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Confidential computing is gaining traction in the cloud, driven by the increasing security and privacy concerns
across various industries. Recent trusted hardware advancements introduce Confidential Virtual Machines
(CVMs) to alleviate the programmability and usability challenges of the previously proposed enclave-based
trusted computing technologies. CVM hardware extensions facilitate secure, hardware-isolated encrypted
VMs, promoting programmability and easier deployment in cloud infrastructures. However, differing microar-
chitectural features, interfaces, and security properties among hardware vendors complicate the evaluation
of CVMs for different use cases. Understanding the performance implications, functional limitations, and
security guarantees of CVMs is a crucial step toward their adoption.

This paper presents a detailed empirical analysis of two leading CVM technologies: AMD Secure Encrypted
Virtualization–Secure Nested Paging (SEV-SNP) and Intel Trust Domain Extensions (TDX). We review their
microarchitectural components and conduct a thorough performance evaluation across various aspects,
including memory management, computational performance, storage and network stacks, and attestation
primitives. We further present a security analysis through a trusted computing base (TCB) evaluation and
Common Vulnerabilities and Exposures (CVE) analysis. Our key findings demonstrate, among others, the
effect of CVMs on boot time, memory management and I/O, and identify inefficiencies in their context switch
mechanisms. We further provide insights into the performance implications of CVMs and highlight potential
room for improvement.

CCS Concepts: • General and reference→ Surveys and overviews; • Security and privacy→ Virtual-
ization and security.
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1 Introduction
Context: Confidential computing in cloud environments. Confidential computing [39] has
become a crucial component of cloud environments to ensure secure data and computations across
various sectors, including finance [26, 131], healthcare [36, 200], and industrial applications [79,
145, 148, 181]. The initial commercially available confidential computing hardware extensions
introduced application-level enclave-based Trusted Execution Environments (TEEs) [85, 116], such
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as Intel SGX [108], RISC-V Keystone [122], and Arm TrustZone [24]. Despite their strong security
properties, enclave-based TEEs were not overwhelmingly adopted by cloud users because of high
programmability overheads, among other issues. In particular, enclave-based TEEs necessitate code
modifications and application redesigns tailored to their architectural features [178, 192], posing
programmability and usability challenges.
To overcome the limitations of enclave-based TEEs, major hardware vendors have proposed

new trusted VM-level ISA extensions, e.g., Intel TDX [112], AMD SEV-SNP [21], and upcoming
Arm v9.0 CCA [23], leading to the advent of Confidential Virtual Machines (CVMs) [11, 23, 91, 94,
112, 159, 172]. CVMs overcome the limitation of programmability and employability of application-
level enclaves, such as Intel SGX, by proposing a new trustworthy virtual machine abstraction.
Several major cloud providers are already offering CVM instances [78, 82, 93, 143, 158, 177], which
highlights CVMs’ importance as a fundamental building block for confidential computing in modern
cloud environments.
Motivation: Same CVM abstraction, but different hardware and software properties. CVMs
provide a confidential computing abstraction at the virtual machine level, allowing unmodified
applications to run on it with existing software stackswhile protecting data in use from unauthorized
access, even from the hypervisor hosted by the cloud provider. Therefore, applications can be
seamlessly deployed in CVMs, thus promoting programmability and enabling an easier adoption of
trusted computing in the cloud.

On the other hand, CVMs, offered by various hardware vendors, provide fundamentally different
microarchitectural features, hardware interfaces and security properties, despite their aim to
offer the same VM-based abstraction for trusted computing. Such differences mandate new VM
management schemes, leading to changes in the system software stack for both the host and
guest environments. On top of that, for cloud users and developers, systematically evaluating the
suitability of a CVM based on potential performance implications, supported functionalities, and
security properties is challenging due to the diverse underlying hardware architectures. To this
end, understanding the performance characteristics, functional limitations, and security features of
CVMs is crucial for their adoption. Although several studies analyze CVMs, they mainly perform
literature reviews [4, 35, 116, 171] or focus on evaluating a single CVM technology (e.g., AMD
SEV(-SNP)) [5, 89, 123, 149, 196]. Our paper fills the gap by providing a practical and comprehensive
empirical analysis of CVMs.
Our Approach: An Empirical CVM analysis of the hardware and software system stacks. We
conduct a detailed empirical analysis of two widely-used commercial CVM technologies, AMD
SEV-SNP, and Intel TDX. Initially, we thoroughly review their (micro)architectural components
to highlight their functionalities and how they interact to achieve the security goals of CVMs.
Following, we demonstrate our experimental results, obtained through a series of micro- and mac-
robenchmarks, to identify the performance characteristics and implications of CVMs on various
workload scenarios and use cases. We examine several CVM aspects, including memory manage-
ment, computational performance, storage and network stacks, and attestation primitives. Lastly,
we analyze the security features of these CVM technologies and their trusted computing base
(TCB) size and present our Common Vulnerabilities and Exposures (CVE) analysis. This analysis
aims to showcase the suitability and caveats of AMD SEV-SNP and Intel TDX for security-critical
workloads.

Our key findings: Through our extensive architectural analysis and experimental evaluation,
we identify the following key findings for the examined CVM technologies:
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• Slow boot time: Booting a CVM can take over twice as much as booting a standard VM. In
addition to the additional procedure to launch a CVM, the host-side memory management
predominantly affects boot time.

• Memory allocation tax: The CVM-specificmemory acceptance operation is performance-heavy,
and our memory allocation microbenchmarks show up to 92% increase for the initial memory
allocation of the CVMs.

• Costly context switch: If an application relies on frequently repeating sleep and wake-up
events, the vCPU-sleep (HLT) overhead of the CVM can cause a significant performance drop.
Our benchmarks show up to 431% increase in processing in the worst case (e.g., NPB). We further
show that enforcing guest-side polling can help mitigate this issue.

• I/O overhead: When the CPU utilization is high, the I/O overhead can be significant due to the
internal implementations of the default I/O software stacks using bounce buffers. We observe up
to 60% performance drop for heavy network processing benchmarks (iperf TCP).

• Large TCB: The TCB size of a CVM typically includes millions of Lines of Code (LoC) as it
contains the full-fledged operating system (OS) of the guest, thus increasing the attack vectors.

• New security attack vectors: 39% of the CVEs related to AMD SEV-SNP and Intel TDX are
attributed to improper validation mechanisms, while 54% of the CVEs are associated with
vulnerabilities in the underlying firmware. Additionally, 8 CVEs refer to attacks from the guest
to the host and from the host to the host.

Implications on the microarchitectural hardware and software stack. There is a need to
reconsider fundamental confidential computing concepts even though the hardware, firmware,
and supporting software stacks constantly evolve to support more functionalities and extend their
security guarantees. Our study can serve as a stepping stone toward enhancing cloud environments’
security, applicability, and performance utilizing CVMs. In particular, based on the outcomes of our
study, we consider the following areas for improvement:

• Reducing and optimizing VMEXIT impact: In the context of CVMs, VMEXITs are expensive.
Reducing the number of VMEXITs and minimizing VMEXIT processing time is critical for
performance. From a software perspective, implementing a sophisticated and adaptable polling
policy is desirable, while optimizing VMEXIT processing is essential from a hardware perspective.

• Designing new boot scheme: Improving the bootup times of CVMs through specially de-
signed HW/SW co-designed system stacks is essential. Such an improvement will increase the
applicability of CVMs in the cloud and facilitate further use cases for CVMs (e.g., serverless
computing).

• Optimizing I/O stacks: I/O stacks are vulnerable points of CVMs, as all the data transfers
must be checked and validated. However, current approaches incur significant performance
degradation. Therefore, designing optimized CVM-aware I/O stacks should become a priority.

• Unifying attestation primitives: Each CVM technology has its own, sometimes quite convo-
luted, attestation primitives. A collaborative effort to unify the attestation process is necessary
and would help to standardize a trustworthy CVM deployment process in the cloud.

• Reducing and hardening TCB: CVMs have inherently large TCBs, which can widen their
attack surface due to the high number of inputs from the host. Hardening and reducing the TCB
size is crucial to minimize security risks (e.g., hardened Linux kernel, minimal LibOS).

• Open-sourcing firmware:Making the platform firmware (ASP firmware / TDX module) ecosys-
tem fully open-source would be beneficial for transparency and bug-fixing reasons. Furthermore,
since it is written in C, it would be advantageous to use a memory-safe language such as Rust.

• Testing new interfaces: New CVM software stacks can introduce an attack from the guest to
the host and the host to the host as well, and testing that interface is also essential.
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Contributions. To the best of our knowledge, this paper is the first systematic study of modern
confidential computing architectures that are widely used in current cloud infrastructures. Impor-
tantly, we conduct both an extensive architectural and security analysis of CVMs, and practical
experiments on real hardware. More specifically, our paper makes the following contributions:
(1) We present in-depth the architectural characteristics of AMD SEV-SNP and Intel TDX, the core

confidential virtual machine technologies of the x86-64 platforms (§ 3).
(2) We empirically evaluate the performance of AMD SEV-SNP and Intel TDX using real hardware

(4th-generation AMD EPYC Processors, 5th-generation Intel Xeon Scalable Processors) across
multiple dimensions to cover various use cases and application scenarios (§ 4).

(3) We present a thorough security analysis of AMD SEV-SNP and Intel TDX, examining the TCB
size and the reported CVM-related CVEs (§ 5).

(4) We make our automated evaluation framework publicly available to facilitate further research
endeavors in CVMs. The evaluation code is available at https://github.com/TUM-DSE/CVM_
eval.

Disclaimer. This paper does not raise any ethical concerns. Intel Corporation provided us with the
Intel TDX machine for our experiments and approved the results for publication. The text solely
reflects the opinion of the authors.

2 Overview
2.1 Confidential Virtual Machines (CVMs)
Confidential virtual machines (CVMs) provide a confidential computing abstraction at the level of
a virtual machine. The entire VM runs as a trusted execution environment (TEE), protecting code
and data in use from unauthorized access, even from the hypervisor or the virtual machine monitor
(VMM) that manages the CVM. The enlightened guest kernel operates within the VM and can
run unmodified applications. These characteristics offer better programmability and usability than
the traditional application-based TEEs [24, 43, 108, 122, 197]; applications can utilize the existing
software stacks as in a normal VM. In addition, CVMs provide remote attestation functionalities,
allowing a CVM owner to ensure that it is launched in the intended state and runs on the intended
hardware.
Major CPU vendors introduce CVMs support, including AMD SEV-SNP [11], Intel TDX [112],

IBM Z SE [94], OpenPower PEF [91], and ARM CCA [23], in addition to work on RISC-V such as
Confidential VM Extensions (CoVE) [172], and Assured Confidential Execution (ACE) [159]. Among
them, AMD SEV-SNP and Intel TDX are now available to the public, and major cloud providers
have started providing instances based on them [78, 82, 93, 143, 158, 177].

