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Abstract

The cloud has become established for applications that need to be scalable and highly

available. However, moving data to data centers owned and operated by a third party,

i.e., the cloud provider, raises security concerns because a cloud provider could easily

access and manipulate the data or program flow, preventing the cloud from being

used for certain applications, like medical or financial.

Hardware vendors are addressing these concerns by developing Trusted Execution

Environments (TEEs) that make the CPU state and parts of memory inaccessible from

the host software. While TEEs protect the current execution state, they do not provide

security guarantees for data which does not fit nor reside in the protected memory

area, like network and persistent storage.

In this work, we aim to address TEEs’ limitations in three different ways, first we

provide the trust of TEEs to persistent storage, second we extend the trust to multiple

nodes in a network, and third we propose a compiler-based solution for accessing

heterogeneous memory regions. More specifically,

• SPEICHER extends the trust provided by TEEs to persistent storage. SPEICHER

implements a key-value interface. Its design is based on LSM data structures, but

extends them to provide confidentiality, integrity, and freshness for the stored

data. Thus, SPEICHER can prove to the client that the data has not been tampered

with by an attacker.

• AVOCADO is a distributed in-memory key-value store (KVS) that extends the

trust that TEEs provide across the network to multiple nodes, allowing KVSs to

scale beyond the boundaries of a single node. On each node, AVOCADO carefully

divides data between trusted memory and untrusted host memory, to maximize

the amount of data that can be stored on each node. AVOCADO leverages the

fact that we can model network attacks as crash-faults to trust other nodes with

a hardened ABD replication protocol.

• TOAST is based on the observation that modern high-performance systems

often use several different heterogeneous memory regions that are not easily

distinguishable by the programmer. The number of regions is increased by the

fact that TEEs divide memory into trusted and untrusted regions. TOAST is a

compiler-based approach to unify access to different heterogeneous memory

regions and provides programmability and portability. TOAST uses a

load/store interface to abstract most library interfaces for different memory

regions.
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Lay summary

This thesis focuses on the security and privacy of data stored in the cloud. As

more services transition to cloud infrastructure for improved reliability, scalability,

and maintainability, there are concerns that the cloud provider or an attacker could

access and manipulate the data, especially for sensitive services like finance and

healthcare. This has resulted in hesitation to adopt cloud services for such

applications.

To address these concerns, the thesis explores a technology called Trusted

Execution Environments (TEEs). These environments provide a secure memory area

and processor state that protect applications from unauthorized access. However,

this protection does not extend to storage. The thesis aims to extend trust to the

storage.

Three projects are introduced in the thesis to tackle different aspects of secure

storage subsystems:

• SPEICHER: This project enhances the security of data stored in individual

computer systems. It achieves this by improving the underlying data structures

used for storage and encrypting any data that leaves the secure memory area.

This ensures the confidentiality and integrity of the stored data. SPEICHER

employs specific techniques like flat Merkle trees and an asynchronous trusted

counter to prevent potential attacks.

• AVOCADO: This project focuses on creating a trusted distributed key-value

store. It utilizes TEEs to prevent situations where different nodes in a

distributed system claim different values. This ensures consistent and trusted

replication of data, even in the presence of failures. AVOCADO also offers a

service that facilitates easy addition and removal of nodes from the network,

ensuring scalability and availability.

• TOAST: This project improves programmability and portability in modern

systems that employ different types of memory. With the introduction of TEEs,

the number of memory regions doubles. TOAST provides a unified interface for

accessing these different memory types. It also includes a proxy and protection

library that simplify the adoption of new technologies and prevent data leaks.

By utilizing these three projects, it is possible to build a more powerful and

specialized trusted storage system that ensures the security and privacy of data in the

cloud.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing is becoming increasingly popular for its benefits of scalability,

availability, and maintainability. A driving factor for the adoption of cloud

infrastructure is the rapid increase of data being collected, stored, and processed by

modern services. However, the use of cloud infrastructure also raises privacy and

security concerns, as the cloud provider has full access to the hardware and software

stack, including the operating system (OS) and hypervisor. This privileged control

allows the cloud provider to intercept all data transfers and inspect and control

memory, processor states, network traffic and stored data of the services hosted in the

cloud. A potential attacker could, therefore, manipulate data stored in the cloud,

posing security and privacy risks, which prevents entire groups of services to migrate

to the cloud infrastructure, e.g., financial industry and health care.

To address these concerns, hardware vendors have proposed and implemented

Trusted Execution Environments (TEEs), such as Intel SGX [5], Intel TDX [6], ARM

TrustZone [7], ARM Realms [8], AMD SEV-SNP [9], and RISC-V Keystone [10]. TEEs

provide a secure memory region that is protected against access and manipulation by

other software, including privileged software like OSs and hypervisors. To prevent

CPU data leakage through the register and cache state, TEEs also disallow the

operating system from inspecting the CPU state of processes running inside a TEE.

Combined with a remote attestation service, this allows for the creation of fully

trusted applications.

These TEEs are a promising solution for adopting security- and privacy-critical

applications to the cloud, as they allow service providers to protect their data and

application state from the cloud provider. As a result, major cloud providers have

begun adopting TEEs and offering them to their customers, e.g., Google Cloud [11],

3



4 Chapter 1. Introduction

Microsoft Azure [12], and Alibaba Cloud [13]. This has led to increased interest in

providing a full system stack for security and privacy-sensitive applications, allowing

these applications to take full advantage of the cloud and reducing their dependency

on their own data centers.

However, TEEs are designed for local transient processes, making them

insufficient to build an entire system stack. Modern services often require to store

and retrieve data, that might be stored on a persistent storage device, like SSD or

persistent memory (PMEM), or might be distributed over multiple nodes. This gives

a potential attacker a vast attack surface, as TEEs do not give any guarantees for data

residing outside of the secured memory region. Furthermore, TEEs do not provide

any guarantees for the correctness of the code. By leaking a private or encryption key,

a simple programming mistake can unrecoverably compromise the entire system.

TEEs, further, exacerbate the problem by dividing the system into a trusted and

untrusted partition, which can be indiscriminately accessed by the same process.

This raises the challenging question of building a trusted storage system for

untrusted cloud environments using TEEs. This thesis identifies three main

challenges in addressing this question: (i) How to extend the trust provided by TEEs

to persistent storage, since TEEs only protect the processor state and memory. (ii)

How to provide trust in a distributed system, given that TEEs are bound to a single

node. (iii) How to provide programmability, portability and high performance for

heterogeneous memory systems in building a trusted storage system.

1.2 Problem statement

Persistent storage is desirable in cloud storage environments compared to in-memory

systems, due to its lower cost per GB of data, its durability, i.e., being able to recover

the data after system shutdown, and vertical scaling capabilities, as a single machine

can incorporate larger amounts of persistent storage than volatile memory. To

leverage the advantages of persistent storage in a trusted storage system based on

TEEs, which provides confidentiality, i.e., data can only be accessed by authorized

entities, integrity, i.e., unauthorized changes to the data can be detected, and

freshness, i.e., stale data can be detected, we have to overcome two challenges: firstly,

extending the confidentiality and integrity of TEEs to persistent data structures,

secondly, to provide freshness guarantees, building a trusted counter service, which

fulfills the performance requirements of modern storage systems.

Distributed storage systems provide scalability and availability, by laying out

their data over different nodes. Designing a trusted storage system in distributed
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systems poses additional challenges as TEEs are limited to a single node and cannot

protect data in transit between the different components. Additionally, conventional

Byzantine Fault Tolerance (BFT) protocols are costly and required to ensure secure

communication between untrusted nodes. In order to overcome these limitations and

design a trusted distributed storage system that provides confidentiality, integrity

and fault tolerance, we propose a scaleable attestation mechanism to establish trust

between servers and clients. Our solution also enables mutual trust between nodes,

which allows for secure data transmission and a more efficient protocol for Byzantine

settings that provides confidentiality and fault tolerance with less overhead than

conventional BFT protocols.

Modern storage systems use multiple types of memory for improved

performance, security, and reliability. These memory types can be found throughout

the system, including in network and storage devices. However, accessing these

heterogeneous memory types can be difficult due to device-specific implementations

and the need for additional actions such as reading and writing to specific memory

addresses and cache flushes. This can lead to challenges in portability for

programmers who must understand the details of each device. Additionally, TEEs

complicate the problem by further dividing the address space into trusted and

untrusted regions, making it difficult for programmers to distinguish between

memory types and leading to potential errors such as sensitive information leakage

or mistakenly persisting temporary data. To address these challenges, we propose a

simplified, generic programming model that uses the established load/store interface

and includes an error handling mechanism and a protection library to isolate

different memory regions.

1.3 Approach and contribution

This thesis aims to establish a trusted storage solution in the untrusted cloud. We

introduce three projects that focus on different aspects of storage systems and security

and can be combined to secure a storage system which the cloud provider cannot

access or manipulate. By addressing the question of how to ensure security for data

and storage operations in untrusted cloud environments with hardware-based TEEs,

this thesis explores three projects: SPEICHER [1], AVOCADO [2], and TOAST. Each of

these projects addresses different challenges of secure storage for the cloud. These

are persistence and freshness for SPEICHER; scalability and availability for AVOCADO;

programmability and portability for TOAST.
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SPEICHER is a log-structured merge tree (LSM) [14] based key-value store (KVS)

that establishes trust for persistent storage on a single node. It offers confidentiality,

integrity, authenticity, and freshness by taking advantage of the properties of LSM

data structures. For instance, the fact that LSM KVS structures store data in multiple

levels allows for the implementation of a fast and secure MemTable that partitions

data between trusted TEE memory and untrusted host memory. Additionally, the

write-only-once nature of LSM KVS enables SPEICHER to guarantee the freshness of

persistent data by building a Merkle tree [15] over parts of the KVS, with the root node

stored persistently along with a trusted counter value.

SPEICHER also provides a fast asynchronous counter service to overcome the

performance limitations of hardware-based trusted counters, which can have

latencies of up to 200 ms. Additionally, it implements a user space direct I/O storage

library based on SPDK [16], allowing for efficient access to data stored on the

persistent storage (e.g., SSD) without the need for expensive world switches between

the TEE and the untrusted host.

In our evaluation, SPEICHER showed a reasonable overhead of 15 to 35×
compared to an unsecured RocksDB [17] version in the YCSB benchmark [18].

AVOCADO extends the trust provided by TEEs to multiple nodes, offering

scalability, availability, and performance without providing persistence. It uses the

TEE to harden a non-Byzantine fault (BFT) replication protocol, specifically

multi-writer-ABD, for use in an untrusted infrastructure. This allows AVOCADO to

exclude equivocation, reducing the number of nodes necessary for fault tolerance in

an untrusted system from BFT’s 3 f + 1 to 2 f + 1.

AVOCADO also provides confidentiality, integrity, authenticity, and freshness for

the stored data. It introduces a secure user space network stack based on eRPC [19]

and DPDK [20], allowing AVOCADO to bypass the kernel and avoid expensive

switches between the trusted environment and untrusted host system. Similarly to

SPEICHER, AVOCADO splits in-memory data into trusted and untrusted memory,

greatly reducing the amount of required trusted memory.

In our evaluation, AVOCADO outperformed BFT by 4 to 65× while using fewer

replicas and providing confidentiality in the YCSB benchmark.

TOAST is a compiler-based heterogeneous memory management system that

prevents users from unintentionally leaking information. Modern systems often

incorporate heterogeneous memory devices, such as NICs, SSDs, or persistent

memory, in order to improve performance. These devices expose an interface over
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the memory bus by allocating a memory area, allowing direct control from user space

processes and reducing syscall overheads. However, this poses programmability and

portability issues, as the programmer has to associate a pointer with a specific

memory area and use specific libraries to access it. Additionally, the programmer is

unable to distinguish between pointers referring to different memory areas, which

poses protection challenges.

TEEs further complicate matters by doubling the number of heterogeneous

memory regions by dividing the entire system into trusted and untrusted parts. Any

information leakage can compromise the security guarantees provided by the

system. TOAST addresses all three challenges by providing a unified load-store

interface for different types of heterogeneous memory, unified callback-based error

handling, and a runtime protection library that prevents information leakages.

The TOAST compiler transforms pointers referencing heterogeneous memory

regions, instruments load and store operations as function calls to the library

necessary for accessing the memory region, and checks the temporal and spatial

validity of the pointer to prevent information leakage.

1.4 Thesis outline

In the following chapters, we will introduce the background (Chapter § 2), and

provide an in-depth look at each of the three projects: SPEICHER (Chapter § 3),

AVOCADO (Chapter § 4), and TOAST (Chapter § 5). The thesis will conclude in

Chapter § 6.





Chapter 2

Background

This chapter serves as an introduction to the foundational concepts upon which the

subsequent chapters’ three projects are built. The primary goal of the thesis is to

develop tools for constructing a trusted storage system. Therefore, this chapter

commences with an overview of storage technologies (Section § 2.1) that are

employed in the various projects:

SPEICHER utilizes an LSM-based key-value store (KVS) (Subsection § 2.1.1).

AVOCADO focuses on a trusted distributed KVS (Subsection § 2.1.2). TOAST examines

the management of heterogeneous memory, specifically persistent memory for

storage (Subsection § 2.1.3).

All three projects make use of trusted execution environments (TEEs).

Consequently, this chapter provides an introduction to TEEs, with a specific

emphasis on Intel SGX, as it is the TEE category employed in the three projects

(Subsection §2.2.1).

The concept of remote attestation (Subsection § 2.2.2) is discussed, as it guarantees

the integrity of the software running on the cloud provider’s platform.

Furthermore, we introduce the memory safety mechanisms employed by TOAST

(Subsection §2.2.3 and § 2.2.4).

Finally, the chapter concludes with a description of direct I/O technologies

(Section § 2.3) that are utilized in all three projects.

2.1 Storage Systems

Due to the increased demand in data storage and processing, multiple storage designs

have emerged. This thesis aims to build an hardware assisted secure storage system.

As already mentioned in the introduction (see § 1.2) and also discussed multiple times

in this thesis (e.g., see § 3, § 3.1, § 3.2.1, § 3.6, § 4, § 4.1, § 4.3, § 4.7, and § 6.1), TEEs

9
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Figure 2.1: Example configuration of a log-structured merge tree (LSM) based KVS.

Puts are added to the lowest level, i.e., level 0, which is hold in memory for faster

accesses. When a level reaches its maximum size, a compaction event is triggered

which merges the level with the next higher level. In this example all levels except

level 0 are stored on the persisent storage. All puts also get appended to the write

ahead log (WAL), to be able to recover them, in case of a system reboot. The manifest

hold the current state of the LSM-KVS.

trust guarantees do not extend to the persistent storage or over the network. Modern

storage systems, however, rely on these technologies to provide scalability (vertical

and horizontal) and availability.

This section provides an overview of storage technologies used in the three

projects that comprise the work of this thesis. Log-structure merge tree (see § 2.1.1)

for persistence is found in SPEICHER (see § 3). AVOCADO (see § 4) is a replicated key

value store, based on common distributed key value store technologies (see § 2.1.2).

TOAST (see § 5) provides a heterogeneous memory abstraction to improve

programmability. We implemented TOAST abstraction on top of persistent memory

(see § 2.1.3) and direct I/O libraries, like DPDK, SPDK, and eRPC (see § 2.3).
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2.1.1 Log Structure Merge Tree

Log structured merge tree (LSM) based key value stores (KVSs), such as LevelDB [21]

and RocksDB [17] have gained popularity due to their superior write throughput.

LSM-based KVSs organize the data using three constructs: MemTables, static sorted

tables (SSTables or simply SSTs), and log files. Figure 2.1 shows an overview of a LSM-

based KVS. In the following description of the function of an LSM-based KVS we focus

on RocksDB, as SPEICHER is based on it. However, other LSM-based KVSs perform

equivalent operations.

RocksDB inserts put requests to a memory-resident MemTable that is organized as

a skip list [22]. For crash recovery, these puts are also sequentially logged to the write-

ahead-log (WAL) file backed by persistent storage medium with checksums. When the

MemTable fills up, it is moved to an SSTable file backed by an SSD or HDD in a batch

to ensure sequential device access (this thus can cause scanning the skip list).

The SSTable files are grouped into levels with increasing size (typically 10×). The

process of moving data to the next level is called compaction, which ensures the

SSTables to be sorted by keys, including the ones being merged from the previous

level. Since SSTables are immutable, compaction always creates new SSTables on the

persistent storage medium. Any state changes in the entire storage system, such as

creation and deletion of SSTable and WAL files, are recorded to the Manifest, which is

a transactional and persistent log.

On a get request, RocksDB first searches the MemTable for the key, then searches

the SSTables from the lowest level in turn; at each level, it binary-searches the

corresponding SSTable. Using this primitive, it is trivial to process range and iterator

queries, where the latter only differs in the client interface. RocksDB maintains an

index table with a Bloom filter attached to each SSTable in order to avoid searching

unnecessary SSTables.

While restarting, RocksDB establishes the latest state in a restore operation. To

this end, the Manifest and the WAL are read and replayed.

2.1.2 Distributed KVS

Distributed key-value stores (KVSs) are designed to scale horizontally across

multiple machines, allowing them to handle a large amount of data and a high

volume of requests. In distributed KVSs, partitioning and replication are often used

together to ensure scalable, available, and transparent data distribution. Partitioning

involves dividing the data space into smaller chunks, called partitions, each of which

contains a portion of the overall data set. Replication involves creating multiple
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Distributed KVS

Node

Local KVS
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Local KVS

Node

Local KVS
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Request

Figure 2.2: Distributed KVS act as a single system towards the client. A distributed

KVS provides scalability and availability by partitioning and replicating the data over

the nodes in the system.

copies, or replicas, of each partition and distributing them among the members of the

cluster. Each member is typically responsible for a single replica of a partition.

Replication techniques in distributed databases can vary in how data is accessed

and updated, which impacts consistency and availability. One approach is

leader-based replication, in which a specific replica, known as the leader, primary,

master, or similar, is designated as the main source of data access and updates.

Changes made to the primary replica are then propagated to the other replicas. This

technique is powerful in preventing conflicts and deadlocks among the replicas, but

can become a bottleneck as all access and updates must go through the primary

replica. An alternative approach is to eliminate the leader concept and treat all

replicas as equal (leaderless), allowing data to be accessed and updated using any

replica. This can increase the availability of the system, but it complicates a consistent

view of a system between replicas [23].

These systems provide a foundational building block for modern online

services [24–31]. RAMCloud [32] pioneered this design space by providing logging

and recovering mechanism for distributed in-memory key-value stores. Prominent

systems such as FaRM [33] and Pilaf [34] provide a shared address space between

nodes, and take advantage user space networking, especially RDMA [35]. In contrast
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to our second project AVOCADO, these system did not consider security for the

untrusted infrastructure.

2.1.3 Persistent Memory

Persistent memory (PMEM) [36] is byte-addressable persistent storage which is

directly connected to the memory bus of the system together with DRAM (NVRAM),

with comparable latency and throughput. This is in contrast to more conventional

block storage devices, which have to read and write and entire fixed size block,

increasing latency and decreasing throughput for small accesses. Software

frameworks like PMDK [36] implement routines and data structures to keep the

persistence guarantees of PMEM in cases of crashes or unexpected failures.

2.2 Trusted Execution and Memory Safety

This thesis explores methods and tools for constructing a secure storage system in

untrusted environments. SPEICHER and AVOCADO leverage trusted execution

environments (TEEs) (see § 2.2.1) and their remote attestation capabilities (see § 2.2.2)

to create a trusted key-value store. TOAST acknowledges that TEEs result in an

increased number of heterogeneous memory regions, as TEEs divide memory into

trusted and untrusted segments. This exacerbates the programmability and

portability issues of heterogeneous memory. To avoid sensitive information leaks,

TOAST implements two protection libraries: a hardware-based Intel MPK (see § 2.2.3)

and a software capability-based one (see § 2.2.4), which provide protection against

accidental memory leaks.

2.2.1 Trusted Execution Environments

Trusted execution environments (TEEs) [5–10, 37] are tamper-resistant processing

environments that guarantee the authenticity, the integrity and the confidentiality of

their executing code, data and runtime states, e.g. CPU registers and memory. Figure

2.3 shows a general overview of TEEs. Their content remains resistant against all

software attacks even from privileged code, e.g., OS and hypervisor, as well as any

physical attacks, such as memory probes, performed on the main memory of the

system.

TEEs can be classified into three distinct categories, each offering unique

characteristics and functionalities.

The first category comprises TEEs that strictly enforce isolation between the

trusted and untrusted environments or "worlds." In this setup, the software stack
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Figure 2.3: Trusted execution environments (TEEs) secure the CPU state and guarantee

that the trusted memory is access through the memory encryption engine (MEE) only.

The TEE keeps the de-/encryption key private to a specific execution.

cannot be shared between the two worlds. While this approach ensures a robust

separation, it presents challenges when it comes to sharing data between them.

Examples of TEEs in this category include ARM TrustZone [7] and RISC V

Keystone [10]. Although the techniques discussed in this thesis can be adapted for

use with this type of TEE, their primary focus is not on providing cloud services since

they have limitations on the number of trusted worlds they support.

The second category of TEEs builds the trusted environment within an

application, resulting in a minimal trusted computing base (TCB). The TEE can be

invoked from within the application, and while it can access the application’s

memory, it does not have access to the memory of other processes. To handle

memory management, these TEEs employ a hardware-based memory management

systems since applications typically do not implement page fault handlers. Intel

SGX [5] serves as a prime example of this type of TEE. A more comprehensive

description of SGX is provided later in this section, as all three projects presented in

this thesis are based on SGX.

The final category is represented by TEEs such as Intel TDX [6], AMD

SEV-SNP [9], and ARM Realms [8]. These TEEs focus on providing trusted virtual
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machines (VMs). They enable a larger TCB within the trusted environment and offer

software-based memory management. This approach facilitates easier development,

as system designers can create a typical software environment within the trusted

environment. Over the past few years, there has been a growing trend towards this

category of TEEs, reflecting their increasing popularity and adoption.

SGX SGX, a TEE implementation by Intel, offers the abstraction of an isolated

memory called enclave. Enclave pages reside in the enclave page cache (EPC) — a

specific memory region (up to 128 MiB for v1 and 256 MiB for v2) which is protected

by an on-chip memory encryption engine (MEE). To support applications with larger

memory footprint (up to 4 GiB in v1 and with support of the OS up to 256 GiB in v2)

SGX implements a paging mechanism. However, the EPC paging mechanism incurs

high overheads [1, 38].

This isolation prohibits SGX applications from executing outside-of-the-enclave

code directly, e.g., system calls. Thus, enclave threads need to exit the trusted

environment and further copy all associated data out of the enclave since kernel code

cannot access it. Afterwards, threads have to enter the enclave again. We refer to this

as world switch.

With the adoption of TEEs in the cloud, shielded execution frameworks are being

developed and adopted to provide strong security properties for unmodified/legacy

applications running in the untrusted environment. Prominent examples for the SGX-

based shielded execution framework include Haven [39], SCONE [40], Graphene [41],

Panoply [42], Eleos [38], Asylo [43], Google’s Confidential VMs [11], Open Enclave

SDK [44] and CCF [45]. This thesis leverages the advancements in shielded execution

frameworks; in particular, we use SCONE [40] to build distributed storage systems.

2.2.2 Remote attestation

Remote attestation is a powerful mechanism used to verify that a system stack on a

remote machine is in the expected state. It ensures that the correct version of the

software stack is running on the intended hardware. This mechanism relies on a

trusted entity (i.e. root of trust), such as a Trusted Execution Environment (TEE) or

Trusted Platform Module (TPM), which performs measurements by calculating

secure hashes over the loaded software components.

Initially, the root of trust, whether it be a TEE or TPM, measures the integrity of

crucial software elements like the bootloader, operating system kernel, hypervisor,

or software within a TEE. Subsequently, the loaded software can measure additional

components, such as programs, and inform the root of trust about their measurements.
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Figure 2.4: MPK uses 4 previously reserved bits to store a tag per entry in the TLB.

It then combines the access rights for the page together with the access rights stored

in the user-controlled thread-local PKRU register for the tag to generate the effective

access permissions of the page. The effective permissions is the intersection of the

page permission and tag permission.

