack surface, which makes it a perfect match
for emerging cloud-native confidential-computing workloads. Our
evaluation on 11 workloads indicates that Gramine-TDX has 1-25%
average overhead for CPU- and memory-intensive applications.
Performance on network- and FS-intensive applications can drop to
6% of the native application’s, as Gramine-TDX prioritizes security
over optimizations in virtual hardware communication. We build
our prototype using Intel®Trust Domain Extensions (TDX).

CCS CONCEPTS

• Security and privacy → Systems security; Trusted comput-

ing; • Software and its engineering→ Operating systems.

KEYWORDS

Confidential computing; Security; Intel TDX; Gramine; OS

ACM Reference Format:

Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric Xing, Pramod
Bhatotia, and Mona Vij. 2024. Gramine-TDX: A Lightweight OS Kernel for
Confidential VMs. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10
.1145/3658644.3690323
∗Both authors contributed equally to the paper.
†This work was done when interned at Intel.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690323

1 INTRODUCTION

Confidential Computing solutions secure data at all stages of data
processing [30]. Confidential Computing relies on Trusted Execu-
tion Environment (TEE) technologies, which can be divided into
two groups: (i) process-based TEEs (e.g., Intel SGX [31, 64]) and
(ii) virtual machine (VM)-based TEEs (e.g., Intel TDX [44], AMD
SEV [22], ARM CCA [60]).

VM-based TEEs, also called Confidential VMs (CVMs), allow to
deploy hardware-isolated encrypted VMs, protected against a wide
range of insider attacks [78]. The main target for CVMs are legacy
feature-rich VMs with monolithic OS kernels. In a nutshell, they
protect entire VMs from privileged attackers and allow running
workloads in a secure and isolated manner. However, this primary
usage of CVMs is not suitable for small, specialized, security-critical
applications: legacy VMs with their conventional OS distributions
and a plethora of applications, tools, and files result in unnecessarily
bloated TEEs with a large attack surface.

The attack surface of CVMs is comprised of several interfaces
to interact with the untrusted host. A malicious host can snoop
on these interfaces or inject unexpected/erroneous values through
them. The CVM attack surface typically consists of (i) the shared
memory between the CVM and the host, (ii) port and memory-
mapped I/O, (iii) a set of hypercalls and (iv) interrupts/exceptions
for event notifications [21, 29]. Different TEE technologies may
introduce further attack vectors such as untrusted CPUID leaves.

Most VMs in cloud environments use Linux as their OS kernel,
which is designed to trust the hypervisor on the host platform. How-
ever, there is a growing concern of privileged insider attacks [70],
where the attacker controls the hypervisor and the rest of the infras-
tructure. Thus, hardening the Linux kernel, i.e., making the kernel
secure and stable in the face of a malicious hypervisor and misbe-
having virtual hardware, becomes a timely, non-trivial problem.

We highlight the complexity of hardening the Linux kernel by
calculating the Trusted Computing Base (TCB) metrics in Table 1.
The TCB size closely correlates with the potential vulnerabilities
and the system’s attack surface [48, 66]. We compare three kernel
variants: (a) general-purpose HWE Linux kernel v5.19 shipped in
Ubuntu 22.04, (b) Linux kernel v5.19 patched and configured for
Intel TDX [11], and (c) Linux kernel v6.1 configured for Amazon
Firecracker MicroVMs [6]. Columns 2-6 show different TCBmetrics:
the size of the uncompressed kernel binary, its code segment size,
the number of features enabled in the kernel, the Lines of Code
(LoC) that are actually compiled into the Linux kernel, and the

https://orcid.org/0009-0002-3342-4494
https://orcid.org/0000-0002-3667-3763
https://orcid.org/0009-0004-3372-8724
https://orcid.org/0009-0002-2346-2585
https://orcid.org/0000-0002-3220-5735
https://orcid.org/0000-0002-5309-0391
https://doi.org/10.1145/3658644.3690323
https://doi.org/10.1145/3658644.3690323
https://doi.org/10.1145/3658644.3690323


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

Table 1: TCB Comparison with Linux kernel variants.

Kernel Binary (MB) Code (MB) #features LoC (K) #inputs
Ubuntu 22.04 v5.19 68 19.5 2,877 2,048 15,628
Intel TDX v5.19 56 19.5 2,836 2,046 1,098
Firecracker v6.1 27 8.6 789 1,067 911
Gramine-TDX 1.2 0.7 — 57 177

number of code points at which untrusted input is loaded from
the host at runtime. For the last metric, we use the smatch static
analyser with Intel TDX-specific patterns [10].

As it is evident from Table 1, the Linux kernel is massive and
complex. Even a fine-tuned Firecracker version enables 789 features,
resulting in a large TCB of 8.6MB of binary code and an attack
surface with 911 entry points for untrusted inputs1. Importantly,
several features provided by the Linux kernel are redundant for
many cloud-native confidential-computing workloads and have the
adverse effect of increasing their TCB and vulnerable input points.

A recent attack called Heckler highlights the pitfalls of using a
bloated legacy OS kernel in CVMs [25]. Heckler relies on the legacy
int 0x80 software interrupt that can be injected into a CVM at any
time. Upon receiving the interrupt, Linux mistakenly executes a
system call, which may lead to a privilege escalation, allowing the
attacker to gain complete control over the CVM. The Linux kernel
was patched to fix this vulnerability [83]. However, given that the
Heckler attack abused only one out of hundreds of potentially
vulnerable inputs, we anticipate similar attacks in the future.

To this end, a dedicated solution is desirable for security-savvy,
confined and lean workloads: a minimal security-first kernel,
designed with confidential computing requirements in mind, with
a small and well-defined attack surface, and a tiny set of essential
functionalities. This kernel must provide a high level of protection
for code and data inside the CVM, making it especially practical
for cloud-native workloads and possibly-malicious environments,
such as Function-as-a-Service offerings [16] and Edge clouds [3].

In this paper, we present Gramine-TDX: a library OS to execute
slim, single-purpose, unmodified, security-first workloads in a CVM
with a minimal attack surface and very low TCB. In comparison to
the typical Linux kernel, theGramine-TDX kernel is approximately
∼50x less in binary size and has a significantly smaller attack surface.
We implement our prototype using Intel TDX [44], but it can also
be adapted to use other VM-based TEEs.

Gramine-TDX is based on the Gramine Library OS (LibOS) [7,
88, 89], and aims to minimize the CVM attack surface. Gramine is a
low-TCBmodular runtimewith a platform-agnostic component, the
LibOS, and a set of platform-specific backends. We chooseGramine
as the foundation of our prototype because it provides high-level
protections transparent to the application, such as an encrypted
file system, remote attestation support and an extensive validation
of internal kernel state consistency. Extending Gramine with a
TDX backend is a non-trivial task: many OS kernel primitives need
to be implemented from scratch, while all the interfaces with the
untrusted host have to additionally be hardened (§5).

Our security analysis shows that Gramine-TDX has the smallest
possible attack surface consisting of 5 virtio queues, 3 memory-
mapped I/O regions and 1 hardware interrupt2. Its TCB contains
approximately 57K LoC. Around 40K LoC are reused fromGramine
1This is an estimation collected using smatch. Some of them may be classified as
trusted during manual review, and others may be missing because of false negatives.
2Gramine-TDX is not vulnerable to Heckler [25], as it ignores legacy int 0x80.

LibOS, and the new TDX backend constitutes the rest 17K LoC. No-
tably, only 5K LoC are potentially vulnerable and require security
analysis and hardening (3K refer to generic VM functionality like
PCIe bus probing and 2K are TDX-specific). Our evaluation high-
lights the applicability of Gramine-TDX. Our set of 11 unmodified
workloads includes complex and diverse applications. Gramine-
TDX achieves the best performance on CPU- andmemory-intensive
applications that do not require much communication with the vir-
tual hardware, with an average performance overhead below 25%.
Performance on network- and FS-intensive workloads is signifi-
cantly worse; it can be as low as 6% of the native application’s.
This is mainly because Gramine-TDX concentrates on the security
rather than on optimizations of virtual hardware communication.
Overall, this paper makes the following contributions:
• We present the design (§4) and implementation (§5) of a minimal,
security-first OS kernel for CVMs that minimizes the TCB and the
attack surface.
• We provide a security analysis of the attack surface exposed by
Gramine-TDX and explain the applied mitigations (§6).
• We highlight the efficiency of our publicly-available Gramine-
TDX prototype through an extensive evaluation incorporating a
diverse set of microbenchmarks and real-world applications (§7).

2 BACKGROUND

2.1 Confidential Computing

Confidential Computing enables the protection of data in use by
performing the computation in an attested [65] hardware-based
TEE [30, 78]. A TEE provides integrity and confidentiality guaran-
tees for both code and data running inside of it.

The majority of hardware vendors support TEEs, including Intel
SGX, Intel TDX, AMD SEV, and ARM CCA [22, 44, 60, 64]. Intel
SGX is the only industry-built process-based TEE, while the rest
provide their security guarantees for entire VMs, coining the term
confidential VM (CVM). Most cloud vendors, such as Microsoft,
Google and IBM, currently offer CVMs [85–87]. Along with the
hardware offerings, several software frameworks and Software
Development Kits (SDKs) have emerged to ease the application
deployment in confidential computing settings [24, 88].

2.2 Intel TDX: Architecture and System Model

Intel TDX components. Intel TDX [44] is a technology designed
to isolate secure VMs, called Trust Domains (TD), from the hypervi-
sor, other TDs, and any other software on the host platform [21, 28].
It is built using a combination of hardware and software compo-
nents, namely Secure-Arbitration Mode (SEAM), Total Memory
Encryption - Multi Key (TME-MK), and the Intel TDX Module.

SEAM extends the Virtual Machine Extensions (VMX) architec-
ture. It defines two new VMX modes: SEAM VMX root and SEAM
VMX non-root. The former is a restrictive mode where instructions
can be fetched only from a special SEAM-memory range; it hosts
the Intel TDX Module. The latter is a more permissive mode that
adds Shared Extended Page Tables (EPT) support; it hosts user TDs.

TME-MK is an encryption engine sitting on the memory bus
to encrypt/decrypt the traffic to/from main memory. TME-MK en-
cryption keys can only be used in SEAM and enable the Intel TDX
Module to provide per-TD memory encryption.



Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

The Intel TDX Module is responsible for creating, measuring,
executing and attesting TDs. New instructions are provided to
transition a CPU between the VMX modes. The SEAMCALL is used
to transition from legacy VMX root mode into SEAM VMX root,
and the TDCALL performs the transition from SEAM VMX non-root
into SEAM VMX root mode. The hypervisor uses the SEAMCALL to
request services from the Intel TDX Module, e.g., adding pages to a
TD. The TDCALL is used to request services from within a TD, such
as generating an attestation report.
Threat model & runtime protections. Intel TDX threat model
considers an active, powerful adversary that can control the entire
system software stack, including the OS/hypervisor, and perform
physical attacks on the platform (e.g., memory probing, cold boot
attacks [97]). Intel TDX does not protect against replay attacks
in the same TD. We consider attacks on resources’ availability
management as well as side-channel attacks as out of scope.