2.2 Threat Model and Assumptions
We detail a general threat model for CVMs. In contrast to traditional VMs, CVMs do not trust
the virtual machine monitor (VMM) or the host system. The host and the VMM can be malicious
and try to access and compromise the guest memory or the CVM state, yet they manage CVMs.
To protect CVMs in such an environment, the system platform offers trusted components and
mechanisms that assure the confidentiality and integrity of CVMs, including their memory and
register states. However, this does not directly protect I/O traffic outside of the CVMs, and the
guest application must use appropriate encryption methods if necessary.
More specifically, adversaries may gain full control of the boot firmware, including the System

Management Mode (SMM), the host operating system, the hypervisor, peripheral devices, and
non-confidential legacy VMs. They can also have full control of inputs to the CVMs, including
device I/O and interrupts. Physical attacks, such as fault injection attacks and roll-back attacks
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Fig. 1. The architecture of AMD SEV-SNP (left) and Intel TDX (right). The green regions denote CVMs,
with unmodified software (orange) and modified software (purple). The blue-hatched regions are trusted
components. The thick line indicates each CVM is isolated from the host and other VMs with encryption.

to DRAM regions, are considered out of the scope. However, CVMs can neutralize some physical
attacks, such as cold-boot attacks [86].

Tenants trust the manufacturer and the system platform (processors, memory controllers, etc.).
In addition, the software running in a CVM is part of the TCB. CVMs are responsible for protecting
data in transit (network) and at rest (storage) using appropriate measures such as encryption
protocols (e.g., TLS). Besides, protecting against side-channel attacks is out of the direct scope
of CVMs. CVMs should take appropriate countermeasures against side-channel and speculation
attacks due to their micro-architectural implementation if necessary [7, 14, 47, 97, 98, 186, 189].

Last but not least, the system does not guarantee the availability of CVMs, and denial of service
attack (DoS) is out of the scope of the threat model. For example, a malicious VMM can choose not
to schedule a CVM. In general, CVMs assume that the system is “benign but vulnerable” [11], and
the availability during normal times is ensured. This assumption is reasonable given that cloud
providers offer services to users under certain service level agreements (SLAs) and, therefore, have
a strong incentive to maintain availability.

2.3 AMD SEV-SNP
AMD introduced AMD SEV in the 1st generation of EPYC processors, which only supports memory
encryption [12] and is subject to several attacks including data extraction and code injection [32,
87, 126, 127, 129, 151, 152, 188, 190, 191]. Later, AMD added the VM register state encryption (AMD
SEV-ES) [9], and memory integrity protection (AMD SEV-SNP) [11] along with several security
improvements to address these issues. AMD SEV(-ES) and SEV-SNP have different ABI1 to configure
and manage VMs [10, 18]. This paper explicitly uses AMD SEV, AMD SEV-ES, and AMD SEV-SNP
to refer to each version and focuses on the analysis of AMD SEV-SNP.
AMD Secure Processor (ASP). AMD SEV(-ES/SNP) uses a dedicated processor called AMD

Secure Processor (ASP), also known as AMD Platform Security Processor or PSP, to manage its
security features. ASP is an ARM-based processor separated from the main x86 cores but directly
integrated into the CPU die, creating a hardware root-of-trust [2, 8, 20, 33]. The ASP securely

1AMD calls SEV API instead of ABI. In this paper, we use ABI to refer to the interface of ASP.
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manages SEV-SNP VM encryption keys and the reverse map table (§ 3.3) to ensure the integrity of
the guest address translation. The ASP also provides remote attestation functionalities.
Overview. Figure 1 (a) shows the overview of AMD SEV-SNP. An SEV-SNP VM runs in an

isolated environment, where its memory and state are encrypted with an ASP-managed unique
key. While the VMM allocates and manages the resources of an SEV-SNP VM, ASP is responsible
for encrypting the guest state and protecting the guest address translation integrity. The host
communicates with the ASP through an MMIO-based interface to configure SEV-SNP VMs [18].
During SNP VM execution, SMI (System Management Interrupt) is blocked, and there is no direct
transition to System Management Mode (SMM) from the SNP VM. Even the SMM cannot access
the SNP VM.
VMPL. AMD SEV-SNP introduces a new feature called VMPL (Virtual Machine Protection

Level) [11]. VMPL provides an additional privilege level to the guest that is orthogonal to the
traditional x86 ring protections. There are 4 VMPLs, and the higher VMPL can trap several events
from the lower VMPL. AMD standardizes the software running in the highest VMPL level (VMPL0),
called SVSM (Secure VM Service Module) [16]. SVSM is intended to offer several services that the
VMM traditionally provides, including vTPM and live migration [13, 155].

2.4 Intel TDX
Intel introduced Intel TDX in the 4th generation of Xeon Scalable Processors as a private preview
and made it publicly available in the 5th generation of Xeon Scalable Processors. One of the main
architectural differences between Intel TDX and AMD SEV-SNP is that Intel TDX introduces a new
CPU mode (SEAM) and runs a trusted software (TDX module) instead of using microcode with the
help of an external secure processor to manage CVMs.
SEAM mode and TDX module. Intel introduces two new components: a new CPU operation

mode Secure Arbitration Mode (SEAM), and special trusted software the TDX module. A Trust
Domain (TD) is a virtual machine that runs in a secure environment under the control of the TDX
module. SEAM is subdivided into VMX SEAM root mode and VMX SEAM non-root mode. A TD
operates in VMX SEAM non-root mode, while, the TDX module is running in VMX SEAM root
mode.

Overview. Figure 1 (b) shows the overview of Intel TDX. A TD runs in an isolated environment,
where its memory and state are encrypted with a unique key. The TDX module intermediates the
communication between the host and TDs and performs necessary state encryption/decryption
and restore operations. The host calls the TDX module using SEAMCALL, whereas the TD calls the
TDX module using the TDCALL instruction. VMEXIT events also transfer the control to the TDX
module, and then it transfers control to the host when necessary (the transition is called SEAMRET).
Similarly to AMD SEV-SNP, there is no direct transition to System Management Mode (SMM) in
the SEAM mode. Depending on the configuration, SMI causes VMEXIT events or is blocked.
TD partitioning. Intel TDX 1.5 introduces a new feature called TD-partitioning [106], which

allows TD to have up to three nested VMs with one L1 VMM. Similar to VMPL, TD-partitioning aims
to realize features that, traditionally, the VMM provides, such as vTPM and live migration [102, 103].

2.5 Software Stacks
CVMs require new software stacks for their management, communication, and ensuring security
properties. First, the host kernel and the VMM are responsible for managing CVMs. The host
interacts with the ASP or the TDX module with ABIs [18, 105]. Both AMD and Intel develop the
host kernel and VMM based on Linux, KVM, and QEMU, the most widely used virtualization
toolchain.
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In turn, the guest firmware is responsible for initializing CVMs in the guest context, including
configuring private memory and performing the appropriate measurements (§ 3.1). AMD and
Intel develop the guest firmware with OVMF (UEFI) [60]. Intel calls this firmware TDVF. Intel
also develops TD-shim [65], a dedicated minimal firmware for TDs. Furthermore, the guest kernel
needs to be CVM-aware to communicate with the host using a dedicated communication protocol
(§ 3.2). In addition, the guest must treat the inputs from the VMM as untrusted and validate them.
The inputs include device I/Os, interrupts, certain CPU instructions (e.g., cpuid, rdmsr), and ACPI
tables.

Lastly, the guest applications must use appropriate measures to protect sensitive data outside of
CVMs. For networking, the guest can use encrypted communication protocols such as TLS [95].
For storage, the guest has to encrypt data before writing to the external disk, with integrity and
rollback protection if required. Linux’s dm-crypt [53] is widely used as a full disk encryption.
Linux’s dm-integrity [54] (for read/write data) and dm-verity [55] (for read-only data) provide
integrity protection at a block level using Merkle trees [142]. The guest can further leverage trusted
remote services based on replication or append-only ledgers to ensure rollback protection [22, 71,
90, 133, 134, 156].

3 Architecture Analysis
In this section, we analyze the architectural details and highlight the main components that are
crucial to understanding the characteristics of AMD SEV-SNP and Intel TDX.

3.1 VM Initialization and Boot
The main difference between booting CVMs and normal VMs is that the VMM explicitly adds the
initial guest code, data and state using the ABI defined by the ASP or TDX module. ASP and TDX
modules calculate the measurement (running hash) of added components, which is included in
the attestation report (§ 3.5) for validation purposes. Once the CVM is launched, the VMM cannot
directly access the guest memory or alter the guest state. After the CVM launch, the guest firmware
and the kernel are responsible for initializing the guest. This includes validating the guest memory
and enabling encryption by properly configuring the guest page tables (§ 3.3).
Measured boot. The guest launch measurement only covers the initial state. To compensate,

the measured boot records loaded component measurements during boot for verification later. The
Trusted Computing Group (TCG) standardizes measured boot protocol using TPM [83]. In a virtual-
ized environment, a VM use a virtual TPM (vTPM). However, the traditional vTPM is inappropriate
for CVMs since the VMM manages it [28]. Several works propose vTPMs for CVMs [144, 155, 163],
or non-vTPM based measured boot [77, 84]. Additionally, both AMD SEV-SNP and Intel TDX
provide their own way of performing measured boot.

AMD proposes a measured direct boot [153, 154], where the VMM additionally inserts the hash
of the kernel, initrd, and kernel parameters into the initial guest memory. Thus, they become part
of the measurement in the attestation report. This boot method is applicable if the kernel code and
boot parameter are not confidential. If they are confidential, the guest must boot from an encrypted
disk [30]. On the other hand, Intel TDX introduces new measurement registers, called Runtime
Extendable Measurement Registers (RTMRs). The guest firmware and the OS can extend them
using TDCALLs [96]. The RTMRs are then included in the attestation report.

3.2 VM-VMM Communication
The traditional VM-VMM communication relies on the VMM consulting the guest state upon
VMEXIT, which is prohibited for CVMs. Therefore, AMD SEV-SNP and Intel TDX introduce a
new communication protocol [17, 101], allowing the guest to explicitly pass the needed state
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Fig. 2. Memory translation on AMD SEV-SNP and Intel TDX. The blue-hatched regions are trusted.

to the VMM when requesting an action. In particular, AMD SEV-SNP defines GHCB (Guest-
Hypervisor Communication Block) format for the communication [17], and the guest uses the
VMGEXIT instruction to call the VMM. On the other hand, Intel TDX Module ABI [105] defines
the communication protocol for the TD, and the guest uses TDCALL for the communication. While
VMGEXIT instruction always transfers the control to the VMM, some of the TDCALL calls are handled
by the TDX module without switching the context to the VMM.

To minimize the modification to the guest software, certain traditional VMEXIT events raise an
exception in the guest. Specifically, AMD SEV-SNP raises VMM Communication Exception (#VC).
On the other hand, for Intel TDX, the TDX module first handles VMEXIT events and, if unable to
do so, raises a Virtualization Exception (#VE) to the guest. The guest’s exception handler explicitly
calls the VMM when necessary. Some events unconditionally cause VMEXIT to the VMM as in a
normal VM if the guest does not need to pass the state (e.g., external interrupts).