The root of trust combines its own calculated hash with the new measurements

received, resulting in a new measurement value. At this stage, a process can request

the root of trust to provide and sign the new hash value. With this signed value in

hand, a remote process can easily validate the system stack’s configuration. It

accomplishes this by verifying the signature of the root of trust and comparing the

measurement value (hash value) against a pre-established known value.

By employing remote attestation, organizations can gain confidence in the

integrity and security of remote system stacks by verifying their compliance with

expected configurations.

2.2.3 MPK

MPK [46] is an x86 ISA extension that allows for user space page-level access control.

It leverages 4 previously unused bits of every page-table entry to place a tag. The

allocation and release of a protection key as well as the page tagging operation require

elevated privileges and, therefore, are performed via system calls. However, a process

can change the granted permissions for the pages tagged with a specific key directly in

user space by updating a special register (PKRU). Note that, the PKRU value is thread-

local; each thread can manage the permissions of its keys autonomously. Figure 2.4

shows how the page permissions interact with the tag permissions to evaluate the
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Figure 2.5: The direct I/O library communicates over the direct access memory (DMA)

mapping directly with the device. This eliminates system calls.

effective permissions.

2.2.4 Capabilities

Capabilities are an efficient token-based method to perform resource management and

fine-grained access control, suitable for security-critical systems [47–56]. Precisely, a

capability is a reference to an object or resource together with its access rights.

To allow for flexible resource access control, capabilities can typically be

exchanged between processes and protection domains. Four core operations are

commonly supported; (i) create, where a new capability is created for a resource

either from scratch or by inheriting the rights of an existing capability referring to the

same resource, (ii) modify, which alters the access rights to a resource of an existing

capability and (iii) revoke, that deletes the existing capability and the ones derived

from it, (iv) invoke, which access the resource referenced by the capability. When an

application attempts to access a resource (e.g., memory, storage) managed by a

capability, the system examines the current capability rights and permits the access or

aborts the operation based on them.



18 Chapter 2. Background

2.3 Direct I/O Stack

This thesis comprises three projects that utilize direct I/O libraries for faster

processing. SPEICHER uses SPDK (see § 2.3.2) to enhance persistent storage

performance. AVOCADO employs a combination of DPDK (see § 2.3.1) and eRPC (see

§ 2.3.3) to establish a secure network layer. TOAST unifies heterogeneous memory

access with direct I/O libraries. All three direct I/O libraries (SPDK, DPDK, and

eRPC) are utilized in TOAST’s case studies.

Direct I/O in user space bypasses parts or all of the OS kernel stack and has become a

popular alternative to traditional OS kernel drivers due to its ease of development

and deployment and its performance advantages. This is especially true in

high-throughput/low-latency applications such as high-performance networking

(over 100 Gbit) or NVMe, where context switches can add a significant

overhead [57–61]. This has led to the adoption of direct I/O libraries in these settings

to avoid kernel context switches.

Direct I/O libraries operate by establishing a direct communication channel

between the device and the system through a mechanism known as direct memory

access (DMA). DMA enables devices to access the system’s main memory directly,

bypassing the need for CPU involvement. This approach offers several benefits, such

as reduced latency and decreased CPU utilization, particularly for high-performance

devices.

Additionally, the operating system has the capability to map the physical memory

range utilized by the device into the address space of an application. This mapping

grants the user-space process control over the device. Consequently, the application

gains the ability to manipulate and manage the device’s operations.

To further optimize the performance of direct I/O libraries, one can employ a

polling-based system and instruct the kernel to disable interrupts for the specific

device. By eliminating the need for context switches, the number of interruptions

caused by device communication is significantly reduced.

2.3.1 DPDK

Data Plane Development Kit (DPDK) [20] is a user space direct I/O library for different

platforms, i.e., x86, ARM, and PowerPC, and different OSes, i.e., Linux, FreeBSD, and

Windows. It abstracts network interface controllers (NIC) easing the development of

network applications. DPDK expect the user to provide their own network stack, for

session and transport layer.
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2.3.2 SPDK

The Storage Performance Development Kit (SPDK) [16] is based on DPDK and

provides a user space direct I/O abstraction for Non-Volatile Memory (NVM)

Express (NVMe). NVMe is a standardized interface for accessing storage media such

as solid state drives (SSDs) over PCI Express (PCIe). It was designed to fully leverage

the capabilities of modern SSDs. SPDK offers low-level block access to the

underlying storage device, as well as an object allocator called Blobstore [62] and a

filesystem based on Blobstore called BlobFS [63].

2.3.3 eRPC

eRPC [19] is a state-of-the art general-purpose and asynchronous remote procedure

call (RPC) library for high-speed networking for lossy Ethernet or lossless fabrics.

eRPC uses a polling-based network I/O along with user space drivers, eliminating

interrupts and system call overheads from the datapath. Particularly, application

threads create exclusive RPC objects and one-to-one connections between them in

order to enqueue and receive requests and responses. Each RPC reserves hugepages’

memory for packet I/O, i.e., Rx and Tx queues.

Furthermore, eRPC provides a UDP stack, leveraging optimization techniques,

(zero-copy reception, congestion control, etc.) while it remains generic; it supports a

wide range of transport layers such as RDMA, DPDK, and RoCE.





Chapter 3

SPEICHER:

A Secure LSM-based KV Store

We introduce SPEICHER, a secure storage system that not only provides strong

confidentiality and integrity properties, but also ensures data freshness to protect

against rollback/forking attacks. SPEICHER exports a Key-Value (KV) interface

backed by Log-Structured Merge Tree (LSM) for supporting secure data storage and

query operations. SPEICHER enforces these security properties on an untrusted host

by leveraging shielded execution based on a hardware-assisted trusted execution

environment (TEE)—specifically, Intel SGX. However, the design of SPEICHER

extends the trust in shielded execution beyond the secure SGX enclave memory

region to ensure that the security properties are also preserved in the stateful (or

non-volatile) setting of an untrusted storage medium, including system crash, reboot,

or migration.

More specifically, we have designed an authenticated and

confidentiality-preserving LSM data structure. We have further hardened the LSM

data structure to ensure data freshness by designing asynchronous trusted counters.

Lastly, we designed a direct I/O library for shielded execution based on Intel SPDK

to overcome the I/O bottlenecks in the SGX enclave. We have implemented

SPEICHER as a fully-functional storage system by extending RocksDB, and evaluated

its performance using the RocksDB benchmarks. Our experimental evaluation shows

that SPEICHER incurs reasonable overheads for providing strong security guarantees,

while keeping the trusted computing base (TCB) small.

21
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3.1 Motivation

With the growth in cloud computing adoption, online data stored in data centers is

growing at an ever increasing rate [64]. Modern online services ubiquitously use

persistent key-value (KV) storage systems to store data with a high degree of

reliability and performance [17, 21]. Therefore, persistent KV stores have become a

fundamental part of the cloud infrastructure.

At the same time, the risks of security violations in storage systems have increased

significantly for the third-party cloud computing infrastructure [65]. In an untrusted

environment, an attacker can compromise the security properties of the stored data

and query operations. In fact, many studies show that software bugs, configuration

errors, and security vulnerabilities pose a serious threat to storage systems [66–72].

However, securing a storage system is quite challenging because modern storage

systems are quite complex [68, 73–75]. For instance, a persistent KV store based on

the Log-Structured Merge Tree (LSM) data structure [14] is composed of multiple

software layers to enable a data path to the storage persistence layer. Thereby, the

enforcement of security policies needs to be carried out by various layers in the

system stack, which could expose the data to security vulnerabilities. Furthermore,

since the data is stored outside the control of the data owner, the third-party storage

platform provides an additional attack vector. The clients currently have limited

support to verify whether the third-party operator, even with good intentions, can

handle the data with the stated security guarantees.

In this landscape, the advancements in trusted execution environments (TEEs),

such as Intel SGX [5] or ARM TrustZone [7], provide an appealing approach to build

secure systems. In fact, given the importance of security threats in the cloud, there is a

recent surge in leveraging TEEs for shielded execution of applications in the untrusted

infrastructure [38–42]. Shielded execution aims to provide strong security properties

using a hardware-protected secure memory region or enclave.

While the shielded execution frameworks provide strong security guarantees

against a powerful adversary, they are primarily designed for securing “stateless" (or

volatile) in-memory computations and data. Unfortunately, these stateless techniques

are not sufficient for building a secure storage system, where the data is persistently

stored on an untrusted storage medium, such as an SSD or HDD. The challenge is

how to extend the trust beyond the “secure, but stateless/volatile" enclave memory region to

the “untrusted and persistent" storage medium, while ensuring that the security properties

are preserved in the “stateful settings", i.e., even across the system reboot, migration, or crash.

To answer this question, we built a secure storage system using shielded

execution targeting all three important security properties for the data storage and
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query processing: (a) confidentiality — unauthorized entities cannot read the data, (b)

integrity — unauthorized changes to the data can be detected, and (c) freshness —

stale state of data can be detected as such.

To achieve these security properties, more specifically, we need to address the

following three architectural limitations of shielded execution in the context of

building a secure storage system: Firstly, while modern TEEs like Intel TDX and

AMD SEV-SNP have no limitation on the trusted memory size, Intel SGX’s, on which

this project is based on, secure enclave memory region is quite limited in size, and

incurs high performance overheads for memory accesses. It implies that the storage

engine cannot store the data inside the enclave memory; thus, the in-memory data

needs to be stored in the untrusted host memory. Furthermore, the storage engine

persists the data on an untrusted storage medium, such as SSDs. Since the TEE

cannot give any security guarantees beyond the enclave memory, we need to design

mechanisms for extending the trust to secure the data in the untrusted host memory

and also on the persistent storage medium.

Secondly, the syscall-based I/O operations are quite expensive in the context of

shielded execution since the thread executing the system call has to exit the enclave,

and perform a secure context switch, including TLB flushing, security checks, etc.

While existing shielded execution frameworks [38, 40] proposed an asynchronous

system call interface [76], it is clearly not well-suited for building a storage system

that requires frequent I/O calls. To mitigate the expensive enclave exits caused by

I/O syscalls, we need to design a direct I/O library for shielded execution to

completely eliminate the expensive context switch from the data path.

Lastly, we also aim to ensure data freshness to protect against rollback (replay old

state) or forking attacks (create second instance). Therefore, we need a protection

mechanism based on a trusted monotonic counter [77], for example, SGX trusted

counters [78]. Unfortunately, the SGX trusted counters are extremely slow and they

wear out within a couple of days of operation. To overcome the limitations of the

SGX counters, we need to redesign the trusted monotonic counters to suit the

requirements of modern storage systems.

To overcome these design challenges, we propose SPEICHER, a secure LSM-based

KV storage system. More specifically, we make the following contributions.

• I/O library for shielded execution: We have designed a direct I/O library for

shielded execution based on Intel SPDK. The I/O library performs the I/O

operations without exiting the secure enclave; thus it avoids expensive system

calls on the data path.

• Asynchronous trusted monotonic counter: We have designed trusted counters
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to ensure data freshness. Our counters leverage the lag in the sync operations in

modern KV stores to asynchronously update the counters. Thus, they overcome

the limitations of the native SGX counters.

• Secure LSM data structure: We have designed a secure LSM data structure that

resides outside of the enclave memory while ensuring the integrity,

confidentiality and freshness of the data. Thus, our LSM data structure

overcomes the memory and I/O limitations of Intel SGX.

• Algorithms: We present the design and implementation of all storage and query

operations in persistent KV stores: get, put, range queries, iterators, compaction,

and restore.

We have built a fully-functional prototype of SPEICHER based on RocksDB [17],

and extensively evaluated it using the RocksDB benchmark suite. Our evaluation

shows that SPEICHER incurs reasonable overheads, while providing strong security

properties against powerful adversaries.

3.1.1 Threat Model

In addition to the standard SGX threat model [39], we also consider the security attacks

that can be launched using an untrusted storage medium, e.g., persistent state stored

on an SSD or HDD. More specifically, we aim to protect against a powerful adversary

in the virtualized cloud computing infrastructure [39]. In this setting, the adversary

can control the entire system software stack, including the OS or hypervisor, and is

able to launch physical attacks, such as performing memory probes.

For the untrusted storage component, we also aim to protect against rollback

attacks [77], where the adversary can arbitrarily shut down the system, and replay

from a stale state. We also aim to protect against forking attacks [79], where the

adversary can attempt to fork the storage system, i.e., the KV Store, e.g., by running

multiple replicas of the storage system.

Even under the extreme threat model, our goal is to guarantee the data integrity,

confidentiality, and freshness. Lastly, we also aim to provide crash consistency for the

storage system [80].

However, we do not protect against side-channel attacks, such as exploiting cache

timing and speculative execution [81], or memory access patterns [82, 83]. Mitigating

side channel attacks in the TEEs is an active area of research [84]. Further, we do not

consider the denial of service attacks since these attacks are trivial for a third-party

operator controlling the underlying infrastructure [39]. Lastly, we assume that the
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adversary cannot physically open the processor packaging to extract secrets or corrupt

the CPU system state.

3.2 Design

SPEICHER is a secure persistent KV storage system designed to operate on an

untrusted host. SPEICHER provides strong confidentiality, integrity, and freshness

guarantees for the data storage and query operations: get, put, range queries,

iterators, compaction, and restore. We implemented SPEICHER by extending

RocksDB [17], but our architecture can be generalized to other LSM-based KV stores.

3.2.1 Design Challenges

As a strawman design, we could try to secure a storage system by running the storage

engine inside the enclave memory. However, the design of a practical and secure

system requires addressing the following four important architectural limitations of

Intel SGX.

I: Limited EPC size The strawman design would be able to protect the in-memory

state of the MemTable using the EPC memory. However, EPC is a limited and shared

resource. Currently, the size of EPC is 128 MiB. Approximately 94 MiB are available to

the user, the rest is reserved for the metadata. To allow creation of enclaves with sizes

beyond that of EPC, SGX features a secure paging mechanism. The OS can evict EPC

pages to an unprotected memory using SGX instructions. During eviction, the page

is re-encrypted. Similarly, when an evicted page is brought back, it is decrypted and

its integrity is checked. However, the EPC paging incurs high performance overheads

(2–2000×) [40].

Therefore, we need to redesign the shielded storage engine, where we allocate

the MemTable(s) outside the enclave in the untrusted host memory. Since the secure

enclave region cannot give any guarantees for the data stored in the host memory, and

the native MemTable is not designed for security - we designed a new MemTable data

structure to guarantee the confidentiality, integrity and freshness properties.

Modern TEEs, like Intel TDX [6] and AMD SEV-SNP [9], do not have the same

memory limitation as Intel SGX. This in turn removes the need of redesigning the

in-memory MemTable, as it fits in the trusted memory area of the TEE. However,

SPEICHER targets Intel SGX and therefore has to consider the limited EPC size.
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II: Untrusted storage medium The storage engine does not exclusively store the

data in the in-memory MemTable, but also on a persistent storage medium, such as

on an SSD or HDD. In particular, the storage engine stores three types of files on a

persistent storage medium: SSTable, WAL and the Manifest. However, Intel SGX is

designed to protect only the volatile state residing in the enclave memory.

Unfortunately, SGX does not provide any security guarantees for stateful

computations, i.e., across system reboot or crash. Further, the trust from the TEE does

not naturally extend to the untrusted persistent storage medium.

To achieve the end-to-end security properties, we further redesigned the LSM data

structure, including the persistent storage state in the SSTable and log files, to extend

the trust to the untrusted storage medium.

III: Expensive I/O syscall To access data stored on an SSD or HDD (in the SSTable,

WAL or Manifest files), conventional systems leverage the system call interface.

However, the system call execution in the SGX environment incurs high performance

overheads. This is because the thread executing the system call has to exit the

enclave, and the syscall arguments need to be copied in and out of the enclave

memory. These enclave transitions are expensive because of security checks and TLB

flushes.

To mitigate the context switch overhead, shielded execution frameworks, such as

SCONE [40] or Eleos [38], provide an asynchronous system call interface [76], where a

thread outside the enclave asynchronously executes the system calls without forcing

the enclave threads to exit the enclave. While such an asynchronous interface is useful

for many applications, it is not clearly suited for building a storage system that needs

to support frequent I/O system calls.

To support frequent I/O calls within the enclave, we designed a new I/O

mechanism based on a direct I/O library for shielded execution leveraging storage

performance development kit (SPDK) [16].

IV: Trusted counter In addition to guaranteeing the integrity and confidentiality,

we also aim to ensure the freshness of the stored data to protect against rollback

attacks [77]. To achieve the freshness property, we need to protect the data stored in

the untrusted host memory (MemTable), and those on the untrusted persistent

storage medium (SSTable, WAL and Manifest files).

For the first part, i.e., to ensure the freshness of MemTable allocated in the

untrusted host memory, we can leverage the EPC of SGX. In particular, the Memory

Encryption Engine (MEE) in SGX already protects the EPC against rollback attack.
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Therefore, we use the EPC to store a freshness signature of the MemTable, which we

use at runtime to verify the freshness of data stored as part of the MemTable in the

untrusted host memory.

However, the second part is quite tedious, i.e., to ensure the freshness of the data

stored on untrusted persistent storage (SSTables and log files), because the rollback

protected EPC memory is stateless, or it cannot be used to verify the freshness

properties after the system reboots or crashes. Therefore, we need a rollback

protection mechanism based on a trusted monotonic counter [77]. For example, we

could use SGX trusted counters [78]. Unfortunately, the SGX trusted counters are

extremely slow (60− 250 ms) [85]. Furthermore, the counter memory allows only a

limited number of write operations to NVRAM, and it easily becomes unusable due

to wear out within a couple of days of operation. Therefore, the SGX counters are

impractical to design a storage system.

To overcome the limitations of SGX counters, we designed an asynchronous

trusted monotonic counter that drastically improves the throughput and mitigates

wear-out by taking advantage of the crash consistency properties of modern storage

systems.

3.2.2 System Components

We next detail the system components of SPEICHER. Figure 3.1 illustrates the high-

level architecture and building blocks of SPEICHER. The system is composed of the

controller, a direct-I/O library for shielded execution, a trusted monotonic counter,

the storage engine (RocksDB engine), and a secure LSM data structure (MemTable,

SSTable, and log files).

SPEICHER controller The controller provides the trusted execution environment

based on Intel SGX [40]. Clients communicate over a mutually authenticated

encrypted channel (TLS) to the controller. The TLS channel is terminated inside the

controller. In particular, we built the controller based on the SCONE shielded

execution framework [40], where we leverage SCONE’s container support for secure

deployment of the SPEICHER executable on an untrusted host.

The controller provides the remote attestation service to the clients [86, 87]. In

particular, the SGX enclave generates a signed measured of its identity, whose

authenticity can be verified by a third party. After successful attestation, the client

provides its encryption keys to the controller. The controller uses the client certificate

to perform the access control operation. The controller also provides runtime support

for user-level multithreading and memory management inside the enclave. The
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Figure 3.1: SPEICHER overview

controller leverages the asynchronous system calls interface (SCONE libc) on the

control path for the system configuration. For the data path I/O, we built a direct

I/O library, which we describe next.

Shielded direct I/O library The I/O library allows the storage engine to access the

SSD or HDD from inside the SGX enclave, without issuing the expensive enclave exit

operations. We achieve this by building a direct I/O library for shielded execution

based on SPDK [16].

SPDK is a high-performance user-mode storage library, based on Data Plane

Development Kit (DPDK) [20]. It eliminates the need to issue system calls to the

kernel for read and write operations by having the NVMe driver in the user space.

SPDK enables zero-copy I/O by mapping DMA buffers to the user address space. It

relies on actively polling the device instead of interrupts.

These SPDK features align with the goal of SPEICHERof exit less I/O operations in

the enclave, i.e., to allow the shielded storage engine to interact with the SSD directly.

However, we need to adapt the design of SPDK to overcome the limitations of the

enclave memory region. In particular, our shielded I/O library allocates huge pages

and SPDK ring buffers outside the enclave for DMA. The host system maps the device

in an allocated DMA region. Afterwards SPDK can initialize the device. To reduce the

number of enclave exits, SPDK’s device driver runs inside the enclave. This enables

efficient delivery of requests from the storage engine to the driver, which explicitly

copies the data between the host and the enclave memory.
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Trusted counter In order to protect the system from rollback attacks, we need a

trusted counter whose value is stored alongside with the LSM data structure. Intel

SGX provides monotonic counters, but their update frequency is in a range of

10 updates per second, and we indeed measured approximately 250 ms to increment

a counter once. This is far too slow for modern KV stores [88].

To overcome the limitations of SGX counters, we designed an Asynchronous

Monotonic Counter (AMC) based on the observation that many contemporary KV

stores do not persist their inserted data immediately. This allows AMC to defer the

counter increment until the data is persisted without loosing any availability

guarantees. As a result, AMC achieves 70 k updates per second in the current

implementation.

AMC provides an asynchronous increment interface, because it takes a while since

the counter value is incremented until it becomes stable, which means the counter

value cannot be rolled back without being detected. At an increment, AMC returns

three pieces of information: the current stable value, the incremented counter value,

and the expected time for the value to be stable. Due to the expected time and the

controller having to be re-authenticated after a shutdown, the client only has to keep

the values until the stable time has elapsed, to prevent any data loss in case of a sudden

shutdown.

AMC’s flexible interface allows us to optimize update throughput and latency by

increasing the time until a trusted counter is stable. This also allows users to adjust

trade-off between the wear out of the SGX monotonic counter and the maximum

number of unstable counter increments, which a client might have to account for.

SPEICHER generates multiple counters by storing their state to a file, whose freshness

is guaranteed through the use of a synchronous trusted monotonic counter. For

instance, we can employ SGX monotonic counters [78], ROTE [85] or Ariadne [89] to

support our asynchronous interface. Therefore, we can have a counter with

deterministic increments for WAL and the Manifest, making it possible to argue

about the freshness of each record in the files.

MemTable As detailed in §3.2.1, the EPC is limited in size and the EPC paging

incurs very high overheads. Therefore, it is not judicious to store large MemTables or

multiple MemTables within the EPC. Further, since SPEICHER uses the EPC memory

region to secure the storage engine (RocksDB) and the shielded I/O library driver, it

further shrinks the available space.

Due to this memory restriction, we need to store the MemTable in the host memory.

Since the host memory is untrusted, we need to devise a mechanism to ensure the
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Figure 3.2: SPEICHER MemTable format based on skip list design

confidentiality, integrity, and freshness of the MemTable.

In our project, we tried three different designs for the MemTable. Firstly, we

explored a native Merkle tree that generates hashes of the leafs and stores them in

each node. Thus, we can verify the data integrity by checking the root node hash and

each hash down to the leaf storing the KV, while allowing the MemTable to be stored

outside the EPC memory. However, the native Merkle tree suffers from slow lookups

as the key has to be decrypted on each traversal. Further, it requires multiple hash

recalculations on each lookup and insertion.

Secondly, we tried a modified Merkle tree design based on a prefix array, where

a fixed size prefix is used as an index into the array of Merkle trees. An array entry

holds the root node of a Merkle tree, which holds the actual data. This should reduce

the depth of the search tree compared to the native Merkle tree; thus, reducing the

number of necessary hash calculations and decryptions of keys. However, while we

were able to increase the lookup speed compared to the native Merkle tree, it still

suffered from the same problem of having to decrypt a large number of keys in a

lookup, and causing a large number of hash calculations.

Lastly, our third attempt of the MemTable design reuses the existing skip list data

structure for the MemTable in RocksDB. Figure 3.2 shows SPEICHER’s MemTable

format. In particular, we partition the existing MemTable in two parts: key path and

value path. In the key path, we store the keys as part of the skip list inside the

enclave. Whereas, the encrypted values in the MemTable are stored in the untrusted

host memory as part of the value path. This partitioning allows SPEICHER to provide

confidentially by encrypting the value, while still enabling fast key lookups inside

the enclave. To prevent attacks on the integrity or the freshness of the values,

SPEICHER stores a cryptographic hash of the value in each skip list node together

with the host memory location of the value.

While the first two designs removed almost the entire MemTable from the EPC,
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the last design still maintains the keys and hash values inside the enclave memory.