The memory of a TD is confidentiality-protected by using a per-
TD encryption key, which is randomly generated by the CPU and is
not accessible by the software. The integrity of guest-to-host page
mappings is provided by Secure EPT, which resides in the private
range of the TD memory. The CPU context is also stored in the
private range of TD memory when a virtual CPU is interrupted.
To enable direct communication with the host, Intel TDX allows
the TD to define regions of shared memory in its Shared EPT. The
shared memory is not protected by Intel TDX. Thus, the TDs must
operate on values in shared memory with utmost care.
Attack surface. Software inside a TD interacts with the untrusted
host through several interfaces that constitute the attack surface:
• Shared memory: used as data-path buffers (e.g., virtio queues)
for emulated devices.
• CPUID leaves & Model Specific Registers (MSRs): some
CPUID leaves and MSRs are controlled by the hypervisor.
• Port I/O & Memory-Mapped I/O (MMIO): used for control-
path commands of emulated devices.
• Specific hypercalls: used for hypervisor-specific services, such
as requesting a Intel TDX Quote.
• Interrupts/exceptions: host injects an interrupt/exception to
notify about events (e.g., new data in virtio devices).
Measurement & attestation. At TD creation, the Intel TDX Mod-
ule initializes the measurement registers. The MRTD register con-
tains a hash over the initial state of the TD (i.e., metadata, content
of TD memory). The Intel TDX Module also provides runtime mea-
surement registers (RTMRs) that can be set during runtime. On top
of that, the Intel TDX Module generates a TD-identifying object
(TDREPORT), that includes the measurement registers as well as a
64-byte TD-supplied data field. The TDREPORT can be verified and
signed by an Intel SGX enclave, the TD Quoting Enclave. The signed
TDREPORT is called an Intel TDX Quote and allows a remote user to
gain trust in a TD running on a remote platform [79].
Software.User-space software can be executed inside a TDwithout
modifications. However, there are two kernel-space components
that must be Intel TDX-enabled: the OS kernel and the BIOS. There
exist two main BIOS implementations: Intel TDX Virtual Firmware
(TDVF) and TD-Shim. The former is a modification of the OVMF
project, which enables UEFI support for VMs. The latter is a minimal
virtual BIOS designed specifically for Intel TDX.

2.3 OS Kernels for Confidential VMs

Linux kernel has become the norm for virtualization and is the only
one that currently supports CVMs [85, 87]. Recent Linux kernels
consist of more than 20 million LoC with more than 15,000 configu-
ration options [62]. Therefore, it is impossible to perform an audit
or a formal verification of the whole Linux codebase [19]. Moreover,
the abundance of features and the scattered vulnerable code parts
necessitate a lot of manual effort and specialized tools to achieve a
level of confidence in a hardened Linux version [12].

Ongoing research efforts to analyze hardening requirements in
Linux [10, 38] are mainly based on three pillars: (i) attack surface
minimization, (ii) code audit and (iii) exhaustive fuzzing. To mini-
mize the attack surface, the most prominent approach is to manually
disable a set of features, such as device drivers and I/O ports. To
audit the Linux code, static analyzers are employed, which are inde-
cisive since they cannot cover every attack pattern and can result
in potential false positive reports. Finally, fuzzing the Linux kernel
is time-consuming, best-effort and inconclusive [38, 80].

2.4 Gramine Library OS

Gramine-TDX is based on the Gramine Library OS [7, 88, 89].
Gramine allows to run a single Linux application inside a TEE,
without source-code modification or recompilation. The deploy-
ment model of Gramine is simple: a user takes the original applica-
tion along with its dependencies, writes a companion configuration
file (called the Gramine manifest) and runs this bundle inside the
TEE environment. Gramine also provides tools for TEE attestation,
secret provisioning and transparent file encryption.

Gramine has a modular design. It consists of two tightly in-
teracting components: the LibOS and the backend. The LibOS is
platform-agnostic and calls into the backend whenever it needs
to perform host-specific operations (e.g., memory management,
networking, and filesystem operations). To allow for switching
between different backends, Gramine specifies a standard API be-
tween the LibOS and the backend.

Importantly, Gramine implements a minimal set of functionali-
ties required for the seamless protected execution of applications.
It outsources the non security-critical functionalities to the host.
Consequently, Gramine does not have to implement a filesystem
or a network stack [43, 72]. Further, Gramine is designed to have a
well-defined narrow interface with the host and includes extensive
validations of the correctness and consistency of host replies.

3 OVERVIEW

Gramine-TDX is a lightweight library OS (LibOS), designed to run
unmodified Linux applications in CVMs using Intel TDX. Figure 1
presents an overview of Gramine-TDX components and its deploy-
ment workflow. Precisely, Gramine-TDX builds on Gramine LibOS
and implements an Intel TDX backend. Thus, by the virtue of virtu-
alization, it protects the host OS from a malicious CVM, and based
on Gramine’s design, it protects the CVM from a malicious host OS.
This is a core difference with Gramine-SGXwhich does not protect
the host from a possibly malicious SGX enclave. Additionally, Intel
TDX offers more HW features (e.g., Intel CET) within the CVM,
providing additional defense in depth for the Gramine-TDX kernel.
In contrast, such features are forbidden inside SGX enclaves.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

Gramine-based TD

App (single process)

ring 3

ring 0

Hypervisor

Virtual BIOS

①

②
③

④

Gramine 
manifest file

⑤

Gramine LibOS

Gramine TDX backend

⑥

Linux syscall ABI

Gramine API

virtio queues,
interrupts, MMIO, …

existing

Implementation:

new

out of scope

Figure 1: Gramine-TDX is a security-specialized LibOS that

executes arbitrary single-process Linux applications. The

LibOS component is platform-agnostic, whereas the Intel

TDX backend implements hardened interfaces between the

TD and the untrusted host hypervisor. The Graminemanifest

file holds the security posture of the application.

Further, Gramine-TDX runs entirely in kernel-space (ring 0)
while the applications are placed in user-space (ring 3) of the
Gramine-based TD, unlike Gramine-SGX that runs both in the
same ring-3 address space without memory protections. Impor-
tantly, Gramine-TDX outsources as many subsystems (e.g., filesys-
tem, network stack) as possible to the host, which reduces its TCB
and, consequently, the attack surface. Lastly, the Graminemanifest
file constitutes a backbone of Gramine-TDX, as it includes the con-
figuration for the execution environment of the application (§ 2.4).

Gramine-TDX currently supports only single-process applica-
tions. Further, the applications should not require any special hard-
ware features, e.g., GPU access. However, such restrictions are not
a barrier for the adoption of Gramine-TDX, as many cloud-native
workloads conform to them.

Gramine-TDX deviates from the traditional VM deployment
model. First, the hypervisor initiates the TD and the virtual hard-
ware through the Intel TDX-enabled virtual BIOS 1 and the control
is transferred to the Gramine TDX backend 2 . Then, the backend
loads and parses the manifest 3 . Based on its content, theGramine
LibOS is bootstrapped 4 . Finally, the LibOS proceeds with the ex-
ecution of the application in the TD user-space 5 . At runtime,
all requests (system calls) from the application are intercepted by
the LibOS, and, if needed, are forwarded through the backend to
the hypervisor 6 . All requests to the untrusted hypervisor are
funneled through a narrow interface of the Intel TDX backend.

3.1 System Model

Threat model. Gramine-TDX inherits the standard Intel TDX
threat model [21, 28]. It protects against powerful adversaries that
can control the host system and the hypervisor. On top of that,
Gramine-TDX comes with tools for file encryption, thus, being
able to provide confidentiality and integrity guarantees for separate
files. The direct communication with the host through shared mem-
ory is beyond our threat model. Additionally, Gramine-TDX does
not provide any explicit protection for the network communication,
which is assumed to be protected at the application level leveraging
cryptographically secure libraries (SSL/TLS) [72]. Gramine-TDX
offers tools for Intel TDX remote attestation which ease the au-
thentication and secret provisioning process [79]. Lastly, similar to

Linux-based VMs, the console lies outside its protection boundaries.
Gramine-TDX considers all intra-TD interactions as trusted, i.e.,
malicious or exploitable applications are out of scope.
Usage & deployment model. Gramine-TDX is designed to ex-
ecute generic, security-critical applications in Intel TDX CVMs,
while minimizing the attack surface. Its deployment model heavily
differentiates itself from the traditional VM deployment. It requires
support from the hypervisor, as it offloads its core I/O functionalities
to the host (e.g., file system). The essential files for the application
execution are loaded from the host and the network communication
is achieved directly through the host sockets. In this way, Gramine-
TDX eliminates the need for a special VM image and the often
tedious handcrafted network configuration. Note that, to ensure
integrity and confidentiality, both the stored files and the network
traffic need to be encrypted and integrity-protected; the former are
transparently encrypted and integrity-protected by Gramine-TDX
whereas the latter must be handled by the application itself.
Programming model. Gramine-TDX aims to support all cloud-
native applications, i.e., applications that use POSIX and Linux in-
terfaces and do not mandate the use of special hardware primitives
(e.g., raw access) or perform admin operations. Currently,Gramine-
TDX does not support the fork system call or the posix_spawn
function, thus constraining its usage to single-process applications.

3.2 Design Goals

Security first principle. Gramine-TDX strives to minimize the
attack surface of an application running inside a TD. To this end,
Gramine-TDX offloads the core functionalities of I/O subsystems
(e.g., network, file system) to the host and limits the number of
its I/O endpoints (e.g., virtio queues, MSRs). Notably, it includes
minimalistic implementations of only three drivers. Additionally,
Gramine-TDX does not provide support for complex resource man-
agement or sophisticated scheduling. Gramine-TDX relies on the
LibOS that contains a wide set of validations on the correctness of
the application state and uses practical knowledge from the Intel
SGX backend. Cumulatively, this results in Gramine-TDX hav-
ing a minimal well-tested TCB and a significantly reduced attack
surface (Figure 2) while providing clear security boundaries.
Generality. Gramine-TDX aims to support a wide range of appli-
cations and frameworks. Despite its minimal design,Gramine-TDX
provides the essential functionalities, in co-operation with the host,
to execute complex and diverse cloud-native applications, assuming
that they consist of a single process and do not demand specialized
hardware access. Undeterred by these limitations, Gramine-TDX
can run unmodified applications written in several languages and
runtimes, including C, C++, Rust, Python, Java, Go.
Ease of use and deployment. To promote applicability, Gramine-
TDX strives to simplify its use and deployment process. To this end,
Gramine-TDX adopts a hypervisor-agnostic design. It utilizes a set
of APIs that is supported by the most widely-used hypervisors (e.g.,
QEMU/KVM, Cloud Hypervisor). Further, Gramine-TDX relies on
extensively tested, robust host subsystems which are present in
all existing infrastructures. Lastly, the only required effort to run
an application under Gramine-TDX is to synthesize a manifest
file that defines the configuration options to properly setup the
execution environment for an application.



Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

App 1

virtual NIC 
driver

virtual NIC 
device

host
Linux kernel

internet
(TLS sessions)

Network 
stack

(b) Linux-based TD*

App (single process)

virtual sock 
driver

virtual sock 
device

(c) Gramine-based TD

internet
(TLS sessions)

Sock-to-TCP 
server

Network 
stack

App 2

File system
stack

virtual disk 
driver

virtual disk 
driver

Hypervisor

disk image
(encrypted)

virtual FS 
driver

virtual FS 
driver

Hypervisor

File system
stack

Shared-FS 
daemon

/usr/
↳ app (hashed)
↳ conf.txt (encrypted)App 1

virtual NIC
driver

virtual NIC
device

internet

Network 
stack

(a) Linux-based VM

App 2

File system
stack

virtual disk
driver

virtual disk 
driver

Hypervisor

disk image

ring 3

ring 0

TDX enabledLegend: TDX hardened

snooping

hijacking

Figure 2: Comparison of deployment models and attack surfaces of classic Linux-based VMs, confidential Linux-based TDs,

and our proposed Gramine-based TDs. (a) Linux-based VM is susceptible to snooping and hijacking attacks from a privileged

adversary. (b) Linux-based TD is not susceptible to snooping attacks because all TD state and communication is encrypted,

however, Linux-based TD is susceptible to hijacking attacks on VM<->hypervisor interfaces. (c) Gramine-based TD is not

susceptible to snooping and hijacking attacks because all TD state and communication is encrypted and hardened. Note how

Gramine-based TD outsources all non-security-critical stacks to the host platform.

*Current Linux upstream (as of July 2024) does not have comprehensive Intel TDX hardening, though some attack vectors are being addressed [83, 90].

