ulO: Lightweight and Extensible Unikernels

Masanori Misono
Technical University of Munich
Munich, Germany
masanori.misono@in.tum.de

Charalampos Mainas
Technical University of Munich
Munich, Germany
mch@in.tum.de

ABSTRACT

Unikernels specialize operating systems by tailoring the ker-
nel for a specific application at compile time. While the spe-
cialized library OS approach provides a smaller OS image—
thus improving the bootup process, performance, migration
costs, and reliable/trusted computing base—at the same time,
unikernels lack run-time extensibility, which is imperative
to support “on-demand” auxiliary tasks and tools, e.g., de-
bugging, monitoring, re-configuration, and system manage-
ment and deployment in a typical cloud environment. Conse-
quently, unikernels present a fundamental trade-off between
slimness of the OS image size at the compile time vs. flexibility
of supported auxiliary functionality at the run-time.

This work strives to balance this trade-off by keeping the
unikernel system image as minimal as possible to solely
support the application functionality in the “common case”,
while providing “on-demand" extensibility for auxiliary tasks
at run-time. The key challenge is to support run-time exten-
sibility through a generic interface in a safe manner.

To this end, the paper presents ulO—a “safe overlay” ab-
straction to provide runtime extensibility in unikernels, while
maintaining the unikernel benefits. In particular, ulO lever-
ages a generic VirtIO-based interface to provide an overlay
for auxiliary programs, i.e., users can load external programs
into the unikernels’ address space and run them, i.e., “on-
demand” extensibility through a generic file system interface.
To provide safe execution within an overlay, ulO provides
isolation mechanisms leveraging hardware-assisted mem-
ory isolation (MPK) and language-runtime-based execution

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SoCC 24, November 20-22, 2024, Redmond, WA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698518

Peter Okelmann
Technical University of Munich
Munich, Germany
okelmann@in.tum.de

Pramod Bhatotia
Technical University of Munich
Munich, Germany
pramod.bhatotia@tum.de

(eBPF). We implement a prototype of ulO based on Unikraft
and demonstrate its applicability to support a range of auxil-
iary use cases. ulO incurs negligible performance overheads
for application execution in the common case while provid-
ing run-time extensibility to support auxiliary use cases.

CCS CONCEPTS

« Computer systems organization — Cloud computing;
« Software and its engineering — Operating systems;
Software system structures.

KEYWORDS

unikernels, virtualization

ACM Reference Format:

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod
Bhatotia. 2024. ulO: Lightweight and Extensible Unikernels. In
ACM Symposium on Cloud Computing (SoCC °24), November 20—
22, 2024, Redmond, WA, USA. ACM, New York, NY, USA, 20 pages.
https://doi.org/lO.l145/3698038.3698518

1 INTRODUCTION

Context and motivation. Unikernels [80] are specialized
operating systems for a specific application. By optimizing
the kernel code along with an application at compile time,
unikernels achieve high performance, small image size, fast
boot time, minimalistic overheads for state migration, and
low trusted and reliability computing base [65, 68, 80, 81].
Given these advantages, unikernels are gaining traction for
a range of application domains, including cloud services [13,
67, 69, 78], storage and networked systems [17, 43, 71, 79, 82,
84, 115], HPC [52, 72-74], serverless computing [4, 15, 31,
106], and IoT and edge computing [18, 29, 44, 85, 120].
However, at the same time, unikernels are considered to
be impractical because of their lack of run-time extensibility,
which is one of the major problems for production cloud
environments [14, 105]. In particular, most practical cloud
deployments require support for spawning auxiliary tasks
in an “on-demand” manner, e.g., system monitoring, logging,

https://orcid.org/0000-0002-9654-9983
https://orcid.org/0000-0001-6728-1335
https://orcid.org/0000-0003-0968-3357
https://orcid.org/0000-0002-3220-5735
https://doi.org/10.1145/3698038.3698518
https://doi.org/10.1145/3698038.3698518

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

configuration updates, system management, debugging, state
backups [3, 21, 42, 99]. Unfortunately, most unikernels do not
support multi-processing due to their single-address space
nature, and it is challenging to use standard tools such as
ssh [88] to connect unikernels and run commands as we do
with traditional operating systems [119]. Given these limita-
tions for production deployments, unikernels are considered
primarily a research prototype despite their numerous ad-
vantages [1, 14, 90].

Limitations of state-of-the-art approaches. These lim-
itations are deep-rooted in the unikernel philosophy of de-
signing minimalistic system images, where the application
developers strip down auxiliary tools, and tailor the underly-
ing operating system at the compile time to support only the
application functionality. A naive solution to this problem
would be adding normal process abstraction to the unikernel
and support shells. However, this would sacrifice the benefits
of unikernels as this requires many mechanisms included in
unikernels that are not commonly used, making OS special-
ization inefficient and increasing system images. Although a
few works try to improve debuggability and observability in
unikernels , these are specific to profiling [3, 21, 42, 99] or
specific to one application [69] and do not provide a generic
mechanism where users can load and execute program on-
demand.

To resolve this unikernel conundrum, we ask the following
research question: Can we have a safe and generic mechanism
to extend unikernels on demand without compromising on their
advantages?

Key insights and contributions. To address this ques-
tion, we propose ulO, which realizes an overlay interface
that enables extending unikernels at run time while keeping
their lightweightness. ulO exposes overlays via a generic and
minimalistic interface while providing external file systems
and console access usable in unikernels. Thus, a user can use
ulO to send and run commands in unikernels. This interface
allows users to interact with unikernels in the same context
while keeping its image size as small as possible. ulO loads
extra components from the file system only when needed,
i.e., extensibility on-demand.

To provide this extensible overlay interface, we must solve
two key challenges: generality and safety.

For generality, unikernels do not have a uniform interface
for extensibility. They are designed for a single application
and most of them do not have a generic mechanism to spawn
a new process. Therefore, a traditional fork-and-exec model
to execute programs is not applicable. We address this chal-
lenge by designing a minimalistic yet generic interface with
a standardized VirtlO file system protocol [87, 95]. Our inter-
face adapts a load-and-call execution model that dynamically
loads components and calls them within the same context;

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

thus, our approach does not compromise the performance
advantages of unikernels.

For safety, unikernels typically do not provide a safety
mechanism since everything runs within a single address
space. At the same, we do not want an overlay to compro-
mise unikernels accidentally, yet we still want maximum
programmability. To address the second challenge, we pro-
vide two lightweight safe isolation execution environments:
(a) hardware-assisted lightweight memory protection mech-
anism (MPK) [5, 49, 100], and (b) language-runtime-based
safety guarantees by limiting functionalities and verifying
code in advance or by checking dynamically (eBPF) [55].
The user can choose one of those execution environments
depending on their requirements.

Experimental methodology and artifact availabil-
ity. We implement our prototype based on Unikraft [68]
targeting x86_64 with QEMU/KVM [11, 64]. We define a min-
imal communication interface on top of VirtlO-console [116]
and VirtIO-9p [117], implement loader and linker to execute
external programs in the unikernel context, and leverage
eBPF [55] and MPK [5, 49] to realize lightweight safe exe-
cution. We evaluate ulO with three real-world applications
(Nginx [30], SQLite [102], and Redis [93]) in terms of ro-
bustness, performance, and effectiveness of ulO. Finally, we
show that ulO enables enough extensibility to realize five
real-world auxiliary use cases: (1) interactive debugging, (2)
online Nginx re-configuration, (3) online SQLite backup, (4)
performance monitoring with performance counters, and (5)
Dynamic function inspection and tracing with eBPF. ulO is
publicly available at https://github.com/TUM-DSE/uio.

Limitations of the proposed approach. ulO does not as-
sume malicious users and focuses on extensions that can be
potentially buggy, for which isolation mechanisms is desire-
ble. ulO’s hardware-assisted isolation mechanism does not
prevent the extension from crashing the unikernel intention-
ally (language-based isolation inherently limits the extension
functionality and thus prevents such things). ulO’s safe exe-
cution environment does not prevent application logic bugs
such as deadlock.

Contributions. Overall, the contributions of this paper
are as follows:

(1) Unikernel overlays: We introduce an overlay abstrac-
tion for lightweight and extensible unikernels. Over-
lays enable “on-demand extensibility” for deployed
unikernels in production, where developers or admin-
istrators can run auxiliary tools and workflows for
management-related tasks while keeping the uniker-
nel advantages.

(2) Extensible file system interface: We present an ex-
tensible file system interface for unikernels, along with
a loadable program execution environment, based on

https://github.com/TUM-DSE/uio

ulO: Lightweight and Extensible Unikernels

the standardized VirtIO protocol in virtualized envi-
ronments.

(3) Lightweight safety: We present two lightweight iso-
lation mechanisms for hardening the safety properties
of overlays, namely hardware-assisted memory isola-
tion and language-based isolation; we implement these
safety mechanisms by integrating MPK and eBPF with
unikernels, respectively.

Artifact availability. ulO is publicly available at https:
//github.com/TUM-DSE/uio.

2 BACKGROUND AND MOTIVATION

We first examine the strengths and weaknesses of unikernels
and then identify a gap that ulO aims to fill.

2.1 Trade-offs in the Unikernel World

Unikernels. Unikernels [80] are specialized operating sys-
tems designed to run a single application. They are optimized
for the specific application at compile time. Unikernels [80]
are specialized operating systems optimized for a specific
application at compile time. They only include the necessary
functionality to run the application, resulting in better perfor-
mance, smaller image sizes, and faster boot-up times [79, 81].
Since unikernel targets a single application, it can eliminate
protection features necessary in a typical operating system
and only contain necessary functionality to run the applica-
tion. This allows unikernels to perform better thanks to less
context switches and protection overheads than applications
on a typical OS.

Unikernels have several advantages compared to tradi-
tional operating systems. First of all, unikernels can be spe-
cialized for the target application at compile time. This im-
proves performance and allows the unikernel only to include
the code necessary for the application’s operation, resulting
in a smaller image size [65, 68, 98]. A smaller image size
enables faster boot-up time [79, 81]. Unikernels can provide
a more secure environment than containers because vir-
tualization provides stronger isolation than processes [81].
Additionally, since only one process runs within the uniker-
nel, there is no need for the process isolation mechanism
that is required in traditional operating systems. As a result,
the application and kernel can operate in the same single
address space, reducing the context switch between user
and kernel and improving performance more. Unlike regular
applications and containers, unikernels typically run on a
hypervisor as a virtual machine (VM), and only contain the
code necessary to run a specific application. Unikernels rely
on the host side (the hypervisor) for actual I/O processing,
scheduling, and isolation among unikernels.

Trade-offs. The benefits of unikernels are related to the
trade-off between functionality and lightweightness [79, 81].

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

In other words, typical operating systems support the execu-
tion of multiple processes and allow for the installation and
execution of new programs as needed. By eliminating these
features, unikernels can optimize to a specific application and
reduce context switching and process isolation overheads,
resulting in high performance and a smaller image size. In ad-
dition, the underlying hypervisor provides stronger isolation
between unikernels than the container-based isolation [81].

However, this nature of unikernels can be problematic
in production environments. For example, in typical cloud
staging environments, if applications have problems, users
can log in to the VMs over the network and debug the error
logs, change configuration, or even run management tasks.
Unfortunately, it is impossible to support such auxiliary func-
tionality and management tasks and tools in unikernels.

A naive solution to this problem is to support multipro-
cessing and shell environments in unikernels like a typical
OS. However, this would contradict the design principles of
unikernels as it introduces performance and file system size
overheads. To this end, we target the following: How can we
design a generic and safe interface to extend the functionality
of unikernels while keeping their benefits?

2.2 The Missing Overlay Abstraction

Because unikernels aim to run a single application, the tra-
ditional shell abstraction that starts processes with a fork
is inappropriate. In fact, due to the nature of unikernels, a
general-purpose process environment that can handle any
workload is unnecessary. Instead, it is sufficient for a uniker-
nel to handle processing related to the main application on
demand.

We need an overlay abstraction that provides a common
interface to connect unikernels and an on-demand command
execution mechanism for the main application while keeping
unikernels” advantages. ulO aims to realize this abstraction.
Our two key observations are: (1) most unikernels already
support (not multiprocessing but) multi-threading, which
can be used to support auxiliary on-demand functionalities.
(2) VirtlO [87, 95] is becoming the de-facto standard for
virtualized environments, which can be leveraged to define
a generic run-time communication interface for unikernels
deployed in production. Using these two ingredients, we
aim to design a generic and minimal interface to realize the
overlay abstraction, while ensuring safety with lightweight
isolation.