3.3 Memory Management
CVMs adapt the memory management mechanisms to ensure memory confidentiality and integrity.
Confidentiality. Figure 2 (a) shows the address translation flow in AMD SEV-SNP. AMD

SEV-SNP bases its memory encryption on AMD Secure Memory Encryption (SME) [12]. The upper
bit of the guest’s physical address is a C-bit, controlling if the page is encrypted (C-bit is 1) or
shared with the VMM (C-bit is 0). The host’s physical address also has a C-bit. The guest’s C-bit
has higher priority than the host’s C-bit. If C-bit is set only in the host, the memory is still shared
but encrypted with the host key, which is effective in protecting against some types of attacks,
such as cold boot attacks.

Figure 2 (b) shows the address translation flow in Intel TDX. Intel TDX uses two nested paging
structures (EPTs) to manage address translation. One is shared EPT for shared memory, and the
other is secure EPT for private memory. The upper bit of the guest’s physical address (shared-bit)
specifies if the page is shared or not. On the host, the memory is encrypted with Intel Total Memory
Encryption–Multi-Key (TME-MK) [99], which uses the upper bits of the physical address as the
key ID (HKID; Host Key ID). Intel TME-MK splits the HKIDs into two groups: private key IDs and
shared key IDs. Shared HKIDs are only used for shared pages. When initializing the guest, the TDX
module assigns a unique private key ID (HKID) to the TD. If the host BIOS enables TME bypass, it
turns off the encryption for the HKID 0, thus removing the encryption for the normal host pages.
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Integrity. To ensure memory integrity, AMD SEV-SNP introduces a reverse map table (RMP).
The RMP records the mapping from the host physical address (HPA) to the guest physical address
(GPA) with the owner. To maintain address translation integrity, the guest must explicitly accept a
translation from GPA to HPA, before using that memory region. The memory controller uses the
RMP to ensure that only a single GPA is mapped to a single HPA, and when accessing memory, the
controller checks the RMP to ensure valid access. The results of RMP checks are cached in the TLB.
ASP manages the RMP, and the VMM can update the RMP using the SEV-SNP firmware ABI [18].

A TD also explicitly accepts memory using TDCALL before use. Additionally, Intel TDX uses a
Physical Address Metadata Table (PAMT) to ensure that a physical page in the secure memory is
assigned to at most one TD with no aliasing. In addition, Intel TDX introduces one TD Owner bit
for each cache line to protect memory integrity. The TD Owner bit is set to 1 when writing with a
private HKID. When reading memory, the hardware checks if the TD Owner bit is set. Unauthorized
write to the memory clears the TD Owner bit and the next read from this memory region in a TD
will trigger a VMEXIT. In addition, by default, the cache lines are protected by a MAC (Message
Authentication Code) [100], which protects against bit-flips (e.g., Rowhammer attacks) [118].

3.4 I/O Operations
I/O operations involve interaction with untrusted external entities and thus require special care
to handle. There are three types of I/O operations: IO instruction (in/out instructions), memory-
mapped IO (MMIO), and direct memory access (DMA). First, IO instructions and MMIO are only
doable via the explicit VMM call (§ 3.2). Normal IO instructions cause #VC/#VE, and the VMM
configures the MMIO region so that accessing it causes #VC/#VE. In addition, DMA requires further
care as external devices cannot access the guest’s private memory. Therefore, the guest uses a
dedicated shared buffer (bounce buffer [169], also known as swiotlb in Linux) for DMA. This means
DMA operations have additional copies in the CVM environment, impacting their performance.
The VMM manages and injects interrupts to the guest.

Input validation. All input from an external device should be treated as untrusted; therefore, the
guest device driver must validate all input values and handle potential anomalies accordingly [166].
The validation includes (1) performing a range check to ensure the values are within the expected
range, (2) having timeout if an input is not responsive for a certain amount of time, and (3) avoiding
double fetch [184]. Several research works show that device drivers tend to have many validation
misses from the external inputs [88, 146, 147, 174, 175, 179], showing the importance of device driver
hardening. In the context of CVMs, the Linux kernel developers work on VirtIO hardening [170, 180].
In addition, Intel recommends having a device filter mechanism that white-lists the devices to be
used by the guest [40].
Direct device assignment. The direct device assignment allows the VM to directly access

devices, realizing full hardware performance. However, in the CVM trust model, untrusted devices
cannot directly access the guest’s private memory. Therefore, they must use a bounce buffer for
communication.
To extend the trust to a device and remove bounce buffer overhead, there are ongoing efforts

to enable direct device assignments for CVMs on top of TDISP (TEE Device Interface Security
Protocol) [162] specified by PCI-SIG. TDISP utilizes the SPDM [73] protocol to attest the device
and establish a secure connection, and PCIe IDE [161] to establish an encrypted and integrity-
protected communication over the PCIe transaction layer. With TDISP, the trusted PCIe device can
directly perform DMA to the CVM’s private memory. The current 4th Generation EPYC Processors
and 5th Generation Intel Scalable Processors do not support TDISP but future processors will
incorporate this capability [15, 104]. Intel calls the direct device assignment feature with TDISP
TDX-Connect [104], whereas AMD calls it SEV-TIO [15].
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Fig. 3. Remote attestation. (a) Basic attestation flow. The CVM owner gets an attestation report from a CVM.
The report is signed by the known key by AMD or Intel. The owner can verify the report by checking the
certificate chain and its contents. (b), (c) The attestation report generation of AMD SEV-SNP and Intel TDX.

GPU TEEs. Several recent works propose GPU TEEs [25, 48, 70, 92, 115, 117, 132, 183, 198, 201].
While most of them do not directly target CVMs, NVIDIA H100 [70] is the first GPU that supports
a confidential computing mode, offering trusted code execution for AMD SEV-SNP and Intel TDX.
With this mode, a CVM and the GPU communicate with the SPDM protocol [73] and establish a
secure connection, allowing the CVM to perform trusted code execution on the GPU while the
host and other VMs cannot access the GPU memory. H100 itself has its own hardware root-of-trust
and device attestation mechanism, through which a CVM owner can verify if the GPU is legitimate.
Due to the lack of TDISP, there is additional overhead for communication; the CVM explicitly
performs encryption and decryption and uses a bounce buffer for the DMA. Therefore, the CPU’s
encryption/decryption and copying speed limits the performance for I/O-heavy workload [70, 150].

3.5 Remote Attestation
A CVM owner can ensure that the CVM is launched in the intended state and runs on the intended
hardware using the remote attestation process. Figure 3 (a) presents the basic attestation workflow.
The CVM owner gets an attestation report from the CVM, which includes measurements of the
launch and user-provided data, signed with the keys issued by CPU vendors. Next, the owner
fetches the certificates and verifies the certificate chains and the report, and then checks and
validates its content.

AMD SEV-SNP. Figure 3 (b) presents the overview of the attestation generation of AMD SEV-
SNP. The AMD SEV-SNP VM obtains the attestation report using SNP Guest Request, which calls
the VMM. The VMM, in turn, uses SNP_GET_REQUEST command to get the report from the ASP.
The report is signed by VCEK (Vendor Chip Endorsement Key), which is unique for each CPU and
derived from the ASP firmware and the microcode version. VCEK is signed by ASK (SEV Signing
Key), and ASK is signed by AMD ARK (AMD Root Key). ARK is self-signed and consists of the root
of trust of the certificate chain. AMD Key Distribution Service (KDS) provides the certifications
for these keys. To verify the attestation report, the VM owner first fetches the corresponding
certificates of ARK, ASK, and VCEK and verifies the certificate chains. If the fetched certificates are
legitimate, then they can verify that the report is properly signed by VCEK. Finally, they can check
the measurement and the user data to complete the attestation process.
Intel TDX. Figure 3 (c) shows the overview of the attestation report generation of Intel TDX.

The TD obtains an attestation report from the TDX module using TDCALL[TDG.MR.REPORT]. The
report is integrity-protected using a Message Authentication Code (MAC). To sign the report for
remote attestation, Intel TDX reuses the SGX attestation mechanism [136]. It utilizes a special SGX
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enclave called Quoting Enclave (QE), developed and signed by Intel, and running on the same host
but outside of the TD. The TD calls the QE using TDCALL or another transport mechanism, such
as VSOCK. The QE first checks the integrity of the report and then signs it with the Attestation
Key (AK), which is signed by Intel Provisioning Certification Key (PCK). Finally, it returns the
result (quote) to the TD. The VM owner can verify the quote by consulting the certificate provided
by the Intel SGX Provisioning Certification Service (PCS) and then checking and validating the
measurement.

3.6 Miscellaneous Functionalities
In this section, we summarize miscellaneous features specific to CVMs.
Random number generation. The guests can use the rdrand/rdseed instructions to get

random numbers on both SEV-SNP and TDX. The host cannot tamper with these values. However,
there is a possibility of rdrand/rdseed instructions failing if there is enough pressure from the
other cores. The host could intentionally cause this, resulting in a DoS attack to the guest, which is
out of the scope of CVMs.

Time stamp counter (TSC). TDXmodule offers Trusted TSC [101] and handles the rdtsc/rdtscp
instructions and returns trusted values. On the other hand, AMD SEV-SNP provides Secure TSC
with the aid of ASP [44]. During boot-up, the guest queries TSC scale and offset from ASP. The
guest gets a raw TSC value from a specific MSR, and then adjusts it using the scale and offset.
Performance counters. The current AMD SEV-SNP does not support secure performance

counters. SEV-SNP guests can consult performance counters via VMGEXIT, but these values are
host-controlled values. In addition, the host is able to observe the SEV-SNP VM state using the
performance counters. Aegis [130] proposes mitigations against this issue by adding noise in the
performance counters through the execution of certain instructions in the guest. AMD plans to
introduce Performance Monitoring Counter Virtualization [19] to mitigate the issue. On the other
hand, Intel TDX offers secure performance counter virtualization [101]. When enabled, the TDX
module performs a context switch of performance counters when entering and exiting the TD.
Thus, the host cannot alter the guest’s performance counters or leverage them to observe the
guest’s state.
VM live migration. Existing live migration techniques for regular VMs are not applicable for

CVMs as they rely on the hypervisor reading the guest state on the host platform. To support live
migration, both ASP and TDX modules define ABIs that the guest can use to export its state and
move to another machine while preserving the confidentiality and integrity properties.
Nested virtualization. The traditional nested virtualization is not available for AMD SEV-

SNP and Intel TDX as it requires the VMM to be able to read the guest states and emulate the
virtualization instructions [27]. While not perfectly aligned with the traditional nested virtualization
model, AMD SEV-SNP provides VMPL to enforce isolation inside the CVM. Intel TDX 1.5 provides
TD Partitioning, which realizes nested virtualization in the TD for up to three nested guests with
one L1 VMM.