Trust establishment. Gramine-TDX, as a confidential computing
system, must provide a way for remote users to establish trust
with a running application. To achieve this, Gramine-TDX offers
mechanisms to generate a chain of trust and the necessary evidence
to attest that an application executes the expected software on the
expected Intel TDX hardware. Importantly, this evidence, among
others, includes measurements of the Gramine-TDX backend and
the Gramine manifest file. Thus, a client can request the Intel
TDX attestation evidence and proceed with its verification, before
performing any security sensitive action (e.g., secret provisioning).

4 DESIGN

WehighlightGramine-TDX’s design choices by comparing it against
traditional Linux-based VMs and TDs (Figure 2). Figure 2a depicts
a normal non-confidential VM deployment: a VM runs on top of
the host bare-metal system (for simplicity, we assume that the host
OS is Linux-based). The hypervisor manages the VM lifecycle and
connects virtual drivers in the VM with the corresponding virtual
devices on the host; in particular, with a virtual Network Interface
Card (NIC) and a virtual hard disk pseudo-device [77]. Arbitrary
applications may run inside a VM, supported by the guest OS (guest
Linux). The guest Linux is fully-featured and VM-aware. Network
I/O requests from the applications go through the network stack
and are ultimately forwarded to the host through the virtual NIC
driver. Similarly, file I/O requests go through the FS stack and are
forwarded to the host via the virtual disk driver. This VM deploy-
ment is insecure – all VM memory is stored in RAM in plaintext,
and an attacker can snoop on this VM and steal private data.

Figure 2b depicts a typical CVM deployment with Intel TDX: an
Intel TDX-enabled Linux kernel runs in a protected VM (TD). An
Intel TDX-enabled kernel means that it is aware that it runs inside
a TD and changes its drivers (and other subsystems) accordingly, to
allow interactions between a TD and the host. In particular, all TD
memory is marked as TD-private and is transparently encrypted
and integrity-protected by Intel TDX. The only exceptions are re-
lated to the drivers, e.g., the virtual NIC driver must put network

packets in shared memory so that the host virtual NIC device can
consume them, and similarly in the other direction. The same ap-
plies to the virtual disk driver. In this deployment, the VM memory
is encrypted and the drivers are expected to encrypt network pack-
ets/file blocks before putting them into shared memory, so that the
attacker cannot snoop any data. However, an attacker is still left
with a large attack surface in the form of untrusted inputs (e.g., via
CPUID, MSR, MMIO) from the malicious host, which can be used
to construct a hijacking attack and subvert the execution of VM
applications or leak their private data. To date, the Linux kernel is
only beginning to be hardened against such attacks [83, 90].

Figure 2c shows the Gramine-TDX deployment: Gramine-TDX
replaces the guest Linux kernel. Gramine-TDX lacks the network
and FS stacks. Instead,Gramine-TDX uses the corresponding stacks
on the host. This up-levelling is achieved through a different set of
drivers: a virtual socket (vsock) driver and a virtual FS driver. These
drivers work at the level of POSIX sockets I/O and FUSE-based file
I/O. They are standardized in VIRTIO specification; thus, the hyper-
visor/host is guaranteed to implement their corresponding devices
[15]. We write these drivers from scratch with an Intel TDX-specific
security model in mind. Since the host operates on virtual-sockets
and virtual-FS primitives, Gramine-TDX requires two daemons to
run on the host: one shared-FS daemon that translates FUSE-based
I/O to normal disk I/O and one network server that translates vsock-
based I/O to normal TCP/IP networking. In this deployment, the
attacker has no attack surface to exploit as Gramine-TDX sanitizes
all untrusted inputs and rejects malicious ones.
Small TCB. Minimality of Gramine-TDX stems from four factors:
• Gramine-TDX does not implement the network stack and the
file system stack. Instead, the Gramine-TDX kernel implements
two paravirtualized device drivers: virtio-vsock and virtio-fs [15].
The former driver forwards network packets from the guest VM to
the host and back via a POSIX-style socket interface, without any
packet pre-processing. The latter driver forwards FS requests and
data blocks from the guest VM to the host and back via a FUSE-style



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

Virtual BIOS Gramine TDX backend Gramine LibOS App binary App librariesGramine manifest file

tdx.hashed_files = [
/path/to/gramine/ libos ,
/path/to/app/binary,
/path/to/app/libraries,

]

① Hypervisor starts TD

② jumps to payload

③ is loaded and parsed

④ loads and jumps to LibOS

⑤ starts the app

⑥ dynamically loads

TDX MRTD/RTMRs (primary)Trust via: Gramine manifest (transitive)

ContainsMeasurement
register

SHA384(virtual BIOS)MRTD

< unused >RTMR[0]

SHA384(Gramine TDX backend)RTMR[1]

SHA384(Gramine manifest file)RTMR[2]

< unused >RTMR[3]

①

②

③

Remote user

⑦ performs remote attestation

Figure 3: Gramine creates a chain of trust to remotely attest that the Gramine TD runs the expected software stack. First Intel

TDX hardware measures virtual BIOS in the MRTD register, then virtual BIOS measures the Gramine TDX backend in RTMR[1],

and finally Gramine TDX backend measures the manifest file in RTMR[2]. The rest of the software stack has corresponding

hash values in the manifest, and is thus transitively reflected in RTMR[2]. Remote user fetches the set of MRTD/RTMR registers

during remote attestation and compares against the expected values.

file system interface, also without any FS processing. We implement
these two drivers in a minimalistic fashion from scratch.
• Gramine-TDX does not have any legacy or advanced code. There
is no support for 16-/32-bit execution. There are no kernel drivers
other than the two core virtio drivers, along with a trivial virtio-
console for I/O on the terminal. There is no support for exotic
features, no choice of scheduling algorithms and no architectures
other than x86-64. The whole Intel TDX backend for Gramine is
written from scratch and intentionally in a simplistic way.
• Gramine-TDX supports only single-process applications. There
is no support for UNIX-style fork and, therefore, no logic for re-
source sharing. In particular, paging is trivial: virtual-to-physical
mapping is 1:1 and is set up at boot time. Additionally, there are no
Inter-Process Communication (IPC) mechanisms (e.g., IPC signals).
Allowing only a single process in a TD is a significant limitation but
also a big contributing factor to the simplicity of Gramine-TDX.
• The Intel TDX backend required no modifications to the core
Gramine, thanks to Gramine’s modularity. Thus, we can reuse the
robust Gramine core functionalities (e.g., LibOS) in Gramine-TDX.
Deployment model. Classic VM deployment typically requires
a VM disk image – a binary blob that represents a Virtual Hard
Disk (VHD) for the VM. The disk image contains the files found
in a normal OS distribution: configuration files, tools and utilities,
pre-installed programs and shared libraries. Next, a VM deployment
requires a kernel image – the executable that is copied in the VM
memory by the hypervisor and is handed control after VM startup,
so that the OS kernel starts to boot. A VM deployment also needs
a virtual BIOS that prepares virtual hardware information for the
guest kernel, such as the PCI bus configuration and contents of
ACPI tables. It further requires several virtual devices, such as a
virtual NIC so that the VM can establish network connections. In
the end, the classic VM deployment strives to provide a complete set
of virtual hardware, such that the kernel and applications running
inside a VM are hardly aware that they do not run on bare metal.

Typical TD deployment implies the hypervisor to be instructed to
create a TD instead of a VM. Additionally, the guest BIOS and kernel
must be Intel TDX-enabled, and the mounted VHD must contain
encrypted data (to preserve the confidentiality of its content). In all
other aspects, TD deployment mimics classic VM deployment.

Gramine-TDX deployment, in contrast, is aware that it runs inside
a TD and relies heavily on the support from the hypervisor. In par-
ticular, Gramine-TDX does not use a VHD but directly accesses the

host file system. To guarantee confidentiality, the files on the host
that are used by Gramine-TDX must be encrypted; Gramine-TDX
decrypts them inside the TD before it passes their content to the
application. Therefore, Gramine-TDX does not need a prepared
VM image. In this deployment, the application and its dependencies
(e.g., shared libraries) and other files (e.g., configuration, database,
logs) are read directly from the host file system. The host is respon-
sible for obtaining the input files from the remote user/service and
sending the output files back to the remote user/service. As for
networking, Gramine-TDX does not use a virtual NIC but instead
directly communicates with the sockets created on the host. As a
consequence, Gramine-TDX requires no network configuration.
Chain of trust and remote attestation. As described in §2.2,
a remote user, must gain trust in the remotely executing TD by
examining the Intel TDX attestation evidence – an Intel TDX Quote.
Only after successful verification of the quote, the user can trust
the TD and provide the application with secrets. The user awaits
specific reference values in the TD’s measurement registers, which
are embedded in the received quote. Currently, Gramine-TDX uses
a subset of the available Intel TDX measurement registers; these
registers build a chain of trust. The user is expected to verify each
of the chain items against reference values.

Figure 3 shows how the chain of trust is built. The measurement
registers contain hashes of the three components whose integrity
is critical during boot: the virtual BIOS, the Gramine-TDX backend
binary, and the application-specific Gramine manifest file. There
is no need to extend Intel TDX measurement registers with the
hashes of subsequently loaded binaries and files, like the Gramine
LibOS binary and application files, because the manifest already
contains all these hashes. Thus, by gaining trust in the manifest,
the user transitively gains trust in all files specified in the manifest.

Out of the fivemeasurement registers,Gramine-TDX usesMRTD,
RTMR[1] and RTMR[2]. This choice is dictated by the Intel TDX
virtual firmware specification: MRTD reflects the firmware code
(the virtual BIOS), RTMR[0] reflects the firmware configuration
(our virtual BIOS doesn’t allow different configurations), RTMR[1]
reflects the OS kernel (Gramine-TDX), RTMR[2] reflects the ap-
plication (Gramine manifest file has all the information for the
application) and RTMR[3] is reserved for special uses.

Gramine-TDX largely reuses remote attestation flows from
Gramine-SGX. Particularly, it uses the RA-TLS and Secret Pro-
visioning libraries, initially developed for Gramine-SGX [47].



Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

scheduling

External Internal

virtio-vsock virtio-fs

Gramine TDX backend

NoneAttack surface: Partial

virtio-console

Large

loader
hypervisor 
inputs (Port IO)

eventfd

pipes

sockets console
encrypted 

files
hashed 

files

threads futexes

memory management

1:1 page tables

HW interrupts

TDX quote

LAPIC 
timer

#PF
CPUID

PCI bus discovery 
(Port IO)

TDX quote 
(shared memory)

virtio queues 
(shared memory)

PCI BAR capabilities 
(MMIO)

posted interrupts

virtio notifications 
(MMIO)Communication:

poll/epoll
CPUID hypercall

Gramine 
manifest file

Gramine-based TD

App (single process)

Gramine LibOS

ring 3

ring 0

Gramine TDX backend

TDX 
measurement 

registers

Figure 4: Architecture of Gramine-TDX, in particular of the newly developed Intel TDX backend. The backend implements OS

kernel primitives from scratch, in a security-first manner. Primitives that do not have external communication with the host

are not susceptible to attacks. Primitives that do have such communication are susceptible to attacks and must be hardened.

Some primitives have transitive communication and/or are marginally susceptible to attacks and must be lightly hardened.

5 IMPLEMENTATION

Host/hypervisor. We consider the traditional Linux-based hyper-
visor stack on the host platform. We use the Intel TDX-enabled host
Linux kernel v6.8 (with the Intel TDX-enabled KVM kernel module)
and the Intel TDX-enabled QEMU hypervisor v8.2. The host stack
natively supports the virtual socket (virtio-vsock) and virtual FS
(virtio-fs) devices. To translate FUSE-based file I/O requests from
Gramine-TDX into normal host-file I/O, we use the virtiofsd tool
with a share-all-files configuration [91], which is safe because file
accesses are limited by host’s permissions on files. To translate
vsock-based network I/O requests from Gramine-TDX in TCP/IP
packets, we use socat with the vsock-to-TCP configuration.