2.3 Example Overlay Use cases

With the overlay abstraction, we can enable a range of new
services to help administrators and developers (also see Ta-
ble 6.4 that evaluates implemented use cases).

https://github.com/TUM-DSE/uio
https://github.com/TUM-DSE/uio

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Debugging. Debugging unikernels can be challenging
due to the lack of an interface to access their states. One
common way to debug unikernels is to run them as pro-
cesses [23, 54, 119]. Unfortunately, this approach is not usable
for investigating problems in production where unikernels
run in a virtualized environment. ulO can provide an in-
teractive debugging overlay where users can examine the
application state. For example, ulO can provides access in-
terface to ramfs allowing users to check the application’s
internal log that only exists in the memory (Table 6.4 #1).

Interactive management environment. Many appli-
cations support dynamic reconfiguration, e.g., Nginx [30]
supports reloading configuration files at run time [48]. How-
ever, these configuration mechanisms are usually unavailable
in unikernels. ulO can provide an interactive management
overlay where users can reconfigure an application (Table 6.4
#2).

Running auxiliary tasks. Many applications have aux-
iliary tasks, such as performance monitoring, fault detection,
and resource management [53]. For example, Redis [93] can
periodically take a snapshot of its contents for backup and ex-
amination [94]. ulO can offer an overlay interface to invoke
such tasks on demand (Table 6.4 #3).

Performance monitoring. Performance monitoring is
essential for maintaining the health of applications and iden-
tifying bottlenecks. While it is possible to perform some
monitoring from the host side [37], it is generally less effi-
cient than monitoring within virtual machines (VMs) due to
the semantic gap [16]. ulO can provide performance mon-
itoring overlays, such as accessing performance counters
(Table 6.4 #4).

3 OVERVIEW

In this section, we present an overview of the proposed
system.

3.1 System Overview

To realize the unikernel overlay abstraction (§ 2), we design
ulO, which provides a common interface to extend uniker-
nels at run time. Figure 1 shows the overview of ulO. ulO has
two main components. The first is the host-side ulO process
(the orange part) that manages a file system (u/O-fs) and a
console (ulO-console). ulO-fs serves storage for an overlay
while ulO-console provides console access to the user. The
other component is the in-unikernel u/O context running in
a safe overlay. ulO context is schedulable, and shares the
address space with the main application, and the overlay pro-
vides lightweight isolation to ensure safe execution without
accidentally compromising the main application.

The ulO context in the unikernel works with the aid of
the ulO process. First, users send commands to ulO context

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

! H

: " Unikernel

E \: Main

H ulo ' application

, . ulOo |

‘ FS image context Accesses

|
' Console Loadable !

i program 1 \Calls

! Attaches 1 Func

: — 1> :

: II -------------- ‘

\ : | Hypervisor |
| Host |

Figure 1: Overview of ulO. (Orange components run-
ning on the host and blue components in the unikernel.
Green hatched region denotes a safe overlay.)

via ulO-console. Then, the context handles requests. The
context uses ulO-fs to load an external program and run it
in the safe overlay.

To this end, ulO strives for the following design goals:

e Generality: ulO provides a generic interface that allows
users to extend unikernels behavior at run time.

o Lightweightness: ulO aims to provide a minimalistic in-
terface without compromising unikernels’ lightweight-
ness and performance.

e Safety: The ulO overlay provides safety with an isola-
tion mechanism, i.e., not accidentally compromising
the unikernel yet allowing programmability.

Figure 2 shows the detailed ulO workflow. In step D, ulO
attaches its console and file system to the unikernel. The
communication layer in the unikernel handles this console
and file system communication. In step (2), the user sends a
command to the ulO context via the console device. 3) ulO
context processes the command accordingly. If the command
is to execute a new program (in this example, hello pro-
gram), first, the ulO context loads the program via the file
system, and then calls it (@). The program executes within
the ulO context and is isolated from the main application.

3.2 Assumptions and System Model

For ulO, we consider a scenario where unikernels are de-
ployed in a cloud environment. Each unikernel runs on a
hypervisor, and the hypervisor provides isolation among
them through hardware-assisted virtualization [64]. Hence,
we trust the hypervisor and the operating systems on which
unikernels and ulO run. In this scenario, cloud providers
offer ulO as one of their management services. Therefore,
ulO is owned and controlled by the cloud provider, acting on
behalf of the customer upon their requests. We assume that
the provider provides an authentication mechanism so that

ulO: Lightweight and Extensible Unikernels

only registered users can use ulO. The provider accounts
for the additional resource consumption caused by ulO as
resources used by the virtual machine.

ulO uses a virtual console and file system on the host side.
As these are common functionalities hypervisors provide,
ulO does not significantly increase the TCB. In addition, the
host employs process isolation [56] to isolate the ulO process
to minimize the attack surface.

With ulO bridging the semantic gap [16] between hosts
and VMs, not only can the owner more easily inspect and
debug their VMs, but it also becomes easier for malicious par-
ties within cloud providers to do so and harm confidentiality,
integrity or availability. We think, however, that providers
have a strong incentive to put strong, systematic security
measures in place to prevent rough admins from leveraging
ulO because providers are legally liable for such compro-
mises. This notion ties back to the initial assumption that
we trust the hypervisor and, thus, the cloud provider. (We
could potentially deploy the host-side ulO process and the
unikernel in confidential VMs, as provided by AMD-SEV [6]
or Intel TDX [51], to decouple the trust assumptions from
the cloud provider.)

We do not assume malicious ulO-programs, but we expect
that ulO-programs may contain bugs. We provide flexible re-
source isolation to minimize the possibility of ulO-programs
accidentally compromising the unikernel. Specifically, we
provide two isolation mechanisms; one utilizes lightweight
hardware-assisted memory domains where ulO-programs
still have maximum programmability (§ 4.4), and the other
uses a verified language runtime, namely eBPF [55], to pro-
vide a stronger safety guarantee (§ 4.5.2). The users can
choose the desired isolation mechanism depending on their
requirements.

3.3 Design Challenges and Key Ideas

We next discuss the challenges and key ideas to realize the
overlay abstraction in unikernels.

#1 Generic overlay interface in unikernels. As de-
scribed in § 3.1, it is imperative to have a communication
mechanism between the host and the unikernel to realize
ulO. Unfortunately, unikernels might lack a generic and min-
imalistic interface for this purpose, which is readily available
in traditional OSes, such as the POSIX socket API [62].

To overcome this problem, we define a minimal communi-
cation interface on top of the generic VirtIO protocol [87, 95]
(§ 4.1). The VirtIO protocol is a standardized interface specif-
ically designed to communicate between virtual machines
and the host system. Using VirtIO as the foundation for com-
munication between ulO components minimizes the amount
of code, which is desirable for unikernels [65, 68, 72]. ulO
uses VirtIO for both console access and file system.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

ulO file system
ulO root: /
|
_." P> the”O"",‘®
: i | Loadable
A, program @
QP) i IO
(. \ context
FS
Safe overl
ofe driver o vl
FSimage r<==t=1 Lo H -
..|.. Console | 1 .~ Main
Console === driver application
@ ulo Communication
layer .
Unikernel

Figure 2: ulO workflow. Users can run load ulO-
programs from ulO-fs and run it via ulO-console.

#2 Dynamic program loading and execution. ulO sup-
ports the loading and execution of ulO-programs to maintain
the lightweight nature of unikernels. The problem here is
that, unlike a general-purpose operating system, unikernels
do not have a way to execute new programs as processes.
Adding support for multiprocessing in unikernels contradicts
its design philosophy.

To address this issue, ulO context utilizes threading and
implements a mechanism to load and execute external pro-
grams within its context dynamically. When loading, ulO
context performs necessary symbol relocations, allowing the
loaded program to access and call the unikernel’s data and
functions without being compiled every time to the specific
unikernel. We also provide language-runtime-based execu-
tion for safer execution (see the next paragraph.)

#3 Lightweight safety. ulO context shares the same
memory space as the main application, making it easy to
introspect the main application. However, it also means that
bugs in the ulO context could affect the main application.
This problem becomes even more significant when running
loadable ulO-programs, as these programs may be developed
by different parties than the main application and may not
have been adequately tested as compared to the main ap-
plication. Note that as discussed in § 3.2, we do not assume
malicious ulO-programs, but still assume the possibility of
the presence of bugs in them.

To mitigate these risks, we use a hardware-assisted intra-
application memory isolation mechanism [49, 77, 100] to
allow ulO context and the main application to share the same
memory space but operate in different memory domains
(§ 4.4). Within this domain, the ulO context has read-only
access to the memory of the main application by default. If
some operations require writing to memory, ulO context

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Table 1: Main ulO APIs (excerpt)

Type API function

char* uio_console_gets()

C ! .
onsole uio_console_puts(char *)

fopen(), fclose(), fread(), fwrite()
File system 1seek(), fsync(), unlink() mkdir()
rmdir(), readdir()

void* uio_alloc_memory(size, attr)

Memory void uio_free_memory(void* addr)
void uio_(enable|disable)_write()
Link void* uio_symbol_get(char* symbol)

must explicitly request a change in memory permissions.
This configuration helps to reduce the risk of accidental
memory corruption while keeping a single address space
and without introducing heavy memory space switches.

In addition, the system also provides an eBPF (Extended
Berkeley Packet Filter) [7, 55, 83] execution environment to
provide a safer code execution (§ 4.5.2). eBPF is a language
runtime designed with verification and JIT in mind, and the
runtime can dynamically check several safety properties,
including memory safety and the bounded execution time,
or verify code in advance [39, 57]. eBPF programs run in
a sandboxed environment and cannot directly access the
unikernel’s memory, but can call pre-defined helper func-
tions. Therefore, even if there is a bug in the eBPF program,
we can minimize the impact on the main application and
allow the main application to continue.

4 DESIGN

We next describe the design of ulO. The safe overlay abstrac-
tion is realized using ulO-program (§4.3), ulO context (§4.4),
and ulO isolation mechanisms (§4.5). ulO supports a generic
interface to communicate with safe overlays (§4.1) and a file
system interface for on-demand extensibility (§4.2).

4.1 ulO Interfaces

ulO defines an interface between the host side process and
in-unikernel components on the one hand, and between
unikernels and in-unikernel components on the other hand.
Introducing such generic interfaces on both sides of the
virtualization layer requires a communication layer and as-
sociated APIs.

VirtlO-based communication layer. The ulO commu-
nication layer manages the I/Os of ulO-console and ulO-
fs. The layer should be lightweight to keep the unikernels
benefits and generic enough to support multiple hosts and
unikernels. To this end, ulO adapts the VirtIO [87, 95] pro-
tocol as the basis of the communication. VirtIO is a virtual

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

device designed for use in virtual environments and sup-
ports various device types, including consoles, file systems,
networking, and block devices. Nowadays, VirtIO is widely
used in virtualization environments, including lightweight
hypervisors [2] and unikernels [65, 68]. These characteris-
tics make VirtIO suitable for ulO communication. Especially,
ulO uses VirtIO-console [116] for console and VirtIO-based
file system (namely VirtIO-9P [117] or VirtIO-fs [28]) for file
systems (§ 4.2)

ulO APIs. ulO also defines a common interface between
in-unikernel ulO context and the underlying unikernel to
ease portability among unikernels. The ulO context uses the
APIs to implement core operations. Table 1 shows the list
of main ulO APIs. This defines communication functions to
interact with ulO-console, ulO’s file system, as well as mem-
ory allocation and management interfaces. This is necessary
to allocate executable memory for ulO-programs as well
as change the isolation configuration. ulO APIs also have
a symbol resolution function for symbol relocation when
loading ulO-programs.

4.2 ulO-fs

ulO provides a file system interface for extensibility while
keeping unikernels lightweight. In particular, there are two
ways to handle file systems. One uses block devices, and the
other uses a file system protocol. The former can achieve
better performance, but it requires unikernels to implement
the entire file systems such as EXT4. On the other hand,
with the latter approach, unikernels offload the file system
operations to the host side, thus reducing the code size in
unikernels. ulO adopts a protocol-based file system for this
reason.

VirtIO defines two devices for file systems: VirtIO-fs [28],
and VirtIO-9p [117]. VirtIO-fs uses FUSE protocol [59] whereas
VirtIO-9p uses 9p protocol [91] over VirtIO. In both cases,
the actual file manipulations occur on the host side; thus,
ulO can support a range of available file systems on the host
without bloating unikernels. It is straightforward to imple-
ment ulO file system API on top of them as their protocols
already support such operations. Table 2 shows the related
9p (precisely, 9p.2000L) and FUSE operations to realize the
file system APIs.

4.3 ulO-program

A ulO-program is a loadable component of the ulO context to
maximize extensibility while keeping lightweightness. ulO-
programs run with the same capabilities as the ulO context
(§ 4.4). Since common unikernels do not have a mechanism
for executing new processes, ulO context adapts a load-and-
call execution model, which loads programs in its memory
space and then calls them.

ulO: Lightweight and Extensible Unikernels

Loading and executing. Traditional operating systems
define a stable interface with user programs in the form of
system calls [63], and the standard library (libc) [61]. How-
ever, in unikernels, the defined interface varies. To achieve
maximum flexibility, ulO allows ulO-programs to access
any data and call any functions that unikernels export. The
standard way to export functions and data is a shared li-
brary [60]. However, since unikernels link everything at
compile time, shared libraries are not an appropriate ab-
straction to make symbol exports. Therefore, a ulO context
directly links loaded programs to the unikernel application
like Linux kernel modules [96].