To determine the space requirements of our MemTable in comparison to the regular

RocksDB’s MemTable, we use the following formula:

S = n ∗ (k + v) +
m

∑
i=0

pi ∗ n ∗ ptr

Where S represents the entire size of the skip list, n is the number of KV pairs, k is

the key size, v is the value size or the size of the pointer plus hash value for our skip

list, p is the probability for being added into a specific layer of the skip list, m is the

maximum number of layers, and ptr is the size of a pointer in the system.

For instance, in case of the default setting for RocksDB, with a maximum size of

64 MiB, key size of 16 B, value size of 1024 B, pointer size of 8 B, p of 1/4, m of 12

and for SPEICHER’s skip list a hash size of 16 B — SPEICHER’s MemTable achieves a

space reduction of approximately 95.2 %. Further, the reduction ratio increases with

increased value size.

SSTables The SSTable files maintain the KV pairs persistently. These files store KV

pairs in the ascending order of keys. This organization allows for a binary search

within the SSTable, requiring only a few reads to find a KV-pair within the file. Since
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SSTable files are optimized for block devices, such as SSDs, they group KV pairs

together into blocks (the default block size is 32 KiB, as this is also the default in

RocksDB).

SPEICHER adapts SSTable file format to ensure the security properties (see

Figure 3.3 for SPEICHER’s SSTable file format). The confidentiality is secured by

encrypting each block of the SSTable file before it is written to the persistent storage

medium. Additionally, SPEICHER calculates a cryptographic hash over each block.

These hashes are then grouped together in a block of hashes and appended at the end

of the SSTable file. When reading SPEICHER can check the integrity of each block by

calculating the block’s hash and comparing it to the corresponding hash stored in the

footer. To protect the integrity of the footer an additional hash over the footer is

calculated and stored in the Manifest. Since the Manifest is protected against rollback

attacks using a trusted counter, the footer hash value stored in the Manifest is also

protected from the rollback attacks. Thus, SPEICHER can use this hash to guarantee

the freshness of the SSTable file’s footer and transitively the freshness of each block in

the SSTable file.

Log files RocksDB uses two different log files to keep track of the state of the KV

store: (a) WAL for persisting inserted KV pairs until a top-level compaction; and (b)

the Manifest to keep track of live files, i.e., the set of files of which the current state of

the KV store consists. SPEICHER adapted these log files to ensure the desired security

properties, as shown in Figure 3.4.

Regarding WAL, every put operation appends a record to the current WAL. This

record consists of the encrypted KV pair, and an encrypted trusted counter value for

the WAL at the moment of insertion, and a cryptographic hash over both. Since the

records are only appended to the WAL, SPEICHER can use the trusted counter value

and the hash value to verify the KV pair, and to replay the operations in a restore

event.

The Manifest is similar to the WAL; it is a write-append log consisting of records

storing changes of live files. We use the same scheme for the Manifest file as we do for

the WAL.



3.2. Design 33

3.2.3 Algorithms

We next present the algorithms for all storage operations in SPEICHER. The associated

pseudocodes are detailed in the appendix.

I: Put Put is used to insert a new KV pair into the KV store, or to update an existing

one. We need to perform two operations to insert the KV pair into the store (see

Algorithm 1). First, we need to append the KV pair to the WAL for persistence.

Second, we need to write the KV pair to the MemTable for fast lookups.

Inserting the KV pair into the WAL guarantees that the state of the KV store can

be restored after an unexpected reboot. Therefore, the KV pair should be inserted

into the WAL before it is inserted into the MemTable. To add a KV pair to the WAL,

SPEICHER encrypts the pair together with the next WAL trusted counter value and a

cryptographic hash over both the data and the counter. The encrypted block is then

appended to the WAL (see the log file format in Figure 3.4). Thereafter, the trusted

counter is incremented to the value stored in the appended block. In addition, the

client is notified when the KV pair will be stable; thereafter, the state cannot be rolled

back. In case of a system crash between generating the data block and increasing the

trusted counter value, the data block would be invalid at reboot, because the trusted

counter would point the block to a future time. This operation is safe as the client can

detect a reboot when SPEICHER tries to authenticate itself. After the reboot the client

can ask the KV store about what the last added key was, or can simply put the KV

pair again in the store as another request with the same key supersedes any old value

with the same key.

In the second step, SPEICHER writes the KV pair into the MemTable and thereby

making the put visible to later gets. SPEICHER first encrypts the value of the KV pair

and generates a hash over the encrypted data. The encrypted value is then copied to

the untrusted host memory, while the hash with a pointer to the value is inserted into

the skip list in the enclave, in accordance to SPEICHER’s MemTable format (Figure 3.2).

Since the KV pair is first inserted into the WAL, and only if this is successful, i.e., the

WAL and trusted counter are updated, we can guarantee that only KV value pairs

whose freshness is secured by the trusted counter are returned.

II: Get Get may involve searching multiple levels in the LSM data structure to find

the latest value. Within each level, SPEICHER has to generate either the proof of

existence, or the proof of non-existence of the key. This is necessary to detect

insertion or deletion of the KV pairs by an attacker.

Algorithm 2 details the get operation in SPEICHER. In particular, SPEICHER begins
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with searching the MemTable. SPEICHER searches the skip list for the node with the

key. Either the key is in the MemTable, then the hash value is calculated over the value

and compared to the hash stored in the skip list, or the key could not be found in the

skip list. Since the skip list resides inside the protected memory region, SPEICHER does

not need to make the non-existence proof for the MemTable because an attacker cannot

access the skip list. If the KV store finds a key in the MemTable and the existence proof

is correct, i.e., the calculated hash value is equal to the stored hash value, the value is

returned to the client. If the proof is incorrect, the client is informed that the MemTable

is corrupted. Since the MemTable can be reconstructed from the WAL, the client can

then instruct the SPEICHER to recreate the KV store state in the case of an incorrect

proof.

When the key is not found in the MemTable, the next level is searched. All levels

below the MemTable are stored in SSTables. The SSTable files are organized in a way

that no two SSTables in the same level have an overlapping key-range. Additionally,

all the keys are sorted within an SSTable file. Due to this, any given key can only exist

in one position in one SSTable file per level. This allows SPEICHER to construct a

Merkle tree on top of the SSTable files of a level. With the ordering inside the SSTable,

SPEICHER can correlate a block in the file with the key. This allows SPEICHER to

calculate a hash over this block, which then can be checked against the stored hash in

the footer. The hash of the footer can then be checked against the Merkle tree over the

SSTable files in that level. It gives SPEICHER the proof of non-/existence for the

lookup, and possibly the value belonging to the key. If the proof fails, the client is

informed. In contrast to an incorrect proof in the MemTable, SPEICHER is not able to

recover from this problem since the data is stored on the untrusted storage medium.

If SPEICHER finds the KV pair and the proof is correct, it returns the value to the

client. If the key does not exist, that is SPEICHER could not find it in any level and all

level proofs are correct, an empty value is returned.

The freshness of data is guaranteed either by checking the value against the

securely stored hash in the EPC for the case where the key has been found in the

MemTable, or by checking the hash values of the SSTables against a Merkle tree.

Additionally, as any key can only be stored in one position within a level, SPEICHER

can also check against deletion of the key in a higher level, which is also necessary to

guarantee freshness.

III: Range queries Range queries are used to access all KV pairs, with a key greater

than or equal to a start key and lesser than an end key (see Algorithm 3). To find

the start KV pair, we need to do the same operation as in get requests. Furthermore,
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it requires to initialize an iterator in each level, pointing to the KV pair with a key

greater or equal to the starting key. These iterators are necessary as higher levels have

the more recent updates, due to keys being inserted into the highest level and being

compacted over time to the lower levels, and lower being larger in size and therefore

having more KV pairs. If the next KV pair is requested the next key of all iterators is

checked and the iterators with the smallest next key are forwarded.

In case the next key is in multiple levels, the highest level KV pair is chosen.

Therefore, SPEICHER has to do a non-/existence proof at all the levels, before it

returns the chosen KV pair. If any of these proofs fails, the client is informed about

the failed proof. Identical to the get operation, the client can then decide to either

restore the KV store or to restore a backup.

Similar to the get operation, the hash value stored in the EPC and the Merkle tree

over the SSTables are used to guarantee the freshness of the returned values.

IV: Iterators Iterators work identical to the range queries; they just have a different

interface (see Algorithm 4).

V: Restore After a reboot, the KV store has to restore its last state (see Algorithm 5).

This process is performed in two steps, first collecting all files belonging to the KV

store, and then replaying all changes to the MemTable. In the first step the Manifest file

is read. It contains all necessary information about the other files, such as live SSTable

files, live WAL files, smallest key of each SSTable file. Each changing event about

the live file is logged into the Manifest by appending a record describing the event.

Therefore, at a restore all changes committed in the Manifest have to be replayed.

This means that the SSTable files have to be put in the correct level. Each record in the

Manifest is integrity-checked by a hash, and the freshness is guaranteed by the trusted

counter for the Manifest. Since the counter value is incremented in a deterministic

way, SPEICHER can use this value to check if all blocks are present in the Manifest.

After the SSTable files in the levels are restored, and the freshness of all the SSTable

files is checked against the Manifest by comparing the hash with the hash stored in

the Manifest, the WAL is replayed.

Since each put operation is persisted in the WAL before it is written into the

MemTable, replaying the put operations from the WAL allows SPEICHER to

reconstruct the MemTable at the moment of the shutdown. Each put in the WAL has

to be checked against the stored hash in the record, and the stored counter value.

Additionally, since the counter value of the WAL is checked whether it equals to that

of the Manifest counter, SPEICHER can check for the missing records. Records that



36 Chapter 3. SPEICHER: A Secure LSM-based KV Store

have a counter value being in the future, i.e. a counter value higher than the stored

stable trusted counter value are ignored at restore. Further, due to the deterministic

increase of the counter, SPEICHER can check against the missing records in the log

files. If in any of these steps one of the checks fails, SPEICHER returns the information

to the client, because SPEICHER is not able to recover from such a state.

VI: Compaction Compaction is triggered when a level holds data beyond a

pre-defined threshold in size. In compaction (see Algorithm 6), a file from Leveln is

merged with all SSTable files in Leveln+1 covering the same key range. The new

SSTables are added to Leveln+1, while all SSTables in the previous level are

discarded. Before keys are added to the new SSTable file, the non-/existence proof is

done on the files being merged. This is necessary to prevent the compaction process

from skipping keys or writing old KV to the new SSTable files.

Since hash values are calculated over blocks of the SSTable files, a new block has

to be constructed in the enclave memory, before it is written to the SSD. Also, all hash

values of the blocks have to be stored in the protected memory until the footer is

written and a hash over the footer is created. The file names of newly created SSTables

and footer hashes are then written to the Manifest file, with the new trusted counter

value. This is similar to the put operation. After the write operation to the Manifest

completes and the trusted counter is incremented, the old SSTable files are removed

from the KV store and the new files are added to Leveln+1. Since the hash values of

the new SSTables are secured with a trusted counter value in the Manifest file, the

SSTables cannot be rolled back after the compaction process.

3.2.4 Optimizations

Timer performance As described in §3.2.2, in order to prevent every request from

blocking for the trusted counter increment, we leverage asynchronous counters

written in files whose freshness is guaranteed by synchronous counters (or SGX

counters). We use one counter for the WAL and another for the Manifest so that

SPEICHER can operate on them independently. Although this method drastically

improves throughput by allowing SPEICHER to process many requests without

waiting for the counter to be stable, it also poses on the client the need for holding its

write requests until the counter value is stable. This is why we designed and

implemented the interface of AMC that reports the expected time for the counter to

be stable. Because of this interface, the client does not need to frequently issue the

requests to check the current stable counter value.
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SPDK performance SPDK is designed to eliminate system calls from the data path,

but in reality its data path issues two system calls on every I/O request: one for

obtaining the process identifier and the other for obtaining the time. They are

executed once in an I/O request that covers multiple blocks and their costs are

normally amortized. However, since the context switch to and from the enclave is an

order of magnitude more expensive, these costs are not amortized enough. We

modified them to obtain the values from a cache within the enclave that are updated

only at the vantage points. As a result, we achieved 25× improvements over the

naive port of SPDK to the enclave.

3.3 Implementation

Direct I/O library Our direct I/O library for shielded execution extends Intel SPDK.

Further, the memory management routines and the uio kernel module that maps the

device memory to the user space are based on Intel DPDK [20]. Although the device

DMA target is configured outside the enclave, the SSD device driver and library code,

including BlobFS in which SPEICHER stores RocksDB files, entirely run within the

enclave.

We use SPDK 18.01.1-pre and DPDK 18.02. In SPDK, 56 LoC are added, and 22 LoC

are removed. In DPDK, 138 LoC are added and 72 LoC are removed. These changes

were made to replace the routines that cannot be executed in the enclave.

Trusted counters AMCs are implemented using the Intel SGX SDK. A dedicated

thread continually checks if any monotonic counter value has changed. If a counter

value has been incremented, the thread writes the current value to the file. The

storage engine can query the stable value of any of its counters, i.e., the last value that

has been written to disk. Note that this value cannot be rolled back since it is

protected by the synchronous SGX monotonic counter. Overall, our trusted counter

consists of 922 LoC.

SPEICHER controller The SPEICHER controller is based on SCONE. We leverage the

Docker integration in SCONE to seamlessly deploy SPEICHER binary on an untrusted

host. Further, we implemented a custom memory allocator for the storage engine.

The memory allocator manages the unprotected host memory, and exploits

RocksDB’s memory allocation pattern, which allows us to build a lightweight

allocator with just 119 LoC. Further, the controller employs our direct I/O library on

the data path, and the asynchronous syscall interface of SCONE on the control path
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for system configuration. The controller also implements a TLS-based remote

attestation for the clients [87]. Lastly, we integrated the trusted counter as a part of

the controller, and exported the APIs to the storage engine.

Storage engine We implemented the storage engine by extending a version of

RocksDB that leverages SPDK. In particular, we extended the RocksDB engine to run

within the enclave, also integrated our direct I/O library. Since the RocksDB engine

with SPDK does not support data encryption and decryption, we also ported

encryption support from the regular RocksDB engine using the Botan Library [90]

(1000 LoC). In addition to encrypting data files, we extended the encryption support

to ensure the confidentiality of the WAL and Manifest files. We further modified the

storage engine to replace the LSM data structure and log files with our secure

MemTable, SSTables, and log files. Altogether, the changes in RocksDB account for

5029 new LoC and 319 changed LoC.

MemTables RocksDB as default uses a skip list for MemTable. However, it does not

offer any authentication or freshness guarantees. Therefore, we replaced MemTable

with an authenticated data structure coupled with mechanisms to ensure the

freshness property. Our MemTable uses the Inlineskiplist of RocksDB and

replaces the value part of the KV-pair with a node storing a pointer to and the size of

the value as well as an HMAC. For the en-/decryption as well as for the HMAC we

used OpenSSLs AES128 in GCM mode. This results in a 16 B wide HMAC. This

implementation consists of 459 LoC. As discussed previously, we also implemented

MemTable with a native Merkle tree (1186 LoC) and a Merkle tree with a prefix array

(528 LoC). However, we did not use them eventually since their performance was

quite low.

SSTables To preserve the integrity of the SSTable blocks, we changed the block layer

in RocksDB to calculate the hash before it issues a write request to the underlying

layer. The hash is then cached until the file is flushed (258 LoC). Thereafter, hashes

of all blocks are appended to the file coupled with the information about the total

number of blocks, and the hash of this footer. When a file is opened, our hash layer

loads the footer into the protected memory and calculates the hash of the footer. It then

compares the value against the hash stored in the Manifest file. Only if these checks

are passed, it opens the corresponding SSTable file and normal operations proceed.

At reading, the hash of the block is calculated and checked against the hashes stored

in the protected memory area, before the block data is handed to the block layer of
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RocksDB. We further enabled AES-128 encryption to ensure the confidentiality of the

blocks (188 LoC). The hashes used in the SSTables are SHA-3 with 384 bit.

Log files Log files including the WAL and the Manifest use the same encryption

layer as the SSTable files. However, the validation layer is different, and comes before

the block layer since the operation requires knowledge of the record size. While

writing, the validation layer adds the hash and the trusted counter value to the log

files.

The validation layer uses the knowledge that log files are only read sequentially

at startup for restoring purpose. Therefore, at the start up, the layer allows any action

written in the log file as long as the hash is correct, and the stored counter increases

as expected. At the end of the file, SPEICHER checks if the stored counter is equal

to the trusted counter. The last record’s freshness is guaranteed through the trusted

counter. Integrity of all the records is guaranteed through the hash value protecting

also the stored counter value. This value can then be checked against the expected

counter value for that block. Since the counter lives longer than the log files, the start

record value has to be secured too. In case of WAL, this is achieved by storing the start

counter value of the WAL in the Manifest. The start record of the Manifest is implicitly

secured, since the record must describe the state of the entire KV store.

3.4 Evaluation

Our evaluation answers the following questions.

• What is the performance (IOPS and throughput) of the direct I/O library for

shielded execution? (§3.4.2)

• What is the impact of the EPC paging on the MemTable? (§3.4.3)

• What are the performance overheads of SPEICHER in terms of throughput and

latency measurements? (§3.4.4)

• What is the performance of our asynchronous trusted counter? And what

stability guarantees it has to provide to be compatible with modern KV stores?

(§3.4.5)

• What is the I/O amplification overhead? (§3.4.6)
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3.4.1 Experimental Setup

Testbed We used a machine with Intel Xeon E3-1270 v5 (3.60 GHz, 4 cores, 8 hyper-

threads) with 64 GiB RAM running Linux kernel 4.9. Each core has private 32 KiB L1

and 256 KiB L2 caches, and all cores share a 8 MiB L3 cache. For the storage device our

testbed uses a Intel DC P3700 SSD. The SSD has a capacity of 400 GB and is connected

over PCIe 3.0 x4 with a sequential throughput of 2800 MB for reads and 2000 MB for

writes, and 460 k IOPS random reads and 175 k IOPS for random writes. While this

machine is outdated today, it was at the time of the experiments the most powerful

and best representing single machine setup which supported SGX.

Methodology for measurements We compare the performance of SPEICHER with

an unmodified version of RocksDB. The native version of RocksDB does not provide

any security guarantees, i.e., it provides no support for confidentiality, integrity and

freshness of the data and query operations.

Importantly, we stress-test the system by running a client on the same machine

as the KV store. This is the worst-case scenario for SPEICHER since the client is not

communicating over the network. Usually, the network slows down client’s requests,

and therefore, such an experimental setup is unable to stress-test the KV store. We

avoid this scenario by running the client as part of the same process on the same host.

This eliminates further the need for enclave enters and exits, which would add a high

overhead, making a stress-test impossible.

Compiler and software versions We used the RocksDB version with SPDK support

(git commit 3c30815). We used SPDK version 18.01.1-pre (git commit 73fee9c),

which we compiled with DPDK version 18.02 (commit 92924b2). The native version

of SPDK/ DPDK and RocksDB was compiled with gcc 6.3.0 and the default release

flags. The SPEICHER version of SPDK/DPDK and RocksDB was compiled with the

same release flags but gcc version 7.3.0 of the SCONE project.

RocksDB benchmark suite We use the RocksDB benchmark suite for the

evaluation. In particular, we used the db_bench benchmarking tool which is shipped

with RocksDB [91] and Fex [92]. The benchmark consists of three workloads as

shown in Table 3.1. Workload A is the default workload.

3.4.2 Performance of the Direct I/O Library

We first evaluate the performance of SPEICHER’s I/O library for shielded execution.

The I/O library is designed to have fast access to the persistent storage for accessing
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Workload Pattern Read/Write ratio

A (default) Read-write 90R—10W

B Read-write 80R—20W

C Read only 100R—0W

Table 3.1: RocksDB benchmark workloads.
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Figure 3.5: Performance of direct I/O library for shielded execution vs native SPDK.
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the KV pair stored on the SSD (§3.2.2). We run the performance measurement 20

times for every configuration of block size for the native execution and SPEICHER.

Figure 3.5 shows the mean throughput and IOPS with our I/O library and those with

the native RocksDB-SPDK with a confidence interval of 95 %. We use Workload B

(80 %R—20 %W). Since the communication between SPDK and the device is handled

completely over DMA, our direct I/O library does not suffer from context switches.

Additionally, due to storing the buffers outside of the enclave, we also do not require

expensive EPC paging, which would drastically reduce the performance of the I/O

library. Our performance evaluation of the direct I/O library shows that it does not

suffer from any performance deprecation compared to the native SPDK setup. We

were not able to perform precise latency measurements, due to the fact that SGXv1

does not allow to take a timestamp within the enclave, requiring an expensive world

switch.

3.4.3 Impact of the EPC paging on MemTable

We next study the impact of EPC paging on MemTable(s). Note that a naive solution of

storing a large or many MemTables in the EPC memory would incur high performance

overheads due to the EPC paging. Therefore, we adopted a split MemTable approach,

where we store only the keys along with metadata (hashes and pointers to value)

inside the EPC, but the values are stored in the untrusted host memory (§3.2.3). To

confirm the overheads of the EPC paging on accessing a large MemTable which are

incurred in our rejected design, we measure the overheads of accessing random nodes

in a MemTable completely resident in the enclave memory.

Figure 3.6 shows the performance overhead of accessing memory within the SGX

enclave. The result shows that as soon as SGX has to page out MemTable memory

from the EPC, which happens at 96 MiB, the performance drops dramatically. This is

due to the en-/decryption and integrity checks employed by the MEE in Intel SGX.

Therefore, it is important for our system design to keep the data values in the

untrusted host memory to avoid the expensive EPC paging. Our approach of only

keeping the key path of the MemTable inside the EPC requires a small EPC memory

footprint. Therefore, our MemTable does not incur the EPC paging overhead.

3.4.4 Throughput and Latency Measurements

We next present the end-to-end performance of SPEICHER with different workloads,

value sizes and thread counts. In our setup client and server are running inside the

same enclave, as this is the worse case for SPEICHER. We measured the average

throughput and latency for each of our benchmarks. Figures 3.7, 3.8, and 3.9 shows
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Figure 3.6: Impact on the random accessing time of EPC paging on the MemTable.

the measurement results as a ratio of slowdown to the native SPDK-based RocksDB

for different read write ratios, different value sizes, and different number of threads

respectively.

Effect of varying workloads In the first experiment, we used different workloads

listed in Table 3.1. The workloads were evaluated with 5 million KV pairs each. Each

key was 16 B and value was 1024 B. The benchmarks were run single threaded.

We get a throughput of 34.2 k request/second (rps) for Workload A down to

20.8 k rps for Workload C, while RocksDB archived 512.8 krps or 676.8 krps

respectively. The results show that SPEICHER overheads 15–32.5× for different

workloads. The overheads in Workloads A and B are mainly due to the operations

performed in the MemTable, since SPEICHER has to encrypt the value and generate a

cryptographic hash for every write to the MemTable. Furthermore, for each read

operation the data has to be decrypted and the hash has to be recalculated and

compared to one in the skip list. However, even with AES-NI instructions, this

decryption operation takes at least 1.3 cycles/byte for encryption, limiting the

maximal reachable performance. The overhead in Workload C is due to reading a

very high percentile of the KV pairs from the SSTable files, which uses currently an

un-optimized code path for en-/decryption and hash calculations. We expect

performance improvement by further optimizing the code path.

We also found in subsequent experiments that we could not fully eliminate
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Figure 3.7: SPEICHER’s performance normalized to the native RocksDB (with no

security) for different workloads with a constant value size of 1024 B and constant

number of 1 thread

paging in our setup. This might be further optimized with smaller configured

MemTable. More modern TEE implementations do not suffer from the same strict

memory limitation, therefore the overhead induced by paging should be drastically

reduced in these systems.

Effect of varying byte sizes In the second experiment, we investigate the overheads

with varying value sizes, since it changes the amount of data SPEICHER has to en-

/decrypt and hash for each request. We used the default Workload A, and changed

the value size from 64 B up to 4 KiB.

SPEICHER incurs an overhead of 6.7× for small value size, i.e. 64 B, up to an

overhead of 16.9× for values of size 4 KiB. As in the previous experiment, the

overhead is mainly dominated by the en-/decryption and hash calculation for the

values in the MemTable. The benchmark shows a higher overhead for larger value

sizes, since the amount of data SPEICHER has to en-/decrypt increases with the size

of the values.

Effect of varying threads We also investigated the scaling capabilities of SPEICHER.