Starting Gramine-TDX implies starting the Intel TDX-protected
VM (TD) under QEMU/KVM alongside two daemons (virtiofsd
and socat) running in the background. QEMU must forward the
TD’s requests to these daemons. Additionally, QEMU must read
the Gramine manifest file, parse the requested size and number of
virtual CPUs and spawn the TD with this setup. Finally, QEMU
must forward the specified command-line arguments and host en-
vironment variables into the TD, by using the fw cfg pseudo-device.
We use the classic PCI-based “q35” machine type in QEMU.

We hide all the above actions under a simple Bash script. There-
fore, the invocation of Gramine-TDX looks like this:

1 # prepare the manifest file for your app
2 $ vim helloworld.manifest.template
3 $ gramine-manifest helloworld.manifest.template helloworld.manifest
4
5 # run app in Gramine-TDX
6 $ gramine-tdx helloworld
7 Hello, world

Guest BIOS.When a VM starts, the virtual CPU jumps to a reset
vector address that typically contains the BIOS code. The virtual
BIOS is responsible for loading the OS kernel binary (in our case,
the Intel TDX backend binary of Gramine-TDX), preparing the
memory-map and ACPI tables for the kernel, detecting all virtual
CPUs, performing the initial code/data measurement into MRT-
D/RTMR registers, and passing control to the OS kernel.

There are two virtual BIOS implementations for Intel TDX: TDVF
and TD-Shim. In Gramine-TDX we choose TD-Shim because it is
security-oriented and has a minimalistic philosophy (§2.2). The
main benefit of using TD-Shim, compared to writing our own
BIOS, is that it fills the MRTD/RTMR registers on startup. Precisely,
TD-Shim measures itself in the MRTD register and the Gramine

TDX backend in the RTMR[1] register (see Figure 3). This leaves
Gramine-TDX with only the RTMR[2] register to fill.
Guest kernel. Gramine-TDX constitutes a new Intel TDX back-
end for Gramine, written completely from scratch. Thanks to the
modular architecture of Gramine, we are able to use its LibOS
component, the encrypted- and hashed-files format, the RA-TLS
and Secret Provisioning libraries, the manifest syntax, and several
Gramine tools without modifications. The new Intel TDX backend
consists of 17K LoC and is written entirely in the C99 language. Out
of these 17K, 15K LoC are generic VM functionality (e.g., context
switching, interrupt handling, PCIe bus probing), and 2K LoC are
TDX-specific (TDX hypercalls, #VE handling). Given that the LibOS
component has 40K LoC and the newly written Intel TDX backend
has 17K LoC, the ratio of reused code in Gramine-TDX is ∼70%. If
we additionally take into account all the reused libraries and tools,
then the ratio of reused code reaches ∼90%. The only third-party
dependencies are mbedTLS crypto and the tomlc99 parser. Both
these dependencies are statically linked into Gramine-TDX. Aside
those, Gramine-TDX is self-contained and does not use libc. This
benefits no-glibc workloads (e.g., Go apps), which have significant
performance penalties on Gramine-SGX.

Figure 4 shows the subsystems that our backend implements.
They include the traditional OS kernel primitives such as mem-
ory management, thread scheduling and futex-based synchroniza-
tion, implementations of pipes, eventfd objects, sockets and files,
poll/epoll mechanisms. Precisely, we use 1:1 virtual-to-physical
pages’ mapping, simplistic round-robin Single Queue Multiproces-
sor Scheduler (SQMS), a minimal PCI bus discovery mechanism
and a limited ELF loader to load the LibOS binary. Gramine-TDX
also contains Intel TDX-specific subsystems, such as extending
measurement registers and fetching the Intel TDX quote.

Our three virtio drivers are implemented intentionally in a sim-
plistic manner. We consider the virtio-fs driver as not performance
critical. We implement it with a single virtio queue, under a global
lock, in a synchronous “one request at a time” manner, using busy
polling. Similarly, we consider the virtio-console driver as non-
critical for performance. Therefore, we do not apply any optimiza-
tions to its implementation. Our virtio-vsock driver is more sophis-
ticated: we implement optimized receive and transmit queues with
notification suppression, two separate locks, and a helper thread
to operate on the receive queue and cleanup the transmit queue,



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

Table 2: Interfaces with untrusted host.

Attack surface # at boot time # at runtime

Virtio queues 0 5
HW interrupts 0 1
MMIO regions 10 3
Port I/O ports 2 0
MSRs 0 0
CPUID leaves 0 0
Intel TDX quote region 1 0

analogous to the Linux threaded interrupt handler [76, 77]. Our
virtio-vsock implementation is still rather slow, e.g., credit-based
flow control is only minimally implemented.

Gramine-TDX maps the IRQs (interrupt requests) of our three
drivers to a single interrupt vector number and only on one vCPU.
The first simplification is required to side-step the need to find and
parse the untrusted DSDT ACPI table, at a price of additional MMIO
accesses for each interrupt. The second simplification is required
to avoid the locking during interrupt processing, as only one CPU
accesses interrupt-related data structures. Interrupt handling is
divided in the top half and bottom half, similar to other OS kernels.
This implementation is a performance bottleneck in I/O-heavy
workloads, but is easy to reason about in security reviews.

Gramine-TDX carves out several memory regions at boot, with
predefined ranges. This hard-coding of the memory layout eases
out-of-bounds checks and page protections.

Multi-core support is implemented in a classic way: at boot
time, the first (BSP) virtual CPU initiates the Intel TDX-specific MP
Wakeup Mailbox protocol to wake up the other (AP) virtual CPUs.
At runtime, each vCPU periodically receives timer interrupts and
invokes the scheduler. All shared state between vCPUs is protected
by coarse-grained locks.

We implement PCI device discovery instead of a simpler MMIO
device discovery due to its ubiquity in hypervisors, e.g., Cloud
Hypervisor supports only the PCI transport.Gramine-TDX expects
all virtio devices to be reported on PCI bus 0 (i.e., no PCI bridges).
The three supported virtio devices can be configured only in one
way, in particular, to use split virtio queues [15].

Gramine-TDX supports multi-threaded applications but not
multi-process applications. For example, embarrassingly parallel
workloads like PyTorch and TensorFlow are supported, but child-
spawning workloads like Bash are not. At the implementation level
this means that Gramine-TDX does not support fork and vfork
system calls and does not support the clone system call without
the CLONE_VM flag. It should be noted that Gramine-TDX supports
execve as this system call does not create a new process.

6 SECURITY ANALYSIS

Gramine-TDXmust guarantee the following properties: (i) the code
of the application and Gramine-TDX must be integrity-protected,
(ii) the data of the application and the internal state of Gramine-
TDX must be confidentiality- and integrity-protected, (iii) network
I/O must be confidentiality- and integrity-protected, (iv) file I/O
must be integrity-protected for hashed files and confidentiality-
protected for encrypted files, (v) Gramine-TDXmust not be vulner-
able to privileged attacks, (vi) tampering with the Gramine manifest
file must be detectable, (vii) the chain of trust must reflect all loaded
components and be immutable.
Statistics on attack surface. A core security argument in favor
of Gramine-TDX is that it has a small TCB, as shown in Table 1.

Additionally, Gramine-TDX does not have a variety of features
that can be disabled at build time; it has only one configuration.
This design choice reduces the risk of having a specific subset of
enabled features that is rarely tested. Finally, Gramine-TDX has a
small number of entry points through which untrusted inputs from
a malicious host can be propagated into the TD.

Table 2 shows statistics on the attack surface of Gramine-TDX.
As attack surface, we consider the number of interfaces with the
untrusted host (hypervisor). We do not count the interfaces that are
write-only by Gramine-TDX– such cases are benign because the
host may ignore the writes, leading to DoS. Only reads are impor-
tant, as the host can inject malicious values. We further distinguish
between interfaces used at boot time and at runtime; we harden
both, but the main focus lies on the runtime interfaces. These in-
terfaces are more important because they are used after Intel TDX
remote attestation and it is easier to mount attacks on an already-
running application. Unfortunately, collecting similar statistics on
the Linux kernel was infeasible: one would need to analyze the
whole code base of Linux, starting from the vulnerable input points
and reconstructing the call chains to learn which components must
ultimately be hardened. As shown in §1, even a fine-tuned Linux
kernel has over 1 million lines of code and over 900 input points.
Rollback attacks. Rollback attacks are a general issue for Intel
TDX, which Gramine-TDX does not mitigate. There is no trusted
absolute time in Intel TDX. However, Intel TDX guarantees secure
relative time; timeouts never trigger prematurely. There are propos-
als for secure clocks that can be incorporated inGramine-TDX [34].

Gramine-TDX uses encrypted files that are vulnerable to roll-
back attacks between invocations, similarly to Linux. It partially
mitigates this by maintaining freshness metadata during applica-
tion lifetime, but a complete defense would require an independent
trusted metadata store (e.g., monotonic counter) [23, 63].
Applied mitigations. Table 3 shows in detail how Gramine-TDX
achieves its integrity and confidentiality properties, by listing all
attack vectors and explaining the applied mitigations. The descrip-
tions below explain each mitigation mentioned in the table. Note
that we do not aim to highlight novel defenses but instead we strive
to provide a systematic study of possible attacks on VM-based TEEs
and their mitigations using Gramine-TDX.
1. Encrypt data. For network I/O, it is the responsibility of the
application to use TLS connections or similar secure protocols. For
file system I/O, the application developer must mark sensitive files
as “encrypted” in the Gramine manifest; Gramine automatically
encrypts/decrypts these files using its crypto FS protocol [43].
2. Do not expose data. For console I/O, the application is respon-
sible to minimize and not expose confidential data on the terminal.
Additionally, Gramine sanitizes its own log to avoid the leakage of
any sensitive information (e.g., addresses of loaded binaries). Finally,
the application developer must specify all files that will be accessed
by Gramine explicitly; Gramine refuses access to unspecified files,
which decreases the risk of accidental exposure of data from FS I/O.
3. Disable inputs. Applications modify their behaviors based on
provided command-line arguments and environment variables. This
flexibility can be abused by the attacker, e.g., the attacker may pro-
vide a verbose argument and leak private data. Gramine manifest
by default disables all command-line arguments and environment
variables coming from the untrusted host.



Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Table 3: Attack surface exposed by Gramine-TDX, with examples of attacks and corresponding mitigation measures.

Attack vector Attack methods Mitigations

Shared virtio queues: con-
trol metadata fields and
data buffers

Writes: leak data via eavesdropping on contents of data buffers.

Reads: inject malicious data; subvert control flow via malformed metadata or malicious
data; leak data via attacker-controlled pointer / offset.

§6.1 Encrypt data.
§6.2 Do not expose data.

§6.5 Verify inputs against known hashes.
§6.6 Minimize number of untrusted inputs.
§6.8 Separate into read-only and write-only.
§6.9 Read once and cache.
§6.10 Check against erroneous values.
§6.11 Cross-check against known values.
§6.12 Check adherence to protocol.

Model-Specific Registers
(MSRs)

Reads: subvert control flow via maliciously crafted values in MSRs. §6.7 Remove need for untrusted inputs.
§6.13 Use trusted HW primitives.

CPUID leaves Reads: subvert control flow / weaken security-critical CPU features via maliciously
crafted values in CPUID leaves.

§6.7 Remove need for untrusted inputs.
§6.13 Use trusted HW primitives.

ACPI tables Reads: subvert control flow / weaken security-critical CPU features via maliciously
crafted values in host-provided ACPI tables.

§6.7 Remove need for untrusted inputs.

Port I/O: PCI bus discov-
ery, reading VMM inputs

Reads: subvert control flow via maliciously crafted values during port I/O reads; inject
malicious data.

§6.3 Disable inputs.
§6.4 Hard-code / allow-list inputs.
§6.6 Minimize number of untrusted inputs.
§6.9 Read once and cache.
§6.10 Check against erroneous values.
§6.12 Check adherence to protocol.

Memory Mapped I/O
(MMIO): PCI bus discov-
ery, virtio drivers

Reads: subvert control flow / weaken security-critical virtio device features via mali-
ciously crafted values during MMIO reads.