4 Performance Analysis
In this section, we present a detailed performance analysis of AMD SEV-SNP and Intel TDX com-
pared to normal VMs across the following dimensions: boot time (§ 4.1), VM-VMM communication
(§ 4.2), memory performance(§ 4.3), system and computational applications (§ 4.4), and I/O intensive
applications (§ 4.5). We also show our conducted evaluation on the remote attestation primitives
(§ 4.6). The goal of these experiments is to realize the differences compared to the normal VM
counterpart and to understand the unique performance characteristics of the CVMs.
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Table 1. Experimental environment

AMD SEV-SNP Intel TDX

CPU 4th Gen AMD EPYC 9654P 96-Cores ×1 5th Gen Intel Xeon Platinum 8570 56-Cores ×2
Memory SK Hynix DDR5 4800 MT/s 64 GB × 12 Samsung DDR5 4800 MT/s 64 GB × 16
Storage∗ KIOXIA CM7-R NVMe SSD 3 TB Intel DC P3608 SSD 756 GB

Host OS Linux 6.8 (AMDESE/linux cc25683†) Linux 6.8 (canonical/tdx Ubuntu 24.04)
Guest OS Linux 6.8 (torvalds/linux v6.8) Linux 6.8 (torvalds/linux v6.8)
Hypervisor QEMU 8.2 (AMDESE/qemu f246dd2) QEMU 8.2 (tdx-noble-8.2.2)
Firmware OVMF (AMDESE/ovmf 09fbe9) TDVF (edk2-staging/TDVF c229fca)
Misc SEV firmware 1.55.30 TDX module 1.5 (build_num 698)
∗: For the storage performance evaluation.
†: This represents GitHub’s repository name with 7-digits commit hash.

Experimental setup. Table 1 contains our experimental setup. We use 4th Gen AMD EPYC
Processors for AMD SEV-SNP and 5th Gen Intel Xeon Scalable Processors for Intel TDX. At the
time of writing, CVM software stacks are actively developed, and the full support of AMD SEV-SNP
and Intel TDX is not upstreamed. Therefore, we use the patched software (host Linux, QEMU, and
OVMF) provided by AMD and Intel for our evaluation. Note that the base version of the host Linux
and QEMU are the same. Therefore, the main difference between AMD and Intel versions is the
CPU-specific virtualization support. We use the same Linux 6.8 kernel for the guest.
We pin vCPUs to physical cores where caches are shared as much as possible, disable hyper-

threading and CPU frequency scaling, and enable the default side-channel mitigations of Linux for
both the host and the guest. We explicitly disable any memory encryption and CVM features for
the evaluation of normal VMs. We allocate 1 GB of memory for the bounce buffer when used.

4.1 Boot Time Analysis
Methodology. We measure the boot time of Direct Linux Boot [62]. We use a compressed Linux
kernel (bzImage) built with defconfig and kvm_guest.config with SNP or TDX support as an
example of a general-purpose VM. We use an unencrypted NixOS disk image backed with virtio-blk
as a root filesystem. We boot the VM without memory backend preallocation. For AMD SEV-SNP,
we boot the VM using the normal direct boot, i.e, not measured direct boot, and we measure the
boot time using the 6.9 kernel2, which has a different memory initialization scheme.

We report the following timemeasurements: (A) VMM initialization time (“QEMU”) (time between
the start of main() in QEMU and first ioctl(KVM_VCPU_RUN)), (B) firmware initialization time
(“OVMF”) (time until ExitBootServices()), (C) Linux initialization time (“Linux”) (time until
init_start()), and (D) userspace initialization time (“init”) (time until the all systemd services
are dispatched). We perform measurements with 8 vCPUs while varying the VM memory size
(8/16/32/64/128/256 GB). We perform our experiments 10 times and report the median time.

Result. Figure 4 shows the evaluation results. For 8 vCPUs and 64 GB memory, the boot time
of the AMD SEV-SNP VM is 102% (kernel 6.8) and 231% (kernel 6.9) longer than the normal VM,
whereas the TD is 394% longer. Notably, the SNP kernel 6.9 and TDX show an increase in boot
time (especially for "QEMU") as the memory size increases. This happens because the current KVM
separates the entire guest memory from the normal host memory before launching [41]3 and not

2Version: AMDESE/linux 05b1014, AMDESE/qemu fb924a5, tianocore/edk2 4b6ee06
3The KVM allocates memory as guest-first memory, which makes memory inaccessible from the host even in the absence of
hardware encryption support. This enables additional isolation but comes with a certain management cost.
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Fig. 4. Linux Direct Boot time. Changing memory size with 8 vCPUs.

because of the measurement of more memory pages as normal memory pages are later accepted
during runtime.
Takeaway #1: The CVM boot time increases compared to the normal VM due to the additional
initialization process. For 8 vCPUs and 64 GB memory, we observe up to 231% and 394% boot
time increases for AMD SEV-SNP and Intel TDX, respectively. Notably, the host-side memory
management of the guest memory affects the boot time of the CVMs.

4.2 VM-VMM Communication Latency
Methodology. We design and execute a kernel module in the guest that triggers instructions
typically resulting in a VMEXIT. Specifically, we measure the latency of CPUID (leaf 0x1 (cpuid_1)
and 0x40000000 (cpuid_40M)), MSR read (IA32_APIC_BASEMSR (0x1b)), hypercall (KVM_HC_MMU_OP
(deprecated), the KVM returns immediately), and PIO (read from I/O port 0x40, a status register
of the PIT (Programmable Interval Timer)). We invoke instructions a hundred thousand times
and calculate the average latency. We also measure the latency of CVM guests directly calling the
host using VMGEXIT (AMD SEV-SNP) or TDCALL (Intel TDX), which eliminates the exception
handling cost.
Result. Figure 5 shows the result of the VMEXIT latency evaluation. snp* and td* show

the results when the guest explicitly calls the host. For AMD SEV-SNP, the latency of executing
instructions that entail VMEXIT has an average of 240% increase compared to the normal VM,
whereas the TD shows 472% increase, showing that Intel TDX has much higher VMEXIT latency
than AMD-SNP. The intervention of the TDXmodule during the context switch is the most probable
reason for this behavior. The SEV-SNP VM handles the cpuid leaf 0x40000000 in the #VC handler
and does not call the VMM4, and the TD handles the cpuid leaf 0x1 in the TDX module and does
not call the VMM. Therefore, there is no VMEXIT in the execution of these instructions.
Takeaway #2: VMEXIT is a costly operation for CVMs. Instructions that involve VMEXIT to
the VMM introduce 240% latency increase for SNP VMs on average, whereas the TD shows 472%
increase. An SNP VM avoids the VMEXIT overheads for some CPUID instructions by using a
special CPUID page, and a TD avoids that if the TDX module handles the instructions.

4During the launch, the VMM can add a special CPUID page to the guest, which ASP validates and ensures the trusted
CPUID values. An SEV-SNP VM consults CPUID first in the #VC handler, and only calls the host if some fix is needed.
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Fig. 5. Instruction latency. Instructions except cpuid_40M for SNP and cpuid_1 for TD results in VMEXIT
through an explicit call to the host via #VE/#VC. SNP guest consults a CPUID page added during the launch
for getting value cpuid_40M, and thus there is no VMEXIT. TDX module handles cpuid_1 and returns the
value without injecting an exception. snp* and td* calls to the host directly, removing #VE/#VC overheads.

4.3 Memory Performance Analysis
4.3.1 Memory Latency and Bandwidth.
Methodology. We use the Intel Memory Latency Checker (MLC) [110] to measure memory latency
and bandwidth. In addition, we use the entireMemory Test Suite of the Phoronix Test Suite [138, 139]
except t-test1 (memory allocation benchmark) to evaluate memory performance. The suite includes
MBW [58], Tinymembench [66], RAMSpeed/SMP [63], STREAM [135], and Cachebench [137].

Result. Intel MLC reports a 16ns increase for the random idle read latency on both AMD SEV-
SNP and Intel TDX. For the peak injection bandwidth, AMD SEV-SNP VM reports 3.90, 3.98, 9.08,
0.416, 1.96% overhead for All reads, 3:1 RW, 2:1 RW, 1:1 RW, and stream-like bandwidth (average
2.88%), whereas a TD reports 10.04, 8.25, 7.20, 7.02, 7.03% overhead respectively (average 7.86%).
Figure 6 shows the result of the Phoronix Test Suite memory benchmark. The SNP VM shows 7.29%
overhead on average. The respective value for TDs is 4.06%.

4.3.2 Memory Mapping Performance.
Methodology. We create a program that allocates a 32GB memory region using mmap() with the
(MAP_POPULATE) flag. We measure the time of the first and second invocation of the program using
a VM with 64 GB memory and 8 vCPUs. For CVMs, the initial memory allocation involves memory
acceptance. We repeat the experiment 10 times and report the median values.
Result. The SNP VM takes 28.11 seconds to populate the 32GB memory region for the first

time, which is 59% increase compared to the normal VM (17.64 s). The TD takes 29.05 seconds for
its first mmap, which is 92% increase compared to the normal VM (15.15 s). In the second mmap
invocation, the memory is already accepted. Thus, the memory population time on the CVMs is
comparable to that on the normal VMs, with less than a 5% difference (15.38s and 12.97s for the
SNP VM and the TD, respectively).
Takeaway #3: The CVMs introduce memory overhead in terms of latency and bandwidth due
to continuous encryption and integrity protection. Phoronix Memory Test Suite shows 7.29% and
4.06% overhead for AMD SEV-SNP and Intel TDX, respectively. Further, memory acceptance takes
time for the first use of a memory region. Once the memory is accepted, this overhead is eliminated.

4.4 System and Computational Application Performance Analysis
Methodology. We run the following applications to analyze application performance in CVMs: (1)
Unixbench, a set of programs to evaluate various aspects of Unix-like systems, (2) NAS Parallel
Benchmarks (NPB) [72], a set of programs to evaluate parallel computation performance, (3) a
3D image rendering with Blender [50], (4) image classification with PyTorch [61, 160], and (5) a
large language model (BERT [69]) with TensorFlow [1, 67]. We choose these applications to reflect
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Fig. 6. Normalized overhead compared to a normal VM of Phoronix Memory Test Suite.

the diverse workloads of the cloud. Note that cloud providers envision that the entirety of cloud
computing becomes confidential [168], highlighting the importance of evaluating the performance
of CVMs with various workloads. We do not use any accelerators (e.g., GPUs) for computation; we
run the applications directly on the CPU.

We run UnixBench 5.1.3 with 8 parallel copies with 8 vCPUs and 64 GBmemory.We run NPBwith
64 vCPUs and 512 GBmemory for the AMDmachine and 56 vCPUs and 256 GBmemory for the Intel
machine to evaluate the performance of a large VM. We use the NPB 3.4.1 (OpenMP version) and
choose the size C. We run the benchmark with two settings: (1) with OMP_WAIT_POLICY=PASSIVE
(threads are put to sleep when waiting) and (2) with OMP_WAIT_POLICY=ACTIVE (threads actively
poll) [29]. We run each benchmark five times and present the average values. For Blender, PyTorch,
and TensorFlow, we use four VM configurations: “S” (1 vCPUs, 8 GB memory), “M” (8 vCPUs, 64
GB memory), “L” (32 vCPUs, 256 GB memory for the AMD machine, 28 vCPUs, 128 GB memory
for the Intel machine), and “X” (64 vCPUs, 512 GB memory for the AMD machine, 56 vCPUs, 256
GB memory for the Intel machine). For Blender, We measure the rendering time of a sample scene
with a size of 175 KB, where the blender renders a 640x480 PNG image. For PyTorch, we measure
the inference time of image classification using AlexNet [120] 1000 times. For TensorFlow (BERT),
we measure the throughput of the inference using the BERT-Large model with squad dataset [167].
We configure the applications to have as many threads as the number of vCPUs in the VM.

