
Toast
Heterogeneous Memory Management

1

Maurice Bailleu, Dimitrios Stavrakakis, Rodrigo Rocha, 
Soham Chakraborty, Deepak Garg, Pramod Bhatotia



AcceleratorsStorageCPU architecture

Heterogeneity in the cloud

2

SSDs

Networking Confidential 
computing



Problem statement

DPDK

SPDK

PMDK

3



Problem statement

DPDK

SPDK

PMDK

Heterogeneous memory does not offer a unified way to access it.
4



Problems with heterogeneous memory

5

Difficult to upgrade between different 
technologies

TEEs double the amount of memory 
that you need to differentiate

Deal with different memory types in 
different ways



Our proposal

Design goals:  

- Programmability

- Portability

- Performance

- Protection

Toast: A Heterogeneous Memory Management System

6



Outline

● Motivation
● Design

○ Design challenges
○ Programming model
○ Compiler
○ Protection Library
○ Overview

● Evaluation

7



Design challenges

8

#1 Memory region
How to manage 
multiple memory 

regions?

Secure application

Untrusted 
device #1

Trusted 
device #2



Design challenges

9

#1 Memory region
How to manage 
multiple memory 

regions?

#2 Heterogeneity
How to deal with 
different memory 

types?

Secure application

Untrusted 
device #1

Unified API

SSD NIC PM

Secure address space

Trusted 
device #2



Design challenges

10

#1 Memory region
How to manage 
multiple memory 

regions?

#2 Heterogeneity
How to deal with 
different memory 

types?

#3 Performance
How to maximize the 

performance?

Secure application

Untrusted 
device #1

Unified API

SSD NIC PM

Secure address space

Trusted 
device #2



Example

11

RDMA:

network_loop:

//Waiting and receiving data

poll(rx)

char * buf = get_buf(rx)

process(*buf)

char * extra = next_free_buf()

swap(buf, extra)

Toast:

network_loop:

//Waiting and receiving data

[[“toast::net”]] char * buf = get_buf(rx)

process(*buf)



Design - Programming model

Application
Code Library Data

Memory type

12



Design - Programming model

Application
Code Library …

Memory type

13

Region
#1

Region
#2

Region
#n



Design - Programming model

Application
Code Library Region

#1
Region

#2
Region

#n
…

Memory type

Protection domain #1

14



Design - ToastPtr

● Pointer type has memory type information

● Epoch is used for revocation

● System pointer sized

AddressEpoch

048/5764

15



Design - Compiler

16

Source code Toast Config

Compiler

Rewrite types

Add checks Add libraries

Modified source
Linker

Runtime library Protection 
library

Binary

6
1 1

2
3

4

5

5

5 5



Design - Protection Library

17

Memory region #n

Library #n

Access

Memory region #m

Library #m

Access

Application



Design - Protection Library

18

Memory region #n

Library #n

Access

Memory region #m

Library #m

Access

Application



ToastPtr

Design - Capability storage

Index #1 Index #2Epoch

Obj Descriptor
Obj Descriptor
Obj Descriptor

Capability
Capability

Capability

Epoch Header Reserved Protection domain id

19

Lower address



Design - MPK protection

20

Application
Code Library #n Region #n

Protection domain #n
MPK #n

Library #m Region #m

Protection domain #m
MPK #m

Protection domain 0
MPK #0

Virtual address
space



Toast runtime

Design - Toast overview

21

Binary Main memory

ToastPtr 
access Proxy lib

Protection lib

Memory 
management 

wrapper

Error 
handler 
registry

Error 
handler

Net lib

Storage lib

Enclave lib

Source & 
Config

Compiler



Outline

● Motivation
● Design
● Evaluation

22



Experimental setup
● 5x Server Machines

○ i9-9900K (5 GHz, 8c/16t)
○ 64 GiB RAM
○ XL710 40GbE QSFP+ (rev 02)

● 40 GbE switch

23

● For MPK experiments:
○ Intel Xeon Gold 5317 (3GHz, 12c/24t)
○ 256 GiB RAM



Evaluation - Secure replication protocol

24Toast performance is comparable to hand optimized version

Higher is better



Evaluation - In-memory KV store

Higher is better

Performance trade-off between different protection levels 25



Evaluation - LOC

26

Application Original Toast Reduction [%]

Secure in-memory KVS 110 105 4.5

Replication protocol 893 852 4.6

Persistent log 123 120 2.4

Persistent KVS 225 182 19.1

Toast reduces the amount of code, while increasing code 
maintainability 



Conclusion

27

A compiler-based heterogeneous memory abstraction

Properties:
● Portability

● Programmability

● Safety

● Performance

Contributions:
● Uniform access

● Uniform error handling

● Protection libraries

Code available at: https://github.com/TUM-DSE/toast

https://github.com/TUM-DSE/toast


Backup!

28



Design - Programming model

Application
Code Library Memory type

29



Paper diagrams

30

Code