The ulO context loads ulO-program from ulO-fs and places
it to the executable memory region allocated by the mem-
ory API (Table 1). When loading a ulO-program, the ulO
context performs symbol relocation to ensure that the pro-
gram can correctly access and call functions of the unikernel,
even if the program was not originally built for that spe-
cific unikernel—unless function calls maintain the same APL
The ulO context executes the loaded program by calling the
program’s entry point.

Expressiveness. ulO-program’s expressiveness is defined
by ulO APIs (§ 4.1) and the main unikernel’s functions. Specif-
ically, ulO defines several APIs for console IO, file system
access, and memory management. In addition, ulO’s linker
makes the exported unikernel functions available to the ulO-
program. In other words, ulO-program can call functions
and access data in the main unikernel application.

4.4 ulO Context

ulO context is an isolated execution environment of ulO
for unikernels. It shares the same address space as the main
application, can access the main application’s data, and can
call its functions. Further, ulO context is a schedulable entity
and can work concurrently with the main application. It can
also load external programs to access the main application’s
data and call its functions. Conceptually, a ulO context is
similar to a traditional OS thread but provides a memory
isolation mechanism between itself and the main application
(§ 4.5).

We create the ulO context thread at boot time. This thread
shares the address space with the main application and has its
main loop, where it waits for requests from the ulO-console
and processes them when they arrive. When there is no data
from the console, the thread sleeps.

Scheduling. Many unikernels only have a cooperative
scheduler [13, 68, 80], meaning other threads run only when
the currently running thread voluntarily yields. This is effi-
cient in terms of performance because there are no context
switches due to scheduling upon regular timer interrupts.
However, this can be problematic for a ulO context, as it

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Table 2: Protocol messages for ulO-fs operations

Operation 9p2000.L FUSE
fopen() open FUSE_OPEN
fclose() clunk FUSE_RELEASE
fread() read FUSE_READ
fwrite() write FUSE_WRITE
1seek () read/write + offset FUSE_LSEEK
fsync() fsync FUSE_FSYNC
unlink() unlinkat FUSE_UNLINK
rename () rename FUSE_RENAME
mkdir () mkdir FUSE_MKDIR
rmdir() unlinkat FUSE_RMDIR
readdir() readdir FUSE_READDIR

will only be scheduled if the main application yields. A bit
surprisingly, we find that the cooperative scheduler works
well for ulO in our use cases (Table 6.4). This is because most
applications have I/Os for networking and/or storage, which
trigger scheduling.

The application might use busy polling to improve I/O
performance. Even in these cases, we can still schedule other
threads when there is no data to process. For example, Unikraft’s
network stack (lwip [33]) supports polling mode but still
yields to other threads regularly. We find that this works
well in practice. For instance, we confirm that we can use
ulO without severe performance degradation while running
Nginx in polling mode and stressing the server (§ 6.2).

4.5 ulO Isolation

As we discussed in § 3.2, we do not assume malicious ulO
components, including ulO-programs, but they may have
bugs. The ulO context memory isolation aims to prevent
ulO contexts (including ulO-programs) from accidentally
overwriting or mutating the state of the main application.
We next describe the two isolation mechanisms provided
by ulO for safe overlay execution: (a) Hardware-assisted
isolation with memory protection keys, and (b) Language-
runtime-based isolation with eBPF.

4.5.1 Hardware-assisted Memory Isolation. We adopt a hardware-

assisted intra-application protection mechanism [49, 77, 100],
which allows sharing address space but having different read
and write permissions for each domain, to realize isolation
between the ulO context and the main application.

In particular, we leverage Memory Protection Keys (MPK) [5,
49] to realize ulO context isolation to reduce the risk of it
accidentally overwriting the main application. MPK is a mem-
ory protection mechanism for user pages available on recent
x86_64 CPUs of both Intel and AMD [5, 49]. MPK uses the
upper bits of the page table entry to assign one of 16 domains

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

to each page, and the CPU-local PKRU register controls read
and write rights to the domain. Non-privileged WRPKRU
instruction updates the PKRU register without involving a
TLB flush, achieving a fast domain switch with a few dozen
cycles [89].

We create two memory domains, one for the ulO con-
text and the other for the main application. Originally, the
ulO context runs in a domain where it does not have write
but only read permission of the main application’s mem-
ory. However, if ulO needs to write to that memory region,
ulO-program code explicitly changes the permission via API.
This configuration helps to reduce the risk of a ulO context
accidentally overwriting the main application’s data.

Several recent studies have also employed intra-application

memory protection to create compartments within processes [45,

75, 76, 97, 104, 114]. The main difference between the iso-
lation of ulO from these works is that these studies aim to
achieve isolation among multiple mutually untrusted compo-
nents. At the same time, we strive to create isolation between
ulO and the main application, with the assumption that nei-
ther is malicious. This simplifies our compartment design.
Isolation guaratntee and limitation. This isolation
mechanism prioritizes safety and takes a fail-stop approach.
This helps to prevent potential harmful states from propa-
gating and avoid inconsistent system states. MPK is page
granularity. Therefore it cannot prevent within-page out-of-
bound memory access. Also, MPK does not prevent misusing
synchronization functions resulting in deadlocks, nor guar-
antee termination of ulO-programs. As we discuss in § 3.2,
we do not assume the presence of malicious ulO-programs,
and the main purpose of the isolation is to protect the main
application from accidental memory write from ulO.

4.5.2 Language-runtime-based Isolation. In addition to the
ulO context isolation based on memory domains, ulO offers
a restrictive language-runtime-based isolation mechanism
based on the eBPF execution environment. Figure 3 shows
the overview of the eBPF execution environment. Users load
the eBPF program via ulO-console (D) and execute it. In
addition, users can also attach eBPF programs to some events
so that they trigger them (). For example, we can trace
functions by attaching eBPF programs at a function’s en-
try. We describe the implementation of eBPF-based function
tracing in § 5.2.

eBPF program runs in the sandboxed environment with
an interpreter. Although the eBPF program cannot directly
call the unikernel’s functions, the execution environment de-
fines several helper functions that are callable from the eBPF
program. The interpreter dynamically check several safety
properties, such as memory safety, and guarantee bounded
execution time by limiting the number of instructions to
execute. Optionally, we can integrate eBPF verifier [39, 57].

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

Unikernel

> _Lerhen ; eBPF

Program —1 Acceses
Calls ———
eBPF Helpers

Figure 3: Overview of the eBPF execution environment.
eBPF program runs in a sandboxed environment and
cannot directly access the unikernel’s data nor execute
native instructions, but it can call pre-defined helper
functions.

The verifier ensures that the loaded eBPF program does not
violate the safety properties in advance, allowing removing
the dynamic safety checking and JIT-ted execution for better
performance.

4.5.3 Host-side Resource Accounting. Since the host-side
ulO process is an extra component for the VM, We need to
consider the resources used by the process as part of the
resources used by the VM. Otherwise, resource accounting
might not be accurate anymore, leading to unfair resource
sharing between VM tenants. ulO uses a process group re-
source isolation mechanism (namely cgroups [56] in Linux)
on the host to ensure that the ulO process shares a total
amount of resources with the VM and does not use more
resources than allocated to the VM. This also limits recourses
ulO can access, making it difficult for attackers to exploit
the ulO process to gain control of the VM.

5 IMPLEMENTATION

We implement the prototype of ulO on top of Unikraft [68]
version 0.9.0 (Hyperion) [110] targeting x86_64 with QE-
MU/KVM [64]. We consider type-2 hypervisors such as QE-
MU/KVM [64] for our implementation. Our proposed system
is applicable for type-1 hypervisors such as Xen [10] as well
by running the host components on another VM. We do not
add hypervisor-specific code. Therefore, supporting other
hypervisors should require little effort.

Unikraft has support for multithreading with a cooper-
ative scheduler and VirtIO-9p. We add support of VirtIO-
console [95], eBPF runtime [109], and some basic MPK [5,
49] operations in the Unikraft. We add support of VirtlO-
console [95] for ulO-console. We use VirtIO-9p for ulO-fs
and use Unikraft’s vfscore [27] library to realize ulO-fs I/O
APIs (Table 1). We explain the details of the ulO user interface
and programs (§ 5.1), the language-runtime-based isolation
with eBPF (§ 5.2), and the hardware-assisted isolation with
MPK (§ 5.3) in the following sections.

ulO: Lightweight and Extensible Unikernels

The main part of ulO has around 4.1 KLOC, including
eBPF dynamic tracing support, and in addition, ubpf inter-
preter consists of 1.6 KLOC. ulO relies on several Unikraft
libraries, including vfscore [27] and its virtio drivers. As our
evaluation indicates (§ 6), normal applications also rely on
these libraries, and thus ulO does not significantly increase
the image size.

5.1 ulO Interface and Program

ulO-console. Users communicate with ulO-context using
a console interface with VirtlO-console. For this purpose,
we add a VirtIO-console driver to Unikraft. We use existing
QEMU’s VirtIO-console [116], and we configure QEMU to
assign a VirtlO-console device to a unikernel. QEMU creates
a socket file on the host with which host applications can
interact with the console.

ulO-fs. The current ulO implementation uses VirtIO-9p.
We configure QEMU so that it uses the specified directory
as a ulO-fs. We use Unikraft’s vfscore library [27] to realize
ulO-fs I/O APIs (Table 1).

User interface. ulO provides built-in commands. Table 3
shows the list of main ulO commands. The run command is
the main command in ulO, which executes ulO-programs. If
the program to run has not been loaded into the unikernel’s
memory, the run command first retrieves the program using
ulO-fs and performs the necessary loading and linking. Once
the program has been loaded, it is cached in the unikernel’s
memory for faster execution in the future. We also implement
common directory and file commands 1s and cat as built-in
for convenience. These commands support both ulO-fs and
file systems that the application uses (e.g., ramfs), if any. We
also define several eBPF-related commands (see § 5.2).

ulO-program. We implement ulO-programs (§ 4.3) as
position-independent relocatable ELF objects [58]. The ulO
context loads an ELF file from ulO-fs upon an execution
request. During the load, ulO resolves any relocation entries
in the ELF sections, which tells the loader where to place
certain data or code in memory, with the help of uio_sym-
bol_get(). We implement uio_symbol_get() by consult-
ing symbol address information. We create the symbol file by
extracting symbol information from the debug binary build.
The current implementation assumes that unikernels keep
the necessary symbols that ulO-programs require. We could
solve this limitation by supporting on-demand loading of
the dependent code. The current prototype does not support
multithread programs.

5.2 eBPF Integration with ulO

We implement the eBPF execution environment by integrat-
ing user space eBPF runtime (ubpf [109]). We use ubpf’s
interpreter to execute eBPF programs. ubpf has no verifier,

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Table 3: Main ulO commands

Command Description

load Load a symbol file

run Execute ulO-program

Is List directory contents

cat Show file contents
bpf_exec Execute a eBPF program
bpf_map_get Get a value from eBPF map

bpf_map_put Put a value to eBPF map
bpf_attach Attach a eBPF program to a function

but its interpreter has several safety checks, including detect-
ing simple infinite loops, dynamic memory access bounds
checking, and zero division checking (see § 6.1 for the safety
evaluation). We limit the maximum number of instructions
to execute in one eBPF program to one million to ensure
the termination of the program. An eBPF program can only
access its 512-byte stack and bounded memory region given
as an argument to the program. Users execute an eBPF pro-
gram with the bpf_exec command, and the argument to
that command is passed to the eBPF program. In the current
implementation, the eBPF runtime runs the same isolation
domain as the main application (see § 5.3).

We also implement several eBPF helper functions listed
in Table 4 and a simple key-value store (eBPF map). An
eBPF program can access the map with helper functions.
ulO provides bpf_map_get and bpf_map_put commands to
access the map from the ulO-console. bpf_probe_read()
helper function reads from memory with a specified address,
but if the address is not valid, then it returns zero.

Tracing with eBPF. To show the flexibility of eBPF, we
implement a prototype of a dynamic tracing mechanism like
ftrace [35]. To use this mechanism, we insert nop instruc-
tions at the entry of functions when compiling using gcc’s
mcount features [38]. Users can choose whether to insert nop
for each Unikraft library, and depending on the size of the
library, the application size increases from several hundred
bytes to several kilobytes. The ulO runtime replaces the nop
instructions with a eBPF program call when attaching eBPF
program with the bpf_attach command. The argument to
the eBPF program is the address of the attached function. An
example of tracing is counting a number of function calls
(Table 6.4), by retrieving, incrementing, and restoring the
count number from the eBPF map using a function address
given by the argument as a key.