Result. Figure 7 and Figure 8 show the application performance evaluation results. We observe
that several benchmarks incur more than 10% overhead compared to the normal VM both on AMD
SEV-SNP and Intel TDX, which is larger than the previously reported memory overhead (§ 4.3).
These are (1) “Process” of UnixBench (16% and 11% overhead for the SEV-SNP VM and TD), (2)
NPB with OMP_WAIT_POLICY=PASSIVE, (41% and 73% increase in execution time on average), and
TensorFlow (BERT) results with a large VM (“X”) (16% and 18% overhead for SEV-SNP VM and TD).

Performance analysis. We analyze the performance drop of the TensorFlow (BERT) in the
“X” on a TD. First, this workload does not fully use the CPUs even if the application has the same
number of threads as the vCPUs assigned to the VM. The CPU utilization of the normal VM is ∼88%,
whereas the one of the TD is ∼75%. Next, we monitor TDVMCALLs (TDCALL[TDG.VP.VMCALL])
during the workload and find that there are 99,450 TDVMCALLs per second on average (11,312
for HLT, 12,340 for RDMSR, and 75,797 for WRMSR for setting APIC timer). This indicates that
the workload has many sleep and wake-up events, due to the synchronization events for the
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(c) Unixbench (Intel, 8vCPU, 64GB memory)
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Fig. 7. Unixbench and NPB (“-passive” and “-active” are results with OMP_WAIT_POLICY=PASSIVE/ACTIVE.)

computation. We also observe similar VMEXITs on the AMD machine. While these VMEXITs
occur in the normal VMs as well, one of the possible causes for the performance drop is the costly
VMEXITs in the CVMs, as shown in § 4.2.

Mitigations. We find several mitigation techniques for this issue. The first one is using idle
polling [195], which makes the vCPU busy wait when it is idle. This eliminates the VMEXITs due
to the halt. With this option, the TensorFlow (BERT) overhead of TD compared to the normal VM
(with idle poll) is 4.3% in the “X” VM on the Intel machine, and 2.3% in the “X” VM on the AMD
machine. We also confirm that idle polling reduces the performance overhead for the “Process” of
UnixBench. However, this is costly as the guest CPU utilization is always 100% from the host’s
point of view.
Linux also has guest halt polling [56], which makes the guest poll for a certain amount of time

before executing HLT. Table 2 shows the relation between performance and CPU utilization of
TensorFlow (BERT) with different halt polling values on the Intel machine. There is a trade-off
between performance and an increase in CPU utilization due to the polling. Increasing the time of
halt polling increases the throughput, but the CPU utilization also gets higher.

Application-side polling is yet another option. For the NPB benchmark, the result with the
OMP_WAIT_POLICY=ACTIVE option shows a 12.2% and 5.9% average increase in execution time
compared to the normal VM on the AMD and Intel machine, respectively.
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Fig. 8. Application benchmarks (Blender, PyTorch (image classification), TensorFlow (BERT)).

Table 2. The relation between the throughput of TensorFlow (BERT) and the polling strategy in the
“X” VM on the Intel machine. We report the guest userspace CPU utilization and host-side vCPU
utilization (50% is the maximum as we allocate half of the pCPUs as vCPUs). haltpoll 200k means
we set 200k for the halt_poll_ns parameter. We use the default values for other haltpoll parame-
ters (guest_halt_poll_grow=2, guest_halt_poll_shrink=2, guest_halt_poll_grow_start=50000, and
guest_halt_poll_allow_shrink=Y). “idle poll” means the guest uses idle polling.

Guest CPU util Host CPU util Throughput (/s)

VM 88.47 44.35 21.67
TD 74.35 37.93 17.51
TD (haltpoll 200k) 77.15 39.52 18.15
TD (haltpoll 1000k) 84.81 46.90 20.06
TD (haltpoll 10000k) 89.12 49.88 21.02
TD (idle poll) 89.64 50.00 20.63

Takeaway #4: Applications on CVMs show performance degradation mainly due to memory
overheads. Additionally, if application threads (vCPUs) have many sleep and wake-up events, the
vCPU-sleep (HLT) overhead of the CVM can be another significant factor for the performance drop.
We observe up to 431% increase in execution time (NPB benchmark “ua” on a TD). The guest-side
halt polling mitigates this overhead with the cost of higher CPU utilization.

4.5 I/O Performance Analysis
4.5.1 Network Performance Analysis.
Methodology. We use a virtio-net [157] device with a local network. We use the multi-queue (8
queues) for TCP evaluation to stress the network. We use iperf3 [114] to measure the TCP/UDP
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Fig. 9. TCP Throughput. Using a local network, with multi queues (8 queues), 128K buffer size.

throughput. We run the iperf3 server in the guest and the client in the host. We pin the iperf3 client
threads to different physical cores where vCPUs are pinned. We have 8 parallel connections of
iperf3 except for the TCP measurement of the Intel machine, where we have 32 parallel connections
to stress the server. We also measure the round-trip time (RTT) using ping. We measure the RTT
30 times and use the first three RTTs as warm-up and do not consider them in our reported
results. We measure the performance of a normal VM (“vm”), a normal VM using bounce buffer
(“swiotlb”) (§ 3.4), a normal VM using vhost (“vhost”), a normal VM with both vhost and swiotlb
(“vhost-swiotlb“). For CVMs, we measure the performance with several options: vhost enabled
(“-vhost”), guest halt polling enabled (“-hpoll”), and idle polling enabled (“-poll”). Lastly, we also
report network I/O benchmarks with Nginx and Memcached.
Case #1: Performance under high CPU load (TCP). Figure 9 shows the network evaluation

results using TCP with 128K buffer size. We observe that the bounce buffer overhead is considerable.
On the AMD machine, the guest CPU utilization is around 40% for the “vhost” and achieves
a throughput of 90 Gbps5. On the other hand, “vhost-swiotlb” and “snp-vhost” show 19% and
21% overhead compared to “vhost” with 100% CPU utilization. On the Intel machine, with the
vhost enabled, the guest CPU is almost fully utilized, achieving 302 Gbps throughput. Under this
condition, “vhost-swiotlb” shows 57% overhead compared to “vhost”, whereas “td-vhost” shows
60% overhead. These results demonstrate that under high CPU utilization, bounce-buffer overhead
becomes significant, reducing the throughput and increasing the CPU utilization more if it is not
saturated.
Case #2: Performance under non-CPU intensive case (UDP). Figure 10 shows the network

performance evaluation using UDP with different packet sizes. In this case, CPU utilization is
low. For instance, on the Intel machine, the normal VM reaches 5.51 Gbps with packet size 1460,
while 37.49% CPU is idle. We observe a similar vCPU-sleep performance issue that occurred in the
computational application evaluation. TD only achieves 1.02 Gbps with 65% CPU idle for the packet
size 1460 (81% overhead). With we enable halt polling or idle polling, the TD achieves 3.74 Gbps or
3.94 Gbps (32% and 28% overhead, respectively). On the AMD machine, the normal VM achieves
3.19 Gbps, whereas SNP reaches only 0.97 Gbps (75% overhead). However, the halt polling and idle
polling bring the performance to 4.01 Gbps and 4.36 Gbps, respectively (-2% and -11% overhead).
Case #3: Latency (ping). Figure 11 presents the network latency results using ping. An SNP

VM and a TD exhibit 17 and 16 µs higher latency than a normal VM (w/o vhost). The idle polling

5We tried but could not utilize full CPUs on this evaluation.
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Fig. 10. UDP Throughput. Using a local network, with a single queue, different packet sizes.
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Fig. 11. Network Latency (Ping). Using a local network, with a single queue, 64-byte packet size.

reduces the latency by 42 µs (w/o vhost) and 48 µs (w/ vhost) on the SNP VM and 29 µs (w/o vhost)
and 24 µs (w/ vhost) on the TD.
Case #4: Nginx and Memcached. We perform additional network I/O benchmarks with

Nginx [59] and Memcached [57]. We use a VM with 8 vCPUs and 64 GB memory. For networking,
we use the local network with virtio-net with a single queue. For Nginx, we use wrk [194] (with
8 threads, 300 connections) to stress the Nginx server and present the throughput measured in
requests per second (RPS). The web server serves as a static web page that contains a “Benchmark”
message. We evaluate the performance of both HTTP and HTTPS cases. For Memcached, we use
memtier-benchmark [64] to measure the throughput of the Memcached server. The Memcached
server is configured with 8 threads. The client uses 8 threads and 100 connections with pipeline
size 40 to stress the Memcached server. We measure the performance of both TCP and TLS cases.
Figure 12 and Figure 13 show the respective results. We find similar characteristics to the iperf

UDP evaluation in the Nginx results, though the performance drop is smaller than the iperf UDP
evaluation, and idle polling mitigates the performance drop. For example, the SEV VM shows a
10% overhead compared to the normal VM for the HTTPS case (without vhost), whereas the SEV
VM with idle polling shows a 4% overhead. For Intel TDX, the overheads for these cases are 31%
and 10%, respectively. Regarding Memcached, for the TCP case, the SEV VM has 34% overhead
(with vhost), whereas the SEV VM with the idle polling has 14% overhead for a GET operation.
On the other hand, the respective overheads of the TD and the TD with the idle polling are 57%
and 11%. However, for the TLS case, we find smaller performance differences. The SEV VM has
a 20% overhead, and the SEV VM with the idle polling has a 10% overhead for a GET operation.
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Fig. 12. Nginx performance with wrk. Using a local network, with a single queue.
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Fig. 13. Memcached performance with memtier-benchmark. Using a local network, with a single queue.

The overhead of the TD and the TD with the idle polling for the same operations are -3% and 6%,
respectively. This could be attributed to the TLS processing overhead.

4.5.2 Storage Performance Analysis.
Methodology. We use a virtio-blk [157] backed by an entire NVMe device. QEMU creates an
iothread and uses libaio with O_DIRECT to access the NVMe device. We use fio [52] to measure
the bandwidth (128KB block size, 128 I/O depth, and 4 jobs for sequential read and write), IOPS (4
KB block size, 32 I/O depth, and 4 jobs for random read, random write, random read/write with 70%
read and 30% write), and latency (4 KB block size, 1 I/O depth, and 1 job for read, write, random
read, and random write) of the storage performance. For each test case, we use 20 seconds for the
warm-up and 30 seconds for the measurement. We perform 10 runs and report the median result.
Fio uses libaio ioengine in the guest and performs I/O operations with O_DIRECT to the entire
virtio-blk device.

Result. Figure 14 shows the storage performance evaluation results. Notably, in our environment,
fio does not reach the maximum performance of the device6, and the operation is not CPU-bound.
Therefore, both bandwidth and IOPS evaluations do not show a large difference between a normal
VM and a CVM. An SEV-SNP VM has 4.6% and 2.9% overhead, and a TD has -9.7% and 2.5% overhead
on average for bandwidth and IOPS compared to the normal VM. On the other hand, CVMs show
6Intel DC P3608 (intel machine): maximum bandwidth: 5 GB / 2 GB (Read / Write), IOPS: 850k / 150k (random 4k read/write).
KIOXIA CM7-R (AMD machine): maximum bandwidth: 14 GB / 6.75 GB, IOPS: 2,700K / 310K (id.).
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Fig. 14. Performance of a virtio-blk backed by a raw NVMe disk. “-poll” is a result with the idle polling.

higher latency than normal VMs. An SEV-SNP VM has 16 µs, and a TD has 54 µs average latency
increase. If we enable idle polling, the CVMs have a similar performance as the normal VM.
Takeaway #5: If the guest CPU utilization is high for the I/O processing, the bounce buffer (memory
copying) overhead dominates the performance drop of the CVMs. We observe 60% performance
drop on iperf TCP measurement where CPU utilization is 100%. On the other hand, under low CPU
utilization cases, such as iperf UDP and latency measurement, the VMEXIT overhead can become
more dominant. The guest-side halt polling largely mitigates the performance drop in such cases
as well.