§6.4 Hard-code / allow-list inputs.
§6.6 Minimize number of untrusted inputs.
§6.9 Read once and cache.
§6.10 Check against erroneous values.
§6.11 Cross-check against known values.
§6.12 Check adherence to protocol.

HW interrupts Inject malicious interrupts to confuse interrupt-handling code. §6.6 Minimize number of untrusted inputs.
§6.13 Use trusted HW primitives.

Crypto primitives Force Gramine to use insecure source of entropy. §6.13 Use trusted HW primitives.
Shared buffer for Intel
TDX quote

Reads/writes: subvert control flow via malformed metadata or malicious data; leak
data via attacker-controlled pointer / offset / length.

§6.10 Check against erroneous values.
§6.12 Check adherence to protocol.

Reading Gramine mani-
fest

Reads: weaken security-critical Gramine features via maliciously crafted values in
manifest file; defy the chain of trust.

§6.5 Verify inputs against known hashes.
§6.12 Check adherence to protocol.
§6.14 Perform remote attestation.

4. Hard-code / allow-list inputs. It is frequently unrealistic to
disable all command-line arguments and environment variables.
Gramine manifest provides a syntax to hard-code a specific set of
arguments and envvars. Also, Gramine-TDX hard-codes a single
possible secure PCI configuration with which the TD is supposed
to be started. If the host provides any different PCI configuration
than the expected one, Gramine-TDX fails loudly.
5. Verify inputs against known hashes. Gramine manifest re-
quires to specify a set of “hashed” files. The hashes of these files
are calculated and placed in the manifest at build time. Gramine
verifies all opened files in this set against their reference hashes.
6. Minimize the number of untrusted inputs. Gramine-TDX
uses a bare minimum number of virtio queues for the three sup-
ported devices: (a) two queues for virtio-console: receive and trans-
mit, (b) two queues for virtio-vsock: receive and transmit, and
(c) one queue for virtio-fs: request [15]. The optional queues are
not used; e.g., the “control receive” queue for virtio-console, the
event queue for virtio-vsock and the notification queue for virtio-
fs. Gramine-TDX also minimizes the number of shared-with-host
metadata/control fields of the virtio queues. Gramine-TDX uses a
limited number of untrusted inputs at runtime: no MSRs, no CPUID
leaves, no port I/O, 3 MMIO addresses and 1 interrupt vector.
7. Remove need for untrusted inputs. Gramine-TDX strives to
remove the need for untrusted inputs. As mentioned above, there
are no untrustedMSR accesses and no untrusted CPUID invocations
during boot or runtime. Also, there is no port I/O during runtime.
Finally, Gramine-TDX does not use host-provided ACPI tables; the

only table used is MADT (Multiple APIC Description Table) which
is synthesized from trusted inputs by TD-Shim.
8. Separate into read-only and write-only.Gramine-TDX never
uses read-write regions of shared memory and never uses read-
write MSRs. To enforce this, Gramine-TDX supports only the split
virtio queue format, which separates the queue into several parts,
where each part is either write-only or read-only by the driver [15].
9. Read once and cache. Gramine-TDX reads as much infor-
mation as possible at boot time and caches it to be used later at
runtime. This information includes the PCI configuration and read-
ing command-line arguments and environment variables (if needed)
from the host. Importantly, control fields and notification statuses
of virtio queues are read once per event and cached; this prevents
Time-of-Check-to-Time-of-Use (TOCTOU) attacks on the queues.
10. Check against erroneous values. Gramine-TDX checks all
possibly malicious inputs against (sets of) expected values or rea-
sonable value limits. Precisely, all input pointers and offsets are
checked for overflows, NULL pointers, pointers to private memory,
off-by-one errors, etc. This is important for shared buffers in virtio
queues, for the Intel TDX quote shared buffer, and for free-formed
strings with command-line arguments and environment variables.
11. Cross-check against known values. Gramine’s LibOS com-
ponent maintains the state of the application’s requests (e.g., which
files are opened, which network connections are in which state).
The LibOS actively cross-checks the soundness of its state, and fails
loudly if the state is detected to be internally inconsistent. As a par-
ticular case in the Intel TDX backend, Gramine-TDX cross-checks



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

Table 4: Benchmarking variants

Variant Execution environment

Native Bare-metal instance
Normal VM Standard VM with Linux kernel
Intel TDX VM Intel TDX VM with Linux kernel
Gramine-SGX Intel SGX enclave with Gramine LibOS
Gramine-VM Standard VM with Gramine-TDX’s kernel
Gramine-TDX Intel TDX VM with Gramine-TDX’s kernel

that the posted interrupt on a virtio device indeed signals that there
is data to be read/written on the corresponding virtio queue.
12. Check adherence to protocol. Gramine-TDX adheres strictly
to the following protocols: (a) PCI bus discovery and PCI device
querying [17], (b) virtio queue flows specification [15], (c) TOML
language specification, and (d) Intel TDX quote retrieval protocol
[44]. If the actions of the host start to deviate from the protocols,
Gramine-TDX considers it an attempted attack and loudly fails.
13. Use trustedHWprimitives.Gramine-TDX uses the RDRAND
instruction as the sole source of entropy; RDRAND is guaranteed
to be secure inside a TD. Gramine-TDX strives to use only TD-
trusted CPUIDs and MSRs. In particular, the trusted CPUID table
is securely maintained by the TDX firmware, and Gramine-TDX
uses only secure CPUID leaves for its internal operations. For other,
non-secured leaves, Gramine-TDX intercepts the #VE exception (in
TDX, CPUID instructions result in #VE), and synthesizes its value
from the information in secure CPUID leaves. MSRs are treated
similarly in TDX. Finally, Gramine-TDX relies on the fact that the
first 30 interrupt vectors are securely triggered inside a TD [44],
and allows only two HW interrupts: int 32 for the LAPIC timer and
int 64 for all virtio device notifications. The former one is benign
(only DoS possible), while the latter is verified by double-checking
against the control fields of the corresponding virtio queues.
14. Perform remote attestation. As explained in §4, the remote
user must perform Intel TDX remote attestation to gain trust in the
remotely executing Gramine-TDX. During remote attestation, an
Intel TDX quote withMRTD/RTMRmeasurements is sent. It reflects
the entire software stack of Gramine-TDX and the application
running on top of it [79]. Therefore, a malformed Gramine manifest
or a maliciously replaced Gramine binary can be detected since
RTMRs will contain unexpected measurements.

7 EVALUATION

We highlight Gramine-TDX’s applicability and measure its per-
formance overheads through a set of system microbenchmarks
and a series of case studies covering 11 unmodified applications,
accompanied by their Gramine manifest.

7.1 Experimental Setup

Testbed. We conduct our experiments on a dual-socket Intel TDX-
enabled server, equipped with Intel Xeon Platinum 8570 CPU with
56 cores and 1 TB (16 channels × 64 GB/DIMM) DRAM running
Ubuntu 24.04 with an Intel TDX-enabled Linux kernel v6.8. For our
experiments, we use an Intel TDX-patched QEMU v8.2. Our VMs
run Ubuntu 24.04 with an Intel TDX-enabled guest Linux v6.8. We
use Intel TDX Module v1.5 (build_num 698). In our experiments,
we provide the VMs with vCPUs equal to the number of application
threads. The reported values are the average of 3 runs.
Variants.We conduct the experiments with the variants of Table 4.
The Native variant refers to an application running as bare-metal

1 2 4 8 16 32
Threads

0

10

20

30

Ru
nt

im
e 

(s
ec

)

Lower is better ↓ PyTorch - AlexNet
Native
Normal VM
Intel TDX VM
Gramine-SGX
Gramine-VM
Gramine-TDX

1 2 4 8 16 32
Threads

0

1000

2000

3000

Th
ro

ug
hp

ut
 (F

PS
)

Higher is better ↑ OpenVINO - RN50
Native
Normal VM
Intel TDX VM
Gramine-SGX
Gramine-VM
Gramine-TDX

1 2 4 8 16 32
Threads

0.0

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 (e

xa
m

pl
es

/s
ec

)

Higher is better ↑ TensorFlow - BERT Large
Native
Normal VM
Intel TDX VM
Gramine-SGX
Gramine-VM
Gramine-TDX

1 2 4 8 16 32
Threads

0.0

2.5

5.0

7.5

10.0

12.5
Th

ro
ug

hp
ut

 (t
ok

en
s/

se
c)

Higher is better ↑ Candle
Native
Normal VM
Intel TDX VM
Gramine-SGX
Gramine-VM
Gramine-TDX

Figure 5: Performance of Gramine-TDX in AI/ML frame-

works using different number of threads.

instance directly on our testbed server. The Normal VM and Intel
TDX VM variants denote that an application is executed inside a
virtual machine having Intel TDX disabled and enabled, respectively.
In Gramine-SGX variant, the application is running inside an Intel
SGX enclave using Gramine LibOS. Lastly, the Gramine-VM and
Gramine-TDX variants indicate the execution of the application
inside a virtual machine using the minimal Gramine-TDX’s guest
kernel with Intel TDX disabled and enabled, respectively.

7.2 Microbenchmarks

Workloads. We evaluate the performance of Gramine-TDX using
UnixBench, a benchmark to assess the performance of a Unix-like
OS. It provides tests that examine different aspects of system per-
formance, e.g., CPU, memory, file I/O. We execute all the bench-
marks that Gramine-TDX supports, i.e., those that do not mandate
spawning a new process. We run single-CPU workloads and use
the default parameters of UnixBench.
Results. Table 5 presents the average scores of the examined
variants in the exercised benchmarks. The results indicate that
Gramine-TDX performs well in in-memory computations (e.g.,
arithmetic benchmarks) with minimal overheads (<5%). However,
there is a significant overhead for I/O operations, seen in the file
copy benchmarks, where Gramine-TDX achieves only 5-6% of the
native performance, mostly due toGramine-TDX’s simplistic virtio-
fs driver. Additionally, there is considerable slowdown for system
calls, with around 35% overhead compared to the baseline, attrib-
uted to quirks in Gramine’s context switch implementation. Lastly,

https://github.com/gramineproject/gramine/commit/ca715b9ca1addd4d846975d5f4a2d1d58804f2b9


Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

GET LRANGE-300 SET
Workload

0

20000

40000

60000

80000

100000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Higher is better ↑ Redis
Native
Native w/ socat
Normal VM
Normal VM w/ socat
Intel TDX VM
Intel TDX VM w/ socat
Gramine-SGX
Gramine-VM
Gramine-TDX

(a) Redis throughput for GET, LRANGE-300 and SET operations.

GET SET
Workload

0

100000

200000

300000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Higher is better ↑ Memcached
Native
Native w/ socat
Normal VM
Normal VM w/ socat
Intel TDX VM
Intel TDX VM w/ socat
Gramine-SGX
Gramine-VM
Gramine-TDX

(b) Memcached throughput for GET and SET operations.

Figure 6: Throughput of in-memory databases (Redis, memcached) using Gramine-TDX

read-random read update-random update
Workload

0

25

50

75

100

125

150

Ru
nt

im
e 

(s
ec

)

Lower is better ↓ SQLite
Native
Normal VM
Intel TDX VM
Gramine-SGX
Gramine-VM
Gramine-TDX

read-random read update-random update
Workload

0

5

10

15

20

25

Ru
nt

im
e 

(s
ec

)

Lower is better ↓ SQLite - tmpfs

Figure 7: Runtime of SQLite workloads using ext4 (left) and tmpfs (right) filesystems for its database files.

Table 5: UnixBench benchmarks scores. Values in parentheses

identify the performance ratio with native as the baseline.