5.3 MPK Integration with ulO

We create two MPK domains, one for the main application
and one for ulO. When running the main application, there

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Table 4: eBPF helpers

Function Description

bpf_map_get() Get a value from eBPF map
bpf_map_put() Put a value to eBPF map
bpf_get_addr() Get symbol address

bpf_probe_read() Read from memory with safety check

bpf_puts() Put a message to a ulO-console

is no restriction by MPK. When running the ulO context,
writing to the main application’s domain is prohibited unless
the program changes the permission explicitly. MPK protect
violation results in a segmentation violation (SEGV).

To use MPK in Unikraft, we make all page entries as user
pages, which means all privilege levels can access these pages.
Note that this change does not introduce any security prob-
lems for unikernels, as the application and kernel run in the
same address space by its nature. Initially, we associate all
pages, including data and bss for ulO, with the main applica-
tion’s domain. When ulO starts, we associate (1) its stack, (2)
interrupt handler’s stack, and (3) memory allocated in the
ulO context using API (Table 1) with the ulO domain. We
need to change the domain of the interrupt handler’s stack
so the CPU can save registers when receiving interrupts in
the ulO context. When switching the context between the
main application and ulO context, including when receiving
interrupts, we change the current CPU’s MPK permission
with WRPKRU instruction. We provide a gate function as a
macro to simplify domain switching.

6 EVALUATION

We evaluate ulO across the following dimensions: robustness
(§ 6.1), performance (§ 6.2), and effectiveness (§ 6.3). Finally,
we present the evaluation of five use cases (Table 6.4).

Experimental setup. We perform the experiments on a
machine equipped with an Intel Xeon Gold 5317 CPU run-
ning at 3.00 GHz (12 physical cores with hyper-threading
disabled) and 256 GiB of DDR4 memory. The host operating
system is Linux 6.2.12, and we use QEMU 7.2.0 [11] with
KVM [64] as the hypervisor. We assign one vCPU and 1
GiB of memory for all experiments to unikernels. We use
VirtlO-net for networking between unikernels and the host.
For better reproducibility, we disable Intel Turbo Boost and
pinned QEMU, vCPU threads, and benchmark tools to differ-
ent, isolated, physical CPUs.

Applications. We use Unikraft’s ported version of Ng-
inx [111], Redis [112], and SQLite [113] in the experiments.
Nginx uses lwip [33] with polling mode for network pro-
cessing. Nginx and SQLite use ramfs for the storage of their
contents. We run a client program that communicates with

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

ulO* + l—|—|18.7us

ulO* w/ Nginx load - .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,:.:.:.;l_. 19.4us
ulo - |.:.:.|.:.:.|.:.:.|.:.:.|.:.:.|.:.:.|.:.,:.H_.18_Gus

0 10 20
latency [us]

<« Lower is better

Figure 4: ulO console responsiveness. “Nginx load”
means performance under stressing the server with
wrk [40].

these applications on the host. We also use a simple appli-
cation that prints counter numbers to a serial console per
second (denoted as count) as an example of a minimal base-
line application. We also use several ulO-program presented
in Table 6.4 in the evaluation.

Experiment variants. We use the Unikraft application
without ulO as a baseline (denoted as Unikraft). As a com-
parison, we use the application with ulO with enabling eBPF
tracing support (denoted as ulO). In several experiments, we
also use ulO without MPK isolation to see the MPK overhead
(denoted as ulO®).

6.1 Robustness

RQ1. How much robustness does ulO provide? We evaluate
the robustness of the ulO and, more precisely, its isolation
mechanism and the eBPF execution environment.

A: MPK isolation. First, we intentionally inject faulty
code snippets in ulO and ulO-programs, which try to write
to the main application’s memory and call the main appli-
cation’s functions without explicit domain changes. In the
second experiment, we modify the snippets and wrap mem-
ory writes and function calls with proper macros so that they
change memory permission explicitly. We confirm that in the
first experiment, writing to the main application’s memory
causes segmentation faults thanks to the MPK isolation. On
the other hand, in the second experiment, memory writes,
and function calls succeed.

B: eBPF execution environment. We create and execute
two eBPF programs that do (1) infinite loops and (2) access
out-of-bound memory. As described in § 5.2, our eBPF exe-
cution environment employs dynamic safety checks using
an interpreter. We confirm that our eBPF execution environ-
ment safely handles both operations (stopping the execution
of eBPF programs within a certain amount of time) and al-
lows the main application to continue its execution.

ulO: Lightweight and Extensible Unikernels

ulO* - :':1?:%{1—'79-9u5

ulO* (cached)
Jtttﬁttttttttttttﬁ_,

UIO s e e 79.1us

ulO (cached) -; 31.1us

0 20 40 60 80
<« Lower is better time [us]

32.1us

Figure 5: ulO response times to load the perf ulO-
program.

RQ1 takeaway: MPK isolation mechanism successfully de-
tects accidental memory writes from the ulO context to the
main application. eBPF execution environment successfully
prevents infinite loops and out-of-bound memory access and
allows the main application to continue its execution.

6.2 Performance

RQ2. How much performance overhead does ulO have? We
evaluate ulO’s performance from several perspectives. First,
we present the console responsiveness; then, we show the
ulO-program loading time. We also report resource foot-
prints regarding disks and memory, and present the main
applications’ performance under ulO with three real-world
applications: Nginx, Redis, and SQLite. Lastly, we report the
performance of ulO-fs.

A: Console responsiveness. We evaluate the ulO-console
responsiveness to see if it is fast enough for interactive use
even under heavy load. Note that our implementation uses a
cooperative scheduler. We first attach to ulO-console, then
we measure the round-trip time of sending an empty newline
and receiving the prompt message 30 times. We report the
mean values with the standard deviations.

Figure 4 shows the results. Our measurements show that
the ulO’s average latency is 18.6 ps. Even when attaching
ulO-console to an Nginx under load with a stressing tool
wrk [40], the average latency only increases by 1.1 ps. MPK
isolation introduces little overhead. To summarize, our eval-
uation shows that ulO-console achieves practical responsive-
ness with a cooperative scheduler.

B:ulO-program loading time. We measure ulO-program
loading time to evaluate the performance of the loader and
the linker of ulO. We measure overall load time by sending
the command to load perf program (see Table 6.4 #4 for the
detail). Figure 5 shows the results. ulO takes 79.1 ps whereas
the cached version reduces loading time by about 61%. The
isolation causes negligible overhead.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

FR#A 0.21MB

Nginx Y 0.17MB
|]065MB poy 0

. 0.12MB Host/guest total
Redis Jo.23MB fou

: 1?1?30.14MB
SQL|te . 0.33MB

T T T
0 0.5 1 1.5

Increase in maximum memory usage [MB]

count]1.55MB

<« Lower is better

Figure 6: Increase in maximum memory usage with
ulO. ulO bar shows the increase in the unikernels, and
the other shows the increase in the total memory mea-
sured in the host.

C: Disk and memory footprint for ulO. We measure
the disk and memory footprint needed for ulO. First, ulO
requires symbol files to load ulO-programs, and their sizes
are 86KB (count), 170KB (Nginx), 227KB (Redis), and 154KB
(SQLite), respectively. This file is a text file containing sym-
bol names and their addresses. Using binary format and
compression will decrease the size.

Second, we measure the memory footprint increase in the
unikernel using the Unikraft memory allocator’s statistics
interface [25]. In addition, we measure the total memory
footprint by running all ulO components in the same cgroup
and calculating the entire memory usage. This includes mem-
ory used by VirtIO devices in QEMU and socat process for
console communication. Figure 6 shows the increase of max-
imum memory usage we measured at the entry point of the
main function. We observe a total 0.23MB (Redis) to 1.55MB
(count) memory increase when using ulO. This is about 0.1
% memory when we assign 1GiB to the VM. As discussed
in § 3.2, a cloud provider would account for these resource
increases as resources are used by the unikernel application.

D: Application performance under ulO. We evalu-
ate application performance under ulO with three applica-
tions: Nginx, Redis, and SQLite. For Nginx, we run wrk [40],
an HTTP benchmark, for one minute with 2 threads and
30 HTTP connections. For Redis, we run redis-benchmark
and made 10 million requests with 30 connections and a
pipelining level of 16. For SQLite, we use the benchmark pro-
gram [19], which performs insertion operations to an SQLite
database located in a ramfs and reports the processing time.
This SQLite does not perform data persistent operations,
and therefore, there is no I/Os during operations. We run
experiments ten times and report mean values.

In addition to running the application normally, we also
measure the performance when (1) running the 1s com-
mand in ulO once per second (“w/ 1s”), and (2) running the

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Higher is better 1

read write

w 1.69
Pe)
© 30 1.11
— WWW .
451 1 R I
e 0.64 vy

. R
—g 0.57 Molels 0.46 43
> Lot R I
8 LA g s LA g s 0.12 Frsr
<0 RT3y RSy 204
|_

16 64 16 64

Buffer size [KB]
[Linux VirtlO-blk

Buffer size [KB]
EXA ulO-fs (VirtlO-9p)

Figure 7: File system throughput.

perf ulO-program, which shows the values of performance
counters once per second (see Table 6.4) (“w/ perf”), and
(3) attaching eBPF program via ulO and count a number of
function calls (“w/ bpf”), as an example of eBPF execution.
Specifically, we trace ngx_http_process_request_line()
in Nginx, and processCommand() in Redis. The application
calls each function when receiving a request. As for SQLite,
we do not perform the experiment with ulO running pro-
grams because insertion operations do not yield the thread,
and thus ulO-context does not run. This experiment eval-
uates the overhead when the application does not use ulO.
We repeat each experiment ten times to report mean values
with the standard deviation. Figure 9 shows the results.

First, comparing the ulO*, which has no MPK isolation,
and ulO results, we observe less than 1.9 % performance
differences (the biggest one is Nginx w/ perf). Second, in the
Nginx and Redis experiment, we observe 2.1 (Nginx) to 6.2
(Redis get) % performance overheads when integrating ulO
(without doing anything on it), whereas there is no overhead
for SQLite insertion operations. We presume this overhead
comes from thread scheduling. Nginx and Redis try to switch
contexts after doing I/Os, even though the ulO context sleeps
at that time, adding additional processing time. On the other
hand, SQLite insertion operations do not involve any I/Os
and, thus, no context switch, leading to little overhead. Third,
ulO-program and eBPF tracing overhead depend on what
we do. Running 1s command introduces little overheads,
whereas running perf ulO-program introduces 4.2 to 8.2 %
performance overheads compared to when we do not run
anything on ulO. We observe up to 31 % performance over-
heads when tracing processCommand() function in Redis.
The important point here is that ulO works well even when
we load the application, and our eBPF execution environ-
ment also works fine when attaching an eBPF program to
one of the busiest functions in the application.

Our experiments show that even if the application inten-
sively processes I/Os (Nginx and Redis), ulO can operate
with only several percent performance overheads. We expect

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

[Unikraft
B ulo

0.25MB

count 0.44MB

: 0.81MB
Nginx 0.94MB

. 1.56MB

Redis 'WW% 1.63MB

. 1.13MB
SQLite [y 1 o

T T T T
0 500

1
1000 1500 2000 2500
<« Lower is better size [kB]

Figure 8: Image size comparison when integrating ulO

that we could eliminate the overhead when not using ulO
by injecting the ulO code and running the ulO context dy-
namically [108]. The SQLite insertion benchmark shows that
ulO does not introduce any overheads when the application
does not yield it, though ulO does not run in this case. A
preemptive scheduler will solve this problem. However, this
benchmark — not having any I/O - is an extreme case, and
we do not expect that this will be a common case.

E: File system performance. We measure the perfor-
mance of ulO-fs over VirtIO-9p. We perform sequential read-
/write to a 2GB file on ulO-fs and measure the throughput
with several buffer sizes in a single read/write operation. The
host uses ZFS as a file system and stores the data there. We
compare the results with VirtIO-blk with ext4 on a Linux
VM as Unikraft misses the support of VirtIO-blk with file
systems. We use O_DIRECT to bypass the page cache during
the experiment. Figure 7 shows the result.

Compared to the VirtIO-blk on a Linux VM, ulO-fs over
VirtlO-9p has up to 17% overhead for read and 74% overhead
for write. In general, block-based I/O performs better than
file-based 1/0O [108] but simplifies the guest-side implemen-
tation. As the primary purpose of ulO is to provide a safe
overlay for extensibility and not to offer high-performance
storage, we think the performance is acceptable for ulO. The
guest application can use other file systems, such as ramfs,
in parallel with ulO to get better performance.