4.6 Analysis of Attestation Primitives
Methodology. We evaluate the attestation process of AMD SEV-SNP and Intel TDX. Precisely,
we measure the time of each attestation primitive shown in Table 3. For AMD SEV-SNP, we use
snpguest [182] and measure the time of attestation primitives on the guest. For TDX evaluation,
we use tdx-attest [109], which uses VSOCK to call the QE to measure the time of getting a signed
quote. To measure the time of the certificate and quote verification, we use go-tdx-guest [80]. We
use Ubuntu 24.04 as a guest and perform the certificate and the quote verification on the host. We
repeat each measurement 10 times and report the average time.
Result. Table 3 shows the obtained results. Getting an attestation report takes the most time

and is 6.19 ms for AMD SEV-SNP and 2.75 ms for Intel TDX on average.
Takeaway #6: The operation of attestation primitives only takes several milliseconds. In practice,
the remote attestation is combined with other use cases, such as encrypted disk boot [30] and
establishing a secure TLS connection [119], and operations like booting and communicating over
network take more time than the attestation itself.

4.7 Discussion
Comparison of AMD SEV-SNP and Intel TDX. In general, our evaluation shows AMD SEV-SNP
and Intel TDX have similar performance characteristics with a few exceptions.
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Table 3. Attestation Primitives and their processing times

Primitive AMD SEV-SNP [ms] Intel TDX [ms]

Getting an attestation report (quote for TDX) 6.19 2.75 (getting a report: 0.022)
Verifying the certificates 1.04 0.67
Verifying the report (quote for TDX) 2.68 0.24

First, the boot time measurement shows that the TDX takes more time in both the VMM (QEMU)
and the guest firmware on the Linux 6.8 kernel. On the other hand, the SEV-SNP results demonstrate
that different software stacks can show quite different boot times. We presume that there are several
possible optimizations for reducing the boot time.

Secondly, our VMEXIT latency measurement shows that Intel TDX has a longer average VMEXIT
latency (472% increase compared to the normal VM) than AMD SEV-SNP (240%). This could be
attributed to the intervention of the TDXmodule. However, more investigation is needed to identify
the root cause. On the other hand, our application benchmarks show that the TDX (and SEV-SNP)
performance degradation for normal applications is not as bad as the VMEXIT benchmark. This is
because VMEXITs do not dominate the normal workload. In addition, if the TDX module handles
VMEXIT (e.g., some CPUID leaves), then the VMEXIT latency can be smaller than that of the
normal VM.
In some benchmarks, particularly NPB and iperf TCP, the performance overhead of TDX is

higher compared to the normal VM, as opposed to SEV-SNP. However, we must note that in these
evaluations, a normal VM on an Intel machine has much better performance than a normal VM on
an AMD machine, which contributes to the larger performance overhead of TDX.

Performance characteristics. We find three main factors that affect application performance
on CVMs. Firstly, for standard computational workloads (Unixbench, Blender, image classification
with PyTorch), memory encryption and integrity protection are the main sources of the overhead.
Secondly, for I/O intensive workloads under heavy CPU utilization (as demonstrated in iperf TCP),
the bounce buffer overhead justifies the performance drop. Lastly, if the application has many
sleep events due to the required synchronization for multithreaded applications (e.g., Bert with
TensorFlow and NPB) or I/O wait for the application (e.g., iperf udp), then the HLT VMEXIT
overhead cannot be ignored. We detail the possible performance optimization below.

Performance optimization. Our evaluation reveals several opportunities for promising perfor-
mance optimizations.

First, our boot time evaluation demonstrates that the software stack largely affects the boot time.
SEVeriFast [89] also analyzes the boot time of AMD SEV-SNP and proposes the optimized boot
process for micro-VMs on AMD SEV-SNP. TD-shim [65] is a thin firmware specialized for TDs.
Incorporating such optimized firmware could reduce the boot time for standard CVMs as well.
Secondly, our application evaluation shows that vCPU HLT VMEXIT can cause a significant

overhead for the CVMs. The investigation of the root cause is left as future work. HotCalls [187]
proposes shared-memory-based communication between an SGX enclave and the host OS to reduce
the overhead of the context switch. Similar techniques could be applied to the CVMs to reduce the
overhead of the VMEXIT. As a mitigation, we demonstrate that the guest-side halt polling can be
effective. However, the guest-side halt polling has a trade-off with the CPU utilization, and finding
the optimal configuration depends on the workload. Automated tuning of the polling policy would
also be a path for future work.

Regarding the bounce buffer overhead, Bifrost [123] proposes optimized bounce buffer handling
for the encrypted network connection by directly encrypting and decrypting data in the bounce
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buffer, removing the overhead of an additional data copy. We could use similar techniques to reduce
the bounce buffer overhead for other devices, such as storage.

Lastly, exploring architectural improvements is also an important direction. For example, HPMP [75]
proposes an efficient additional page-walk mechanism for memory protection on the RISC-V archi-
tecture.

Comparison with previous work. Akram et al. [5] conduct a performance evaluation on AMD
SEV (not SNP) using NPB, reporting up to 3.4x slowdown on a NUMA machine with memory
interleaving. However, they do not observe a performance drop regarding HLT. This could be
attributed to the use of AMD SEV, which lacks state protection and, therefore, has lower VMEXIT
latency. Also, no information on the wait policy is provided. Bifrost [123] focuses on network I/O
on AMD SEV-ES, reporting a memory copy of the bounce buffer consumes more than 50% of the
CPU cycles for CPU heavy workload, in line with our TCP evaluation. They also report frequent
VM exits due to interrupts taking up more than 20%. However, they do not evaluate any impact of
the halt polling.
Yan and Gopalan [196] evaluate AMD SEV-SNP performance with various benchmarks. They

report up to 4.3% overhead for memory-intensive workloads and 36% TCP overhead using the
local network, which roughly matches our evaluation. On the other hand, they report only a 3-4%
performance drop on UDP measurements and around 47% overhead in disk I/O using virito-scsi,
which we could not reproduce. The difference could be attributed to the use of different software
stacks, devices, and configurations. They do not report I/O latency and CPU utilization metrics. In
addition, they report measurements for NPB, showing ∼3.5% overhead on ua (size D) on an SNP
VM. It is possible that they use OpenMP’s default wait policy (adoptive poll policy), although this
information is not provided. Qiu et al. [165] show half of the IOPS performance with 24 local SSD
disks on an SNP VM, indicating storage also can show a significant overhead when heavily used.
Early-stage software and hardware. We experience several issues during our evaluation,

including unknown firmware errors and performance degradation due to configuration changes.
Our boot time evaluation demonstrates that the different software versions can show significantly
different performance characteristics. Additionally, software support for VM live migration, TD-
partitioning, and VMPL is still limited and only partially available. The ecosystem of CVMs is still
in the early stages, highlighting the importance of continuous evaluation and improvement.

5 Security Analysis
This section evaluates the security of AMD SEV-SNP and Intel TDX. We mainly focus on the
following aspects: TCB size and disclosed vulnerabilities.

5.1 TCB Analysis
Methodology. We measure the software TCB by counting the binary size and the LoC of the
guest Linux kernel, the guest firmware, and the platform firmware (ASP firmware and the TDX
module) using cloc [45]. We use their default configuration to build the binary. We report the size
of uncompressed vmlinux as the binary size of the Linux kernel. We only count the files actually
used in the build process by monitoring the file accesses. For the platform firmware, we report the
size and LoC of the platform firmware that Intel and AMD provide on their website as a reference
due to the limited availability of the source and build environment.

Result. Table 4 shows the TCB sizes of AMD SEV-SNP and Intel TDX. Linux kernel is the largest
component in the TCB, followed by the guest firmware and the platform firmware.

5.1.1 Reducing and Hardening TCB. To improve the security of CVMs, minimizing and hardening
the TCB is crucial. There are several approaches to reduce and harden the TCB of CVMs.
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Intra-CVM isolation. One approach to reduce the TCB is having intra-CVM isolation. AMD
SEV-SNP provides VMPL, and Intel TDX 1.5 provides TD-partitioning, allowing the guest OS to
be partitioned into multiple isolated components. However, software support for these features is
premature, and further research is needed to utilize these features effectively.

There are several works on utilizing VMPL. One notable existing work is COCONUT-SVSM [51],
which is the secure monitor implementation for AMD SEV-SNP in accordance with the SVSM [16].
Hecate [76] and Azure paravisor [164] use VMPL to run an unmodified guest kernel in AMD
SEV-SNP VMs. While the main focus of these works is achieving backward compatibility, they can
be used as a base to implement a secure monitoring mechanism. VEIL [3] also uses VMPL to have
secure enclaves within the AMD SEV-SNP VMs, while Cabin [140] protects the guest OS from the
untrusted guest application using VMPL.
Reducing codebase. Another approach to reduce the TCB is to reduce the codebase of the

guest OS. Several works aim to reduce the TCB of the CVMs by designing a dedicated software for
CVMs [49, 65, 74, 121]. Intel develops a specialized firmware mainly for the container environment
called TD-shim [65]. Some works propose a minimal OS based on library OS or designing a new
OS for CVMs. For instance, Gramine-TDX [121] is using the Gramine LibOS [34] ported to TDX.
Specializing in running a specific application, Gramine-TDX successfully reduces the TCB and
minimizes the attack surface. Another example is Asterinas [49], an operating system designed for
CVM environments aiming for a minimal TCBwith Linux ABI compatibility in Rust. Mushroom [74]
is another dedicated kernel that aims to run unmodified Linux applications with integrity protection
utilizing the VMPL.
Hardening TCB. Hardening TCB so that the CVMs can resist attacks from the outside is also

crucial. Table 5 summarizes the main inputs from the VMM to the CVM.We can separate inputs into
four categories: (1) boot inputs, which the VMM passes when launching the CVM, (2) device I/O
performed by the guest, (3) external inputs, and (4) certain CPU instructions. CVMs, ideally, must
validate these inputs before using them. Regarding boot inputs, calculating the measurement of not
only static inputs (the initial guest code, data, and state) but also dynamically calculating loaded
components is crucial to ensure the guest state. For other inputs, the CVM guest kernel should
carefully examine if the input values are legitimate by checking input ranges or using whitelisting.
As we show in § 5.2, many real-world attacks are related to insufficient input validation.