For that we increased the number of threads up to 8 and compared the overhead to

native RocksDB with the default Workload A. Note that the current SGX server

machine has 4 physical cores / 8 hyperthread cores.

In the test the overhead increased from around 13.6× for two threads to 17.5×
for 8 threads. This implies SPEICHER scales slightly worse than RocksDB. This is due
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Figure 3.8: SPEICHER’s performance normalized to the native RocksDB (with no

security) for different value sizes with a constant workload of 90 % read and constant

number of 1 thread

to less optimal caching for random memory access in SPEICHER’s memory allocator.

SPEICHER has to manage two different memory regions (host and EPC) for the

MemTable, which leads to sub-optimal caching. We plan to optimize our memory

allocator and data structures to exploit the cache locality.

Latency measurements In the benchmarks, SPEICHER has an average latency

ranging from 16 µs for single threaded and 64 B value size up to 256 µs for 8 threads

and 1024 B value size, native RocksDB had for the same benchmark a latency of 1.6 µs

or 14 µs respectively. However, RocksDB’s best latencies were in Workload C with an

average of 1.5 µs. Note here that the average latency can be smaller than the latency

of the underlying storage medium, if the key is in the MemTable.

3.4.5 Performance of the Trusted Counter

The synchronous trusted counter rate of SGX is limited to one increment at every

60 ms. This would limit our approach to only 20 Put operations per second since each

Put has to be appended to the WAL, which requires a counter increment. However,

our latency suggest that we have a lot more put operations to deal with. Even in our

worse latency case with 256 µs per request we would expect 234.4 request per 60 ms,

with a write rate of 10 % this would amount to 23.4 required counter increases every

possible sequential counter increase. In practice SPEICHER should reach far higher

update rates as this calculation used worst case values from our benchmarks.
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Figure 3.9: SPEICHER’s performance normalized to the native RocksDB (with no

security) for different number of threads with a constant workload of 90 % read and

constant value size of 1024 B

KV store Default time for persistence (ms) Configurable

RocksDB 0 (flushing) ✓

LevelDB 0 (non-flushing) ✓

Cassandra 1000 ✓

HBase 10 000 ✓

Table 3.2: Default time for data persistence in KV stores.

Table 3.2 shows the time before different KV stores guarantee that the values are

persisted. We argue that these times can be used to hide the stability time of our

asynchronous counters, which is a maximum of 60 ms. This is far less than the

maximum time to persist the data in the default configuration of Cassandra and

HBase. If the client expects the value is persisted only after a specific period of time,

we can relax our freshness guarantees to match to the same time window.

3.4.6 I/O Amplification

We measured the relative I/O amplification increase in data for SPEICHER compared

to the native RocksDB. We report the I/O amplification results using the default

workload (A) with the key size of 16 B and value size of 4 KiB. We observed an

overhead of 30 % for read and write in the I/O amplification. This overhead mainly

comes from the footer we have to add to each SSTable as well as from the hashes and

counter values we have to add to the log files. This overhead is not only present in
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the write case but also in the read, as the additional data has also to be read to be able

to verify the files.

3.5 Related Work

I/O for shielded execution To mitigate the I/O overheads in SGX, shielded

execution frameworks, such as Eleos [38] and SCONE [40], proposed the usage of an

asynchronous system call interface [76]. While the asynchronous interface is

sufficient for the low I/O rate applications—it can not sustain the performance

requirements of modern storage/networked systems. To mitigate the I/O bottleneck,

ShieldBox [93] proposed a direct I/O library based on Intel DPDK [20] for building a

secure middlebox framework. Our direct I/O library is motivated by this

advancement in the networking domain. However, we propose the first direct I/O

library for shielded execution based on Intel SPDK [16] for the I/O acceleration in

storage systems.

Trusted counters A trusted monotonic counter is one of the important ingredients

to protect against rollback and equivocation attacks. In this respect, Memoir [77] and

TrInc [79] proposed the usage of TPM-based [94] trusted counters. However, TPM-

based solutions are quite impractical because of the architectural limitations of TPMs.

For instance, they are rate-limited (only one increment every 5 seconds) to prevent

wear out. Therefore, they are mainly used for secure data access in the offline settings,

e.g., Pasture [95].

Intel SGX has recently added support for monotonic counters [78]. However, SGX

counters are also quite slow, and they wear out quickly (§3.2). To overcome the

limitations, ROTE [85] proposed a distributed trusted counter service based on a

consensus protocol. Likewise, Ariadne [89] proposed an optimized technique to

increment the counter by a single bit flip. Our asynchronous trusted counter interface

is complimentary to these synchronous counter implementations. In particular, we

take advantage of the properties of modern storage systems, where we can use these

synchronous counters to support our asynchronous interface.

Policy-based storage systems Policy-based storage systems allow clients to express

fine-grained security policies for data management. In this context, a wide range of

storage systems have been proposed to express client capabilities [96], enforce

confidentiality and integrity [97], or enable new features that include data

sharing [98], database interface [99], policy-based storage [100, 101], or policy-based
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data seal/unseal operations [102]. Amongst all, Pesos [103] is the most relevant

system since it targets a similar threat model. In particular, Pesos proposes a

policy-based secure storage system based on Intel SGX and Kinetic disks [104].

However, Pesos relies on trusted Kinetic disks to achieve its security properties,

whereas SPEICHERtargets an untrusted storage, such as an untrusted SSD. Secondly,

Pesos is designed for slow trusted HDDs, where the additional overheads of the

SGX-related operations are eclipsed by slow disk operations. In contrast, SPEICHERis

designed for high-performance SSDs.

Secure databases/datastores Encrypted databases, such as CryptDB [105],

Seabed [106], Monomi [107], and DJoin [108], are designed to ensure the

confidentiality of computation in untrusted environments. However, they are

primarily for preserving confidentiality. In contrast, SPEICHER preserves all three

security properties: confidentiality, integrity, and freshness.

EnclaveDB [109] and CloudProof [110] target a threat model and security

properties similar to SPEICHER. In particular, EnclaveDB [109] is a shielded

in-memory SQL database. However, it uses the secondary storage only for

checkpoint and logging unlike SPEICHER. Hence, it does not solve the problem of

freshness guarantee for the data stored in the secondary storage. Furthermore, the

system implementation does not consider the architectural limitations of SGX.

Secondly, CloudProof [110] is a key-value store designed for untrusted cloud

environment. Unlike SPEICHER, it requires the clients to encrypt or decrypt data to

ensure confidentiality, as well as to perform attestation procedures with the server,

introducing a significant deployment barrier.

TDB [111] proposed a secure database on untrusted storage. It provides

confidentiality, integrity, and freshness using a log-structured data store. However,

TBD is based on a hypothetical TCB, and it does not address many practical

problems addressed in our system design.

Obladi [112] is a KV store supporting transactions while hiding the access

patterns. While it can effectively hide the values and their access pattern against the

cloud provider, it needs a trusted proxy. In contrast, SPEICHER does not rely on a

trusted proxy. Furthermore, Obladi does not consider rollback attacks.

Lastly, in parallel with our work, ShieldStore [113] uses a Merkle tree to build a

secure in-memory KV store using Intel SGX. Since ShieldStore is an in-memory KV

Store, it does not persist the data using the LSM data structure unlike SPEICHER.
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Authenticated data structures Authenticated data structures (ADS) [114] enable

efficient verification of the integrity of operations carried out by an untrusted entity.

The most relevant ADS for our work is mLSM [115], a recent proposal to provide

integrity guarantee for LSM. In contrast to mLSM, our system provides stronger

security properties, i.e., we ensure not only integrity, but also confidentiality and

freshness. Furthermore, our system targets a stronger threat model, where we have

to design a secure storage system leveraging Intel SGX.

Robust storage systems Robust storage systems provide strong safety and liveness

guarantees in the untrusted cloud environment [116–118]. In particular, Depot [116]

protects data from faulty infrastructure in terms of durability, consistency,

availability, and integrity. Likewise, Salus [117] proposed a block store robust storage

system while ensuring data integrity in the presence of commission failures.

A2M [118] is also a robust system against Byzantine faults, and provides consistent,

attested memory abstraction to thwart equivocation. In contrast to SPEICHER, this

line of work neither provides confidentiality nor freshness guarantees.

Secure file systems There is a large body of work on software-based secure storage

systems. SUNDR [119], Plutus [120], jVPFS [121], SiRiUS [122], SNAD [123],

Maat [124] and PCFS [97] employ cryptography to provide secure storage in

untrusted environments. None of them protect the system from rollback attacks, and

our challenges to overcome overheads of shielded execution are irrelevant for them.

Among all, StrongBox [125] provides file system encryption with rollback protection;

however, it does not consider untrusted hosts.

3.6 Summary

This chapter presents SPEICHER, a secure persistent LSM-based KV storage system for

untrusted hosts. SPEICHER targets all the three important security properties: strong

confidentiality and integrity guarantees, and also protection against rollback attacks to

ensure data freshness. We base the design of SPEICHER on hardware-assisted shielded

execution leveraging Intel SGX. However, the design of SPEICHER extends the trust

in shielded execution beyond the secure enclave memory region to ensure that the

security properties are also preserved in the stateful setting of an untrusted storage

medium.

To achieve these security properties while overcoming the architectural

limitations of Intel SGX, we have designed a direct I/O library for shielded execution,



50 Chapter 3. SPEICHER: A Secure LSM-based KV Store

a trusted monotonic counter, a secure LSM data structure, and associated algorithms

for storage operations. We implemented a fully-functional prototype of SPEICHER

based on RocksDB, and evaluated the system using the RocksDB benchmark. Our

experimental evaluation shows that SPEICHER achieves reasonable performance

overheads, between 15 and 32.5×, while providing strong security guarantees.

While some applications may find the performance overhead of SPEICHER to be

too high, it is important to recognize that certain domains, such as medical or

financial sectors (e.g., a digital currency used for trading between central banks), may

be willing to accept this trade-off. This is particularly true when compared to

alternative solutions like homomorphic encryption, which often impose significantly

higher overheads. Alternatively, setting up and managing one’s own data center

brings its own challenges related to scalability, availability, and maintainability.

SPEICHER serves as a fundamental building block that, when combined with other

technologies discussed in Chapter §4 and Chapter §5, enables the creation of a modern

trusted storage system. By leveraging these complementary projects, a comprehensive

and robust storage solution can be constructed.



Chapter 4

AVOCADO:

A Secure In-Memory Distributed

Storage System

We introduce AVOCADO, a secure in-memory distributed storage system that

provides strong security, fault-tolerance, consistency (linearizability) and

performance for untrusted cloud environments. AVOCADO achieves these properties

based on TEEs, which, however, are primarily designed for securing limited physical

memory (enclave) within a single-node system. AVOCADO overcomes this limitation

by extending the trust of a secure single-node enclave to the distributed environment

over an untrusted network, while ensuring that replicas are kept consistent and

fault-tolerant in a malicious environment.

To achieve these goals, we design and implement AVOCADO underpinning on the

cross-layer contributions involving the network stack, the replication protocol,

scalable trust establishment, and memory management. AVOCADO is practical: In

comparison to BFT, AVOCADO provides confidentiality while using f fewer replicas

than BFT, but it is also faster — 4.5× to 65× for YCSB read and write heavy

workloads, respectively.

4.1 Motivation

In-memory distributed key-value stores (KVS) [24–29, 32–34, 126, 127] have been

widely adopted as the underlying storage system infrastructure in the cloud because

(i) they support latency sensitive applications by keeping data in main memory, and

(ii) they are able to accommodate large datasets beyond the memory limits of a single

server by adopting a scale-out distributed design.

51
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At the same time, the transition to the cloud has increased the risk of security

violations in storage systems [65]. In untrusted environments, an attacker can

compromise the security properties of the stored data and query operations. In fact,

several studies [66, 83, 128] show that software bugs, configuration errors, and

security vulnerabilities pose a serious threat to storage systems. Further, a malicious

cloud operator or co-located tenant, presents an additional attack vector [129, 130].

To address these security threats, hardware-assisted trusted execution

environments (TEEs), such as Intel SGX [5], ARM Trustzone [7], RISC-V

Keystone [10, 131], and AMD-SEV [9] provide an appealing way to build secure

systems. In particular, TEEs provide a hardware-protected secure memory region

whose residing code and data are isolated from any layers in the software stack

including the OS/ hypervisor. Given this promise, TEEs are now commercially

offered by major cloud computing providers [11–13].

Although TEEs provide a promising building block for securing systems against a

powerful adversary, they also present significant challenges while designing a

replicated secure distributed storage system. The fundamental issue is that the TEEs are

primarily designed to secure the limited in-memory state of a single-node system,

and thus, the security properties of TEEs do not naturally extend to a distributed

infrastructure. Therefore we ask the question: How can we leverage TEEs to design a

high-performance, secure, and fault-tolerant in-memory distributed KVS for untrusted cloud

environments?

In this chapter we introduce AVOCADO, a secure, distributed in-memory KVS

based on Intel SGX [5] as the foundational TEE that achieves the following

properties: (a) strong security, in particular, confidentiality - unauthorized reads are

prevented, and integrity — unauthorized changes to the data are detected, (b) fault

tolerance — the service continues uninterrupted in the presence of faults, (c)

consistency — strong consistency semantics for a replicated store (linearizability),

while protecting against roll back and forking attacks and (d) performance —

achieving all of these without compromising performance.

To achieve the aforementioned properties, we need to address the following four

design challenges pertaining to the network stack, the replication protocol, trust

establishment, and memory management in TEEs.

Firstly, in-memory distributed KVSs are increasingly build on high-performance

network stacks, where they bypass the kernel using direct I/O [19, 20, 33].

Unfortunately, the prominent I/O mechanism employed by TEE frameworks [38, 40,

132] is based on asynchronous system calls [76], which exhibit significant
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overheads [133]. On the other hand, the direct I/O mechanism is fundamentally

incompatible with TEEs as the data stored within the protected memory of TEEs

cannot be directly accessed by the DMA engine.

To address this challenge, we design a high-performance network stack for TEEs

based on eRPC [19] — it supports the complete transport and session layers, while

enabling direct I/O within the protected TEE domain. Our network stack outperforms

asynchronous syscall by 66 % for iperf (§ 4.5.1).

Secondly, in-memory distributed KVSs rely on data replication for fault tolerance.

To ensure replicas are consistent in the presence of faults and adversary, a secure

replication protocol is deployed. While conventional wisdom requires the

employment of BFT protocols [134, 135], they are prohibitively expensive for

practical systems [136].

To overcome the limitation, we design a secure replication protocol, which builds

on top of any high-performance non-Byzantine protocol [137, 138] - our key insight is

to leverage TEEs to preserve the integrity of protocol execution, which allows to model

Byzantine behavior as a normal crash fault. Our replication protocol offers linearizable

reads and writes, and outperforms BFT [139] by a factor of 4.5–65×, while requiring

f fewer replicas and stronger security properties (§ 4.5.2).

Thirdly, a secure distributed system requires a scalable attestation mechanism to

establish trust between the servers and clients. Unfortunately, the remote attestation

mechanism in TEEs is designed for establishing root of trust for a single node [140]

and it does not provide collective trust establishment across the multiple nodes of a

distributed system. Moreover, the attestation itself is based on Intel attestation service

(IAS) [86, 141], which suffers from scalability and latency issues. These issues are

especially problematic in a distributed KV store, which can get scaled up and down

depending on current demand.

To address this, we design a configuration and attestation service (CAS) that

ensures scalability and flexibility in a distributed environment. Further, it provides

configuration management, and improved performance of 18.3× compared to Intel’s

IAS attestation (§ 4.5.3).

And lastly, an in-memory distributed KVS requires fast access to large amount of

main memory on each server for single-node KVS. Unfortunately, TEEs provide a

limited secure physical memory, and rely on prohibitively expensive paging

mechanism to access data beyond the physical limit.
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To address this limitation, we design a novel single-node KVS based on a

partitioned skip list data structure, which overcomes the memory limitations of

TEEs, while supporting lock-free scalable concurrent updates. Our KVS provides fast

lookup speed; 1.5–9× faster than ShieldStore [113], a state-of-the-art secure KVS for

single-node systems (§ 4.5.4).

Based on these aforementioned four contributions, we build AVOCADO as an

end-to-end system from the ground-up, and evaluate it using a real hardware cluster

using the YCSB [18, 142] workloads. Our evaluation shows that AVOCADO is scalable

and performs similar in read heavy and write heavy workloads: AVOCADO suffers

only 50 % slowdown compared to a non-secure distributed KVS (§ 4.5.5), which is an

order of magnitude better than the state-of-the-art secure distributed storage systems

providing strong consistency.

Limitations: AVOCADO requires a large trusted computing base (TCB) compared to

other work using TEE to provided secure replication [143–145]. While BFT protocols

can handle implementation errors, AVOCADO cannot and requires the TCB to be

implemented correctly. Further, we do not aim to protect against side-channel attacks

and access or network pattern attacks [82, 83, 146, 147]. Protecting against these

attacks is outside of the scope of AVOCADO.

4.2 System Model

AVOCADO divides the key space into shards. Each shard is replicated over a

configurable number of nodes, which are connected over a high speed network. A

client issuing a Put, Get, or Delete operation selects the shard associated with the key

and chooses a request coordinator from the list of nodes. The nodes will coordinate

with each other to provide proof for the success of the operation. For Get operations

proofs of integrity, authenticity, consistency and non-/existence need to be provided,

too.

Data model AVOCADO provides confidentiality, integrity, authenticity and strong

consistency for the stored data. Specifically, a server only acknowledges a request as

long as it can prove the following guarantees: 1) an adversary cannot read or

manipulate stored data, without the manipulation being detected, 2) the servers can

establish trust with each other and the clients and 3) an operation always observes

the latest completed operation on the same key, e.g., a Get observes the latest Put.
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Threat model AVOCADO targets an extended threat model beyond the

conventional model assumed for single-node shielded execution [39]. In line with the

default threat model of SGX, we assume that an adversary has full control over the

hardware and software stack of the provided system, including OS and hypervisor.

Further, the adversary has the ability to gain full control over the network

infrastructure and can drop, delay, or manipulate network traffic. In contrast to BFT

protocols, we assume that adversary cannot take advantage of faults in the

implementation of SGX or KVS. Moreover, AVOCADO does not protect against

side-channel attacks [81, 146–152]. AVOCADO also does not provide mechanisms

against access pattern attacks [82, 83]. Lastly, we also do not protect against memory

safety vulnerabilities in our implementation [153, 154].

Fault model We assume an asynchronous model with network and crash-stop

failures. The network can be manipulated by the attacker, thus, we assume that

message transmission delays can be unbounded, network packets can be reordered,

lost or duplicated. We do not assume the existence of synchronized clocks.

Individual processes might fail by crashing, but do not operate in a Byzantine

manner (because of trusted execution in the nodes). Since the network is controlled

by the attacker, AVOCADO cannot provide any availability guarantees. However, as

long as there is not a denial-of-service attack on the network, AVOCADO will remain

available while a majority of processes remain alive (tolerating f failures).

4.3 Design

AVOCADO, as a distributed KVS, runs on a set of nodes, each of which has to

continuously guarantee the confidentiality, integrity and authenticity of the stored

data as well as the sent/received messages. As shown in Figure 4.1, each node

consists of four major components. On the top, a configuration and attestation

service (CAS) runs to provide and speed up the trust establishment between the

nodes and the clients. Additionally, AVOCADO guarantees fault tolerance as well as

consistency between the replicated nodes thanks to an asynchronous replication

protocol. We implement this replication protocol using our secure network stack.

Further, the network stack securely sends and receives messages, ensuring packet

security. Finally, the single-node memory KVS stores the dataset, containing all user

provided data and ABD’s timestamps.

Following, we will discuss the four major components, i.e. network stack,

replication protocol, CAS, and in-memory KVS, in more detail.
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Figure 4.1: AVOCADO’s system overview.

4.3.1 Network Stack

Problem High-performance networking based on direct I/O mechanisms (e.g.,

RDMA and DPDK) is an essential ingredient to design a distributed in-memory KVS.

The networking layer is imperative to support high-performance synchronous

replication. Unfortunately, mapping devices into TEEs trusted memory is

incompatible to the security guarantees, since the device is untrusted. Unfortunately,

direct I/O mechanisms are incompatible with TEEs since they require direct DMA

accesses from an untrusted source to the protected memory region in TEEs.

Additionally, the synchronous socket syscall I/O is limiting as it requires the

expensive world switch in the TEEs (the world switch is around 5.5× more

expensive than a kernel context switch; 10 170 cycles compared to 1800 cycles [133]).

To prevent the expensive world switches, asynchronous syscall mechanisms [76]
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have been adopted by shielded execution frameworks, such as SCONE [40] or

Eleos [38]. Although the asynchronous syscall mechanism helps in mitigating the

expensive world switch in TEEs, it is not well-suited for AVOCADO since the system

call overhead as well as copying data in/out the enclave memory are not avoided.

For example, in our evaluation in Section 4.5.1 we prove that the exit-less

asynchronous socket-based networking is poor choice compared to a user space

approach for AVOCADO.

Solution To overcome this limitation, we opted for a new network stack based on

the user space direct I/O networking approaches (e.g., RDMA and DPDK), offering a

secure implementation of the transport and session layer in the OSI model. However,

we need to tackle the fact that untrusted resources/memory cannot be mapped into

the enclave memory. To address this, our network stack maps the DMA, and therefore,

message buffers into the untrusted host memory, which is accessible by the enclave.

Shielded network stack. For our shielded network stack, we use eRPC [19] on top

of DPDK [20]. To strengthen AVOCADO’s security properties and eliminate world

switches, we also map all eRPC’s and DPDK’s software stack to the enclave address

space by leveraging SCONE. Therefore, the logic, i.e., code, lives completely within the

enclave while the networking buffers (e.g., message buffers, network protocol buffers,

Tx and Rx queues) remain in host memory since SGX will not allow accessing enclave

memory from the NIC. As a result, we map untrusted host memory to both NIC and

network buffers required by eRPC and we utilise hugepages memory of 2 MB-pages

to boost packet processing (e.g., eliminate page walks, exploit data locality, minimize

swapping, and increase TLB hit rate).

As shown in Figure 4.2, the submission and reception of requests and responses

mandate the allocation of message buffers. To transmit the message buffer’s data,

eRPC needs to copy the data to a rte_mbufs in the Tx queue which is allocated by

DPDK library and also resides in hugepages area. However, before that, a header that

contains the transport header, and metadata (request handler type, sequence

numbers, etc.) is added to the front of the packet. Specifically, eRPC library adds the

UDP protocol header while the DPDK library is responsible for the Ethernet protocol

header.

Upon a request’s reception, a specific handler for the type of the request is invoked.

The Rx queue’s elements are pointers to the address of the received data. In case the

packet is smaller than the MTU (1500 B in our case), we perform zero-copy reception

by mapping the data address to the message buffer associated for that request. Our

networking stack splits big packages (> MTU) into a set of ordered MTU-size smaller
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messages and delivers them in order—we guarantee to order by unique monotonic

sequence ids. The first (sub)-message contains all the necessary metadata (e.g. the

size of the original message). That way, if a message is lost, our library identifies the

missing part and only the lost message is re-transmitted. Lastly, note that each user

thread owns a separate RPC object which owns distinct Tx and Rx queues allowing

that way multithreaded concurrent operations.

Encryption and message format. To sum up, AVOCADO efficiently eliminates the

world switches, establishes a direct communication with the device bypassing the

kernel network stack, attacks the limited enclave memory and promotes parallelism.

However, by putting these buffers outside the hardware protected area, AVOCADO

has to ensure the integrity and confidentiality for all network data. Towards this

direction, we implemented an en-/decryption library (using hardware support for

AES-GCM-128). Each call or return from eRPC goes through this en-/decryption

layer which also checks the integrity of the transmitted data.

Figure 4.3 shows the message format of our AVOCADO-networking layer. For

each transmitted packet, the encryption layer builds a payload, which contains a 12 B

IV, 8 B operation identifier, 8 B for the key size, 8 B for the size of the entire package

then the KV pair with the Lamport clock (§ 4.3.2). The generated payload is followed

by a 16 B MAC which is necessary to prove the authenticity and integrity upon

reception in the remote host. The operation identifier also contains a unique id for the

current request/response, allowing to detect resend packages by an attacker. Replicas

are trusted and all replicas authenticate each other in the boot up step. Further, they

make a key exchange, therefore we can use this together with the unique id to

authenticate each message. By encrypting and authenticating our packages we can

deal with security concerns raised for user space networking [155, 156].