RQ2 takeaway: (1) ulO achieves practical responsiveness
even with a heavy network load. (2) ulO-program caching
effectively reduces loading time, resulting in faster respon-
siveness. (3) ulO’s resource cost is several hundred KB of
memory in unikernels and up to 1.6MB in the host. The sym-
bol file takes several hundred KB. (4) ulO works well even
when we load the application with moderate overhead. (5)
File-based I/O (9pfs) has lower performance than block-based
storage but ulO uses it to prefer its simplicity.

ulO: Lightweight and Extensible Unikernels

Higher is better 1

RoNo N YN
— DL ANNGCM 4 —
2 00 22229000 4
S 100 ﬁfl& el <
2 pA AR e 2
e e
S e e e [ed o
o 0 ol |04 £ e)
5 (a) Nginx =
1 Unikraft =1 ulo* Z=2 ulo* w/ Is
E=X ulo ulo w/ s

Higher is better 1

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Lower is better |

[Vp] (7] [%)]
~N N~ O
— — —
ERa
g =
£2 ek

Refel

(c) SQLite
60k insertion

=1 ulO* w/ bpf
EZX ulO w/ bpf

(b) Redis

E=] ulO* w/ perf
E= ulO w/ perf

Figure 9: Application performance under ulO. ulO* is no MPK isolation. (a) Nginx throughput with wrk. (b) Redis
throughput with redis-benchmark. (c) SQLite insertion time for 60k rows. “w/ 1s” and “w/ perf” means we run the
commands in the ulO every second. “w/ bpf” means we attach an eBPF program to some of the function calls to

count the number of calls.

6.3 Effectiveness

RQ3. How much lightweightness does ulO bring? We evaluate
the effectiveness of ulO for building lightweight unikernels
by quantifying the image and the program size needed to use
ulO. ulO is implemented as a library, increasing the image
size when integrating it. However, it is important to note
that without ulO, it is impossible to realize any use case
presented in Table 6.4. In this experiment, we show that the
increase in image size is minimal, making it a suitable choice
for practical use.

We build applications with and without ulO. This experi-
ment enables size optimization (link-time optimization and
dead code elimination). We enable eBPF tracing support
when integrating ulO, but disable mcount (not insert any
nops). Figure 8 shows the result. ulO increases the image
size by from 60 KB (SQLite) up to 190 KB (count). ulO relies
on some Unikernel libraries, such as vfscore and some libc
functions, and Nginx, Redis, and SQLite also rely on such
libraries, resulting in smaller size differences.

The ulO-programs we show in Table 6.4 are around several
KB, and eBPF programs are around several hundred bytes.
For example, perf program is 4.1 KB and an eBPF program
for counting the number of function calls is 104 B. This is
not larger than the size required by the ulO. However, it
is important to note that without ulO, we cannot run any
ulO-program in the first place. Additionally, ulO can load
programs depending on some large libraries. For example,
the size of libc (newlibc.o) we use to build applications is 0.6
MB (many parts of libc are eliminated by size optimization).

Potentially, we could create ulO-programs depending on this
libc and load them interactively.

RQ3 takeaway: With around several hundred KB, we can
enable ulO and have the ability to load and run external
programs. Without ulO, we cannot interactively execute any
ulO-programs, including eBPF programs.

6.4 Implemented Use Cases

RQ4. What kind of use cases can ulO support? We imple-
ment five use cases to show the usefulness of ulO. Table 5
summarizes the main evaluation results.

Use case #1: Interactive debugging. First, ulO can pro-
vide an interactive debugging environment. For example,
using ramfs [24] to improve Nginx performance in uniker-
nels is crucial. However, this makes it challenging to access
log files, such as /nginx/logs/error.log, as they only ex-
ist in the unikernel’s memory. The ulO provides access to
the ramfs via ulO-console, and we can view the contents of
these files by executing the cat command. This is a simple
yet useful example that ulO makes possible.

Use case #2: Online re-configuration. Nginx supports
on-demand configuration reloading by sending a SIGHUP
signal [48]. Although Unikraft supports basic signal mecha-
nisms [26], the mechanisms for sending signals are unavail-
able unless the application implements the dedicated inter-
face. We add built-in kill command in ulO that allows us
to send signals to the main application, enabling on-demand
configuration reloading. This is helpful for observing the
application behavior quickly with different configurations.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

Table 5: Evaluated Use Cases

No. | Application Type Description Implementation Native [rps]Performan‘cewo/vslrge(zl(‘llserhea d%)

1 Nginx Debugging Inspect log files in ramfs ulO command N/A (one-shot execution)

2 Nginx Management Configuration reloading ulO command N/A (one-shot execution)

3 SQLite Auxiliary task Dumping in-memory DB to a file ulO-program N/A (one-shot execution)

4 (a) | Nginx Monitoring Monitor performance counters ulO-program 195.7k 183.0k (6.5)

4 (b) | Redis Monitoring Monitor performance counters ulO-program 1.31M/1.08M (get/set) | 1.13M/0.96M (13.7/11.1)
5(a) | Nginx Tracing Count number of requests eBPF 195.7k 180.9k (7.6)

5(b) | Redis Tracing Count number of get/set eBPF 1.31M/1.08M (get/set) | 0.86M/0.74M (34.4/31.5)

Use case #3: SQLite online backup. ulO is also use-
ful for invoking the application’s auxiliary tasks. For exam-
ple, SQLite supports saving the in-memory database to a
file [103]. However, without ulO, there is no interface to call
that function on-demand. We create a small ulO-program
that calls the backup function. From ulO, we can back up
in-memory SQLite data by executing that program.

Use cases #4: Performance monitoring. Performance
monitoring is also where ulO shines. CPUs have an inter-
nal register for performance monitoring [50]. Without ulO,
configuring and reading such registers is difficult due to a
lack of interface. To demonstrate monitoring capability, we
create a ulO-program called perf that configures and prints
performance counters of instructions counts and LLC misses
every second. With this program, we can get performance
counter values while executing the main application.

Use cases #5: Safe application inspection and tracing
with eBPF. ulO is also useful for inspecting and tracing
the application’s behavior. In particular, eBPF can guaran-
tee stronger isolation yet provide flexibility to examine ap-
plications. For example, we create an eBPF program that
safely consults the application’s symbol data. This program
takes the symbol name as an argument, and it resolves the
symbols using bpf_get_address() and then reads its value
with bpf_probe_read(). These helper functions ensure safe
memory access. With this program, for instance, we can read
Nginx’s connection_counter to get the connection count.

In addition, we create an eBPF program that counts the
number of function calls as described in § 5.2. We can attach
the eBPF program to functions via ulO-console, and con-
sult the number by executing the bpf_get_map command.
The performance evaluation (Figure 9) shows that this trac-
ing successfully works when attaching one of the busiest
functions in the Nginx and Redis with moderate overheads.

RQ4 takeaway: We show that through the use cases, we
can use ulO for (1) debugging, (2) interactive management
environment, (3) running auxiliary tasks, (4) performance
monitoring, and (5) safe inspection and tracing with eBPF.
The traditional unikernels have trade-offs between extensi-
bility and lightweightness; performing these tasks is chal-
lenging. With ulO, we are able to get both worlds, enabling
users to extend unikernels on-demand only when needed.

7 DISCUSSION

Comparison with VMSH and Cntr. VMSH [108] and
Cntr [107] propose on-demand extensibility for normal Linux
VM and container, respectively. First, VMSH [108] proposes a
hypervisor-agnostic overlay for Linux, realizing the dynamic
loading of VirtIO-based console and file systems without pre-
installing any components in the guest. On the other hand,
Cntr [107] creates a nested namespace in a container, allow-
ing it to mount another host’s filesystem on demand.

Compared to them, the main novelty of ulO is proposing
a safe and lightweight overlay mechanism that allows on-
demand extensibility for unikernels (i.e., single-address space
with the same privileged domain system) with isolation of
loaded components. ulO realizes this using (1) hardware-
assisted intra-memory isolation (MPK) and (2) a language-
based execution environment (BPF). This design allows ap-
plication developers to choose one of them depending on the
flexibility and safety guarantee trade-off. On the other hand,
VMSH and Cntr do not implement or need to implement an
isolation mechanism, as Linux already provides process-level
isolation. In addition, these works utilize Linux kernel APIs
to realize code execution. On the other hand, ulO defines a
set of APIs to compensate for the lack of general APIs among
unikernels.

Comparison with microkernel. Microkernels [9, 12, 46,
47, 66] implement main OS components as a user-level ser-
vice, and the kernel only contains the essential functionalities
such as inter-process communication and scheduling. This
architecture offers better robustness through component iso-
lation at the cost of high communication (IPC) overhead.

ulO: Lightweight and Extensible Unikernels

ulO shares a commonality with microkernels in the sense
that ulO uses the additional service provided by the host
component. On the other hand, the main unikernel still runs
in a single-address and implements each service as a func-
tion. Therefore, it uses function calls instead of IPC. This
unikernel architecture realizes better performance but with
less isolation guarantee than microkernels. ulO aims to fill
this gap by providing extensibility to unikernels with lighter
intra-process isolation mechanisms. ulO does not offer the
same level of resilience as microkernels, where each service
can be restarted without affecting the others, but it offers
isolation for preventing inconsistent states due to accidental
bugs while keeping the advantages of unikernels.

Generality of ulO. We design ulO with generality in
mind. First, the VirtIO interface, which ulO is based on, is
common in a virtualized environment, and most unikernels
already support it. In addition, ulO does not have hypervisor-
specific code, requiring no hypervisor (host OS) modification.
Therefore, while our evaluation is based on Unikraft, we
expect this to demonstrate the main ulO capability.

We evaluate ulO mainly targeting the cloud environment,
which is one of the most common use cases for unikernels.
Considering the low resource overhead of ulO, we believe
that much of the evaluation results also apply to the context
of IoT and edge computing.

Usage of hardware-assisted memory protection. The
reliance on hardware-assisted memory protection (MPK) lim-
its the applicability of ulO to the hardware that supports it.
However, we expect this limitation to be mitigated in the
future. This is because a hardware-assisted memory isolation
mechanism is becoming common. Firstly, MPK is available
in the x86-64 environment on both the recent Intel and AMD
architecture, which dominates the current cloud environ-
ment. In addition, ARM has Memory Domain [8], and there
is research work on RISC-V [100], which offers a memory
domain protection mechanism like MPK. Given that security
and privacy are becoming more of a concern around comput-
ing systems, we envision such hardware features to become
available even for IoT and edge computing hardware. Fur-
thermore, ulO’s language-based isolation mechanism (BPF)
is not architecture-dependent and does not require any hard-
ware features.

8 RELATED WORK

Extensibility in virtualized environments. Traditional
OSs have a mechanism for managing and extending VMs
remotely. ssh [88] is the most common way to interact with
a remote machine, which allows users to install and run addi-
tional programs on demand. Some cloud providers also offer
dedicated agent software for this purpose [41, 101]. However,
these methods are not directly applicable to unikernels as

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

they would only have non-standard specialized interfaces
and usually do not support spawning new processes.

VMSH [108] proposes a way to have a hypervisor-agnostic
overlay without pre-installing any code in VMs. It creates
VirtlO devices and spawns an agent process on demand
by injecting code from the host. ulO is similar to VMSH
in providing an interface with VirtIO devices. Still, VMSH’s
focus is achieving dynamic guest overlay on Linux in a (KVM-
based-)hypervisor-agnostic manner, and it heavily relies on
Linux kernel functions both in the guest and the host. On the
other hand, ulO provides interactive overlay environments
tailored to unikernels with lightweight isolation.

Hypershell [36] utilizes system-call redirection to make
host-side applications run in the context of the guest. This
allows applications to be run on the guest without installing
them. However, this assumes that the guest and the host use
the same kernel and does not apply to unikernels.

Hyperupcalls [7] proposes a mechanism that the hypervi-
sor safely executes guest-provided BPF code in the host to
realize flexible and less intrusive upcalls. On the other hand,
ulO loads and runs BPF program in the guest to provide
extensibility to the application.

Debugging unikernels. One of the main use cases of ulO
is to debug unikernels interactively. The current most used
ways to debug unikernels is using gdb [32] with the gdb stub
provided by hypervisors [34, 118], or embedding the stub in
unikernels [20, 22]. In addition, several approaches create
profilers for unikernels [3, 21, 42, 86, 99]. These systems are
orthogonal to ulO. Generally, gdb-style inspection requires
much low-level knowledge and does not offer overlay to run
programs in unikernels on-demand. On the other hand, ulO
can provide an interactive overlay where users can examine
the application with running loadable programs.

Running unikernels as processes on a generic OS [23,
54, 119] makes using debug tools for common applications
possible. However, this technique is not usable in produc-
tion where unikernels run in a virtualized environment.
Lupine [70] and UKL [92] demonstrate that it is possible
to tailor general-purpose OS to unikernels-like systems. This
also allows us to run traditional management and debug
tools, but this technique does not apply to other unikernels.
ulO provides extensibility for unikernels running on a hy-
pervisor and can provide a generic interface for debugging.