Benchmark Native
Gramine

SGX VM TDX

Dhrystone 2 332M 331M (0.99x) 336M (1.01x) 332M (1.00x)
Whetstone 5023 5006 (0.99x) 5022 (0.99x) 4987 (0.99x)
Copy 256, 500 maxblocks 185K 15K (0.08x) 13K (0.07x) 10K (0.05x)
Copy 1K, 2K maxblocks 698K 59K (0.08x) 51K (0.07x) 37K (0.05x)
Copy 4K, 8K maxblocks 2214K 228K (0.10x) 187K (0.08x) 137K (0.06x)
System Call Overhead 14.2M 12.7M (0.90x) 9.5M (0.67x) 9.3M (0.65x)
Pipe Throughput 1.57M 0.33M (0.02x) 1.71M (1.09x) 1.62M (1.03x)
Execl Throughput 79K – 4K (0.05x) 0.8K (0.01x)
Recursion Test (hanoi) 8.2M 7.7M (0.94x) 8.1M (0.99x) 8.1M (0.99x)
Arithmetic Tests 782M 841M (1.08x) 816M (1.04x) 798M (1.02x)

pipe throughput is notably lower in Gramine-SGX due to the need
for encryption of reused host-kernel pipes, whereas the VM/TDX
variants avoid this by keeping pipes within the VM, eliminating
the need for VM exits and encryption. Note that execl benchmark
failed on Gramine-SGX due to a yet-to-be-analyzed bug.

7.3 AI/ML Frameworks

Workloads.We evaluate the performance for three widely-used
AI/ML frameworks, namely PyTorch, OpenVINO, TensorFlow and
candle, a minimalist ML framework for Rust. For PyTorch, we use
an AlexNet pre-trained model for image classification. Our work-
load opens an image from a file and runs a classifier. For OpenVINO
and TensorFlow, we use ResNet-50 (RN50) convolutional neural net-
work and Bidirectional Encoder Representations from Transformers
(BERT Large) models respectively, and perform the inference pro-
cess on public datasets. For candle, we use the quantized version of
the LLaMA model with a sample length of 200.
Results. Figure 5 presents the performance of Gramine-TDX in
the described AI/ML frameworks. Precisely, the subplot at the top
showcases the execution time of PyTorch image classification for
every variant. The second subplot highlights the performance of
OpenVINO for the different models across the execution environ-
ments of Table 4. The third subplot demonstrates the throughput
of TensorFlow for our examined variants. Lastly, the subplot at the
bottom indicates the achieved throughput of candle.

We observe that in most cases for all the frameworks, Gramine-
TDX achieves performance close to the native execution. The av-
erage performance overhead is below 10%. Additionally, Figure 5

indicates that executing an application with Gramine-TDX does
not hamper scalability; the scaling factor remains comparable to
the baseline. However, we noted that the performance overhead
slightly increases in the case of PyTorch and candle with the in-
creased number of threads, where it reaches up to 24% and 87%,
respectively. Nonetheless, specifically for candle, Gramine-TDX
performs on par (or better) with the Intel TDX VM. There’s an
interesting issue with Linux-TDX on candle, as its performance is
surprisingly low on 32 threads (under investigation).

7.4 Databases

Workloads. We conduct experiments using two in-memory
databases (Redis, memcached) and two variants of a SQL database
engine (SQLite) operating on different filesystems (ext4, tmpfs). For
Redis and memcached, we use the redis and memtier benchmarks,
respectively. We place the server in the execution environments de-
scribed in Table 4 and run the redis-benchmark and memtier binary
with their default settings natively (on the same machine). The "w/
socat" suffix in the labels of these experiments indicates the use of
socat as a proxy layer for the network traffic, which is mandatory
for some variants (e.g.,Gramine-TDX) as explained in §5. In SQLite,
we use the kvtest benchmark. Initially, we load a database with
500k blobs ranging from 2KB to 6KB with an average size of 4KB.
Then, we execute the workloads: (i) random reads, (ii) sequential
reads, (iii) random updates and (iv) sequential updates.
Redis. Figure 6a shows the throughput of Redis server for three
operations (GET, LRANGE-300, SET). The overhead of Gramine-
TDX, with the native execution as baseline, ranges from 35% to 61%.
While this is significant, we observe that a big contributing factor is
the use of socat. Importantly, socat introduces up to 26% overhead
even in the native variant of the application. This fact justifies that
Gramine-TDX performs comparably to a full-fledged VM (with and
without Intel TDX enabled) when socat is used, as it can be seen
from Figure 6a. Notably, the VM variants outperform the native
execution. This is likely due to the VM’s use of the virtio-net driver,
and potential differences in host and guest kernel implementations
or QEMU/KVM optimizations that affect Redis performance.
Memcached. Figure 6b highlights the throughput of Memcached
server. Similarly to Redis, Gramine-TDX introduces significant



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

1 2 4 8 16 32
Clients

0

20000

40000

60000

80000

100000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Higher is better ↑ Lighttpd - 100
Native
Native w/ socat
Normal VM
Normal VM w/ socat
Intel TDX VM
Intel TDX VM w/ socat
Gramine-SGX
Gramine-VM
Gramine-TDX

1 2 4 8 16 32
Clients

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Higher is better ↑ Lighttpd - 10K

Figure 8: Lighttpd throughput for various sizes of HTML pages (100 bytes and 10K bytes) using different number of clients.

1 2 4 8 16 32
Threads

0

10

20

30

40

Ru
nt

im
e 

(s
ec

)

Lower is better ↓ Blender
Native
Normal VM
Intel TDX VM
Gramine-SGX
Gramine-VM
Gramine-TDX

Figure 9: Runtime of Blender application.

performance overheads, achieving ∼5% of the throughput of the
native execution. Interestingly, for Memcached, VM-based variants
fare significantly worse as for Redis. Upon further investigation,
we established that this is due to VMs with Memcached saturating
the CPUs even in the default configuration. We attribute it to the
fact that Memcached is multi-threaded (with 4 threads by default),
which leads to additional CPU cycles for thread synchronization.
SQLite. Figure 7 presents the runtime of SQLite operating on an
ext4 filesystem and also shows the SQLite runtime when the files
are stored in tmpfs. When using the ext4 filesystem, Gramine-
TDX’s runtime is 9.78 − 10.03× higher than the bare-metal SQLite
execution for the read and 6.19 − 6.86× for the update workloads.
This overhead mainly stems from the expensive file I/O that is
performed through Gramine-TDX’s virtio-fs driver. When SQLite
is tuned to use tmpfs and places its files in memory, avoiding the
file I/O, the overheads of Gramine-TDX are diminished below 14%.

7.5 Web-server

Workload. We execute a Lighttpd web-server application. We
use wrk, an HTTP benchmarking tool. We run our web-server
with the variants of Table 4. Similar to the databases experiments,
the "w/ socat" suffix denotes the use of socat as a proxy for the
network communication. We set wrk to generate workloads that
fetch a single HTML page using different numbers of clients. Each
experiment runs for 30 seconds. The clients use a single thread and
are located on the same machine as the server. We conduct our
experiments with two HTML page sizes (100B, 10KB).
lighttpd. Figure 8 presents the throughput of lighttpd using a dif-
ferent number of clients and HTML page sizes. Overall, we observe
that Gramine-TDX’s throughput is 11− 20% of the bare-metal web
server’s throughput when using the 100B pages. The respective
numbers for the 10K pages are 6−7%. While this is a significant per-
formance drop, we believe that fine-tuning our naive virtio-vsock
driver implementation could significantly improve performance;
in particular, we plan to improve batching and the sizes of trans-
mit/receive queues and network packets.

7.6 3D Rendering

Workload.We measure the performance of Gramine-TDX using
the Blender 3D framework.We execute the Blender application with

Table 6: Runtime (seconds) of image processing applications.

Variant Go application Java application

Native 2.89 3.73
Normal VM 2.96 3.50
Intel TDX VM 3.16 3.62
Gramine-SGX 4.26 4.17
Gramine-VM 2.84 3.81
Gramine-TDX 2.95 4.06

Table 7: Boot time (seconds).

Variant VCPUs 1GB 4GB 16GB 64GB

Normal VM 4 5.2802 5.2966 5.2802 5.6855
Intel TDX VM 4 6.7030 6.8027 7.2663 7.8827
Gramine-TDX 4 2.7993 3.7043 7.2426 17.6503
Normal VM 16 5.6209 5.6341 5.6412 5.8678
Intel TDX VM 16 7.1062 7.2943 7.5145 8.5848
Gramine-TDX 16 2.9773 3.5707 6.0349 11.7705

one scene as input. The application performs the scene rendering
using the PNG format with different thread counts.
Blender.We present the runtime of our Blender benchmark in Fig-
ure 9. Gramine-TDX does not introduce any significant overheads
for the Blender application (< 7%) in most cases. This is due to the
fact that the rendering is performed entirely in memory and does
not require any expensive VM exits. On top of that, Figure 9 further
highlights Gramine-TDX’s scalability, by observing the decrease of
the execution time while increasing the number of worker threads.

7.7 Image Processing

Workloads. To further highlight the applicability of Gramine-
TDX, we run two image processing applications. The first one is
written in Go and the second one in Java. These programs perform
image processing operations, such as Gaussian Blur, edge detection,
image sharpening and resizing. We use the infamous Lenna image
as our input. We did not optimize these applications for parallel
execution. Therefore we execute them with a single thread.
Results. Table 6 presents the performance of our examined variants
for the image processing applications. We observe that Gramine-
TDX increases the execution time of these applications only slightly
(< 10%), as the processing is performed in-memory. This experiment
further showcases that Gramine-TDX is a versatile framework that
can seamlessly support multiple languages and runtimes.

7.8 Boot Time

Workloads.We compare the startup time of Gramine-TDX against
normal VMs and Intel TDX VMs. ForGramine-TDX, we run a hello-
world application and measure its end-to-end execution time (to err
on the side of overapproximation). For the other VM variants, we
use the systemd-analyze tool and present the resulting startup
time. The presented values are an average of 10 runs.
Results. Table 7 presents the boot time of our examined variants
for different VM configurations. For normal VMs, the startup time
slightly increases with the assigned VM memory. The Intel TDX



Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

VMs exhibit a similar trend butwithmarginally higher startup times.
Notably, Gramine-TDX outperforms the baselines for small VM
sizes, but its performance significantly declines as the allocated VM
memory increases due to Gramine-TDX’s memory initialization.

8 RELATEDWORK

To build trust in confidential computing technologies, TEE vendors
adopt an approach that involves collaborative analysis and thor-
ough reviews with third-party experts. Both Intel TDX and AMD
SEV have collaborated with Google’s security teams to examine
threat models and identify potential vulnerabilities [21, 29]. Despite
acknowledging that CVMs running on a host can be under attacker
control and may contain undiscovered issues in their interactions
with untrusted components, a detailed security analysis on the
attack surface of CVMs, as conducted in this paper, is not their
primary focus. Besides, researchers identified vulnerabilities in VM-
based TEEs that could lead to data extraction [57–59, 67, 68, 94],
control-flow hijacking [37], code execution [38, 69, 75, 95, 96], and
controlling the root of trust [27].

Currently, the most related project to Gramine-TDX is the CO-
CONUT SVSM (Secure VM Service Module) [4]. It implements a
securemodule for CVMs that runs in a special privileged level below
the guest VM. COCONUT can be considered as a special firmware
that is accessed by the guest OS via a standardized interface. It is
supposed to run security-critical modules (e.g., virtual TPMs), in
a minimal isolated environment, separated even from the trusted
guest OS. Similar to Gramine-TDX, COCONUT implements its
own low-level primitives (e.g., scheduling, page tables), in a secure
and hardened manner. In contrast to Gramine-TDX, COCONUT
does not target unmodified Linux applications but requires them to
be written from scratch or be manually ported to its APIs.

Another related project is Hecate [35]. Hecate builds an L1 hyper-
visor that runs inside a CVM and transparently shields the nested
legacy VM from the untrusted host (L0) hypervisor. Thus, the effort
of hardening shifts to the software running in L1. Hecate chooses
a custom-configured Linux kernel as L1 hypervisor and discusses
some hardening, but does not provide a systematic study on re-
quired mitigations. As we highlight in §2.3, Linux is notoriously
hard to harden. Additionally, Hecate uses VMPLs present in AMD
SEV-SNP architecture but missing in Intel TDX.