There is a constant effort to harden the interfaces with the untrusted world in the kernel [170, 180].
However, the complexity of the Linux kernel and the abundance of its features mandate a lot of
manual, non-trivial analysis and the development of dedicated tools to provide a good level of
confidence in its hardening. This makes it quite difficult for the hardening effort to be accepted
upstream. To this end, Intel releases TDX hardening documentation [111], which summarizes the
design guideline of how the guest OS validates the inputs from the VMM. Additionally, several
works perform fuzz testing to test the input validation of the CVMs [88, 111].

Code provenance. Last but not least, a mechanism that records the origin and history of code is
important for usability. For instance, Code Transparency Service [46] proposes an architecture to
track code provenance and to hold code providers accountable, preventing supply chain attacks.
Takeaway #7: Due to the nature of the CVMs, the TCB size can be more than millions of LoC as it
includes the full-fledged OS of the guest VM. There are several research works that aim to reduce
the TCB size and harden the TCB to improve the security of CVMs.

5.2 Disclosed Vulnerabilities
Methodology. We search the MITRE CVE database [42] with the keywords “SEV”, “SNP”, and
“TDX”, and extract the CVEs related to AMD SEV(-ES/SNP) and Intel TDX. We summarize the
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Table 4. Software TCB Sizes. “-” indicates that the respective information is not publicly available.

CVM Component Binary (B) KLoC

AMD SEV-SNP
Linux 6.8 (w/ defconfig, kvm_guest.config, SNP support) 13M 2,307
OVMF (w/ SNP support) 4.0M 206
ASP SEV firmware 93K∗ 29†

Intel TDX
Linux 6.8 (w/ defconfig, kvm_guest_config, TDX support) 13M 2,304
TDVF 4.0M 764
TDX module 1.5 - 45
Quoting Enclave, SEAM Loader‡ - -

∗: SEV firmware 1.55.30 [hex 1.37.1E], †: SEV firmware 1.55.25 [hex 1.37.19]. ‡: Component to load the TDX module.

Table 5. External CVM inputs from the VMM.

Input Source Input Types Notes
Boot inputs Firmware code Measured statically during initialization.

UEFI variable, ACPI tables Possibly measured dynamically using RTMR (TDX) or vTPM.
PCI option ROM, OS loader Possibly measured dynamically using RTMR (TDX) or vTPM.
Kernel code, cmdline parameters Possibly measured dynamically using RTMR (TDX) or vTPM.

Possibly measured statically using Direct Measured Boot (SNP).
Device I/O PIO Use VMGEXIT / TDCALL.

MMIO Use VMGEXIT / TDCALL.
DMA Via unencrypted shared buffer.

External Inputs Interrupts and exceptions The VMM can inject. TDX prohibits exception injection #0-#31.
CPU instructions Hypercalls Use VMGEXIT, TDCALL.

MSR (RDMSR, WDMSR) TDX module virtualizes some of MSRs.
CPUID TDX module virtualizes most of CPUIDs.

ASP provides trusted CPUID pages for SNP guests.
RDPMC TDX supports trusted performance counter virtualization.

CVEs up to June 2024. Regarding AMD SEV(-ES/SNP), we divide the CVEs into those applicable
to AMD SEV-SNP and those that are not. We consider CVEs as applicable to AMD SEV-SNP if
the description explicitly mentions SNP. If the CVEs are applicable to both AMD SEV-SNP and
SEV(-ES), we classify them as AMD SEV-SNP. If CVE’s explanations are unclear, we classify them
as AMD SEV(-ES).

We categorize the CVEs into four types depending on the attacker’s position and target: host-to-
guest, host-to-host, guest-to-guest, and guest-to-host. We further categorize them into (1) software
bugs, including validation bugs and functional bugs, (2) hardware bugs, including microarchitectural
side-channel issues, and (3) design issues in the CVMs mechanism.
Result. Table 6 shows the summary of CVEs related to AMD SEV(-ES/SNP) and Intel TDX. In

total, there are 49 CVEs related to AMD SEV(-ES/SNP) and 9 CVEs to Intel TDX. Among them, 81%
of the CVEs are host-to-guest attacks, 5% are guest-to-guest attacks, 5% are guest-to-host attacks,
and 9% are host-to-host attacks. 22 CVEs (39%) are attributed to improper validation mechanisms,
while 31 (54%) are associated with vulnerabilities in the underlying firmware. Notably, AMD SEV(-
ES/SNP) predates Intel TDX and, therefore, has more reported CVEs. Further, AMD SEV-SNP fixes
many design issues in AMD SEV and SEV-ES [11]. The detailed list of CVEs is provided in the
Appendix D. We describe the representative CVEs in the following sections.

5.2.1 Host-to-guest Attacks.
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Table 6. CVEs of AMD SEV(-ES/SNP) and Intel TDX up to June 2024. Attack types are classified into host-to-
guest, guest-to-guest, guest-to-host, and host-to-host attacks, depending on the attacker’s position and the
target. For example, host-to-guest attacks are attacks where the host attacks the guest. For software bugs, if
the firmware update fixes the issue, we classify them as a firmware bug. We list full CVEs in the appendix.

Attack Type CVM Software bugs Hardware bugs Design issues Totalkernel / firmware

Host to Guest AMD SEV-SNP 1 / 17 3 4 25
AMD SEV/-ES 2 / 7 2 2 13
Intel TDX 3 / 5 0 1 9

Guest to Guest AMD SEV-SNP 0 / 1 1 0 2
AMD SEV/-ES 0 / 0 1 0 1
Intel TDX 0 0 0 0

Guest to Host AMD SEV-SNP 1 / 0 0 0 1
AMD SEV/-ES 2 / 0 0 0 2
Intel TDX 0 0 0 0

Host to Host AMD SEV-SNP 1 / 0 0 0 1
AMD SEV/-ES 3 / 1 0 0 4
Intel TDX 0 0 0 0

Software bugs. Software bugs are the most common in CVEs and are the main source of host-
to-guest attacks. Notably, the majority of the software bugs are due to improper input validation
(11 out of 18 for AMD SEV-SNP, 7 out of 9 for AMD SEV(-ES), and 4 out of 8 for Intel TDX). Further,
many software bugs are in the firmware and their fixing requires firmware updates. For AMD
SEV-SNP, 17 out of 18; for AMD SEV(-ES), 7 out of 9; and for Intel TDX, 5 out of 8 bugs are related
to the firmware.

Hardware bugs. Some CVEs occur due to the improper implementation of the hardware. One
category of these bugs is the improper implementation of the hardware primitives, such as in
CVE-2021-26342, where the hardware does not properly handle TLB flush on AMD SEV(-ES),
leading to information leakage. Side-channel attacks constitute another category. This includes the
power-glitch side-channel (CVE-2023-20575) and the cipher text side channels (CVE-2023-46744)
on AMD SEV-SNP.

Design issues. Several CVEs are due to design issues in the CVM mechanisms. The lack of the
RMP allows arbitrary code execution on the guest through remapping attack on AMD SEV(-ES)
(CVE-2020-12967 and CVE-2021-26311). AMD SEV-SNP and Intel TDX do not face these issues.

Some CVEs are related to interrupt and exception handling of CVMs. Heckler [175] (CVE-
2024-25743, CVE-2024-25744) shows that the ability of the VMM to inject exceptions can cause
unexpected behavior by invoking an exception handler unexpectedly for both AMD SEV-SNP and
Intel TDX. WeSee [174] (CVE-2024-25742) shows that an injection of #VC also causes a similar
problem for AMD SEV-SNP(/ES). Intel TDX does not allow injecting interrupts below vector 32,
mitigating the issue. These CVEs highlight the importance of input validation and input filtering
from the VMM to reduce security problems.

5.2.2 Other Attacks.
Guest-to-guest attacks. Vulnerabilities in the platform firmware can also lead to guest-to-guest

attacks. CVE-2023-31346 allows an SEV-SNP guest to leak information in the ASP using a crafted
request to the ASP. This is caused by the improper input validation in the ASP firmware.
Guest-to-host attacks. While the majority of the CVEs are host-to-guest attacks, there are

some CVEs regarding guest-to-host attacks. For example, CVE-2023-4155, CVE-2021-47008, and
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CVE-2021-4093 are related to improper hypercall (VMGEXIT) handling on the host side, which can
result in the guest leaking information on the host or causes DOS on the AMD SEV platform.

Host-to-host attacks. There are also CVEs related to host-to-host attacks. Some of them are due
to the improper implementation of the VMM. For example, CVE-2023-47026 is caused by a NULL
pointer dereference in the incorrect KVM API implementation. The others are due to erroneous
implementations in the ASP firmware where the malicious host can send a crafted request to
the ASP firmware to execute a DOS attack on the host (CVE-2024-26696, CVE-2022-0171, and
CVE-2021-47389).
Takeaway #8: Among the reported CVEs (up to June 2024), 47 CVEs (81%) are host-to-guest attacks
introduced by both software and hardware bugs. 22 CVEs (39%) are attributed to improper validation
mechanisms, while 31 (54%) are associated with vulnerabilities in the underlying firmware. On the
other hand, there are 3 CVEs on guest-to-host and 5 CVEs host-to-host attacks, highlighting the
complexity of the CVM software stacks and emphasizing the importance of testing their interfaces.

6 Related Work
Architecture analysis on CVMs. Guanciale et al. [85] review the architectures of AMD-SEV, ARM
CCA, IBM PEF, and Intel TDX and make comparisons about their features, security guarantees, and
usability. Jauernig et al. [116] compare traditional enclaves (Intel SGX, ArmTrustZone, Sanctum [43],
Sanctuary [31]) and AMD SEV. Akram et al. [4] summarize existing TEEs, including AMD SEV-SNP
and Intel TDX, in the context of HPC. Sahita et al. [171] analyze the ISA and attestation protocol of
Intel TDX and describe possible threats. Cheng et al. [35] summarize Intel TDX architecture in a
top-down manner based on the existing specifications. Li et al. [125] discuss the design choices of
TEEs, including AMD SEV and Intel TDX. Wang and Oswald [185] summarize GPU TEEs and their
relation to the CPU TEEs includig AMD SEV and Intel TDX. These works are complementary to
our work.
Security analysis on AMD SEV-SNP and Intel TDX. Google presents a security review on

AMD SEV-SNP [37] and Intel TDX [6]. Buhren et al. [33] analyze the attestation mechanism of
AMD SEV, and Sardar et al. [173] perform formal verification on the attestation mechanism of Intel
TDX. Ménétrey et al. [141] compare the attestation mechanisms of several TEEs, including SEV.
Witharana et al. [193] verify the memory confidentiality and integrity property of Intel TDX using
model checking. These works mainly focus on security analysis and are orthogonal to our work.
Performance evaluation on AMD SEV(-SNP) and Intel TDX. Intel publishes performance

evaluations on TME [113] and Intel TDX on 4th generation Xeon processors [107]. AMD presents a
performance evaluation on AMD SEV-SNP of 3rd generation EPYC processors using CPU-intensive
workloads [38]. Mofrad et al. [149] and Göttel et al. [81] evaluate the memory encryption perfor-
mance of AMD SEV. Akram et al. [5] perform performance evaluation on AMD SEV, Bifrost [123]
evaluates network I/O, and Qiu et al. [165] evaluate database workloads on AMD SEV-ES/SNP. Yan
and Gopalan [196] evaluate AMD SEV-SNP performance with several benchmarks. Segarra et al.
[176] evaluate the performance of SEV in the context of serverless computing, and SEVeriFast [89]
examines the boot performance of SEV-SNP VMs and proposes an optimized boot process for
microVMs.