Isolation in unikernels. Several recent studies propose
methods to have hardware-assisted compartments inside
unikernels while keeping a single address space [75, 97, 104].
Sung et al. [104] propose an MPK-based isolation mechanism
between trusted and untrusted components. FlexOS [75]
allows the fine-grained memory isolation with MPK and
nested paging to be specified at compile time to achieve
a trade-off between security and performance according to
requirements. CubicleOS [97] proposes an efficient zero-copy

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

data-access mechanism across partitioned compartments
with MPK.

In the same spirit, ulO utilizes MPK to achieve memory
isolation, but our assumption makes domain design simple.
We create isolation between the ulO and the main application
to reduce the risk of ulO accidentally compromising the
main application. ulO also offers language-runtime-based
execution with eBPF to have stronger isolation and safety
guarantees.

fork() in unikernels. ‘fork()’ [76, 78, 121] in unikernels
mainly aims at running multi-process applications such as
web servers. Iso-UniK [76] re-introduce page table isolation
within unikernels, and KylinX [121] and Nephele [78] re-
alize fork() through VM cloning. Using a fork is another
possible approach to realize overlay, but ulO prefers mul-
tithreading as many unikernels already support it, and it
fits the single-address space philosophy of unikernels. ulO
leverages hardware-assisted isolation and language-runtime-
based isolation to compensate for the weak isolation of multi-
threading.

File systems in unikernels. Many unikernels support
in-memory file systems (e.g., ramfs) [13, 65, 68, 86]. One
of the primary use cases of such a file system is loading
configuration and serving static files, which is helpful for,
e.g., web servers. To use this, the hypervisor loads the file
system in memory at boot time. In-memory file systems are
fast but not persistent and extensible.

Some unikernels support persistent file systems with block
devices. For example, OSv [65] supports ZFS over VirtlO-
blk. Also, some support VirtlO-based file systems. OSv and
Rusty-hermit [72] supports VirtIO-fs and Unikraft supports
VirtlO-9p [68]. Like these unikernels, ulO uses VirtIO-based
file systems, and ulO defines generic interfaces on top of
them.

MiniCache [69] implements a specialized file system (“SHFS”)

on top of Xen’s paravirtualized block device for CDN. Mini-
Cache also implements a simple interface (“uSH”) over a
network that allows operators to interact with the unikernel,
such as manipulating the cache file and retrieving statistics.
However, this is specialized for MiniCache and does not
provide a generic overlay for extensibility like ulO. With
a combination of VirtIO-console and lightweight isolation
mechanism, ulO provides a dynamic, safe overlay for on-
demand unikernel extension.

9 CONCLUSION

In conclusion, our paper makes the following contributions.
First, we introduce an overlay abstraction for lightweight
and extensible unikernels. This overlay enables “on-demand
extensibility” for deployed unikernels in production, where
developers or administrators can run auxiliary tools and

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

workflows for management-related tasks while keeping the
unikernel advantages. Secondly, we present an extensible
file system interface for unikernels, along with a loadable
program execution environment, based on the standard-
ized VirtIO protocol in virtualized environments. Lastly, we
present two lightweight isolation mechanisms for hardening
the safety properties of overlays, namely hardware-assisted
memory isolation and language-based isolation; we imple-
ment these safety mechanisms by integrating MPK and eBPF
with unikernels, respectively.

We implement our contributions in the ulO system based
on Unikraft [68] and confirm its usefulness in detailed exper-
iments with several real-world use cases, including interac-
tive debugging, re-configuration, data back-ups, performance
monitoring, and application tracing with eBPF.

Artifact availability. ulO is publicly available at https:
//github.com/TUM-DSE/uio.

Acknowledgements. We thank our shepherd, Prof. Mar-
ios Kogias, and the anonymous reviewers for their help-
ful comments. We thank Joérg Thalheim for the valuable
discussion and feedback on this work. We thank Vanda
Hendrychova for the help with the BPF integration. This
work was partially supported by an ERC Starting Grant (ID:
101077577) and the Chips Joint Undertaking (JU), European
Union (EU) HORIZON-JU-IA, under grant agreement No.
101140087 (SMARTY). The authors acknowledge the finan-
cial support by the Federal Ministry of Education and Re-
search of Germany in the programme of “Souverén. Digital.
Vernetzt”. Joint project 6G-life, project identification number:
16KISK002.

REFERENCES

[1] 2021. The Big Idea Around Unikernels | Hacker News. https://news.
ycombinator.com/item?id=29427449. Accessed: 2024-07-07.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa.
2020. Firecracker: Lightweight Virtualization for Serverless Ap-
plications . In Proceedings of the 17th USENIX Symposium on Net-
worked Systems Design and Implementation. USENIX Association.
https://www.usenix.org/conference/nsdi20/presentation/agache

[3] Kareem Ahmad, Alan Dearle, Jon Lewis, and Ward Jaradat. 2020.
Debugging Unikernel Operating Systems. https://uksystems.org/
workshop/2020/slides/presso40.pdf. Presented at 5th Annual UK
Systems Research Challenges Workshop. Accessed: 2024-07-07.

[4] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In Proceedings of
the 2018 USENIX Annual Technical Conference. USENIX Association.
https://www.usenix.org/conference/atc18/presentation/akkus

[5] AMD. 2023. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming Revision 3.40 - Section 5.6.7. https://www.amd.
com/system/files/TechDocs/24593.pdf. Accessed: 2024-07-07.

[6] AMD. [n.d.]. AMD Secure Encrypted Virtualization (SEV). https:
//www.amd.com/en/developer/sev.html. Accessed: 2024-07-07.

https://github.com/TUM-DSE/uio
https://github.com/TUM-DSE/uio
https://news.ycombinator.com/item?id=29427449
https://news.ycombinator.com/item?id=29427449
https://www.usenix.org/conference/nsdi20/presentation/agache
https://uksystems.org/workshop/2020/slides/presso40.pdf
https://uksystems.org/workshop/2020/slides/presso40.pdf
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html

ulO: Lightweight and Extensible Unikernels SoCC ’24, November 20-22, 2024, Redmond, WA, USA

[7] Nadav Amit and Michael Wei. 2018. The Design and Implemen-
tation of Hyperupcalls. In Proceedings of the 2018 USENIX Annual

[20] Hermitux developers. [n.d.]. Debugging - ssrg-vt/hermitux Wiki.
https://github.com/ssrg-vt/hermitux/wiki/Debugging. =~ Accessed:

Technical Conference. USENIX Association. https://www.usenix.org/ 2024-07-07.
conference/atc18/presentation/amit [21] Hermitux developers. [n.d.]. Profiling - ssrg-vt/hermitux Wiki. https:
[8] Arm. [n.d.]. ARM Memory Access Permission and Domains. //github.com/ssrg-vt/hermitux/wiki/Profiling. Accessed: 2024-07-07.

https://developer.arm.com/documentation/dui0056/d/caches-and- [22] Solo5 developers. [n.d.]. Solo5 gdb stub. https://github.com/Solo5/

tightly-coupled-memories/memory-management-units/memory-
access-permissions-and-domains. Accessed: 2024-10-06.

Nils Asmussen, Marcus Volp, Benedikt N6then, Hermann Hartig,
and Gerhard Fettweis. 2016. M3: A Hardware/Operating-System
Co-Design to Tame Heterogeneous Manycores. In Proceedings of the

solo5/blob/master/tenders/hvt/hvt_gdb_kvm_x86_64.c. Accessed:
2024-07-07.

The Unikraft developers. 2022. Debugging a Unikernel - linuxu. https:
//unikraft.org/docs/internals/debugging#linuxu. Accessed: 2024-07-
07.

21st International Conference on Architectural Support for Program- [24] Unikraft developers. [n.d.]. Unikraft libramfs library. https://github.
ming Languages and Operating Systems. Association for Computing com/unikraft/unikraft/tree/staging/lib/ramfs. Accessed: 2024-07-07.
Machinery. https://doi.org/10.1145/2872362.2872371 [25] Unikraft developers. [n.d.]. Unikraft ukalloc library. https://github.
[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, com/unikraft/unikraft/tree/staging/lib/ukalloc. Accessed: 2024-07-07.
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. [26] Unikraft developers. [n.d.]. Unikraft uksignal library. https://github.

Xen and the Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (Bolton Landing, NY,
USA). Association for Computing Machinery. https://doi.org/10.
1145/945445.945462

Fabrice Bellard. 2005. QEMU, A Fast and Portable Dynamic Transla-
tor. In Proceedings of the 2005 USENIX Annual Technical Conference.
USENIX Association. https://www.usenix.org/conference/2005-
usenix-annual-technical-conference/qemu-fast-and-portable-
dynamic-translator

Brian Nathan Bershad, Stefen Savage, Przemyslaw Pardyak,
Emin Gin Sirer, Marc Eric Fiuczynski, David Becker, Craig Cham-
bers, and Susan Eggers. 1995. Extensibility Safety and Perfor-
mance in the SPIN Operating System. In Proceedings of the 14th
ACM Symposium on Operating Systems Principles (Copper Moun-
tain, Colorado, USA). Association for Computing Machinery. https:
//doi.org/10.1145/224056.224077

Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engel-
stad, and Kyrre Begnum. 2015. IncludeOS: A Minimal, Resource
Efficient Unikernel for Cloud Services. In Proceedings of the 7th IEEE
International Conference on Cloud Computing Technology and Science.
IEEE Computer Society. https://doi.org/10.1109/CloudCom.2015.89
Bryan Cantrill. 2016. Unikernels are Unfit for Production.
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-
production. Accessed: 2024-07-07.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In Proceedings of the 15th European Conference on
Computer Systems. Association for Computing Machinery. https:
//doi.org/10.1145/3342195.3392698

Peter M. Chen and Brian D. Noble. 2001. When Virtual is Better
than Real [Operating System Relocation to Virtual Machines]. In
Proceedings of the 8th Workshop on Hot Topics in Operating Systems.
IEEE Computer Society. https://doi.org/10.1109/HOTOS.2001.990073
Maxime Compastié¢, Rémi Badonnel, Olivier Festor, Ruan He, and Mo-
hamed Kassi-Lahlou. 2018. Unikernel-based Approach for Software-
defined Security in Cloud Infrastructures. In Proceedings of the 2018
IEEE/IFIP Network Operations and Management Symposium. IEEE
Computer Society. https://doi.org/10.1109/NOMS.2018.8406155
Vittorio Cozzolino, Aaron Yi Ding, and J6érg Ott. 2017. FADES: Fine-
Grained Edge Offloading with Unikernels. In Proceedings of the 1st
International Workshop on Hot Topics in Container Networking and
Networked Systems. Association for Computing Machinery. https:
//doi.org/10.1145/3094405.3094412

Cyril Soldani. [n. d.]. cffs/app-sqlite-test: Performance experiment
with SQLite on Unikraft. https://github.com/cffs/app-sqlite-test. Ac-
cessed: 2024-07-07.

=

= =

flan?

=

=

—

=

com/unikraft/unikraft/tree/staging/lib/uksignal. Accessed: 2024-07-
07.

Unikraft developers. [n. d.]. Unikraft vfscore library. https://github.
com/unikraft/unikraft/tree/staging/lib/vfscore. Accessed: 2024-07-07.
Virtiofs Developers. [n. d.]. virtiofs - Shared File System for Virtual
Machines. https://virtio-fs.gitlab.io/. Accessed: 2024-07-07.

Bob Duncan, Andreas Happe, and Alfred Bratterud. 2016. Enterprise
IoT Security and Scalability: How Unikernels Can Improve the Status
Quo. In Proceedings of the 9th International Conference on Utility
and Cloud Computing (Shanghai, China). Association for Computing
Machinery. https://doi.org/10.1145/2996890.3007875

F5 Inc. [n. d.]. Advanced Load Balancer, Web Server, & Reverse Proxy
- NGINX. https://www.nginx.com/. Accessed: 2024-07-07.
Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach.
2019. USETL: Unikernels for Serverless Extract Transform and Load
Why Should You Settle For Less?. In Proceedings of the 10th ACM
SIGOPS Asia-Pacific Workshop on Systems. Association for Computing
Machinery. https://doi.org/10.1145/3343737.3343750

Free Software Foundation. [n.d.]. GDB: The GNU Project Debugger.
https://www.sourceware.org/gdb/. Accessed: 2024-07-07.

Free Software Foundation. [n.d.]. IwIP - A Lightweight TCP/IP stack
- Summary. https://savannah.nongnu.org/projects/lwip/. Accessed:
2024-07-07.

Free Software Foundation. [n.d.]. Remote Stub (Debugging with
GDB). https://sourceware.org/gdb/onlinedocs/gdb/Remote-Stub.
html. Accessed: 2024-07-07.

Mike Frysingerj. [n.d.]. Function Tracer Design. https://docs.kernel.
org/trace/ftrace-design.html. Accessed: 2024-07-07.

Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. 2014. HYPERSHELL:
A Practical Hypervisor Layer Guest OS Shell for Automated In-VM
Management. In Proceedings of the 2014 USENIX Annual Technical Con-
ference. USENIX Association. https://www.usenix.org/conference/
atc14/technical-sessions/presentation/fu

Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection. In Proceedings
of the 2003 Network and Distributed System Security Symposium. In-
ternet Society. https://www.ndss-symposium.org/ndss2003/virtual-
machine-introspection-based-architecture-intrusion-detection/

gee developers. [n. d.]. x86 Options (Using the GNU Compiler Collec-
tion (GCC)). https://gcc.gnu.org/onlinedocs/gec/x86-Options.html#
index-mnop-mcount. Accessed: 2024-07-07.

[39] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,

Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.

https://www.usenix.org/conference/atc18/presentation/amit
https://www.usenix.org/conference/atc18/presentation/amit
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://doi.org/10.1145/224056.224077
https://doi.org/10.1145/224056.224077
https://doi.org/10.1109/CloudCom.2015.89
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1109/HOTOS.2001.990073
https://doi.org/10.1109/NOMS.2018.8406155
https://doi.org/10.1145/3094405.3094412
https://doi.org/10.1145/3094405.3094412
https://github.com/cffs/app-sqlite-test
https://github.com/ssrg-vt/hermitux/wiki/Debugging
https://github.com/ssrg-vt/hermitux/wiki/Profiling
https://github.com/ssrg-vt/hermitux/wiki/Profiling
https://github.com/Solo5/solo5/blob/master/tenders/hvt/hvt_gdb_kvm_x86_64.c
https://github.com/Solo5/solo5/blob/master/tenders/hvt/hvt_gdb_kvm_x86_64.c
https://unikraft.org/docs/internals/debugging#linuxu
https://unikraft.org/docs/internals/debugging#linuxu
https://github.com/unikraft/unikraft/tree/staging/lib/ramfs
https://github.com/unikraft/unikraft/tree/staging/lib/ramfs
https://github.com/unikraft/unikraft/tree/staging/lib/ukalloc
https://github.com/unikraft/unikraft/tree/staging/lib/ukalloc
https://github.com/unikraft/unikraft/tree/staging/lib/uksignal
https://github.com/unikraft/unikraft/tree/staging/lib/uksignal
https://github.com/unikraft/unikraft/tree/staging/lib/vfscore
https://github.com/unikraft/unikraft/tree/staging/lib/vfscore
https://virtio-fs.gitlab.io/
https://doi.org/10.1145/2996890.3007875
https://www.nginx.com/
https://doi.org/10.1145/3343737.3343750
https://www.sourceware.org/gdb/
https://savannah.nongnu.org/projects/lwip/
https://sourceware.org/gdb/onlinedocs/gdb/Remote-Stub.html
https://sourceware.org/gdb/onlinedocs/gdb/Remote-Stub.html
https://docs.kernel.org/trace/ftrace-design.html
https://docs.kernel.org/trace/ftrace-design.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/fu
https://www.usenix.org/conference/atc14/technical-sessions/presentation/fu
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html#index-mnop-mcount
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html#index-mnop-mcount

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

2019. Simple and Precise Static Analysis of Untrusted Linux Kernel Ex-
tensions. In Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. Association for Com-
puting Machinery, 16 pages. https://doi.org/10.1145/3314221.3314590
Will Glozer. [n. d.]. wg/wrk: Modern HTTP benchmarking tool. https:
//github.com/wg/wrk. Accessed: 2024-07-07.

Google. [n.d.]. Guest environment | Compute Engine Documenta-
tion | Google Cloud. https://cloud.google.com/compute/docs/images/
guest-environment. Accessed: 2024-07-07.

Brendan Gregg. 2016. Unikernel Profiling: Flame Graphs from
dom0. https://www.brendangregg.com/blog/2016-01-27/unikernel-
profiling-from-domo0.html. Accessed: 2024-07-07.

Wassim Haddad, Heikki Mahkonen, and Ravi Manghirmalani. 2016.
NFV Platforms with MirageOS Unikernels. http://unikernel.org/blog/
2016/unikernel-nfv-platform. Accessed: 2024-07-07.

Pengzhan Hao, Yongshu Bai, Xin Zhang, and Yifan Zhang. 2017.
Edgecourier: An Edge-Hosted Personal Service for Low-Bandwidth
Document Synchronization in Mobile Cloud Storage Services. In
Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing (San
Jose, California). Association for Computing Machinery, Article 7.
https://doi.org/10.1145/3132211.3134447

Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries. In
Proceedings of the 2019 USENIX Annual Technical Conference. USENIX
Association. http://www.usenix.org/conference/atc19/presentation/
hedayati-hodor

Gernot Heiser and Kevin Elphinstone. 2016. L4 Microkernels: The
Lessons from 20 Years of Research and Deployment. ACM Trans.
Comput. Syst. 34, 1, Article 1 (apr 2016), 29 pages.

Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. 2006. MINIX 3: a Highly Reliable, Self-repairing
Operating System. SIGOPS Oper. Syst. Rev. 40, 3 (2006).

"F5 Inc'. [n.d.]. Controlling NGINX Processes at Run-
time. https://docs.nginx.com/nginx/admin-guide/basic-
functionality/runtime-control/. Accessed: 2024-07-07.

Intel. 2022. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Order Number:
253668-078US — Chapter 4.6.2 Protection Keys. Accessed: 2024-07-07.
Intel. 2022. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3B: System Programming Guide, Order Number:
253668-078US — Chapter 19 Performance Monitoring. ~Accessed:
2024-07-07.

Intel. [n.d.]. Intel® Trust Domain Extensions (Intel TDX).
https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-trust-domain-extensions.html. Accessed: 2024-07-07.
Seung Hyub Jeon, Seung-Jun Cha, Ramneek, Yeon Jeong Jeong,
Jin Mee Kim, and Sungin Jung. 2018. Azalea-Unikernel: Uniker-
nel into Multi-kernel Operating System for Manycore Systems. In
Proceedings of the 7th IEEE International Conference on Cloud Com-
puting Technology and Science. IEEE Computer Society. https:
//doi.org/10.1109/ICTC.2018.8539634

Yuzhuo Jing and Peng Huang. 2022. Operating System Support for
Safe and Efficient Auxiliary Execution. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association. https://www.usenix.org/conference/osdi22/
presentation/jing

Justin Cormack. [n. d.]. justincormack/frankenlibc: Tools for Running
Rump Unikernels in Userspace. https://github.com/justincormack/
frankenlibc. Accessed: 2024-07-07.

Linux kernel developers. [n.d.]. BPF Documentation. https://docs.
kernel.org/bpf/index.html. Accessed: 2024-07-07.

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

[56] Linux kernel developers. [n.d.]. Cgruop-vl Documentation. https:

(57]

(58]

(59]

[60]

[61]

(62]

[63]

(64

(65

(66

(67

(68

[69

[70

(71

=

[’

—

—

]

]

=

—

//www.kernel.org/doc/Documentation/cgroup-v1/. Accessed: 2024-
07-07.

Linux kernel developers. [n.d.]. eBPF verifier. https://docs.kernel.
org/bpf/verifierhtml. Accessed: 2024-07-07.

Linux kernel developers. [n.d.]. elf(5) - Linux manual page. https:
//man7.org/linux/man-pages/man5/elf.5.html. Accessed: 2024-07-07.
Linux kernel developers. [n. d.]. fuse(4) — Linux manual page. https:
//man7.org/linux/man-pages/man4/fuse.4.html. Accessed: 2024-07-
07.

Linux kernel developers. [n. d.]. ld.so(8) — Linux manual page. https:
//man7.org/linux/man-pages/man8/ld.so.8.html. Accessed: 2024-07-
07.

Linux kernel developers. [n.d.]. libc(7) — Linux manual page. https:
//man7.org/linux/man-pages/man7/libc.7.html. Accessed: 2024-07-
07.

Linux kernel developers. [n.d.]. socket(7) - Linux manual page.
https://man7.org/linux/man-pages/man7/socket.7.html. Accessed:
2024-07-07.

Linux kernel developers. [n.d.]. syscalls(2) — Linux manual page .
https://man7.org/linux/man-pages/man2/syscalls.2.html. Accessed:
2024-07-07.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. KVM: the Linux Virtual Machine Monitor. In Proceedings of the
2007 Linux Symposium.

Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El
Don Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the Operating
System for Virtual Machines. In Proceedings of the 2014 USENLX An-
nual Technical Conference. USENIX Association. https://www.usenix.
org/conference/atc14/technical-sessions/presentation/kivity
Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. Association for Computing Machinery. https:
//doi.org/10.1145/1629575.1629596

Michat Krél and Ioannis Psaras. 2017. NFaaS: Named Function as
a Service. In Proceedings of the 4th ACM Conference on Information-
Centric Networking. Association for Computing Machinery. https:
//doi.org/10.1145/3125719.3125727

Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Stefan Teodorescu, Costi Raducanu, Cristian Banu, Laurent Mathy,
Razvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:
Fast, Specialized Unikernels the Easy Way. In Proceedings of the 16th
European Conference on Computer Systems. Association for Comput-
ing Machinery. https://doi.org/10.1145/3447786.3456248

Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and
Felipe Huici. 2017. Unikernels Everywhere: The Case for Elastic
CDNs. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. Association for Com-
puting Machinery, 15 pages. https://doi.org/10.1145/3050748.3050757
Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020.
A Linux in Unikernel Clothing. In Proceedings of the 15th European
Conference on Computer Systems. Association for Computing Machin-
ery. https://doi.org/10.1145/3342195.3387526

Tytus Kurek. 2019. Unikernel Network Functions: A Journey Beyond
the Containers. IEEE Communications Magazine 57, 12 (2019). https:
//doi.org/10.1109/MCOM.001.1900138

https://doi.org/10.1145/3314221.3314590
https://github.com/wg/wrk
https://github.com/wg/wrk
https://cloud.google.com/compute/docs/images/guest-environment
https://cloud.google.com/compute/docs/images/guest-environment
https://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
https://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
http://unikernel.org/blog/2016/unikernel-nfv-platform
http://unikernel.org/blog/2016/unikernel-nfv-platform
https://doi.org/10.1145/3132211.3134447
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://docs.nginx.com/nginx/admin-guide/basic-functionality/runtime-control/
https://docs.nginx.com/nginx/admin-guide/basic-functionality/runtime-control/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://doi.org/10.1109/ICTC.2018.8539634
https://doi.org/10.1109/ICTC.2018.8539634
https://www.usenix.org/conference/osdi22/presentation/jing
https://www.usenix.org/conference/osdi22/presentation/jing
https://github.com/justincormack/frankenlibc
https://github.com/justincormack/frankenlibc
https://docs.kernel.org/bpf/index.html
https://docs.kernel.org/bpf/index.html
https://www.kernel.org/doc/Documentation/cgroup-v1/
https://www.kernel.org/doc/Documentation/cgroup-v1/
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/bpf/verifier.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man4/fuse.4.html
https://man7.org/linux/man-pages/man4/fuse.4.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://man7.org/linux/man-pages/man7/socket.7.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3125719.3125727
https://doi.org/10.1145/3125719.3125727
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3050748.3050757
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1109/MCOM.001.1900138
https://doi.org/10.1109/MCOM.001.1900138

ulO: Lightweight and Extensible Unikernels

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

Stefan Lankes, Jonathan Klimt, Jens Breitbart, and Simon Pickartz.
2020. RustyHermit: A Scalable, Rust-Based Virtual Execution En-
vironment. In Proceedings of the 2020 International Conference on
High Performance Computing. Springer International Publishing.
https://doi.org/10.1007/978-3-030-59851-8_22

Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. Hermit-
Core: A Unikernel for Extreme Scale Computing. In Proceedings
of the 6th International Workshop on Runtime and Operating Sys-
tems for Supercomputers. Association for Computing Machinery.
https://doi.org/10.1145/2931088.2931093

Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2017. A Low
Noise Unikernel for Extrem-Scale Systems. In Proceedings of the 2017
Architecture of Computing Systems. Springer International Publishing.
https://doi.org/10.1007/978-3-319-54999-6_6

Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Lu-
cian Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and
Pierre Olivier. 2022. FlexOS: Towards Flexible OS Isolation. In Pro-
ceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Lau-
sanne, Switzerland). Association for Computing Machinery. https:
//doi.org/10.1145/3503222.3507759

Guanyu Li, Dong Du, and Yubin Xia. 2020. Iso-UniK: Lightweight
Multi-process Unikernel through Memory Protection Keys. Cyberse-
curity 3, 1 (2020). https://doi.org/10.1186/542400-020-00051-9

Arm Limited. [n.d.]. ARM Architecture Reference Man-
ual ARMv7-A and ARMv7-R edition - Domains. https:
//developer.arm.com/documentation/ddi0406/b/System-Level-
Architecture/Virtual-Memory-System- Architecture--VMSA-
/Memory-access-control/Domains. Accessed: 2024-07-07.