Result In Section 4.5.1 we show that our user space shielded network stack based on

eRPC outperforms the kernel approach based on sockets up to 1.66×.

4.3.2 Replication Protocol

Problem Distributed systems enforce consistency in the face of faults through

replication protocols that establish an order of operations in a replicated

environment, preventing data corruption and loss. We strive for linearizability [157],

the strongest guarantee from a programmability perspective, which mandates that

each request appears to take effect globally and instantaneously at some point

between its invocation and completion. Additionally, we strive to provide two often

contradictory properties: security and performance. Conventional wisdom suggests
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Protocols Linearizability Integrity Confidentiality Replication factor Max compromised nodes

Non-Byzantine ✗ ✗ ✗ 2 f + 1 0

BFT ✓ ✓ ✗ 3 f + 1 f

BFT + TEEs ✓ ✓ ✓ 3 f + 1 All

AVOCADO ✓ ✓ ✓ 2 f + 1 All

Table 4.1: The landscape of replication protocols in the untrusted environment.

This table compares theoretical systems with different protocols against AVOCADO.

Thereby, all the systems utilize a secure single-node KVS, however only the execution

of BFT + TEE is protected. We assume f compromised nodes for linearizability,

integrity and confidentiality columns.

the use of BFT protocols [134, 135] since they provide a secure consensus protocol in a

malicious environment. However, their performance suffers from their overly

pessimistic assumptions. On the other hand, non-Byzantine replication protocols,

such as ABD [138, 158], chain replication [137] or Raft [159], perform better than BFT,

but cannot tolerate a malicious environment.

Solution Since AVOCADO assumes a malicious environment, BFT [134, 135]

protocols could be deployed to deal with malicious responses. Prior work uses

trusted components to increase the performance of BFT protocols by detecting

equivocation [143, 160]. However, our assumption of the system differs from BFT. In

contrast to BFT, we assume that enclaves will respond correctly, preventing

equivocation. Furthermore the TEE is able to preserve the integrity of the protocol

execution. Therefore, we assume a weaker adversarial model, as the adversary

cannot arbitrarily change the execution from a node. This allows us to model a

Byzantine behavior as a normal crash fault. As a result, we can adopt a non-BFT

replication protocol, which deals with crash faults. Thereby, our design greatly

increases the performance by avoiding the additional broadcast rounds required by

BFT, while also reducing the required nodes to tolerate f failures. In Table 4.1 we

compare security guarantees of different protocols with and without TEEs.

In AVOCADO we build our replication protocol on the well established

multi-writer ABD [138] protocol. (From now on “ABD”.) By choosing ABD, we can

also guarantee protection against forking and rollback attacks. ABD requires a

majority of nodes to acknowledge each operation, guaranteeing that at least one

replica involved in the operation has observed the most recent operation on the same

key. This further guarantees liveness in case of network partitioning as long as a

majority of nodes are in the same partition. While we do not change the

replication-related behavior of the original ABD protocol, we design a secure
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replication protocol based on our network stack (§ 4.3.1). In the following we

describe the important operations of AVOCADO.

#I: Put In a Put operation the client will determine, by hashing the key and looking

up the nodes, the set of nodes responsible for the key. They, then, send the Put to a

randomly selected replica, which will act as the Put’s coordinator.

The chosen request’s coordinator will prepare it’s own KVS by preparing the local

put operation, however it will not make the local put visible for other operations

until the replicated Put operation is completed. This reduces EPC pressure, since the

value doesn’t have to be cached in enclave memory before it can be inserted into the

nodes KVS. An example of the AVOCADO’s Put request is shown in Figure 4.4. The

coordinator, first, executes the first of two broadcast rounds. All replicas store the

key-value along with its Lamport clock to determine an order of operations. The

Lamport clock consists of a logical counter and a machine id. This id guarantees that

only one machine can generate a specific clock value. In the first broadcast round, the

coordinator requests the timestamps that are stored in the replicas for that key. All

replicas lookup the key in their in-memory KVS, to find their stored timestamp.

Crucially, the replicas do not have to make an authenticity and integrity check on the

timestamp, as the Lamport clock is stored as part of the metadata in enclave memory.

Upon receiving a majority of the remote timestamps (including its own locally stored

timestamp), the coordinator creates the timestamp of the new Put, by incrementing

the highest of the received timestamps and concatenating its own node-id. Finally, it

broadcasts the new KV pair along with its new timestamp to all replicas, which insert

the KV pair into their in-memory KVS. Since the put operation does not return the

value to the user, and the meta data is protected by the enclave AVOCADO does not

have to check the authenticity and integrity of the old value. Upon gathering a

majority of acknowledgements it reports completion to the client.

#II: Get The Get operation is similar to Put; the client sends its request to a randomly

selected server, which coordinates it. The server then looks up the KV-pair in its local

store.

The chosen request coordinator executes one broadcast round. In certain cases a

second, optional broadcast round is required. Similarly, to the first round of a Put, the

first round of a Get finds out the highest timestamp for that key when the majority of

replicas has responded. This action guarantees that the Get will observe any

completed Put (recall that a Put only completes if it reaches a majority of replicas).

The replicas will respond with their locally stored value and corresponding Lamport
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Figure 4.4: Example of Put request in AVOCADO protocol.

timestamp to the coordinator, this involves a lookup in the local KVS and decryption

together with integrity and authenticity checks of the value. The Get always returns

to the client the value that corresponds to the highest timestamp found in its first

round. However, the coordinator can reply to the client if, based on the replies it

received on its first round, it can guarantee that a majority of replicas are aware of

this value. Otherwise it must perform a second broadcast round.

The second broadcast round is identical to the second write of a Put: it shares the

KV-pair along with its timestamp with all replicas. Completion of the Get is reported

to the client only after gathering a majority of acks. The second round of the Get,

ensures that a Get not only observes the latest completed Put, but also guaranteeing

that the Put will be visible to all subsequent Gets.

#III Delete Delete is supported by issuing a Put operation with an empty value. This

will remove the value from the KVS, but importantly it will not remove the key. We
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need to keep the key and the corresponding Lamport clock, to be able to establish an

order of operation if a future Put operation accesses the same key.

#IV: Fault tolerance AVOCADO remains highly available in the face of machine

failures. However, as nodes fail, new nodes must be added, to ensure that the

deployment always includes a majority of live nodes. In order to ensure that

machines can safely join the configuration, we deploy a recovery algorithm inspired

by Hermes [161].

Specifically, when adding a new node all other live replicas are notified of the

new node’s intention to join the replica group. The new node starts operating as a

shadow replica that participates in all Put-related broadcast rounds (of remote

replicas), but it cannot yet become the coordinator of a client request. Furthermore,

the shadow replica does not take part in the Get quorum. In the meantime, the

shadow replica reads chunks (multiple keys) from other replicas to fetch the latest

values and reconstruct the KVS. To archive this the shadow replica is using the first

broadcast round of ABD, but it never executes the second round, because it does not

need to notify other replicas of what it read. After reading the entire KVS, the

shadow replica is up-to-date and transitions to operational state, whereby it is able to

serve client requests.

Result We compare AVOCADO against BFT and Raft in Section 4.5.2. Our evaluation

shows that AVOCADO is between 4.5 and 65× faster than BFT-Smart [139], a state of

the art BFT implementation.

4.3.3 Configuration and Attestation Service

Problem To ensure the integrity of the code and data deployed in the remote hosts

with TEEs, TEEs, such as Intel SGX, provide attestation mechanisms. Secrets (e.g.,

certificates, encryption keys, etc.) are provided only after the attestation. Once an

enclave is initialized, an attestation process can be launched to verify the integrity of

code and data inside the enclave and proves the enclaves identity to a remote party.

Intel SGX uses an architecture Platform Service Enclave (PSE) called Quoting

Enclave to sign the report of the loaded enclave [37, 86]. The remote verifier forwards

this signed report to the Intel Attestation Service (IAS). Thereafter, IAS confirms or

refuses the authenticity of the report to the verifier.

This conventional attestation mechanism using IAS incurs significant overhead in

a distributed setting, especially for elastic computing or fault tolerance. The reason is

that every time a distributed system (e.g., a distributed KVS) spawns a new enclave,
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it needs to perform the remote attestation via IAS which is not necessarily hosted in

the same data center, incurring high latency. Lastly, and importantly, cloud providers

usually do not want to disclosure their hardware or cluster information, as this

information might be confidential.

Intel has also realized the problems occuring over the IAS and offers Intel Data

Center Attestation Primitives (DCAP) [162], which allows to create an in data center

caching service. This caching service can be used to sign and verify quotes. However,

Intel DCAP does not provide a secure configuration service.

Solution In AVOCADO, we designed a decentralized configuration and attestation

management system (CAS) for distributed SGX-based applications.

By consolidating and expanding the traditional attestation mechanism of Intel to

build our CAS, we automatically and transparently perform the attestation for each

node. The key idea behind our design is that we replace the Quoting Enclave in the

Intel attestation mechanism by the local attestation service (LAS). The CAS first

attests the LAS using the Intel attestation mechanism, thereafter the LAS will operate

as the root of trust in our remote attestation mechanism. Note, that we can launch as

many LAS instances as required for availability. The LAS performs the local

attestation for AVOCADO nodes and provides attestation quotes that can be verified

by the CAS. Thus, our mechanism does not need to interact with IAS after the LAS is

trusted, this reduces significantly the overhead of the traditional attestation. We

achieve the transparent and automatic properties by deeply embedding the remote

attestation into the AVOCADO runtime. In addition, our CAS only provisions a

configuration and secrets to execute AVOCADO once it ensures that all nodes were

not manipulated. Each node of AVOCADO can only communicate with others if it can

provide a valid certificate provided by our CAS. Therefore, users can just rely on the

CAS to control and operate other components of AVOCADO. They only have to attest

our CAS before providing secrets to it. The CAS itself also runs inside an enclave,

thus users can use the traditional attestation method of Intel to validate it.

Result As shown in 4.5.3 our CAS achieves 18.2× lower end-to-end latency in

AVOCADO when comparing with IAS.

4.3.4 Single-node KVS

Problem Enclave’s memory limitation is in stark contrast to the requirements of

designing an in-memory KVS, which requires fast access to large amounts of

in-memory data. Unfortunately, enclaves provide only limited physical memory
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Figure 4.5: AVOCADO’s single-node KVS.

(94 MiB) and incur high overheads due to the EPC paging mechanism

(2–2000× [153]) beyond it.

To overcome the limitations of the strawman design, ShieldStore [113], a state-of-

the-art secure in-memory KVS for a single-node system, proposed a MerkleTree-like

data structure design where the entire KVS resides in the untrusted host memory,

except for the security metadata (hash buckets heads). The metadata stored in the

enclave memory is used to speed up the look up and to perform authenticity and

integrity checks on the KV pairs. However, in our experience, the ShieldStore design

suffers from continuous integrity re-calculations. Furthermore, the memory layout

prohibits efficient concurrent operations.

Compared to Speicher [1], which also introduced the KV pair separation scheme

for enclaves, our KVS is optimized for paging by encountering locality.

Solution To overcome these limitations, we designed and propose our own

in-memory concurrent data structure for the single-node KVS. Our KVS is based on a

authenticated and confidentiality-preserving skip list [22] which supports secure and

fast updates and lookups. We have chosen skip list as our fundamental data structure

because it maintains the best features of a sorted array for searching (O(logn)) and of

a linked list-like structure for insertion (O(logn)). Our design carefully partitions the

key and value space by placing the keys along with metadata inside the enclave

memory, while storing the bulk of data encrypted and integrity and authenticity

protected in the untrusted host memory. Our partitioned data structure (keys and
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values) allow for faster lookups than ShieldStore’s hash buckets, while it also reduces

the amount of necessary calculations to guarantee the integrity and authenticity.

Furthermore, our lock-free data structure supports concurrent operations and it is

well-suited for increased parallelism.

As shown in Figure 4.5 the nodes of the skip list reside inside the enclave and

contain the key and a pointer to metadata structure. This structure contains the 16 B

MAC, for guaranteeing the integrity and authenticity of the value. Furthermore, the

data structure also includes the size of the value, which makes checks on the value

easier, since we do not need to read any information from the untrusted host memory,

to retrieve how many bytes should be read. AVOCADO’s consistency protocol uses

logical clocks, i.e. Lamport clocks, to establish an order of operations on each key

(§ 4.3.2). Therefore, we also store the Lamport clock in the corresponding metadata

block, to prevent costly decryptions on the timestamp queries. Lastly, the metadata

structure also stores the pointer to the value in the untrusted host memory.

Importantly, separating the metadata and the bulk data (i.e. values) from the skip

list allows us to update the skip list lock free. Further, it also decreases the EPC

pressure when doing a lookup, as nodes can be stored more compact and the

metadata can be stored on a different page. However, looking up a value mandates

an additional indirection due to keys and metadata separation. Nevertheless, we

believe that updating the KVS without acquiring any locks is worth this additional

indirection as it allows better multi-threaded scalability. Therefore, in contrast to a

HashBucket design like ShieldStore, we never need to stall. In contrast to ShieldStore

our approach seems to be limited by the enclave memory, however, assuming we

have 1 KiB values and 16 B keys, we achieve a space reduction for enclave memory of

92.8 % compared to a naive implementation. Further, SGX provides a paging

mechanism significantly increasing the available trusted memory, therefore

increasing the possible size of the KVS. While SGX-paging incurs a high overhead,

often accessed keys will eventually resided in EPC.

Result Our evaluation in Section 4.5.4 confirms that our AVOCADO single-node

KVS is scalable and more performant; the speedup of AVOCADO single-node KVS

compared to ShieldStore increases from 1.6× in a single threaded benchmark to 5×
when utilizing all 8 available CPU threads.
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4.4 Implementation

4.4.1 System Components

AVOCADO network stack The AVOCADO network stack is based on eRPC [19] and

DPDK [20]. In particular, we leverage SCONE to build both eRPC and DPDK. We also

assure that the device DMA mappings resides in the host memory. The changes to

implement the mappings amount to 154 new LoC and 81 removed LoC.

To run eRPC inside the enclave, we accordingly modify the hugepages allocation

mechanism (a) to ensure that all network buffers reside in the host memory, (b) to

fix a bug regarding the hugepages’ detection, and (c) to alter how the address of the

memory region is calculated. We also replace eRPC’s allocation algorithm with our

own allocator. We notice that the eRPC’s native allocation algorithm, which allocates

double the space of the previous allocation, quickly reserves all available memory in

AVOCADO. Our memory allocator is less aggressive, by not always doubling the space

of the previous allocation and by trying smaller increments, the code is available in the

avocado repository, and allows us to use our servers’ limited huge page memory more

efficiently. In total, 80 LoC are added to eRPC, while 28 LoC are removed.

eRPC provides us with its own implementation of the UDP protocol. To secure

the network communication, on top of the layer protocol, we use a modified

OpenSSL [163] version. These changes allow us to randomly access the encrypted

data. We added 55 LoC to OpenSSL. Further, we added another 287 LoC for a shared

en-/decryption layer for the AVOCADO single-node KVS store and networking.

Lastly, we further extend the shared layer to well-fit with the message format. This

adds another 205 LoC.

AVOCADO replication layer We implement AVOCADO replication layer in C++ on

top of the AVOCADO network stack (2743 LoC). We implement the protocol from

scratch using the eRPC networking library across AVOCADO’s different layers, i.e.,

replication and networking layer.

Configuration and attestation service We implement AVOCADO CAS in Rust [164]

for better memory safety (22 730 LoC). To run the CAS inside the Intel SGX, we use

SCONE since it transparently supports Rust applications. We make use of an

encrypted embedded SQLite [165] to maintain configurations and secrets of

AVOCADO inside AVOCADO CAS. To setup the configuration and bootstrap process,

we provide configurations scripts, in Bash and Python 3, in total these bootstrap

scripts require 709 LoC.
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AVOCADO single-node KVS We implement the AVOCADO single-node KVS based

on a skip list based partitioned data structure. Particularly, AVOCADO single-node

KVS extends Folly’s ConcurrentSkiplist [166]. We ported the Folly library to SCONE,

which resulted to 167 new LoC and 40 394 removed LoC. In addition, the

implementation requires another 190 LoC for the integration of the Boost

library [167] to SCONE. Further, we implement an efficient host memory allocator

(388 LoC) for our skip list. We share en-/decryption layer based on OpenSSL [163]

with the network stack.

4.4.2 Optimizations

[O1] Remove duplicated en-/decryptions In AVOCADO, we use a shared encryption

key between all replicas for the network operations. This allows us to replace some

encryption calls with memory copies, as we can send the same packets to all replicas

without costly re-encrypting the messages. However, this optimization is an optional

trade-off between security and performance since one compromised enclave would

compromise the entire system.

[O2] Remove locks Separating the metadata from the key allows us to make atomic

updates to the skip list, avoiding expensive locks. However, it also allows us to retire

values earlier to the host memory; thereby reducing the EPC pressure since the

metadata can already be written without being visible to other calls. Further, our host

memory allocator supports lock-free operations on our skip list by providing similar

atomic allocation and de-allocation primitives.

[O3] Limited number of message buffers We design a rate limiter to allow all

current running requests to finish without having to wait for the available resources.

While we mostly implement it to prevent eRPC from running out of hugepages

memory, we also find that it also reduces the stalls between accepting and

completing a request.

4.5 Evaluation

Our evaluation answers the following questions.

• How does the AVOCADO network stack perform compared to the alternative

networking approaches? (§ 4.5.1)

• How does the AVOCADO replication layer compare with alternative protocols

(Raft [159] & BFT [139])? (§ 4.5.2)
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• What are the performance overheads of AVOCADO CAS and how it compares

with Intel’s IAS [141]? (§ 4.5.3)

• How does the AVOCADO single-node KVS perform compared to

ShieldStore [113]? (§ 4.5.4)

• What are the overall performance overheads of AVOCADO KVS? (§ 4.5.5)

• How does AVOCADO scale with increasing number of nodes? (§ 4.5.6)

Testbed We perform all of our experiments on real hardware using a cluster of 5

SGX server machines with CPU: Intel(R) Core(TM) i9-9900K each with 8 cores (16

HT), memory: 64 GiB, caches: 32 KiB (L1 data and code), 256 KiB (L2) and 16 MiB (L3),

NIC: Intel Corporation Ethernet Controller XL710 for 40GbE QSFP+ (rev 02). They are

connected over a 40GbE QSFP+ network switch.

The CPU is designed for workstations, therefore, does not represent a common

server CPU. However, at the time of the project the CPU was the most powerful CPU

supporting SGX. In a realistic cloud environment the KV store would run either in a

VM or container and would map the NIC into the virtual environment. However, as

AVOCADO runs entirely in user space, including the network stack, the performance

should not be majorly affected by the VM or container, respectively.

Benchmarks For the evaluation, we use the YCSB benchmark [18, 142] with

different read/write ratios. Client-server communication over the network is

prohibitively expensive from within an enclave (see § 4.3.1). Therefore, we stress-test

the performance of AVOCADO by generating the workload within the enclave. This is

the worst-case scenario for our system, since a client-server setting will show

negligible latency/throughput overheads, due to client-server communication being

the bottleneck. We configured AVOCADO to use a shared network key between the

replicas (§ 4.4.2 [O1]). For evaluating the network stack, we use iperf [168].

4.5.1 Network Stack

Baselines and setup We evaluate the performance of the AVOCADO network stack

against three competitive baselines: eRPC-native, sockets-native, and

sockets-SCONE. Note that SCONE uses asynchronous syscalls [76] for performance

improvements. Further, note that the native (eRPC and sockets) versions do not

provide any security.
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Figure 4.6: Performance comparison of AVOCADO network stack, eRPC-native,

sockets-native, and sockets-SCONE for different packet sizes.

For the sockets (native and SCONE), we use iperf to measure the throughput.

For eRPC-native and AVOCADO network stack, we implement a simple server-client

model on top of eRPC to simulate iperf’s behavior.

In our experiments, we compare the performance with different number of packet

sizes, while keeping the number of threads fixed to 4. Note that eRPC supports only

UDP while iperf supports both TCP and UDP. In our servers, we found that TCP

performs better than UDP, so we report iperf’s TCP measurements since a designer

could always benchmark both protocols and choose the most performant one.

Results Figure 4.6 shows that eRPC-native is comparable to sockets-native. The

reason is that TCP is optimized for high speed bulk transfers while UDP is optimized

for low latency in the Linux kernel. This has an impact on buffer sizes and how data

is polled and handed over. In addition to this, processing of the entire TCP/IP stack is

frequently offloaded to the network controller. Particularly, for very small packets, we

do not observe any performance difference since eRPC-native is quite fast due to its

zero-copy reception/transmission optimization feature. However, for medium packet

sizes but still smaller than the MTU (1460 B), eRPC-native slows down by 30 %. This

performance degradation is due to the difference between send/receive throughput

and processing speed. Lastly, for large packets, we also observed that eRPC-native is

22 % slower than sockets-native.

Based on Figure 4.6 we deduce two core conclusions; (a) SCONE’s overhead is not
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negligible — SCONE performance degrades ∼4× and ∼8× compared to AVOCADO

network stack and sockets-SCONE, respectively; and (b), due to the number of system

calls the sockets’ layer is executing, AVOCADO network stack in the context of the

secure enclave performs up to 1.66× faster than sockets-SCONE. As discussed,

enclave exits and data copies in and out of the enclave deteriorate sockets’

performance. This is further supported by the fact that the bigger the packet size is,

the worse the performance becomes. Therefore, sockets-SCONE is a poor design

choice as far as our requirement is concerned, and it justifies our design of the

AVOCADO network stack.

4.5.2 Replication Protocol

Baselines and setup We show our system’s end-to-end performance in comparison

with two state-of-the-art protocols: (a) BFT (BFT-Smart [139]) for the Byzantine

setting, and (b) Raft (eRPC-Raft [169]) for the non-Byzantine setting. To the best of

our knowledge, there is no secure distributed in-memory KVS; BFT-Smart KVS is the

closest baseline in terms of security properties for Byzantine environments, but BFT

protocols (or BFT-Smart) still do not preserve confidentiality. Additionally, we

compare AVOCADO against eRPC-Raft since it is also built on top of eRPC. This

comparison aims to demonstrate the efficacy of eRPC. We compare them with a

native version of AVOCADO, AVOCADO-native, which runs without TEEs. We

compare AVOCADO and BFT along three parameters, as shown in (i) Figure 4.7 for

different read/write ratios, (ii) Figure 4.8 for different value sizes and (iii) Figure 4.9

for different workload threads per machine. We evaluate using the YCSB

benchmark [18, 142]. Similarly, we compare AVOCADO against Raft implemented

with eRPC. Note that eRPC-Raft is limited to only PUT requests and 1 workload

thread in total.

Results Our evaluation shows that AVOCADO can achieve 4.5× to 65× more

operations per second compared to BFT. Our AVOCADO presents similar

performance to all four workloads, deducting that it is equivalently performant to

both read and write heavy workloads. In addition, we notice that striving for the

strictest security guarantees can decrease the performance to half compared to a

native, unsecure version of AVOCADO.

Furthermore, we observe that the value size has great impact in the end-to-end

performance. For instance, even in a read-heavy workload with value size to be

equal to 256 B, the performance of AVOCADO is 6× higher compared to BFT and

1.83× lower than the native version. However, for value size to be equal to 1024 B ,
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Figure 4.7: End-to-end performance comparison between AVOCADO, AVOCADO-

native and BFT for different read write ratios. With a value size of 256 B and 8 threads

per node.
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Figure 4.8: End-to-end performance comparison between AVOCADO, AVOCADO-

native and BFT for different value sizes. with a fixed read ration of 95 % and 8 threads
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Figure 4.9: End-to-end performance comparison between AVOCADO, AVOCADO-

native and BFT for different number of threads with a read ratio of 95 % and a value

size of 256 B.

kOp/s Speedup

AVOCADO 96 5.05×
eRPC-Raft 19

Table 4.2: Performance comparison between AVOCADO and eRPC-Raft under a 100 %

W workload and a single client.