Linux-based CC solutions like Confidential Containers [5] and
Oak Containers [33] facilitate the execution of cloud-native work-
loads in CVMs at the cost of involving a huge and potentially
vulnerable guest OS. Driven by such concerns with monolithic
OSes, prior works including Oak’s restricted kernel alternative [33],
Keystone [53], M3 [93], and Enarx [1] advocate for the integra-
tion of a smaller, verifiable microkernel like Sel4 [46] into TEEs.
Gramine-TDX makes an alternative design choice in favor of a
unikernel/Library OS approach, which also has a small TCB and is
amenable to formal verification. There exist Library OSes designed
for process-based TEEs, such as Occlum [81], SGX-LKL [74], and
MystikOS [14]. However, to our knowledge, none of these support
VM-based hardware TEEs as Gramine-TDX does.

vSGX [99] and NestedSGX [92] allow legacy Intel SGX enclaves
to run within AMD SEV CVMs. Contrary to Gramine-TDX, min-
imization of the TCB is not the goal of vSGX: it puts the whole

Linux kernel, modified for vSGX purposes, inside the CVM. Nest-
edSGX extends the SVSM framework to provide isolated enclave
execution using distinct Virtual Machine Privilege Levels (VMPLs).
Although it may be possible to adapt Gramine-SGX to Intel TDX
CVMs following a similar setup, this requires non-trivial porting
effort. Instead, Gramine-TDX is built from a clean slate, targeting
CVM-specific attack surfaces with a minimal TCB.

Apart from Linux hardening (§2.3), there is kernel debloating, a
practical approach that mitigates the OS kernel’s security vulnera-
bilities by reducing its attack surface. This strategy permits only
necessary kernel code execution as required by specific applications,
by either removing superfluous code statically [41, 48, 51, 61, 84] or
rendering it inaccessible during runtime [18, 49, 98]. However, the
primary objective of almost all kernel debloating is to curtail the
attack surface between ring-3 and ring-0, rather than between ring-0
and the hardware. Even though the ring-0/hardware attack surface
might witness a reduction as a consequence of kernel minimization,
such an effect is largely incidental and warrants further investiga-
tion on a case-by-case basis. The recent undertaking proposed in
[41] approaches kernel debloating from the perspective of focusing
on a machine’s specific hardware device inventory. However, its
original intent remains to decrease the ring-3/ring-0 attack surface.
Concerning other mechanisms devised to decrease the kernel attack
surface such as syscall filtering [32, 36, 45, 73], these are also not
tailored to harden the ring-0/hardware attack surface.

Lupine [50] and X-Containers [82] demonstrate the potential to
customize a general-purpose OS (Linux) via application-specific
configurations at build time. However, they require non-trivial mod-
ifications to Linux, which likely hinders their acceptance upstream.
Gramine-TDX is self-contained and has a smaller TCB (i.e., the
uncompressed kernel-image binary of Lupine is over 20MB [39, 40]).
Language-safe OSes, such as MirageOS [42], Tock [55], Theseus
[26], and RustyHermit [52] promise security and lightweight proper-
ties. Yet, they typically lack POSIX support and are not designed for
TEEs with attack surface minimization in mind. Gramine-TDX, im-
plemented in C, enhances memory safety through its static (Cover-
ity) and dynamic (sanitizers) analysis. Similar to Gramine-TDX,
Enarx [1] targets a minimal TCB within TEEs and supports hetero-
geneous TEEs (Intel SGX, AMD SEV-SNP) by using WebAssembly
and a microkernel. It cannot run unmodified binaries, necessitating
the recompilation of applications into WebAssembly.

Gramine-TDX chooses to outsource the FS and network stacks to
the host. The benefits and caveats of this choice are discussed in [54].
NetKernel [71] provides insights about the security-performance
tradeoffs on outsourcing the network stack, whereas Obliviate [20]
provides similar insights on outsourcing the FS stack. Finally, Bifrost
[56] introduces performance optimizations to the network stack
while complying with the CVM threat model; many of Bifrost’s
insights and techniques can be applied to Gramine-TDX.

9 CONCLUSION AND DISCUSSION

This paper stresses the need for a small security-first OS kernel
targeted for confidential VMs.
Niche usages. We envision single-process cloud-native applica-
tions as primary targets for Gramine-TDX. However, we believe
that Gramine-TDX can also find its niche in other security-critical



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dmitrii Kuvaiskii et al.

areas. One example is TEE-specific utilities like the TD migration
tool. Another example is running a software-based TPM under
Gramine-TDX. Yet another example is running Gramine-TDX as
the minimal L1 hypervisor in Intel TDX Partitioning [9].
Docker and Kubernetes integration. Given the process-like
deployment model of Gramine-TDX, it is trivial to use it with
Docker and Kubernetes (or other orchestration systems). To this
end, tools like Gramine Shielded Containers (GSC) may come handy
that take the original Docker image, add the Gramine environment
to it, and replace the entry point with the Gramine-TDX binary
[8]. The resulting “graminized” image can be stored in the Docker
image registry and used in Kubernetes pods.
Choice of hypervisor. For prototyping, we choose theQEMU/KVM
hypervisor. However, Gramine-TDX uses standard virtio devices
and VM techniques (e.g, PCI bus discovery) that should be present
on any reasonable hypervisor. In particular, we believe thatGramine-
TDX should be trivial to run under Cloud Hypervisor. Moreover,
we would like to explore library hypervisors like libkrun [13].
Choice of VM-based TEE. We expect VM-based TEEs to be more
widely accessible than process-based TEEs. Gramine-TDX mainly
consists of TEE-agnostic code. There are only∼2K LoC that are Intel
TDX-specific. Therefore we believe that porting Gramine-TDX to,
e.g., AMD SEV would be a feasible task [22].
Cloud-native deployments. Currently, Gramine-TDX prototype
is at odds with typical cloud deployments, where a user rents a VM
from the cloud provider and cannot start a new VM/TD in a nested
way. Unfortunately, nested virtualization is unsupported in Intel
TDX. Therefore, the only way to use Gramine-TDX in the cloud to
date is to rent a bare-metal instance. We are currently investigating
a potential for co-located VMs, where a “parent” VM is allowed to
spawn a “child” Gramine-TDX VM on the same host and share the
network/FS; this is the model adopted by AWS Nitro Enclaves [2].
Artifact availability. Gramine-TDX is publicly available along
with its entire experimental setup.
Acknowledgements. We thank our shepherd and the anonymous
reviewers for their helpful comments, as well as Dan Middleton,
Scott Raynor, Benny Fuhry, Michael Beale, Elena Reshetova, Vid-
hya Krishnamurthy, Anjo Vahldiek-Oberwagner, Yuan Xiao, Isaku
Yamahata, Michał Kowalczyk and Borys Popławski. This work was
partially supported by an ERC Starting Grant (ID: 101077577).

REFERENCES

[1] 2023. Enarx: Confidential Computing with WebAssembly. https://enarx.dev/
[2] 2024. AWS Nitro Enclaves. https://aws.amazon.com/ec2/nitro/nitro-enclaves/.
[3] 2024. Cloud vs. Edge. https://www.redhat.com/en/topics/cloud-computing/cloud-

vs-edge.
[4] 2024. COCONUT SVSM. https://github.com/coconut-svsm/svsm.
[5] 2024. Confidential Containers. https://github.com/confidential-containers.
[6] 2024. Firecracker: Linux guest configs. https://github.com/firecracker-microvm/

firecracker/tree/main/resources/guest_configs.
[7] 2024. Gramine: A library OS for Linux multi-process applications, with Intel SGX

support. https://github.com/gramineproject/gramine.
[8] 2024. Gramine Shielded Containers. https://github.com/gramineproject/gsc/.
[9] 2024. Intel TDX Module v1.5 TD Partitioning Architecture Specification. https:

//www.intel.com/content/www/us/en/content-details/773039/intel- tdx-
module-v1-5-td-partitioning-architecture-specification.html.

[10] 2024. Intel Trust Domain ExtensionGuest Linux Kernel Hardening Strategy. https:
//intel.github.io/ccc-linux-guest-hardening-docs/tdx-guest-hardening.html.

[11] 2024. Intel Trust Domain Extensions Ready For Linux 5.19 (Intel TDX). https:
//www.phoronix.com/news/Intel-TDX-For-Linux-5.19.

[12] 2024. Intel® Trust Domain Extension Linux Guest Kernel Security Specification.
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html.

[13] 2024. libkrun: A dynamic library providing Virtualization-based process isolation
capabilities. https://github.com/containers/libkrun.

[14] 2024. Mystikos: Tools and runtime for launching unmodified container images
in Trusted Execution Environments. https://github.com/deislabs/mystikos.

[15] 2024. Virtual I/O Device (VIRTIO). https://docs.oasis-open.org/virtio/virtio/v1.3/
virtio-v1.3.html.

[16] 2024. What is Function-as-a-Service (FaaS)? https://www.cloudflare.com/learn
ing/serverless/glossary/function-as-a-service-faas.

[17] Doug Abbott. 2004. PCI bus demystified. Elsevier.
[18] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. 2021.

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening. In
USENIX Security Symposium. 2435–2452.

[19] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Djamel
Eddine Khelladi, and Jean-Marc Jézéquel. 2019. Learning From Thousands of Build
Failures of Linux Kernel Configurations. Technical Report.

[20] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung
Lee. 2018. Obliviate: A Data Oblivious Filesystem for Intel SGX. In NDSS’18.

[21] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw, and Felix Wilhelm. 2024.
Intel Trust Domain Extensions (TDX) Security Review.

[22] AMD. 2024. AMD SEV-SNP: Strengthening VM isolation with integrity protection
and more.

[23] Sebastian Angel, Aditya Basu,Weidong Cui, Trent Jaeger, Stella Lau, Srinath Setty,
and Sudheesh Singanamalla. 2023. Nimble: Rollback Protection for Confidential
Cloud Services. In OSDI’23. 193–208.

[24] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
OSDI’16.

[25] Mark Kuhne Andrin Bertschi Shweta Shinde Benedict Schlüter, Supraja Sridhara.
2024. Heckler: Breaking Confidential VMs with Malicious Interrupts. In USENIX
Security’24.

[26] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020. Theseus: an
experiment in operating system structure and state management. In OSDI’20.

[27] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One glitch to rule them all: Fault injection attacks against amd’s secure
encrypted virtualization. In ACM CCS’21.

[28] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2023. Intel TDX
Demystified: A Top-Down Approach.

[29] Cfir Cohen, James Forshaw, Jann Horn, and Mark Brand. 2022. AMD Secure
Processor for Confidential Computing Security Review. Technical Report. Google
Project Zero and Google Cloud Security.

[30] Confidential Computing Consortium. 2024. White Papers and Reports. https:
//confidentialcomputing.io/resources/white-papers-reports/.

[31] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. (2016).

[32] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P
Kemerlis. 2020. Sysfilter: Automated system call filtering for commodity software.
In RAID’20.

[33] Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba, Tiziano San-
toro, Brett McLarnon, Timon Van Overveldt, Nova Fallen, Peter Kairouz, Al-
bert Cheu, et al. 2024. Confidential Federated Computations. arXiv preprint
arXiv:2404.10764 (2024).

[34] Gabriel P. Fernandez, Andrey Brito, and Christof Fetzer. 2024. Triad: Trusted
Timestamps in Untrusted Environments. arXiv:2311.06156 [cs.CR]

[35] Xinyang Ge, Hsuan-Chi Kuo, andWeidong Cui. 2022. Hecate: Lifting and Shifting
On-Premises Workloads to an Untrusted Cloud. In ACM CCS’22.

[36] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated system call policy generation for container
attack surface reduction. In RAID’20.

[37] Felicitas Hetzelt and Robert Buhren. 2017. Security analysis of encrypted virtual
machines. ACM SIGPLAN Notices 52, 7 (2017).