Costin Lupu, Andrei Albisoru, Radu Nichita, Doru-Florin Blanzeanu,
Mihai Pogonaru, Rlazvan Deaconescu, and Costin Raiciu. 2023.
Nephele: Extending Virtualization Environments for Cloning
Unikernel-based VMs. In Proceedings of the 18th European Confer-
ence on Computer Systems. Association for Computing Machinery.
https://doi.org/10.1145/3552326.3587454

Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie.
2015. Jitsu: Just-In-Time Summoning of Unikernels. In Proceed-
ings of the 12th USENIX Symposium on Networked Systems Design
and Implementation. USENIX Association. https://www.usenix.org/
conference/nsdil5/technical-sessions/presentation/madhavapeddy
Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. ACM SIGARCH Computer Architecture News 41, 1 (2013).
https://doi.org/10.1145/2490301.2451167

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
2017. My VM is Lighter (and Safer) than Your Container. In Proceedings
of the 26th Symposium on Operating Systems Principles. Association
for Computing Machinery. https://doi.org/10.1145/3132747.3132763

[82] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,

(83]

Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the Art of Network Function Virtualization. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation.
USENIX Association. https://www.usenix.org/conference/nsdil4/
technical-sessions/presentation/martins

Steven McCanne and Van Jacobson. 1993. The BSD Packet
Filter: A New Architecture for User-level Packet Capture.
In Proceedings of the 1993 USENIX Winter. USENIX Associa-
tion. https://www.usenix.org/conference/usenix-winter-1993-

(84

(85

(86

(87

(88

(89

[90

[91

[92

[97

[98

[99

]

=

=

—

=

[

[t

]

=

=

—

=

[

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

conference/bsd-packet-filter-new-architecture-user-level-packet

A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran. 2022.
Kite: Lightweight Critical Service Domains. In Proceedings of the 17th
European Conference on Computer Systems. Association for Comput-
ing Machinery. https://doi.org/10.1145/3492321.3519586

Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar,
and Jorg Ott. 2018. Consolidate IoT Edge Computing with Lightweight
Virtualization. IEEE Network 32, 1 (2018). https://doi.org/10.1109/
MNET.2018.1700175

Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Bi-
noy Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments. Association for Computing Machinery.
https://doi.org/10.1145/3313808.3313817

OASIS Open. 2018. Virtual I/O Device (VIRTIO) Version
1.1. https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-
csprd01.html. Accessed: 2024-07-07.

OpenSSH developers. [n.d.]. OpenSSH. https://www.openssh.com/.
Accessed: 2024-07-07.

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.
2019. libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In Proceedings of the 2019 USENIX Annual Technical Con-
ference. USENIX Association. https://www.usenix.org/conference/
atc19/presentation/park-soyeon

Per Buer. 2019. Unikernels Aren’t Dead, They’re Just Not Containers.
https://www.infoq.com/presentations/unikernels-includeos/. Ac-
cessed: 2024-07-07.

Rob Pike, David L. Presotto, Sean Dorward, Bob Flandrena, Ken
Thompson, Howard Trickey, and Phil Winterbottom. 1995. Plan
9 from Bell Labs. Comput. Syst. 8, 2 (1995). http://www.usenix.org/
publications/compsystems/1995/sum_pike.pdf

Ali Raza, Thomas Unger, Matthew Boyd, Eric Munson, Parul Sohal,
Ulrich Drepper, Richard Jones, Daniel Bristot de Oliveira, Larry Wood-
man, Renato Mancuso, Jonathan Appavoo, and Orran Krieger. 2023.
Unikernel Linux (UKL). In Proceedings of the 18th European Confer-
ence on Computer Systems. Association for Computing Machinery.
https://doi.org/10.1145/3552326.3587458

Redis Ltd. [n. d.]. Redis. https://redis.io/. Accessed: 2024-07-07.
Redis Ltd. [n.d.]. Redis Persistence. https://redis.io/docs/manual/
persistence/. Accessed: 2024-07-07.

Rusty Russell. 2008. virtio: Towards a De-facto Standard for Virtual
1/0 Devices. ACM SIGOPS Operating Systems Review 42, 5 (2008).
https://doi.org/10.1145/1400097.1400108

Peter Jay Salzman, Michael Burian, Ori Pomerantz, Bob Mottram, and
Jim Huang. [n.d.]. The Linux Kernel Module Programming Guide.
https://sysprog21.github.io/lkmpg/. Accessed: 2024-07-07.

Vasily A. Sartakov, Lluis Vilanova, and Peter Pietzuch. 2021. Cu-
bicleOS: a Library OS with Software Componentisation for Prac-
tical Isolation. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems. Association for Computing Machinery. https:
//doi.org/10.1145/3445814.3446731

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2016. EbbRT: A Framework for Building Per-
Application Library Operating Systems. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/schatzberg

Florian Schmidt. 2017. Uniprof: A Unikernel Stack Profiler. In Pro-
ceedings of the SSGCOMM 2017 Posters and Demos. Association for
Computing Machinery. https://doi.org/10.1145/3123878.3131976

https://doi.org/10.1007/978-3-030-59851-8_22
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1007/978-3-319-54999-6_6
https://doi.org/10.1145/3503222.3507759
https://doi.org/10.1145/3503222.3507759
https://doi.org/10.1186/s42400-020-00051-9
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Memory-access-control/Domains
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Memory-access-control/Domains
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Memory-access-control/Domains
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Memory-access-control/Domains
https://doi.org/10.1145/3552326.3587454
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/3132747.3132763
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://doi.org/10.1145/3492321.3519586
https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1145/3313808.3313817
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://www.openssh.com/
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.infoq.com/presentations/unikernels-includeos/
http://www.usenix.org/publications/compsystems/1995/sum_pike.pdf
http://www.usenix.org/publications/compsystems/1995/sum_pike.pdf
https://doi.org/10.1145/3552326.3587458
https://redis.io/
https://redis.io/docs/manual/persistence/
https://redis.io/docs/manual/persistence/
https://doi.org/10.1145/1400097.1400108
https://sysprog21.github.io/lkmpg/
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3445814.3446731
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://doi.org/10.1145/3123878.3131976

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky:
Domain Keys - Efficient in-Process Isolation for RISC-V and X86.
In Proceedings of the 29th USENIX Conference on Security Sympo-
sium. USENIX Association. https://www.usenix.org/conference/
usenixsecurity20/presentation/schrammel

Amazon Web Service. [n.d.]. AWS Systems Manager Documen-
tation. https://docs.aws.amazon.com/systems-manager/index.html.
Accessed: 2024-07-07.

SQLite developers. [n.d.]. SQLite Home Page. https://www.sqlite.
org/index.html. Accessed: 2024-07-07.

SQLite developers. [n.d.]. Using the SQLite Online Backup APL
https://www.sqlite.org/backup.html. Accessed: 2024-07-07.
Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
2020. Intra-Unikernel Isolation with Intel Memory Protection Keys.
In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments. Association for Computing
Machinery. https://doi.org/10.1145/3381052.3381326

Joshua Talbot, Przemek Pikula, Craig Sweetmore, Samuel Rowe,
Hanan Hindy, Christos Tachtatzis, Robert Atkinson, and Xavier
Bellekens. 2020. A Security Perspective on Unikernels. In Proceedings
of the 2020 International Conference on Cyber Security and Protection
of Digital Services. IEEE Computer Society. https://doi.org/10.1109/
CyberSecurity49315.2020.9138883

Bo Tan, Haikun Liu, Jia Rao, Xiaofei Liao, Hai Jin, and Yu Zhang. 2020.
Towards Lightweight Serverless Computing via Unikernel as a Func-
tion. In Proceedings of the 28th IEEE/ACM International Symposium on
Quality of Service. https://doi.org/10.1109/IWQ0S549365.2020.9213020
Jorg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.
2018. Cntr: Lightweight OS Containers. In Proceedings of the 2018
USENIX Annual Technical Conference. USENIX Association. https:
//www.usenix.org/conference/atc18/presentation/thalheim

Jorg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi, Redha
Gouicem, and Pramod Bhatotia. 2022. VMSH: Hypervisor-Agnostic
Guest Overlays for VMs. In Proceedings of the 17th European Confer-
ence on Computer Systems. Association for Computing Machinery,
19 pages. https://doi.org/10.1145/3492321.3519589

ubpf developers. [n.d.]. iovisor/ubpf: Userspace eBPF VM. https:
//github.com/iovisor/ubpf. Accessed: 2024-07-07.

Unikraft developers. [n. d.]. Unikraft Release: v0.9.0 Hyperion. https:
//github.com/unikraft/unikraft/tree/RELEASE-0.9.0. Accessed: 2024-
07-07.

Unikraft developers. [n. d.]. unikraft/lib-nginx: Unikraft port of NG-
INX. https://github.com/unikraft/lib-nginx. Accessed: 2024-07-07.
Unikraft developers. [n.d.]. unikraft/lib-redis: Unikraft port of Redis
in-memory data structure store. https://github.com/unikraft/lib-redis.
Accessed: 2024-07-07.

Unikraft developers. [n. d.]. unikraft/lib-sqlite: Unikraft port of SQLite.
https://github.com/unikraft/lib-sqlite. Accessed: 2024-07-07.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Se-
cure, Efficient In-process Isolation with Protection Keys (MPK). In
Proceedings of the 28th USENIX Security Symposium. USENIX As-
sociation. https://www.usenix.org/conference/usenixsecurity19/
presentation/vahldiek-oberwagner

Polychronis Valsamas, Sotiris Skaperas, and Lefteris Mamatas. 2018.
Elastic Content Distribution Based on Unikernels and Change-Point
Analysis. In Proceedings of the 24th European Wireless Conference.
IEEE Computer Society.

Fedora Project Wiki. [n.d.]. Features/VirtioSerial - Fedora Project
Wiki. https://fedoraproject.org/wiki/Features/VirtioSerial. Accessed:
2024-07-07.

Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia

[117] QEMU wiki. [n. d.]. Documentation/9psetup - QEMU. https://wiki.

[118

]

[119]

[120]

[121

—

gemu.org/Documentation/9psetup. Accessed: 2024-07-07.

QEMU wiki. [n.d.]. Features/gdbstub - QEMU. https://wiki.qemu.
org/Features/gdbstub. Accessed: 2024-07-07.

Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash.
2018. Unikernels as Processes. In Proceedings of the ACM Symposium
on Cloud Computing 2018. Association for Computing Machinery.
https://doi.org/10.1145/3267809.3267845

Song Wu, Chao Mei, Hai Jin, and Duoqiang Wang. 2018. Android
Unikernel: Gearing Mobile Code Offloading Towards Edge Com-
puting. Future Generation Computer Systems 86 (2018). https:
//doi.org/10.1016/j.future.2018.04.069

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.
KylinX: A Dynamic Library Operating System for Simplified and
Efficient Cloud Virtualization. In Proceedings of the 2018 USENIX
Annual Technical Conference. USENIX Association. https://www.
usenix.org/conference/atc18/presentation/zhang-yiming

https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://docs.aws.amazon.com/systems-manager/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/backup.html
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1109/CyberSecurity49315.2020.9138883
https://doi.org/10.1109/CyberSecurity49315.2020.9138883
https://doi.org/10.1109/IWQoS49365.2020.9213020
https://www.usenix.org/conference/atc18/presentation/thalheim
https://www.usenix.org/conference/atc18/presentation/thalheim
https://doi.org/10.1145/3492321.3519589
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://github.com/unikraft/unikraft/tree/RELEASE-0.9.0
https://github.com/unikraft/unikraft/tree/RELEASE-0.9.0
https://github.com/unikraft/lib-nginx
https://github.com/unikraft/lib-redis
https://github.com/unikraft/lib-sqlite
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://fedoraproject.org/wiki/Features/VirtioSerial
https://wiki.qemu.org/Documentation/9psetup
https://wiki.qemu.org/Documentation/9psetup
https://wiki.qemu.org/Features/gdbstub
https://wiki.qemu.org/Features/gdbstub
https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1016/j.future.2018.04.069
https://doi.org/10.1016/j.future.2018.04.069
https://www.usenix.org/conference/atc18/presentation/zhang-yiming
https://www.usenix.org/conference/atc18/presentation/zhang-yiming

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Trade-offs in the Unikernel World
	2.2 The Missing Overlay Abstraction
	2.3 Example Overlay Use cases

	3 Overview
	3.1 System Overview
	3.2 Assumptions and System Model
	3.3 Design Challenges and Key Ideas

	4 Design
	4.1 uIO Interfaces
	4.2 uIO-fs
	4.3 uIO-program
	4.4 uIO Context
	4.5 uIO Isolation

	5 Implementation
	5.1 uIO Interface and Program
	5.2 eBPF Integration with uIO
	5.3 MPK Integration with uIO

	6 Evaluation
	6.1 Robustness
	6.2 Performance
	6.3 Effectiveness
	6.4 Implemented Use Cases

	7 Discussion
	8 Related Work
	9 Conclusion
	References