AVOCADO is 20 % slower than BFT and 9× slower than AVOCADO-native. Similarly,

for value size to be equal to 4096 B, AVOCADO is 1.25× faster than BFT and 3.65×
slower than AVOCADO-native. We discuss the effects of value size on AVOCADO

further in section § 4.5.5.

Lastly, AVOCADO scales up with the number of threads; AVOCADO achieves 38 %

more operations when the number of threads is increased from 4 to 8 threads. Due

to the limitation with the amount of threads inside the enclave, AVOCADO cannot be

executed with 16 threads.

Lastly, we compare eRPC-Raft against AVOCADO. AVOCADO under the same

settings outperforms eRPC-Raft for 4.8× as shown in Table 4.2. The reason is that

eRPC-Raft does process requests asynchronously while in AVOCADO the time

required for the necessary replicas to respond overlaps with processing any

outstanding requests.
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Mean / s SD / s Speedup

AVOCADO CAS 0.169 0.0195 18.2×
IAS 2.913 0.177

Table 4.3: The end-to-end latency comparison between the attestation mechanisms

using AVOCADO CAS and IAS.

4.5.3 Configuration and Attestation Service

Baseline and setup To evaluate the advantage of the attestation mechanism using

AVOCADO CAS in comparison to the traditional attestation mechanism of Intel using

IAS, we conduct an experiment to measure the end-to-end latency of the attestation

process using both mechanisms.

Results The attestation using AVOCADO CAS achieves a speedup of 18.2×
compared to the traditional mechanism using IAS (see Table 4.3). The mechanism

using AVOCADO CAS performs the attestation via LAN connections, since AVOCADO

CAS is deployed in the same cluster as AVOCADO instances. Meanwhile, the

mechanism using IAS performs the attestation via WAN connections since it requires

to verify the quotes using IAS that is deployed at Intel. Furthermore, AVOCADO CAS

provides transparently provides configuration management features to operate in an

distributed environment.

4.5.4 Single-node KVS

Baselines and setup We compare our AVOCADO single-node KVS against

ShieldStore [113], a state-of-the-art secure in-memory KVS for a single-node system.

For the single-node system evaluation, we use Intel(R) Core(TM) i7-8565U CPU of 8

logical threads and 16 GiB memory. This is due to ShieldStore’s dependencies on

specific versions of OS, linux-SGX [170] and tcmalloc [171], we are not able to run it

on our servers. We evaluate AVOCADO single-node KVS and ShieldStore across three

dimensions using the YCSB workload: threads (Figure 4.10), value size and

read-write ratios (Figure 4.11).

Results Figure 4.10 shows the scaling capabilities of our AVOCADO single-node

KVS vs. ShieldStore for two different value sizes. Our AVOCADO single-node KVS,

for all number of threads, is 1.6× to 9.5× faster than ShieldStore. Regarding the

value size, we observe that ShieldStore’s performance is highly affected when the

value size is increased. For example, with 2 threads, ShieldStore presents a
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Figure 4.10: Performance comparison between AVOCADO single-node KVS and

ShieldStore under a read ratio of 50 % for varying number of threads and value size

16 B and 1024 B.

performance degradation of 7.3× from 16 B to 1024 B while the same scenario

deteriorates AVOCADO single-node KVS’s performance only by 1.23×. We deduct

this to the fact that Shieldstore searches require decrypting the concatenated entry of

the key and the value in each visited bucket. As a result, bigger value sizes increase

the cipher text that needs to be decrypted leading to higher performance costs. In

contrast, AVOCADO stores keys inside protected area and search time is not affected

by value sizes and decryption cost.

We observe similar behavior as the number of threads increases. ShieldStore is

designed to avoid synchronization costs between threads that are matched to

different KVS’s areas. However, to achieve this, ShieldStore requires to sort and

distribute (through hashing) requests across threads which adds overheads

compared to AVOCADO single-node KVS. Specifically, we show that for value size

equal to 16 B AVOCADO single-node KVS is 1.6×, 3× and 5× faster than ShieldStore

when using 2, 4 and 8 threads, respectively. Additionally, for value size equal to

1024 B, AVOCADO single-node KVS is 9.5×, 1.5× and 4× faster than ShieldStore

with 2, 4 and 8 threads, respectively.

However, we find that both AVOCADO single-node KVS and ShieldStore have a

performance drop, when the number of threads is increased. This trend is visible

until the number of threads exceeds the number of physical cores. We attribute this

behavior to two main reasons. Firstly, the CPU we are running this experiment on, is



76 Chapter 4. AVOCADO: A Secure In-Memory Distributed Storage System

90 50 10
Read ratio in %

0
100
200
300
400
500
600

Ra
te

 k
Op

/s
Avocado-singleKV - 16B
ShieldStore - 16B
Avocado-singleKV - 256B
ShieldStore - 256B
Avocado-singleKV - 1024B
ShieldStore - 1024B

Figure 4.11: Performance comparison between AVOCADO single-node KVS and

Shieldstore under three different workloads for varying value sizes.

a lower power CPU, with a low base frequency (1.8 GHz) but a relatively high turbo

frequency (4.8 GHz). This high turbo frequency cannot be reached with a high number

of threads running, giving a performance boost to low thread numbers, compared

to higher thread numbers. Secondly, increasing the number of threads results in a

higher rate of cache misses, due to other cores having requested different memory,

or having to invalidate the cache lines in lower level caches i.e. L1 and L2. This

effect is especially pronounced in a write heavy workload, as presented in Figure 4.10.

Increasing the number of threads further, from number of physical cores to logical

cores, allows the CPU to schedule a different thread, while it is waiting for a memory

access to complete, explaining the increase of performance with 8 threads.

Secondly, we also study how AVOCADO single-node KVS and ShieldStore

perform under different value sizes and different read-write ratios. In particular,

Figure 4.11 compares the two Key-Value (KV) stores against three different

workloads and varying value sizes, where we fix the number of threads across the

experiments to 4. For all three workloads as shown in Figure 4.11, AVOCADO

single-node KVS achieves better performance than ShieldStore; 3.63× to 2.97× faster

when value size is equal to 16 B, 3× to 1.53× faster when value size is equal to 256 B

and 1.87× to 1.56× faster when value size is equal to 1024 B.

Lastly, we conclude that AVOCADO single-node KVS is better in read-dominant

workload (90 % reads) than in write-heavy workload (90 % writes), since AVOCADO

single-node KVS achieves ∼5 % to ∼30 % better performance.

4.5.5 Distributed KVS

Baselines and setup We evaluate the overhead AVOCADO incurs from running

inside an enclave, against running AVOCADO natively, i.e. without SGX.

Furthermore, we also evaluate the encryption overheads for in-memory KVS and
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Figure 4.12: Performance comparison of AVOCADO with and without network and

KVS encryption, inside and outside of the enclave, with different value sizes with

95 % reads and 8 threads per machine.

network traffic. Thus, we compare AVOCADO with encryption activated and

deactivated against the native KVS. Both with encryption for the KVS and network

enabled and disabled. We run the YCSB benchmark with 95 % reads with 5 machines

and 8 threads per machine, with different value sizes.

Results Figure 4.12 shows the performance influence of SGX and encryption on

AVOCADO. The value size comparison shows that for small values, i.e. values under

<1 KiB, AVOCADO reaches around half, between 51.2 and 56.0 % of the performance

compared to the native KVS. However, with bigger value sizes the difference

becomes greater with a slowdown of 3.7× and 9.0×, for 1 or 4 KiB respectively. The

sudden drop in performance compared to the native case is mainly due to two

reasons: firstly, eRPC has to acquire a lock when allocating DMA for bigger packages

size than the MTU, which is configured in our case to 1500 B. While this penalizes

native and AVOCADO, it is worse for AVOCADO, since this could result in an enclave

exit for yielding. By using jumbo frames instead we could increase the MTU to

9000 B, therefore increasing the value size before eRPC has to acquire locks.

Additionally, large sequential de-/encryption operations are faster per byte, then

smaller operations, due to setting up and tearing down cost of the de-/encryption

operations, and better caching and prefetching behavior for memory. With bigger

value sizes, it gets more likely that we have to evict a page from the EPC, when
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Figure 4.13: Performance of AVOCADO inside and outside of the enclave running on

different number of nodes with a value size of 256 B, 95 % reads and 8 threads per

machine.

inspecting the network traffic. This might be addressed with a memory buffer, which

is reused for all data transfer between untrusted host memory and EPC memory. Due

to constant accessing of this buffer, it should rarely get paged out the enclave.

The comparison also shows that encrypting the in-memory KVS and network

traffic adds up to 62 % overhead for small values and 4.6 % for large values in the

native case. However, we observe a different behavior for AVOCADO. The overhead

for small values is more moderate compared to native with around 25 %. However,

the overhead does not get smaller with bigger values sizes. In contrast, it peaked

with a values size of 4 KiB with 4.1×, which is due to EPC paging.

In these experiment we also observed a mean latency of 66 µs. This latency was

reached in a fully stressed system. Due to SGX requiring us to make a syscall for

taking a timestamp detailed latency analysis was impractical, as the syscall overhead

together with the world switch would have easily dominated the benchmark.

4.5.6 Scalability

Baselines and setup We evaluated the scalability of AVOCADO by running it inside

and outside (natively) the enclave on a varying number of nodes. We run the YSCB

benchmark with 95 % reads on 3, 4 and 5 machines and 8 threads per machine, with a

fixed value size of 256 B.
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Figure 4.14: Performance of AVOCADO inside the enclave running with different

number of distinct keys, with a uniform and Zipfian (α = 1.0) distribution with a

value size of 256 B, 95 % reads and 8 threads per machine

Results Figure 4.13 shows the scalability numbers for different number of nodes. We

are limited in our cluster to 5 nodes. The evaluation shows that replicating the KVS

over 5 nodes instead of 3 increases the throughput of the native solution by 49 % and

33 % for AVOCADO.

4.5.7 Number of Keys

Baselines and setup We measure the performance of AVOCADO with increasing

number of distinct keys. We run the YCSB benchmark with two different

distributions, i.e. uniform and Zipfian, on 5 machines with 8 threads and 95 % reads

and a fixed value size of 256 B.

Results Figure 4.14 shows the throughput of AVOCADO with different distribution.

Both distributions have a similar performance until 700 k keys, where the performance

of the uniform distribution starts to suffer greatly, due to SGX paging overheads. The

uniform distribution prevents efficient caching from SGX in the EPC, since it does not

generate any hot keys. In a uniform distribution, AVOCADO is therefore restricted

by the EPC size. However, this could be alleviated with a multi-level lookup, which

stores the lower levels in the host memory.

On the other hand, if the data set is not uniformly distributed AVOCADO can take

advantage of the caching of EPC and extend the number of supported keys. In our

experiments AVOCADO throughput was stable until 3.5 M keys in the Zipfian
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distribution before it starts to suffer from the paging overheads. Similar to the

uniform distribution, a multi-level lookup could reduce the paging overheads.

4.6 Related Work

Networking for shielded execution Shielded execution frameworks, like

SCONE [40] and Eleos [38] provide an asynchronous system call API [76]. However,

the asynchronous syscall mechanism incurs high overheads (due to data copies) and

latency. ShieldBox [93] alleviates the issue of asynchronous syscalls by using

DPDK [20] as polling user mode driver for a secure middlebox. Unfortunately,

Shieldbox network stack targets only layer 2 in the OSI model, and therefore, it is

incompatible with the RPC layer required for a distributed KVS. rkt-io provides a

library OS in the enclave, and can therefore provide a full network stack [172].

Secure storage systems Secure storage is an important theme for cloud computing

systems. A wide-range of systems have been proposed in the community based on

different hardware with varying security guarantees and storage interfaces: KVS [1,

103, 113], filesystems [97, 100, 121], databases [105–107, 109, 112], etc. In contrast to

these existing systems, AVOCADO proposes a scalable distributed in-memory KV store

instead of a single-node system.

For distributed storage system design, Depot [116] and Salus [117] propose secure

distributed storages, which provide consistency, durability, availability and integrity.

A2M [118] is also robust against Byzantine faults. On top of those properties,

AVOCADO also offers confidentiality. CloudProof [110] completely distrusts the cloud

provider. However, CloudProof requires the client to guarantee these security

properties, which requires major changes to the client, which isn’t required by

AVOCADO. Furthermore, AVOCADO leverages hardware-assisted shielded execution

as the root of trust, we do not need a trusted proxy, which limits the scalability of the

system. Microsoft’s confidential consortium framework (CCF) [45], which was

developed at the same time as AVOCADO, provides replication over a leader based

CFT protocol, i.e., Raft [159]. In contrast to AVOCADO, CCF uses the host for

networking, decreasing performance. Furthermore, CCF does not handle limited

EPC memory. Both of these factors result in CCF being considerably slower than

AVOCADO.
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4.7 Summary

We present an approach to build a secure, high-performance in-memory distributed

KVS system for untrusted cloud environments using TEEs. Our design includes four

core contributions involving TEEs in a distributed environment: (a) the first direct

I/O RPC network stack for TEEs based on eRPC with the complete support for

transport and session layers; (b) a secure replication protocol based on hardening of a

non-Byzantine protocol, where we transform a Byzantine behavior to a faulty

behavior using TEEs; (c) a configuration and attestation service to seamlessly extend

the trust from a single-node TEE to the distributed environment; (d) a secure

in-memory single-node KVS based on a novel partitioned skip list data structure, and

show that it is well-suited to overcome the memory limitations and support lock-free

scalable concurrent updates in the TEEs.

Importantly, we set out to build a practical system without compromising

performance — the literature distinctly shows that BFT protocols are typically not

adopted in practice due to their high overheads [136, 173]. In contrast to BFT, our

system provides stronger security properties (also preserves confidentiality) and

improved performance (4.5× to 65×), while using f fewer replicas.





Chapter 5

TOAST:

Heterogeneous Memory

Management

Modern applications employ several heterogeneous memory types for improved

performance, security, and reliability. To manage these heterogeneous memory types,

programmers must currently digress from the traditional load/store interface, and

instead rely on a range of custom libraries specific to each memory type, thus

introducing programmability, portability, and protection challenges.

To overcome these challenges, we propose TOAST, a compiler-based approach

that offers a simplified programming model based on the established load/store

interface combined with an error handling mechanism and a protection mechanism

to enforce memory safety.

We implement TOAST in the Clang/LLVM compiler framework accompanied

with a runtime library, employing software capabilities and hardware-based

protection mechanisms. Our evaluation based on four real-world applications shows

that TOAST improves the programmability, portability, and protection of applications,

while offering performance on par with a hand-optimized version of the application.

5.1 Introduction

Heterogeneous memory is typically understood as memory with varying access

latencies, such as NUMA (Non-Uniform Memory Access) [174] and RDMA (Remote

Direct Memory Access) [35]. However, we can broaden the definition to include any

interface that resembles system memory’s load/store behavior but differs in latency

or access patterns. This encompasses memory areas accessed by devices through

83
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DMA (Direct Memory Access) and specialized libraries like SPDK (Storage

Performance Development Kit) [170] and DPDK (Data Plane Development Kit) [20].

Typically, these libraries offer direct access to the memory buffers in the DMA area

for the user. This enables users to interact with the buffers using load/store

operations, similar to regular memory accesses. However, to ensure proper

communication with the device, such as notifying it of data changes, specific pre- and

post-actions need to be executed. As a result, the interface for the user differs from

simple memory load/store operations to accommodate these additional

requirements.

Modern applications employ multiple heterogeneous memory types for

performance, security, reliability, and domain-specific computing [2, 33, 88, 169, 175].

These heterogeneous memory systems span almost all aspects of the stack, e.g., multi

CPU (NUMA [174]) network (RDMA [35]/DPDK [20]), storage

(SPDK [16]/persistent memory [36]), secure enclaves [5], and accelerators [176].

In theory, heterogeneous memory subsystems are accessible via the memory

controller, i.e., allowing read and write directly from and to memory regions.

However, in practice, these memory subsystems are accessed via a range of

subsystem-specific auxiliary libraries, which force programmers to digress from the

traditional load/store interface to access byte-addressable memory regions [35, 88].

This library-based approach leads to four significant challenges for heterogeneous

memory management (“The 4P challenges"): (i) Programmability, (ii) Portability,

(iii) Protection, and (iv) Performance.

Programmability challenges arise because programmers must learn and understand

the APIs and libraries for each memory technology separately [28].

Moreover, the library-based approach introduces portability challenges when the

underlying hardware evolves with the introduction of new technologies. To adapt

to a new heterogeneous memory subsystem, current approaches require essentially a

complete re-design of the software system. Programmers have to rewrite their code to

a great extent using different access patterns, libraries and APIs. This is a cumbersome

and error-prone task.

Furthermore, heterogeneous memory management also introduces protection

challenges, as a programmer juggles with different memory regions. A potential

error during application development can lead to undesired code behaviours, such as

sensitive information leakage to untrusted devices or mistakenly persisting

temporary data.

On top of that, application programmers are — as always — pressed to achieve

optimal performance, which is difficult when they have to deal with different libraries
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and their varied interfaces.

To address these challenges, we consider the following problem: How do we

define a heterogeneous memory programming interface, which provides

programmability, i.e., an easy to learn and understand interface, portability, i.e.,

minimizing the effort involved in changing underlying technologies, protection

against accidental data sharing between different memory regions, while providing

performance on par with or exceeding existing libraries?

Due to the heterogeneous nature of the devices that leverage the memory

interface, designing a unified interface comes with inherent challenges. While

heterogeneous memory can be accessed over the cache coherent interconnect, due to

device-specific implementations, additional actions might be required, including

reading and writing to specific memory addresses before or after the data transfer

and additional cache flushes. Furthermore, heterogeneous devices have different

sources of errors and faults, leading to vastly different error handling procedures.

To this end, we propose TOAST, a simplified, generic programming model based on

the established load/store interface combined with an error handling mechanism

and a protection library to isolate different memory regions. TOAST consists of a

compiler, based on Clang/LLVM [177, 178], and a run-time component. The compiler

component is responsible for lowering a high-level load/store interface to our

lower-level runtime component. As part of our runtime component, we introduce the

abstraction of TOASTPtr, a pointer associated with a specific memory region that is

manipulated using a single uniform interface in the programming language. Under

the hood, the TOAST runtime transparently translates interface calls to region-specific

library calls. TOAST further provides optional programmable error handling callback

hooks to enable the programmer to handle memory device-specific errors.

TOASTPtrs lift library/device-specific calls to a device-independent load/store

interface at the language level. Thus, TOAST eases programmability by reducing the

technology-specific knowledge required from the developer. TOASTPtrs are given

semantics via a configuration file which can be easily adapted for different

technologies, thus improving portability. Importantly, once a configuration for a

technology is correctly designed, the developer can reap its benefits across

applications without additional effort.

Lastly, TOAST incorporates two protection mechanisms to prevent programming

errors related to unintended data sharing between memory regions; (i) a

software-based mechanism designed as a capability storage and (ii) a

hardware-based mechanism using Memory Protection Keys (MPK) available on Intel

processors.
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1 event_loop(FILE log)
2 int svr, clt;
3 struct sockaddr_in svr_addr,

clt_addr;
4 svr = socket(AF_INET,

SOCK_STREAM, 0);
5 svr_addr = init_server_addr();
6 bind(svr, &svr_addr, sizeof(

svr_addr));
7 listen(svr, 3);
8 clt = accept(svr, &clt_addr,

sizeof(clt_addr));
9 char buf[msg_sz];

10 for (;;)
11 //Waiting for data to arrive
12 read(clt, buf, msg_sz);
13 if (is_write(buf))
14 //Writing to storage device
15 write(log, buf, msg_sz);
16 //Acknowledge to clt
17 write(clt, rsp, rsp_sz);

Listing 5.1: Using POSIX

API to write a network

stream to a file

1 event_loop(uint64_t * log)
2 rx, tx = get_queues()
3 for (;;)
4 //Waiting for data to arrive
5 poll(rx);
6 char * buf = get_buf(rx);
7 if (is_write(buf))
8 //Storage pointer
9 uint64_t * log = next_log(

buf, log_sz);
10 //Writing to storage

device
11 *log = buf << 32 | len(buf);
12 //Makes writing visible
13 clflush(log);
14 //Free buffer
15 char * extra = next_free_buf

();
16 swap(buf, extra);
17 write_response(tx);

Listing 5.2: Accessing

network and storage

device with DMA [88]

1 event_loop(T_log log)
2 rx, tx = get_queues();
3 for (;;)
4 //Waiting for data to arrive
5 T_net buf = get_buf(rx);
6 if (is_write_request(*buf))
7 //Writing to storage device
8 log[idx++] = buf << 32 | len

(buf);
9 write_response(tx)

Listing 5.3: TOAST version

of the applications in

Listings 5.1 & 5.2.

We evaluate TOAST on four real-world applications that access five different

memory types via device-specific libraries: (a) a secure in-memory key-value (KV)

store [2], (b) a replication protocol [138, 158], (c) a persistent shared log

application [179] and (d) a persistent KV store [180]. Our evaluation shows that

TOAST improves programmability, portability, and protection of applications, while

incurring a mean performance overhead of 4.9 % compared to hand-optimized code.

5.2 Motivation: The 4P Challenges

Modern applications employ multiple DMA-capable devices, and deal with

various memory regions with their respective libraries for networking (e.g.,

DPDK [20]) or storage (e.g., SPDK [16], PMDK [36]) or en-/decryption (e.g.,

OpenSSL [163]). These devices and libraries expect specific data structures and

read/write patterns to reach their full potential. Thus, the adoption of a new

technology often requires that developers invest time to learn new device-specific

library APIs and leads to the rewriting of major parts of an application to achieve the
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desired performance. Such changes are invasive, time consuming and error-prone.

Although, the current approaches already try to deal with this issue [176] they are not

sufficient since they only target specific device classes.

As an example, Listing 5.1 shows a code path that accepts network packages and

writes them to a log on a file system using the POSIX API. Listing 5.2 shows the same

program based on non-blocking communication between devices and CPU by

introducing heterogeneous memory subsystems, i.e. Remote Direct Memory Access

(RDMA) networking and Persistent Memory (PM).

Notably, these modern technologies use very different interfaces, even within the

same class of application, e.g, for networking DPDK’s interface differs from RDMA’s

or for storage SPDK’s interface from PMEM’s, which results in very little code reuse

between the implementations. They also have a very different abstraction for the

user; on the one hand, POSIX provides common abstractions and, on the other hand,

the user has to manually add polling and cacheline flushes to ensure correct code

behaviour in the second implementation.

Transitioning from one technology to the other requires addressing the following

challenges.

Programmability Programmers are required to familiarize themselves with all the

libraries used in their application, as each has its own interface and order of

operations. Furthermore, each memory type needs its own memory allocator to make

sure that the memory layout follows the specifications of the underlying device. This

imposes significant programming challenges as each library creates pointers to its

respective memory regions which can be stored and later be reused from other parts

of the application. Pointers of two different libraries are conceptually distinct, but they

are not distinguished by the language’s type system and can, therefore, be

inadvertently confused by the programmer resulting in catastrophic failures and

security vulnerabilities.

Portability Adapting modern systems to use new technologies is challenging.

Firstly, the APIs to handle each memory type or device might be designed for or even

integrated with the logic of the application. This can be mitigated through an

abstraction layer. However, the design of such an abstraction layer is a non-trivial

task. On top of that, the deployment of such an abstraction layer needs to be carefully

performed by the developers throughout the whole application. In that way, an

application gets strongly tied to a specific abstraction layer, hindering portability.



88 Chapter 5. TOAST: Heterogeneous Memory Management

Application
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Figure 5.1: Virtual address space layout in TOAST

Performance The appeal of modern heterogenous memory systems is their

superior performance compared to conventional abstractions. However, their focus

on performance often leads to a tight coupling of the application logic with the

technology to take advantage of techniques, like zero copy or asynchronous calls.

This requires careful optimizations, which are often tedious and error prone.

Protection Efficient resource access management is important when dealing with

multiple memory regions. Currently, developers are responsible for the correct

handling of the pointers returned by various libraries. Calling a library with a

pointer from another library can lead to information leaks (e.g., revealed keys) or

memory corruption (e.g., buffer overflow attacks). Therefore, it is crucial to provide a

form of memory region-level isolation to protect against pointer misuse, i.e., a

mechanism to ensure correct access to different memory regions only via their

respective library pointers.