Compared to these works, this paper presents a thorough evaluation of both AMD SEV-SNP and
Intel TDX in a unified manner using real hardware (4th generation EPYC Processors and 5th Gen
Xeon Scalable processors). We detail notable points compared to previous work in § 4.7.
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7 Conclusion
This paper provides a comprehensive empirical analysis of two prominent CVM technologies: AMD
SEV-SNP and Intel TDX. While CVMs offer substantial benefits for trusted cloud computing, our
study identifies areas requiring reconsiderations and optimizations to enhance their performance
and security properties. Our detailed performance evaluation highlights significant impacts on
boot time, memory management overheads, I/O performance implications, and context-switching
inefficiencies. Our security analysis, based on TCB evaluation and CVE analysis, also mandates
robust validation mechanisms and proper firmware testing and development. Overall, our findings
provide valuable insights that contribute to the improvement and broader adoption of CVMs in cloud
infrastructures. Future efforts should address the CVM inefficiencies by refining the underlying
hardware and software stacks.
Software artifact & additional material. The evaluation code is available at https://github.com/
TUM-DSE/CVM_eval. We present additional material in the § Appendix.
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Appendix
A Terminology Comparison
Table 7 shows the summary of terminology comparison between AMD SEV-SNP and Intel TDX.

Table 7. Terminology comparison between AMD SEV-SNP and Intel TDX

Terminology AMD SEV-SNP Intel TDX

Second-level address translation table Nested page table (NPT) Extended Page Table (EPT)
Host physical address System physical address (SPA) Host physical address (HPA)
CPU mode for vmm Host mode / Hypervisor mode VMX root-mode
CPU mode for a normal VM Guest mode VMX non-root mode
CPU mode for a CVM Guest mode SEAM VMX non-root mode
vCPU state data structure VMCB (Virtual Machine Control Block) VMCS (Virtual Machine Control State)
Name of a CVM domain SEV-SNP VM Trust domain (TD)
Exception to handle VMEXIT in CVMs #VC (VMM Communication Exception) #VE (Virtualization Exception)
Instruction to enter to a normal VM VMRUN VMLAUNCH / VMRESUME
Instruction to enter to a CVM VMRUN SEAMCALL [TDH.VP.ENTER]
Hypercall from a normal VM VMMCALL VMCALL
Hypercall from a CVM VMGEXIT TDCALL [TDG.VP.VMCALL]

B Support Status
Table 8 summarizes the status of the supported features on Intel TDX. Table 9 shows the information
about the processors that support AMD SEV(-ES/SNP), and Table 10 compares the features among
AMD SEV, SEV-ES, and SEV-SNP.

Table 8. Supported features and processor versions on Intel TDX. At the time of writing, there is no publicly
available concrete implementation of live migration and TD-partitioning.

Feature Required TDX Module Version First Support Processor

Intel TDX TDX 1.0 4th Gen Xeon Scalable Processors (private preview)
Live Migration TDX 1.5 5th Gen Xeon Scalable Processors
TD-Partitioning TDX 1.5 5th Gen Xeon Scalable Processors
TEE-IO TDX 2.0 Future processors

Table 9. Processors that support AMD SEV(-ES/SNP).

Feature First Support Processor

AMD SEV 1st Gen EPYC Processors
AMD SEV-ES 2nd Gen EPYC Processors
AMD SEV-SNP 3rd Gen EPYC Processors

C Evaluation Details
C.1 Benchmark Details
C.1.1 Phoronix Test Suite Memory Benchmarks. Table 11 summarizes the Memory Test Suite of
Phoronix Test Suite [139].
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Table 10. Feature comparison among AMD SEV, SEV-ES, and SEV-SNP. Note that at the time of writing (July
2024), (1) processors (and hardware) supporting SEV-TIO are not available yet, and (2) there is no publicly
available concrete software implementation of SEV-SNP live migration.

Feature AMD SEV AMD SEV-ES AMD SEV-SNP

VM Memory Encryption ✓ ✓ ✓
VM Register State Encryption ✗ ✓ ✓
Integrity Protection ✗ ✗ ✓
VMPL ✗ ✗ ✓
Live Migration ✓ ✓ ✓
SEV-TIO ✗ ✗ Future processors will support

Table 11. The Memory Test Suite of Phoronix Test Suite

Benchmark Details

MBW [58] Measure memory bandwidth using memcpy. The test measures the memory copy time of 1024
MB data size by (1) directly calling memcpy for the entire data and (2) using a 256 KB block as a
memory copy unit (noted as “Fixed”).

Tinymembench [66] Measure memory bandwidth of sequential memory access. The test measures memcpy and memset
time for 32MB data.

RamSpeed/SMP [63] Measure memory bandwidth of (1) Copy (dst=src), (2) Scale (dst=const*src), (3) Add
(dst=src1+src2), and (4) Triad (dst=const*src1+src2) operations. The test measures the perfor-
mance of these operations for both integer (Int) and floating point (FP) types.

STREAM [135] Measure the memory bandwidth of Copy, Scale, Add, and Triad operations.
Cachebench [137] Measure bandwidth of read and write operations. The test performs multiple memory operations

using a 64KB size buffer intended to measure cache bandwidth.

C.1.2 NAS Parallel Benchmarks (NPB). Table 12 shows the NAS Parallel Benchmarks (NPB) [72]
used in the evaluation.

Table 12. The NAS Parallel Benchmarks (NPB)

Benchmark Details

IS Integer Sort, random memory access
EP Embarrassingly Parallel
CG Conjugate Gradient, irregular memory access and communication
MG Multi-Grid on a sequence of meshes, long- and short-distance communication, memory intensive
FT Discrete 3D fast Fourier Transform, all-to-all communication
BT Block Tri-diagonal solver
SP Scalar Penta-diagonal solver
LU Lower-Upper Gauss-Seidel solver
UA Unstructured Adaptive mesh, dynamic and irregular memory access

C.1.3 Unixbench. Table 13 shows the Unixbench [68] benchmarks used in the evaluation.

C.2 Additional Results
C.2.1 Application Benchmarks with Idle Polling. Figure 15 and Figure 16 show the results of
Unixbench and application benchmarks with idle polling (for both CVMs and VM). Notably, with
the idle polling, we do not see more than 10% performance degradation in “Process” of Unixbench
and TensorFlow (BERT) in the “X” VM.
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Table 13. Unixbench

Benchmark Details

Dhrystone String handling without floating-point operations
Whetstone A mix of operations typically performed in scientific applications
Execl Count execl system call performed per second, which replaces process images
File-(s/m/l) File copy performance with various buffer sizes (256B, 1KB, 4KB)
Pipe Frequency of writing and reading 512 bytes through a pipe per second
Context Switching Exchange rate of integers between two processes through a pipe
Process Rate of process creation and reaping of child processes
Scripts(-1/8) Measure how many times a shell script starts and reap (Scripts-8 has 8 concurrent copies)
System Call Estimates the overhead cost of entering and exiting the operating system kernel
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Fig. 15. Unixbench with idle polling.
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Fig. 16. Application benchmarks with idle polling.
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D Details of CVEs
Table 14 shows the full list of CVEs of AMD SEV(-ES/SNP) and Intel TDX up to June 2024 we
summarize in the § 5.2.

Table 14. Full list of CVEs. Bug types: A: kernel, B: firmware, C: hardware, D: design issue. Attack types:
H→G: Host to Guest, G→H: Guest to Host, G→G: Guest to Guest, H→G: Host to Host. “-” indicates no
enough information is available. We classify CVEs as due to validation misses if the detail explicitly mentions
validation.

CVE CVM Bug type Attack type Cause Misc

CVE-2024-36936 TDX A H→G Implementation
CVE-2024-35939 TDX A H→G Validation
CVE-2024-25744 TDX D H→G Design flaw Hecler [175]
CVE-2023-52874 TDX A H→G Validation
CVE-2023-47855 TDX B H→G Validation
CVE-2023-45745 TDX B H→G Validation
CVE-2023-32666 TDX B H→G -
CVE-2023-22655 TDX B H→G -
CVE-2022-41804 TDX B H→G -

CVE-2024-25744 SNP D H→G Design flaw Heckler [175]
CVE-2024-25743 SNP D H→G Design flaw Heckler [175]
CVE-2024-25742 SNP D H→G Design flaw WeSee [174]
CVE-2023-52659 SNP A H→G Implementation
CVE-2023-4155 SNP A G→H Validation
CVE-2023-20573 SNP D H→G Design flaw Missing delivery of debug exceptions
CVE-2023-20566 SNP B H→G Validation
CVE-2023-20519 SNP B H→G Implementation
CVE-2022-23830 SNP B H→G Implementation
CVE-2022-23818 SNP B H→G Validation
CVE-2022-23813 SNP B H→G Implementation
CVE-2021-26409 SNP B H→G Validation
CVE-2021-26396 SNP B H→G Validation
CVE-2021-26349 SNP B H→G Implementation
CVE-2021-26328 SNP B H→G Implementation
CVE-2021-26327 SNP B H→G Validation
CVE-2021-26326 SNP B H→G Validation
CVE-2021-26325 SNP B H→G Validation
CVE-2021-26324 SNP B H→G Implementation
CVE-2021-26323 SNP B H→G Validation
CVE-2020-12966 SNP C H→G Side-channel Cipherleaks [128]
CVE-2024-26695 SNP A H→H Implementation
CVE-2023-46813 SNP C G→G Race condition
CVE-2023-31347 SNP B H→G Implementation
CVE-2023-31346 SNP B G→G Implementation
CVE-2023-20592 SNP C H→G Implementation CacheWarp [199]
CVE-2021-46744 SNP C H→G Side-channel Ciphertext side-channel [124]
CVE-2021-26321 SNP B H→G Validation
CVE-2021-26320 SNP B H→G Validation

CVE-2023-20575 SEV C H→G Side-channel Power side-channel
CVE-2022-0171 SEV A H→H Implementation
CVE-2021-47389 SEV A H→H Implementation
CVE-2021-47228 SEV A H→G Implementation
CVE-2021-47062 SEV A H→H Implementation
CVE-2021-47008 SEV A G→H Implementation
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CVE-2021-46768 SEV B H→H Validation
CVE-2021-4093 SEV A G→H Validation
CVE-2021-26408 SEV B H→G Validation
CVE-2021-26406 SEV B H→G Validation
CVE-2021-26404 SEV B H→G Validation
CVE-2021-26403 SEV B H→G Validation
CVE-2021-26402 SEV B H→G Validation
CVE-2021-26342 SEV C H→G Implementation Improper TLB flush implementation
CVE-2021-26340 SEV C G→G Implementation Improper TLB flush implementation
CVE-2021-26332 SEV B H→G Implementation
CVE-2021-26311 SEV D H→G Implementation Lack of RMP
CVE-2020-36311 SEV A H→G Implementation
CVE-2020-12967 SEV D H→G Implementation Lack of RMP
CVE-2019-9836 SEV B H→G Implementation
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