[38] Felicitas Hetzelt, Martin Radev, Robert Buhren, Mathias Morbitzer, and Jean-
Pierre Seifert. 2021. Via: Analyzing device interfaces of protected virtual machines.
In ACSAC’21.

[39] Benjamin Holmes, Jason Waterman, and Dan Williams. 2022. KASLR in the age
of MicroVMs. In EuroSys’22. 149–165.

[40] Benjamin Holmes, Jason Waterman, and Dan Williams. 2024. SEVeriFast: Mini-
mizing the root of trust for fast startup of SEV microVMs. (2024).

[41] Zhenghao Hu, Sangho Lee, and Marcus Peinado. 2023. Hacksaw: Hardware-
Centric Kernel Debloating via Device Inventory and Dependency Analysis. In
ACM CCS’23.

[42] Takayuki Imada. 2018. Mirageos unikernel with network acceleration for iot
cloud environments. In Conference on Cloud and Big Data Computing.

[43] Intel. 2024. Intel Protected File System Library. https://www.intel.com/conten
t/www/us/en/developer/articles/technical/overview-of-intel-protected-file-
system-library-using-software-guard-extensions.html.

https://github.com/gramineproject/gramine-tdx
https://github.com/dimstav23/gramine-tdx-benchmarking
https://enarx.dev/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://www.redhat.com/en/topics/cloud-computing/cloud-vs-edge
https://www.redhat.com/en/topics/cloud-computing/cloud-vs-edge
https://github.com/coconut-svsm/svsm
https://github.com/confidential-containers
https://github.com/firecracker-microvm/firecracker/tree/main/resources/guest_configs
https://github.com/firecracker-microvm/firecracker/tree/main/resources/guest_configs
https://github.com/gramineproject/gramine
https://github.com/gramineproject/gsc/
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://intel.github.io/ccc-linux-guest-hardening-docs/tdx-guest-hardening.html
https://intel.github.io/ccc-linux-guest-hardening-docs/tdx-guest-hardening.html
https://www.phoronix.com/news/Intel-TDX-For-Linux-5.19
https://www.phoronix.com/news/Intel-TDX-For-Linux-5.19
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://github.com/containers/libkrun
https://github.com/deislabs/mystikos
https://docs.oasis-open.org/virtio/virtio/v1.3/virtio-v1.3.html
https://docs.oasis-open.org/virtio/virtio/v1.3/virtio-v1.3.html
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas
https://confidentialcomputing.io/resources/white-papers-reports/
https://confidentialcomputing.io/resources/white-papers-reports/
https://arxiv.org/abs/2311.06156
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html


Gramine-TDX: A Lightweight OS Kernel for Confidential VMs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

[44] Intel. 2024. Intel® Trust Domain Extensions (Intel® TDX). https://www.inte
l.com/content/www/us/en/developer/articles/technical/intel-trust-domain-
extensions.html.

[45] The Linux Kernel. 2023. Seccomp BPF (SECure COMPuting with filters). https:
//www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html

[46] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In SOSP’09.

[47] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating remote attestation with transport layer security.
arXiv preprint arXiv:1801.05863 (2018).

[48] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2022. Set the
Configuration for the Heart of the OS: On the Practicality of Operating System
Kernel Debloating. Communications ACM (2022).

[49] Hsuan-Chi Kuo, Akshith Gunasekaran, Yeongjin Jang, Sibin Mohan, Rakesh B
Bobba, David Lie, and Jesse Walker. 2019. Multik: A framework for orchestrating
multiple specialized kernels. arXiv preprint arXiv:1903.06889 (2019).

[50] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A linux
in unikernel clothing. In EuroSys’20. 1–15.

[51] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann,
and Rüdiger Kapitza. 2013. Attack Surface Metrics and Automated Compile-Time
OS Kernel Tailoring. In NDSS.

[52] Stefan Lankes, Jonathan Klimt, Jens Breitbart, and Simon Pickartz. 2020. Rusty-
Hermit: a scalable, rust-based virtual execution environment. InHigh Performance
Computing: ISC High Performance 2020 International Workshops. Springer.

[53] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In EuroSys’20.

[54] Hugo Lefeuvre, David Chisnall, Marios Kogias, and Pierre Olivier. 2023. Towards
(Really) Safe and Fast Confidential I/O. In HotOS’23.

[55] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kb computer safely
and efficiently. In SOSP’17. 234–251.

[56] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haibing Guan, and Haibo
Chen. 2023. Bifrost: Analysis andOptimization of Network I/O Tax in Confidential
Virtual Machines. In USENIX ATC’23.

[57] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. 2021. Crossline: Breaking
"security-by-crash" based memory isolation in AMD SEV. In ACM CCS’21.

[58] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting Un-
protected I/O Operations in AMD’s Secure Encrypted Virtualization. In USENIX
Security’19.

[59] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel. In USENIX Security’21.

[60] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and Verification of the Arm Confidential
Compute Architecture. In OSDI’22.

[61] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In SOSP’17.

[62] Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc
Jézéquel, and Djamel Eddine Khelladi. 2022. Transfer Learning Across Vari-
ants and Versions: The Case of Linux Kernel Size. IEEE Transactions on Software
Engineering (2022).

[63] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In USENIX Security’17.

[64] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In HASP’13.

[65] Jämes Ménétrey, Christian Göttel, Anum Khurshid, Marcelo Pasin, Pascal Felber,
Valerio Schiavoni, and Shahid Raza. 2022. Attestation Mechanisms for Trusted
Execution Environments Demystified. In DAIS’22.

[66] Subhas C. Misra and Virendra C. Bhavsar. 2003. Relationships between Selected
Software Measures and Latent Bug-Density: Guidelines for Improving Quality. In
International Conference on Computational Science and Its Applications (ICCSA).

[67] Mathias Morbitzer, Manuel Huber, and Julian Horsch. 2019. Extracting secrets
from encrypted virtual machines. In ACM Conference on Data and Application
Security and Privacy.

[68] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Smascha Wessel. 2018.
Severed: Subverting AMD’s virtual machine encryption. In European Workshop
on Systems Security.

[69] Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko Dorfhuber, and Er-
ick Quintanar Salas. 2021. Severity: Code injection attacks against encrypted
virtual machines. In IEEE Security and Privacy Workshops (SPW).

[70] Dominic P Mulligan, Gustavo Petri, Nick Spinale, Gareth Stockwell, and Hugo JM
Vincent. 2021. Confidential Computing—a brave new world. In international

symposium on secure and private execution environment design (SEED).
[71] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong, Tao Wang,

Dongsu Han, and Keith Winstein. 2020. NetKernel: Making Network Stack Part
of the Virtualized Infrastructure. In USENIX ATC’20.

[72] Rolf Oppliger. 2023. SSL and TLS: Theory and Practice. Artech House.
[73] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Auto-

mated policy synthesis for system call sandboxing. Proceedings of the ACM on
Programming Languages OOPSLA (2020).

[74] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,
Vasily A Sartakov, and Peter Pietzuch. 2019. SGX-LKL: Securing the host OS
interface for trusted execution. arXiv preprint arXiv:1908.11143 (2019).

[75] Martin Radev and Mathias Morbitzer. 2020. Exploiting interfaces of secure en-
crypted virtual machines. In Reversing and Offensive-oriented Trends Symposium.

[76] Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. 2013. Speeding up packet
I/O in virtual machines. In Architectures for Networking and Comm. Systems.

[77] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review (2008).

[78] Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall, Antoine
Delignat-Lavaud, Sylvan Clebsch, Kapil Vaswani, and Vikas Bhatia. 2021. Toward
Confidential Cloud Computing. Communications ACM (2021).

[79] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. 2021. Demysti-
fying attestation in Intel Trust Domain Extensions via formal verification. IEEE
Access (2021).

[80] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL:Hardware-Assisted feedback fuzzing for OS kernels.
In USENIX Security’17.

[81] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside a
single enclave of intel sgx. In ASPLOS’20. 955–970.

[82] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-containers:
Breaking down barriers to improve performance and isolation of cloud-native
containers. In ASPLOS’19. 121–135.

[83] Kirill Shutemov. 2023. x86/coco: Disable 32-bit emulation by default on TDX and
SEV.

[84] Reinhard Tartler, Anil Kurmus, Bernhard Heinloth, Valentin Rothberg, Andreas
Ruprecht, Daniela Dorneanu, Rüdiger Kapitza, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2012. Automatic OS Kernel TCB Reduction by Leveraging
Compile-Time Configurability. In HotDep’12.

[85] Google Cloud team. 2024. Confidential Computing. https://cloud.google.com/c
onfidential-computing.

[86] IBM Cloud team. 2024. Confidential Computing. https://www.ibm.com/cloud/co
nfidential-computing.

[87] Microsoft Azure team. 2024. Azure Confidential Computing Overview. https:
//learn.microsoft.com/en-us/azure/confidential-computing/overview.

[88] Chia-Che Tsai, Kumar SaurabhArora, Nehal Bandi, Bhushan Jain,William Jannen,
Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E.
Porter. 2014. Cooperation and Security Isolation of Library OSes forMulti-Process
Applications. In EuroSys’14.

[89] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In USENIX ATC’17.

[90] Michael S. Tsirkin and StefanHajnoczi. 2023. Trust, confidentiality, and hardening:
the virtio lessons. https://lpc.events/event/17/contributions/1516/

[91] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017. To FUSE
or not to FUSE: Performance of User-Space file systems. In FAST’17.

[92] Wenhao Wang, Linke Song, Benshan Mei, Shuang Liu, Shijun Zhao, Shoumeng
Yan, XiaoFeng Wang, Dan Meng, and Rui Hou. 2024. NestedSGX: Bootstrapping
Trust to Enclaves within Confidential VMs. arXiv (2024).

[93] Carsten Weinhold, Nils Asmussen, Diana Göhringer, and Michael Roitzsch. 2023.
Towards Modular Trusted Execution Environments. In Workshop on System
Software for Trusted Execution.

[94] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. 2019. The severest of them all: Inference attacks against secure
virtual enclaves. In AsiaCCS’19.

[95] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. 2020.
Sevurity: No security without integrity: Breaking integrity-free memory encryp-
tion with minimal assumptions. In IEEE SP’20.

[96] Luca Wilke, Jan Wichelmann, Florian Sieck, and Thomas Eisenbarth. 2021. Unde-
served trust: Exploiting permutation-agnostic remote attestation. In IEEE Security
and Privacy Workshops (SPW).

[97] Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Reetuparna Das, and Todd
Austin. 2017. Cold Boot Attacks are Still Hot: Security Analysis of Memory
Scramblers in Modern Processors. In HPCA’17.

[98] Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi Liu, Qingni Shen, and Fethi
Rabhi. 2018. KASR: A reliable and practical approach to attack surface reduction
of commodity OS kernels. In RAID.

[99] Shixuan Zhao, Mengyuan Li, Yinqian Zhangyz, and Zhiqiang Lin. 2022. vSGX:
virtualizing SGX enclaves on AMD SEV. In IEEE SP’22. IEEE, 321–336.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing
https://www.ibm.com/cloud/confidential-computing
https://www.ibm.com/cloud/confidential-computing
https://learn.microsoft.com/en-us/azure/confidential-computing/overview
https://learn.microsoft.com/en-us/azure/confidential-computing/overview
https://lpc.events/event/17/contributions/1516/

	Abstract
	1 Introduction
	2 Background
	2.1 Confidential Computing
	2.2 Intel TDX: Architecture and System Model
	2.3 OS Kernels for Confidential VMs
	2.4 Gramine Library OS

	3 Overview
	3.1 System Model
	3.2 Design Goals

	4 Design
	5 Implementation
	6 Security Analysis
	7 Evaluation
	7.1 Experimental Setup
	7.2 Microbenchmarks
	7.3 AI/ML Frameworks
	7.4 Databases
	7.5 Web-server
	7.6 3D Rendering
	7.7 Image Processing
	7.8 Boot Time

	8 Related Work
	9 Conclusion and Discussion
	References