5.3 Overview

Programming languages offer a well-known abstraction for directly accessing volatile

local memory, namely, the load/store model. In the context of this chapter we define

local memory as memory, which a user can access with load/store operations without

having to follow specific access patterns or API calls without it being considered a

programming error. The concept of pointers is a central part of this model, providing

ease of programmability.

Device libraries often expose pointers to DMA’ed memory regions to

programmers to enable zero-copy operations. While heterogeneous memory can be
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accessed over these pointers, due to device-specific implementations, additional

actions might be required, including reading and writing to specific memory

addresses before or after the data transfer and additional cache flushes. However,

this requires developers to use specific functions to access memory in a safe way, in

contrast of just accessing the memory. This, in turn, results in inconsistencies in the

developer’s mental model, as they have to interact with pointers, which in vastly

different ways. Additionally, the idiosyncrasies of each memory type (e.g.,

persistence granularity) as well as the different access patterns they require (e.g.,

writing to network queues) make both the unification of the various memory types’

interfaces and the memory type-specific runtime error-handling process quite

challenging.

5.3.1 The TOAST Approach

To provide similar levels of programmability, portability, and performance as those

offered by local memory, we propose TOAST. TOAST improves programmability and

portability by providing a well established interface along with a simple

configuration setup. Developers do not need to delve into library specific APIs and

mechanisms, as they can be provided through easily composable configuration files.

In that way, portability becomes easier as well, since the required modifications are

restricted to the TOAST configuration files. TOAST specific targets source code

portability and not binary portability, therefore a re-compilation is necessary when

deploying the application on a new platform.

TOAST introduces the concept of memory type, memory region and protection domain.

We define the memory type as a set of address ranges in an address space, which is

accessed in a uniform way, using a single set of API calls. A memory type may be

mapped to RAM, devices, or special memory like PM or trusted enclave memory. A

memory region is an address range in a memory type, e.g. the Tx/Rx queue for a NIC.

A protection domain is a set of access rights to address range mappings. Figure 5.1

shows the relationship between the different concepts.

TOAST refines (annotates) the pointer type with the memory type, thus creating a

separate pointer type for every memory type. It transparently injects code at compile

time, which at runtime calls the corresponding TOAST runtime library (see § 5.4.2) for

the annotated pointers to support normal dereferencing, while guaranteeing the right

order of library calls. On top of this, TOAST provides memory protection mechanisms

to prevent accidental memory mishandling due to programming errors.

With the definition of memory type and memory region, together with the

transformations the TOAST compiler does, TOAST is able to support any memory
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Function Description

write() Writes data to memory

read() Fetches data from memory

err_handler(stack,...) Called by the TOAST runtime library in case of an erroneous

memory access

Table 5.1: TOAST runtime library APIs

Memory    

Source Config

Toast compiler

Toast runtime

Host lib

Net lib

Storage lib

Enclave lib

Binary

Host mem

NIC

PMEM

Enclave

Error handler
registry

Error
handler 

ToastPtr
access Proxy lib

6

2
5

1

Protection

lib

3
4

Memory
management

wrapper

Figure 5.2: Overview of TOAST: The compiler creates the binary and links it with

the runtime libraries 1 . The binary dereferences a TOASTPtr 2 , which results in the

proxy library communicating through the protection library 3 with the devices 4 .

In an error case, the proxy library informs the error handler registry 5 , which collects

information for the error handler and calls it 6 .

type, which provides a load and store interface, be it through hardware instructions

or library calls.

TOASTPtr TOAST’s programming model is based on the fact that devices interact

with the CPU over the cache coherent interconnect with load/store operations. Most

programming languages offer these operations to the programmer in the form of

assignments, e.g., the operator ‘=’ in C. However, developers cannot use them

directly when they interact with devices, as devices are usually accessed via specific

low-level libraries. These libraries implement specific access pattern, to interact with

the device, to guarantee the correct behavior, e.g., persistence, atomicity.

A TOASTPtr is a pointer to a memory region. TOASTPtrs contain, in addition to

the address, the memory type as well as the protection domain, which enable TOAST

to check memory safety violations when a TOASTPtr is dereferenced. The TOAST

compiler transforms pointer (de)references to read and write calls to the TOAST

runtime library, which acts as a proxy layer between TOASTPtr operations and the

low-level runtime library for different devices.

Error handling Error handling is an integral part of any application. Pointers are

notoriously bad at communicating errors as they only have two states: the invalid
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null and the valid non-null. TOAST allows developers to register error handlers. In

case of an error, TOAST calls the respective error handler with a pointer to the

program’s call stack, a source code position, error information from the underlying

device and a pointer to internal memory, e.g., transmission buffers, hash values, etc.,

all of which can be used in the error handler to recover from an error or to collect

debug information.

An error handler returns one of the following states back to TOAST: retry signals

TOAST to just retry the last operation; continue means that the handler corrected the

error in the internal data and TOAST can return the corrected data to the calling code;

abort instructs TOAST to clean up the current action and return an invalid pointer to

the caller.

Device configuration In TOAST, the developer defines the device configuration

once. This configuration can be reused across different applications seamlessly,

provided that the TOASTPtrs referring to this device are annotated correctly in the

applications’ code. Thus, different projects can simply adopt and combine existing

TOAST device configurations, promoting generality and reusability. Precisely, the

device configuration includes (i) the memory type, (ii) the name of the memory type’s

proxy library, and (iii) a list of header files to locate the appropriate library functions.

Workflow Figure 5.2 presents the flow of an application using TOAST. The developer

provides the TOAST compiler with the source code and a configuration file containing

the necessary information for interacting with memory types.

Table 5.1 shows the API of TOAST after the compiler transformation. During

compilation, the pointer (de)reference operations are transformed into calls to the

TOAST runtime library 1 . A dereference of a TOASTPtr is lowered to a call to the

TOAST proxy library 2 , which performs necessary checks and preparations. Then, if

the TOAST protection mechanism is enabled by the user, the appropriate protection

checks and access rights management operations are executed 3 and TOAST calls the

underlying library 4 .

If the library returns normally, the TOAST proxy provides a pointer to the

underlying memory area to the user’s code, allowing the user to load or store data in

it. If an error occurs, the proxy library informs the error handler registry 5 , collects

the necessary information and triggers an error handling event 6 . The error handler

returns to the error registry either a retry, continue or abort indication, which is

forwarded to the proxy library. Finally, the proxy library returns to the user’s code

with either a valid or an invalid pointer.
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TOAST requires a device-specific implementation of its proxy library. However,

this effort has to be done once per DMA-capable device and is reusable across all

applications.

5.3.2 System Model

Fault model We assume that data is shared between different software

components, e.g., libraries. However, not all components are allowed to access all

data. We consider each memory region dedicated to a component to be part of a

protection domain. We also assume that accidental sharing of information across

protection domains, (e.g., without explicit pointer casting) is a critical fault.

Importantly, TOAST assumes that programmers do not have malicious intent and

only prevents inadvertent programming errors.

Programming model TOAST is designed for heterogeneous memory types with

different access semantics. We assume that the underlying system provides a unified

address space, i.e., the address itself does not contain information about the type of

memory it refers to. In the underlying system, memory is accessed via memory

type-specific interfaces, e.g., device-specific library APIs or specific CPU instructions,

not via direct, common assignment operations.

5.3.3 Example Revisited

We illustrate the TOAST programming model (Listing 5.3) using the simple example

from Section 2 that involves a network and a storage interface. In this example, the

programmer has to perform the network and storage management with different

interfaces and semantics. We observe that the actual task concerns only copying data

received through the network (e.g., sockets, NIC) to the storage (e.g., SSD, PM).

Listing 5.3 shows the example code of Listing 5.1 and Listing 5.2 transformed

with TOAST. It abstracts away the POSIX APIs, and the RDMA and PM library calls

as well as the device-specific operations (e.g., polling, cache flushing). The intended

logical functionality becomes unmangled from device-specific library calls, allowing

the programmer to focus only on the logical operations when programming and

debugging. TOAST relies on the configuration files to rewrite the simplified code and

produce the expected, correct binary.

To further emphasize the use cases of TOAST, we present another example of code

transformation, specifically showcasing the transformation when utilizing PMEM as

the underlying technology.
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1 write_int(int i, char * path):
2 [[storage]] int * ptr = init(path)
3 *ptr = int

Listing 5.4: Example code a programmer

would write with toast for persistently

storing an int.

1 write_int(int i, char * path):
2 ToastPtr<int> ptr = init_pmem(path)
3 ptr.write(i)
4 if ptr.is_persistent():
5 pmem_persist(ptr, sizeof(i))
6 else:
7 pmem_msync(ptr, sizeof(i))

Listing 5.5: The example code from

Listing § 5.4 after transformation from the

TOAST compiler for PMEM.

In Listing § 5.4, we provide a code example that a developer could potentially

write using TOAST. In line 3, the user annotates the pointer with the memory type

of storage. During the compilation step, the user specifies that the storage should be

PMEM.

After applying the TOAST compiler transformation, as shown in Listing § 5.5, the

code undergoes modifications. The pointer dereference is replaced with an explicit

write call, and the generated code ensures the persistence of the data.

5.4 Design

5.4.1 TOAST Compiler

TOAST requires pointer annotations for individual memory types. We extend the list

of attributes to support the namespace toast, which contains pointer annotations, and

the attribute toast::event for event handler callbacks, i.e., error handling. Each of these

attributes takes an additional user-defined parameter, which further specializes the

type of the TOASTPtr and event handler. Thus, TOAST lifts knowledge of the pointer’s

memory type into the type system.

The TOAST compiler initially collects a list of pointers which are annotated by the

programmer with an attribute introduced by TOAST. Then, it internally changes the

types of these pointers to TOASTPtr. Thereafter, it scans the AST for uses of the

pointers, differentiating between read and write accesses. This allows TOAST to

insert the corresponding read or write functions and checks for each memory type.

Additionally, the compiler understands a set of common memory functions, like

memcpy, memset, strcpy, which are replaced with optimized library functions,

providing the user familiar standard library functions with optimized

implementations.
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Changing the types of pointers may have further implications, e.g., the return

type or an argument of a function may change. The TOAST compiler tries to infer the

necessary changes. However, this is not always possible, since the entire code is not

visible to the compiler at the same time. The TOAST compiler identifies these

functions and creates a copy for every TOASTPtr type calling the specific function,

which is necessary as the libraries contain different read and write calls. This feature

also incentivizes code reuse, as the same function can be used for different memory

types, as the compiler will create a copy per memory type. The copies of the function

are transformed the same way as user-annotated pointer accesses. In cases where the

TOAST compiler cannot change the code itself, e.g., when the definition of the

function or the caller of the function is in a different compilation unit, TOAST requires

additional function signature annotations. The TOAST compiler further registers

functions which are annotated as error handlers with the error handler registry in the

runtime library.

TOAST allows users to define their own attribute parameters. Thus, a parameter

is not coupled to a specific technology and can be as generic as Network. The user

supplies the TOAST compiler with a configuration file that maps the parameters to

technologies. This file provides the compiler with information about which library

calls and checks to perform. By re-compiling the whole code base, the compiler can

find all code paths where a TOASTPtr of a specific type is used. Then, it scans the AST

to find patterns defined in the configuration and adds the necessary function calls and

checks.

5.4.2 TOAST Runtime Library

The runtime library implements a unified API for different memory types and inserts

necessary runtime checks. The implementation of the runtime library depends on the

configuration of the technologies chosen by the system designer.

The API is implemented once for each supported technology and can be reused in

different projects. To decrease the implementation effort, TOAST provides templates

for commonly used patterns, which can be combined and extended.

Furthermore, the runtime library contains a map of registered error handlers. The

runtime library invokes the error handler with appropriate parameters, handles its

return code and implements the retry and abort functionalities.

By factoring the low-level implementation into a runtime library (in contrast to

implementing it directly in the compiler), we increase the extensibility of TOAST, as

this makes the addition of a new device technology easier.
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Figure 5.3: TOAST protection mechanism: On a protection domain transition (green

and blue arrows) the appropriate capability checks or the enabling/disabling of

the access for a protection key are performed. TOAST further prevents access to

inappropriate protection domain (red arrows).

5.4.3 Protection Library

TOAST aims to prevent information leaks due to mixups between pointer types and

libraries. For this, TOAST defines protection domains inside the virtual address space

(VAS) of the application compiled with the TOAST compiler. We implement two

different versions of protection libraries in TOAST, shown in Figure 5.3.

The TOAST protection library intercepts every call that triggers a protection

domain transition, e.g., library calls, and TOASTPtr dereferences. Note that the

mechanism of the actual transition depends on the chosen configuration. The

protection library also introduces appropriate checks to determine the validity of

each memory access.

Memory safety model At protection domain transitions, TOAST checks pointers for

spatial and temporal validity, i.e., the pointer’s internal memory type matches the

memory type of the pointer’s address. Further, the pointer’s protection domain

should match the protection domain being transitioned into. TOAST prevents the

dereference of the provided pointer in case these conditions are not fulfilled. A

programmer can explicitly transform any pointer with a pointer type cast, thus

supporting zero copy approaches.

TOAST does not enforce memory safety within a library, as this would require

instrumenting every dereferencing operation within the library, which can cause

significant overheads. However, TOAST can increase the safety guarantee through its
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configuration, such as by enabling the MPK protection library, to enforce safety

inside the library as well.

At a protection domain transition, TOAST stores the current access rights and sets

the new access rights. The access rights are defined by a method-level manifest;

TOAST enables implicit access to memory owned by the protection domain as well as

to memory which was explicitly provided by the programmer, i.e., explicit cast.

Importantly, the transition is not limited by the access right of the caller, i.e. it does

not have to be a subset of the access rights of the caller. While not enforcing these

policies may seem counter-intuitive, we decided against them for two reasons. First,

TOAST does not protect against malicious behavior. Its goal is mainly to prevent

programming errors. Second, this allows simpler transitions in cases of call backs.

5.5 Implementation

5.5.1 TOAST Compiler

The TOAST compiler is built into the clang frontend (v. 16). TOAST leverages clang’s

code generation to hook its plugin and provide warnings and errors in case of a

misuse of its attributes. While this currently restricts our implementation to C/C++,

the described techniques are language independent.

Since different devices expose different APIs, the compiler has to deal with various

interfaces. The programmer provides the TOAST compiler with a json configuration

file, which instructs the compiler to replace specific TOAST annotations with calls to

their respective libraries. The compiler then can look up the library in an internal but

easily extendable database. This database includes the transformation rules and the

checks to be injected.

We integrate the fmt [181] library into clang for formatting rewrite rules and the

nlohmann/json [182] library for reading TOAST config files. The TOAST compiler adds

2217 LoC.

5.5.2 TOAST Runtime Library

We implement a set of templates for the TOAST runtime library. Using these, we

implement a networking wrapper based on eRPC [19] as well as a socket wrapper.

We further implement a wrapper for persistent memory operations provided by

PMDK [36] and a mmap wrapper with read and write semantics similar to PMDK.

Additionally, we implement normal file I/O and a wrapper for accessing untrusted

memory using OpenSSL [163]. To stay compatible with as many code bases as
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possible, the runtime library does not use any libraries except the C++ standard

library. The entire TOAST runtime library implementation is 1410 LoC.

5.5.3 TOAST Protection Library

On protection domain transitions, TOAST leverages the type system of the

programming language to encode information of the target memory type, which

allows TOAST to infer the original protection domain. To enable a programmer to

pass a pointer to a buffer to a different protection domain than the original, TOAST

provides a type cast between protection domains.

In programming languages that support modules [183], TOAST assumes that each

module is a separate library. However, for languages without modules (e.g., C/C++),

TOAST requires the user to provide information delineating libraries from each other.

This information is a list of regular expressions matching header file names for each

library.

Software-based capability storage Capabilities are an efficient method to perform

resource management and fine-grained access control, suitable for security-critical

systems [47, 49–55]. A capability is a reference to an object or resource together with

its access rights. When an application attempts to access a resource (e.g., memory,

storage) managed by a capability, the system examines the current capability rights

and permits the access or aborts the operation based on them.

In TOAST, every pointer in the user code gets transformed into a capability and is

represented as a capability object (CapObj). A capability has an epoch and an address.

TOAST leverages the fact that both x86 and ARM require the use of a canonical

pointer form and stores the epoch in the higher unused bits. Thus, the user code

cannot directly dereference a capability, as it is an invalid memory address. Further,

the address is still encapsulated in the capability and allows correct pointer

arithmetic operations.

TOAST’s capability protection mechanism splits the address into indices to a multi-

level table with configurable width, inspired by the design of a multi-level page table.

Each level of the table either includes metadata, i.e. a CapObj, to infer the access rights

and check whether the memory region was revoked, or a pointer to the next table

level. A CapObj contains (i) the epoch in which the memory region was created, (ii) its

access rights, i.e., read and write access, (iii) the prefix of the capability to convert it to

its canonical form, and (iv) a protection domain ID.

For a capability to be valid, its corresponding CapObj must have the same

protection domain ID as the capability. The capability’s protection domain ID is
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stored in its type and therefore does not add extra data to the runtime. Furthermore,

the epoch of the capability should be equal to the epoch of the CapObj, and the epoch

that is stored with every protection domain. This allows TOAST to perform fast

revocation of memory regions, and only requires deleting CapObj from the capability

storage in the event of an overflow of the epoch counter, which should happen very

rarely. Note that TOAST increments the epoch of a protection domain whenever it is

completely removed from the current execution, e.g., unloading the corresponding

library or re-initializing it.

Hardware-assisted protection MPK [46] is an x86 ISA extension that allows for

page-level access control. It leverages 4 bits of every page-table entry for a tag. The

allocation and release of a protection key as well as the page tagging operation

require elevated privileges and, therefore, are performed via system calls. However,

a process can change the granted permissions for the pages tagged with a specific key

in user space by updating a special register (PKRU).

TOAST assigns each protection domain its own memory protection key.

Additionally, every protection domain has its own unique allocator per application

thread. This implies that each library operates in different address ranges. TOAST’s

MPK-based protection library leverages this region segregation and intercepts the

allocation functions (e.g., malloc, realloc, free) as well as the mmap/munmap

operations. In this way, TOAST can tag the pages that a library allocates or maps with

the appropriate memory protection key.

On a protection domain transition, TOAST identifies the protection key of the new

protection domain and enables the access for the memory regions tagged with this

specific key while disabling the rest. Protection key 0 is an exception as it is never

disabled. It provides metadata essential for the program’s execution. With this

approach, an access to a memory region belonging to a different protection domain

results in a segmentation fault triggered by MPK. Since MPK’s access control is

thread-local, application threads can legitimately interact with different libraries

simultaneously.

Currently, TOAST supports up to 15 protection domains per application, equal to

the number of the available memory protection keys excluding the default one.

However, this limitation can be lifted with the use of software tools [184].

5.5.4 Allocation Wrapper

TOAST needs to reliably associate specific memory regions with specific protection

domains. To achieve that, TOAST makes the assumption that a protection domain
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Memory regions LoC

NIC Unprotected PM Enclave DRAM Original TOAST Difference

In-memory KVS ✓ ✓ 110 105 4.5 %

Replication protocol ✓ ✓ ✓ 893 852 4.6 %

Persistent log ✓ ✓ ✓ 123 120 2.4 %

Persistent KVS ✓ ✓ ✓ 225 182 19.1 %

Table 5.2: Toast case-studies (§ 5.6) with memory regions and LoC for the original

version compared with the TOAST version.

requests the resources it requires internally. Further, a memory region associated

with a specific protection domain cannot switch protection domains. However,

TOAST allows it to be unmapped and remapped in a different protection domain.

To this end, TOAST implements a mmap wrapper. The protection library sets a

thread local variable with the necessary information about the library, i.e., current

epoch, library ID and a callback to add information to a metadata structure (capability

storage or the page table, depending on the implementation in use) at every protection

domain transition. On a mmap or unmap call, the mmap wrapper reads data from

the thread local variable. It then calls the system’s mmap or unmap, respectively. In

the case of mmap/unmap returning successfully, the TOAST mmap wrapper calls the

callback together with the address, size, epoch and library ID. If the callback function

returns successfully the mmap wrapper returns to the library code.

Further, most libraries do not use the allocator that is linked to the application,

e.g. the libc allocator. This creates an additional challenge for TOAST, as a standard

allocator is not aware of different protection domains. Accordingly, TOAST instantiates

a separate allocator per protection domain. These instances do not share any data with

each other. TOAST wraps the malloc, realloc, aligned_alloc and free calls to branch to the

appropriate allocator instance.

Our implementation uses instances of the allocator mimalloc [185, 186].

Unfortunately, heaps created by mimalloc cannot be shared among threads. To

alleviate this issue, TOAST instantiates thread-local heaps for each protection domain

lazily whenever a new thread spawns. Thus, TOAST makes sure that protection

domain-specific data is located in pages owned by the respective domain. Note that

mimalloc also contains metadata headers that need to be accessible by the application

when reclaiming destroyed heaps or during application exit. Therefore, TOAST

currently permits access to this data throughout the execution. This is a limitation

imposed by mimalloc that can be resolved by using a multi-heap-capable allocator

that separates data from metadata [187].
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5.6 TOAST Case-studies

To evaluate TOAST, we port four real-world applications. Table 5.2 lists the memory

types they use. These applications are chosen as they represent a wide range of

applications using different memory areas.

Secure in-memory KVS The adoption of trusted execution environments (TEEs)

resulted in a redesign of secure KVSes [1, 2, 113] to place keys and values in different

memory areas to alleviate the memory restrictions of TEEs and improve their

performance. We port a secure in-memory KVS [2] that accesses both enclave

memory in TEEs and untrusted host memory. The in-memory KVS judiciously

partitions the keys along with the values metadata (enclave memory) and values

(untrusted host memory) using pointer-based data-structures, i.e., skip lists [22]. We

replace these pointers, which cannot easily be identified by a programmer as

potentially dangerous, with TOASTPtrs to manage the memory accesses of data in the

untrusted memory. The TOAST compiler will transform dereferencing of these

TOASTPtr into calls to a TOAST wrapper for the OpenSSL library, performaing

de-/encryption and necessary security checks on the keys in host-memory. This

transformation also changed the format of the metadata, as the details for proving

the integrity of stored value was lifted form the programmers responsibility to the

TOASTPtr.

Replication protocol Replication is a standard recipe for fault tolerance. To this

end, we adapt an implementation of the ABD replication protocol [138, 158], based

on the AVOCADO project [2], to TOAST. To provide a secure distributed in-memory

KVS, the secure network stack differentiates between the untrusted NIC and trusted

enclave memory. It further uses untrusted host memory to store a copy of the

requested values. We port the ABD implementation to use TOASTPtr for both the

network interface and the untrusted host memory buffers. Thereby, the TOASTPtr is

used for two different memory regions. Firstly, for the ring buffers of the NIC, that is

read and writes to the DMA’ed memory of NIC. The TOASTPtr, therefore request the

memory from the NIC and inform the NIC of new network packages. Secondly,

equivalent to the first case-study, the TOASTPtr together with an wrapper around

OpenSSL guarantees the confidentiallity and integrity of the stored host memory

buffers.

Persistent shared log Shared logs are used to establish the order of operations in

distributed systems [188, 189]. The distributed servers are able to read/write entries
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from/to the log, which is also replicated over multiple nodes, guaranteeing fault

tolerance. Our log application [179] uses sockets for network communication

between the system’s nodes and PM as storage. We port both to use TOASTPtr.

Thereby similar to the second case study we implement a TOASTPtr handling socket

communication, i.e. reads will receive data from the network port, while writes to the

memory pointed to by TOASTPtr will send the data to a specific network address. To

create the TOASTPtr we implemented an allocator like interface for network

communication. This allocator interface is not limited to socket communication. For

the persistent memory, TOASTPtr are used to append entries to the log. The

TOASTPtr call the a pmdk [36] wrapper when being dereferenced. Furthermore, we

also implemented a version which uses memory mapped files instead of persistent

memory.

Persistent KVS Persistent KVSs are used to store large amounts of data in storage

devices (e.g. HDDs, SSDs). On top of that, persistent KVSs require fast networking to

communicate with clients [16, 36]. Like storage technologies, network stacks have

shifted to user space [20, 33], which requires applications to differentiate between

pointers to storage, network devices, and normal memory. As our use case, we port a

MICA implementation [180] running with eRPC [19]. Here, we adapt the network

stack to use TOAST. Thereby, reads and writes to the TOASTPtr will be translated into

calls into send or receive calls into eRPC respectively.

5.7 Evaluation

We evaluate TOASTacross four axes: programmability (§ 5.7.2), performance (§ 5.7.3),

portability (§ 5.7.4) and protection (§ 5.7.5).

5.7.1 Experimental Setup

Experimental testbed We perform our experiments on a cluster of 5 machines with

Intel(R) Core(TM) i9-9900K CPUs, each with 8 cores (16 HT), 64 GiB memory, 32 KiB

(L1D, L1I), 256 KiB (L2) and 16 MiB (L3) caches, and Intel Corporation Ethernet

Controller XL710 for 40GbE QSFP+ (rev 02) NICs.

We measure the performance of the in-memory KVS from our case study and run

the micro-benchmark for the protection libraries on a machine with an Intel(R) Xeon

Gold(TM) 5317 CPU, with 12 cores (24 HT), 256 GiB memory, 512 KiB (L1D), 384 KiB

(L1I), 15 MiB (L2), 18 MiB (L3) caches, as the i9-9900K of our networking setup does

not support MPK.
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Methodology and baseline As explained in Section 5.6, we port four applications to

use TOAST. We measure TOAST’s overhead by comparing the performance of TOAST

versions to that of unmodified versions. We use the YCSB [18, 142] benchmark for the

replication protocol and the in-memory KVS. We perform experiments with various

read/write ratios (100%, 99%, 90%, 50%, 0% R) and different value sizes (128 B - 2 KiB).

For the persistent shared log and persistent KVS, we use benchmarks provided by the

applications themselves.

5.7.2 Programmability

Q1: How easy is it to design applications using the TOASTPtr abstraction? To answer this

question, we count the lines of code (LoC) modified in TOAST compared to the original

hand-written version for each TOAST use case (see Table 5.2).

The TOAST version reduces the number of LoC in every application by 2.4 % -

19.1 %. Moreover, TOAST simplifies or eliminates complicated function calls for buffer

resizing or message enqueueing.

Q1 takeaway: TOAST significantly reduces the number of LoC of an application.

However, our experiments show that TOAST’s benefits go beyond simply

reducing LoC: TOAST improves programmability by allowing the programmer

to manage various DMA-capable devices used in an application with the same

interface, instead of having to learn and employ device-specific APIs. Thus, the

developer can focus on the code’s logic rather than boilerplate library calls.

5.7.3 Performance

Q2: What is the overhead of using TOAST compared to manually optimized code? To answer

this question, we compare TOAST versions of our four applications to the

hand-optimized (unmodified original) versions by measuring their throughput (in

operations per second, Op/s).

Secure in-memory KVS We run the YCSB benchmark with 400 MOp over 10 M

distinct keys following a uniform key distribution with different read-write ratios.

In a read heavy workload (99 % reads), the overhead introduced by TOASTPtr is

2.8 % which increases to 11.9 % for write heavy workloads of 50 % writes and reads.

This overhead is mainly due to TOAST not caching decrypted data in the trusted

memory, but repeatedly decrypting it on every access. As a write can generate two

accesses to the same buffer, this effect is more noticeable in write intensive

workloads. TOAST’s overhead could be reduced by creating temporary objects with
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Figure 5.4: Overhead of TOASTPtr on the throughput of the replication protocol with

TOASTPtr being used for the networking or networking and unprotected memory in

the YCSB benchmark for different read/write ratios.

lifetimes greater than individual operations. However, we did not implement this

optimization in TOAST, as it affects synchronization among threads.

Replication protocol We compare the performance of the hand-optimized ABD

replication protocol to two TOAST counterparts. One counterpart uses TOASTPtr to

access the NIC to perform network communication, while the other additionally uses

TOASTPtr to access unprotected memory for its internal KVS. We run the YCSB

benchmark, with different read/write ratios (Fig. 5.4) and different value sizes (Fig.

5.5). We run the protocol on all five servers. The benchmarks were configured with

1.2 GOp over 2.5 M distinct keys following a uniform key distribution. We measure

the overhead of TOASTPtr on the performance of ABD for the read ratios of 99 %,

95 %, 90 %, and 50 % with a value size of 128 B. The overhead of TOAST for the

networking library is 0.84 % for a read ratio of 99 %, which shrinks down to 0.23 % as

the write ratio increases to 50 %. Using TOASTPtr also for the unprotected memory

increases the overhead to 13.2 % and 13.8 % for read ratios of 50 % and 99 %,

respectively. Like the secure in-memory KVS, the increased overhead of TOASTPtr for

unprotected memory is due to caching of data in protected memory in the

hand-optimized version of the ABD protocol.

The overhead of the NIC-only use of TOASTPtr is generally not affected by the

value size and is stable between 0.6 and 0.8 %, until the value size exceeds the MTU
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Figure 5.5: Overhead of TOASTPtr on the throughput of the replication protocol with

TOASTPtr being used for the networking or networking and unprotected memory in

the YCSB benchmark for different value sizes.

size (1500 B) of the network packets, e.g., at value size 2 KiB, the overhead is 1.5 %.

Exceeding the MTU size requires making an additional copy of each value (in eRPC)

to split it into multiple packets.

Shared log We run the shared log application with 1 server thread and 2 clients each

having 8 threads, the largest configuration the benchmark application allowed. The

entry size ranges from 64 B to 2 KiB. Figure 5.8 shows the throughput of both the

original and the TOAST version. TOAST performs on par with the original version for

all log entry sizes, with a mean performance difference of around 1.8 %.

Persistent KVS We measure the throughput of the persistent KVS using a server

application with 16 threads and 4 clients each with 16 threads to generate the

workload. We used a uniform key distribution and read-ratio of 0 %, 50 %, 100 %.

Figure 5.6 shows that the original and TOAST versions have similar performance.

Q2 takeaway: In general, TOAST introduces negligible performance overhead on

the ported applications (< 2.8 % relative to the original version). However, since

TOAST provides a generic programming model without specialized optimizations

(e.g., selective data caching), in some cases, higher overheads can be observed.
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Figure 5.6: Overhead of TOASTPtr version of persistent KVS compared to hand

optimized version for different read ratios.

5.7.4 Portability

Q3: How easy is it to switch underlying technologies with TOAST? To evaluate this, we

present two cases studies of the network and storage libraries. Recall that specialized

libraries are required to interact with the underlying hardware correctly. While we do

not change the underlying hardware in the first case study, we do change the

technology from a traditional OS stack approach to a user-level approach and in the

second we do switch the underlying hardware from a SSD to PMEM.

Network library We highlight the portability of the network stack from traditional

sockets to eRPC [19] for the persistent shared log. The TOAST version requires

changing 71 LoC while porting the original code requires changes in 141 LoC. This

50 % decrease occurs due to the different implementations of asynchronous calls

between the versions. TOAST’s 71 LoC can be reduced further by introducing a

unified asynchronous call interface in a future TOAST version.

Storage library We port the the same persistent shared log library from using

memory mapped files to using a PM library (PMDK [36]). The TOAST version

requires changes to 19 lines, all in the initialization phase. The hand-written port

requires the same changes and an additional 20 LoC in the storage backend logic,

including changing specialized memcpy and synchronization methods.
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Figure 5.7: Runtime overhead of TOASTprotection mechanisms w.r.t. to the native

execution for protection domain transitions performing a memcpy with various buffer

sizes.

Q3 takeaway: TOAST significantly simplifies the porting process of an application

to use a different underlying technology. Our experiments show that TOAST can

reduce the number of modified LoC by up to 50 %.

5.7.5 Protection

Q4: What are the implications and trade-offs, in terms of performance and safety, of TOAST’s

protection mechanisms?

To provide an answer, we evaluate the performance overheads introduced by the

capability- and Intel MPK-based protection mechanisms provided by TOAST (§ 5.4.3).

First, we design a microbenchmark that performs calls to a wrapped memcpy function

repeatedly through a linked library call, thus performing protection domain

transitions. Our microbenchmark uses two protection domains, while we expect to

see a slightly larger number of protection domains in real applications. Each memcpy

function call operates on memory regions accessible from the protection domain of

its call site. Additionally, we apply the protections mechanisms to the TOAST skip list

and shared log. Note that, like the MPK-based version, the capability-based version

is configured to provide protection guarantees at a page-size granularity in our

experiments.
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Figure 5.8: Throughput of shared log for different log entry sizes for with and without

protection library enabled.

Microbenchmark We configure our microbenchmark to copy 20 GB of data between

the protection domains. We can for example assume a file server reading the data from

a SSD and sending it to another server. We vary the copied buffer size to highlight the

cost of the domain transitions. Experiments with smaller buffer sizes require more

memcpy operations, and consequently, more transitions to the protection domain of

the linked library. We measure the total time required till all the data has been copied.

The presented results indicate the mean of 100 runs for each configuration setup.

Figure 5.7 illustrates the relative slowdown of the capability- and MPK-based

protection libraries compared to the native execution of our microbenchmark. For

small buffer sizes (16 B and 64 B), the capability protection mechanism is 4.46-4.81×
slower than the baseline. The respective values for the MPK version are 8.69-9.85×.

This large slowdown is caused by the frequent, short-running transitions between the

protection domains, which, in turn, results in more checks and pointer cleanups in

the capability version, and more costly updates of the PKRU that can lead to pipeline

stalls in the MPK version. However, as the buffer size increases, the TOAST protection

mechanisms induce lower overheads. When copies are performed at the granularity

of a page (4 kB), the overheads are 41 % and 60 %, for the capability- and the

MPK-based approach, respectively. Lastly, we observe that for even larger buffers

(64 kB and 2 MB), TOAST’s protection libraries incur only 1−7 % slowdown since the

domain transition overhead is dominated by the longer memcpy operations between

domain transitions.
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Figure 5.9: Overhead of different protection library implementation for the in-memory

KVS for various read ratios.

Shared log We run the shared log application with a setup identical to that of

§ 5.7.3. We divide the shared log application into a networking and a storage

protection domain, with the networking buffer having to pass through the protection

domain switch. To evaluate the overhead of the protection domain switch, we run

the benchmark in four configurations: the original shared log application, the same

application without TOASTPtr but with the protection library, the application with

TOASTPtr but without the protection library, and a configuration using both

TOASTPtr and protection library. We execute the experiments as described in § 5.7.1.

Figure 5.8 shows the overhead of the capability based protection library in the

shared log application. The capability protection library adds 2.2 to 2.5 % overhead to

the native solution. The capability protection library version even performs slightly

better than the unprotected TOAST version having 1.5 to 2.5 % higher average

throughput. The low overhead of the capability version in this application is

expected, as most memory is allocated by the user code and then supplied to

libraries. As the protection domains in TOAST are designed only to prevent

programming errors, not intentional sharing, most checks in this case are optimized

away, since the user explicitly allows the access via a cast.

Secure in-memory KVS We run the YCSB benchmark with 400 MOps sampled

uniformly from 10 M distinct keys. Figure 5.9 shows the overhead of the different

protection libraries for different read-write ratios, with a key size of 8 B and value
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size of 128 B. The capability version has an overhead of 1.5 % for the 99 % read

workload. With higher write ratios, the overhead shrinks to 0.3 %. The difference in

overhead of the capability version in read heavy workloads compared to write heavy

workloads is mainly due to read operations having to perform a full capability

storage lookup as the read buffer is provided by the library and therefore needs to be

transformed into a capability. However, write operations can assume a fast path as

the write buffer is allocated in the user code and the user explicitly provides the

buffer to the library. This does not require a costly lookup and rewriting of the

pointer. The MPK-based protection library version incurs a slowdown of 11.0 % to

37.3 % for the various workloads. We observe that the overhead decreases as the read

ratio increases. This is expected as the fewer put operations imply less frequent

memory allocations and a smaller application memory footprint which, in turn, leads

to fewer page tagging operations, which are expensive. (The number of PKRU

register updates depends only on the number of protection domain transitions, and is

the same for all read ratios.)

Q4 takeaway: TOAST allows developers to choose which protection mechanism

suits their application better depending on the memory access patterns and the

desired memory-safety granularity. The overheads of the mechanisms will vary

for each case but remain reasonable.

5.8 Related Work

OS memory management The OS provides drivers to communicate with

devices [190, 191] on the kernel side and sockets/file descriptors on the user space

side. However, modern systems prefer user space libraries to directly communicate

with the device and manage heterogeneous memory areas for improved

performance, as in DPDK [20], RDMA [33, 35, 175] and eRPC [19] for remote calls,

SPDK [16] for SSDs, or PMDK [36] for PM. However, there is no unifying abstraction

across these libraries.

Unified API efforts like oneapi [176, 192] focus on specific device classes, e.g.,

GPUs/FPGAs, and introduce one API per use-case. Likewise, memif [193] provides

OS services to speed up memory operations between heterogeneous memory areas.

Enclosure [194] uses a combination of a compiler pass and annotations to create

packages for legacy code, which gets isolated in contiguous memory regions.

Overall, prior approaches rely on a combination of compiler support and runtime

libraries. While our idea of unifying APIs is similar, TOAST goes further by lifting the

communication completely into the compiler and removing special API calls, while
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also considering the safety aspect.

Compiler-based memory management Compiler-based approaches are used in

shared memory systems to optimize memory accesses, e.g., UPC [195],

OpenMP [196], HPF [197]. Other research has looked into using DMA support in the

compiler for heterogeneous compute units [198] or compiler-based approaches for

secure memory management [199, 200]. The programming language Verona [201]

introduces concurrent access for separate memory types. Static analysis can be used

to determine if an object should be stored in slow SRAM or DRAM on cacheless

devices [202]. Other work [203] uses compiler transformations on data structures to

optimize them for heterogeneous memory types. However, none of these approaches

deals with different memory layouts and access patterns based on heterogeneous

memory types.

Software-based protection & isolation Traditionally, the OS enforces memory

isolation between different processes. Other works propose intra-process memory

isolation by introducing capabilities to memory areas and system calls to either

threads [204, 205] or objects which can be held by a thread [206]. Two other common

techniques to provide isolation are Software Fault Isolation (SFI) [207] and

Control-Flow Integrity (CFI) [208]. Other software-based approaches rely on

sandboxing to prevent illegal accesses, which cannot be proven correct

statically [209–211].

TOAST does not provide strict memory isolation between different components.

Instead, it aims at preventing erroneous sharing of sensitive data. It limits code

injection to protection domain transitions, and does not require every access to be

secured, reducing the amount of injected code and performance overhead, while also

being easier to integrate.

Hardware-based protection & isolation CHERI [55], IBM System 38 [212, 213],

M-Machine [214] and ARM MTE [215] are examples of hardware support for fat

pointers. Other hardware approaches are Page Groups, e.g. HP PA-RISC [216], Intel

MPK [217] and ARM Domains [218] that tag memory areas, and Mondrian Memory

Protection [219] that separates access rights from translation metadata. These

approaches can force access to specific memory regions to go through designated

access control gates, thus preventing erroneous accesses. Another hardware-based

approach is capability storage systems, such as Intel iAPX 432 [220] and

CODOM [221]. This is different from fat pointer schemes, as metadata is stored in

multi-level tables. In contrast to these approaches, TOAST capabilities do not require
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hardware support. Further, TOAST protection aims to unify the access APIs of

different kinds of memory, while maintaining easy-to-use for the programmer.

5.9 Summary

We present TOAST, a compiler-based abstraction for heterogeneous memory

management. TOAST builds on the observation that although accesses to

heterogeneous memory require different libraries with vastly different interfaces, all

interfaces essentially perform the same basic task of loading data from or storing data

to a memory region. TOAST makes this uniform for the programmer by introducing

the abstractions of memory types and the pointer type TOASTPtr, that work with

familiar load and store operations. Further, TOAST provides programmable error

handling callbacks as part of the programming model. Lastly, TOAST offers a

selection of protection libraries to prevent accidental memory handling errors by

developers. Our evaluation on four real-world applications shows that TOAST

improves programmability, offers memory safety, and eases the portability to new

libraries/memory types, with low to moderate overhead relative to hand-optimized

code.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the adoption of TEEs into their products, cloud providers have shown an interest

into providing a secure and trusted environment for their clients. Modern services

have high requirements in availability and scalability of their data storage, which is

in odds with the transient single node design of TEEs. This thesis looks at different

aspects of storage systems and how to overcome the limitations of TEEs to provide

scalable, available and persistent storage.

With SPEICHER we present a secure persistent single node KVS, which provides

three important security guarantees: confidentiality, integrity and freshness.

SPEICHER achieves these security guarantees by encrypting, integrity protecting and

hardening LSM tree data structures for the persistent storage. For freshness

SPEICHER provides an asynchronous trusted counter service on top of existing

trusted hardware counters, which allows SPEICHER to overlap its freshness

guarantees with persistence guarantees. Further SPEICHER introduces a in-memory

skip list design, which is split into a trusted and untrusted part, for the lower levels

of the LSM data structures, alleviating trusted memory pressure, while at the same

time allowing for fast lookup speeds. SPEICHER also provides a fast secure user space

direct I/O storage stack to access the persistent storage. These parts, i.e., the secure

skip list and the secure storage stack, reduce the performance overhead of SPEICHER

to a reasonable 15 to 35×.

AVOCADO similarly to SPEICHER provides a KVS, however in contrast to

SPEICHER it does not provide persistence, instead it focuses on scalability and

availability. AVOCADO’s in-memory KVS is based on SPEICHER’s skip list design,

however extends it for multi-threaded lockless writing and provides additional

meta-data storage to store a per key Lamport clock. We, further, observed that a
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non-BFT replication protocol, MW-ABD, can be harden with TEEs to provide secure

replication, since it allows us to model all possible attacks on the protocol as fault

crashes. To further harden the replication protocol and to increase the performance,

we designed a secure direct I/O network library with complete support for the

transport and session layer. Lastly, we build a CAS service which dramatically

decreases the latency of attestation for a new node, while also providing a convenient

way to provide the trusted nodes with their respectively configuration. AVOCADO

performs 4 to 65× better than BFT in our configuration while also providing

confidentiality and reducing the number of replica by f .

TOAST is a generic compiler-based abstraction for heterogeneous memory

management including TEEs’ memory models to improve programmability,

portability, and memory safety. It unifies the API for different libraries accessing

heterogeneous memory, by observing that the libraries fundamentally are based on a

load store semantic. TOAST, therefore, introduce the concept of a TOASTPtr which

works with the familiar pointer interface and an unified callback based error

handling mechanism. Further, TOAST increases portability due to a easily

configurable compiler pass and a proxy library. Additionally, TOAST provides

memory safety mechanism through a protection library, which prevents accidental

data leakage. TOAST performs similar to a hand-optimized version in our evaluation,

while improving programmability and portability and offering memory safety.

Each of these projects provides different tools to design a secure storage system. A

user can combine these projects, or parts thereof, to build their system depending on

their requirements.

6.2 Future Work

SPEICHER is a KVS that provides a limited set of query operations, such as range

queries. In order to support more complex query operations and transactions, it may

be necessary to redesign the log data structure and implement improved memory

management strategies. This is mainly due to two reasons: firstly, because the limited

amount of enclave memory available in Intel SGX version 1, on which SPEICHER is

based, may not be sufficient to store the temporary data required for tracking

transactions, secondly the transactions’ data structures have to be harden to provide

confidentiality, integrity and freshness.

AVOCADO shows that with the integration of a secure network stack, leaderless

fault crash replication protocols can be used in conjunction with TEEs to build a secure

distributed KVS. This leads to the assumption that leader-based replication protocols
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might also be adoptable to untrusted network.

Similar to SPEICHER, AVOCADO does not support transactions, which limits its

usefulness to certain applications and prevents it from being used as a general purpose

KVS replacement.

By combining the secure persistence traits of SPEICHER with the replication

protocol and advanced in-memory KVS of AVOCADO, a persistent distributed KVS

can be designed.

In addition to enhancing the capabilities of SPEICHER and AVOCADO by

combining them, there is also potential to extend them to support distributed

transactions. TREATY [4], which is based on SPEICHER, has already investigated the

use of SPEICHER for secure distributed transactions.

Another interesting area for future development is the support of file system

interfaces. SPEICHER’s fundamental building blocks are not limited to KVS, and

could potentially be used to support the storage and management of files and

directories.

Recent developments in TEE designs, such as the increased fast-access trusted

memory available in SGX v2, as well as the shift in TEE design philosophy towards a

virtual machine (VM) approach, also offer opportunities to reevaluate some of the

design decisions made in SPEICHER and AVOCADO. These changes may enable the

use of larger in-memory data structures and support for a larger software stack

inside the trusted environment, potentially enabling future projects to focus on

hardening the software stack rather than designing for low TCB TEEs like SGX.

TOAST currently only supports accessing data on a DMA area. However, more

and more specialized accelerators are introduced to speed up the processing of

specific tasks, such as GPUs and FPGAs. Many of these accelerators are

programmable. TOAST, however, does not have support for programming the

accelerators as it is designed with data only in mind. Further, the programmable

nature of these devices also results in dynamic access pattern changes, which TOAST

does not support. Future projects may explore ways to integrate programmable

accelerators into the TOAST environment.

The TOAST interface is based on a pointer abstraction, to instrument dereference

operations, but not all languages, such as functional languages, have a pointer

semantic. This raises the question of how TOAST could support these languages. One

idea might be to instead of using the pointer abstraction to instrument the data itself.

Many of the features explored by TOAST could also be used to provide safety for

a multi-tenant systems. For example, the indirection introduced by TOAST could be

used to add additional checks to ensure memory safety and prevent unauthorized
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access to memory regions. The memory regions defined by TOAST could be extended

to support multiple tenants, although a multi-tenant system is much more dynamic

than the heterogeneous memory system TOAST is designed for.

6.3 Code availability

For the source code of all three projects.

• SPEICHER’s code is based on a port of SPDK [16], DPDK [20] and RocksDB [17],

and an internal SCONE [40] version. We did not release SPEICHER’s source code,

as it contains source code from the SCONE project.

• AVOCADO’s source code is available under

https://github.com/mbailleu/avocado, it depends on a modified DPDK

version (available at https://github.com/mbailleu/SpeicherDPDK) and a

modifies eRPC version (available at

https://github.com/mbailleu/avocado-eRPC)

• TOAST is based on LLVM/clang [177, 178]. The source code for the TOAST’s

plugin, runtime, and protection library will be available at

https://github.com/TUM-DSE/toast after publication of the TOAST paper.

https://github.com/mbailleu/avocado
https://github.com/mbailleu/SpeicherDPDK
https://github.com/mbailleu/avocado-eRPC
https://github.com/TUM-DSE/toast


Appendix A

SPEICHER Algorithms

In this appendix, we present the pseudocode for all data storage and query operations

in SPEICHER.

Input: KV-pair which should be inserted into the store.
Result: Freshness of MemTable
/* Generating a block with the trusted counter */

hashBlock ← hash(KV, counterWAL + 1);
block← encrypt(KV, counterWAL + 1, hashBlock);
/* Writing the block to the persistent storage, before the trusted counter gets incremented */

writeWAL(block);
counterWAL ← counterWAL + 1;
/* Generating hash over the KV-pair for the Memtable */

hashKV ← hash(KV);
/* Trying to insert into the memtable, if the memtable is corrupted return a failure */

f reshness← putIntoMemtable(KV, hashKV);
return freshness

Algorithm 1: Put algorithm of SPEICHER
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Input: Key in the format of the KV-store
Result: Freshness of the KV-pair and Value
for level = 0 to numbero f levels do /* Check in each level if key-value is existend, from highest to

lowest */

if level = Level0 then /* First level lookup therefore lookup in MemTable */

path, value← lookupMemtable(key) /* It is possible that the value is empty, however

we still have to do a proof of non-existence */

foreach node ∈ path do /* Validate hash values of the trace to the leaf node */

if hash(node.le f t, node.right) ̸= node.hash then /* check that the hash value of the

child nodes is equal to the stored hash value */

/* The integrity and freshness proof failed */

return staleMemTable, value
end

end
return f resh, value

end
else /* Lookup in a level backup by SST files */

SST ← findSSTFile(level, key) /* Lookup over authentication structures similar to

MemTable */

block, value← lookup(SSTslevel , key);
if hash(block) ̸= SST.hashBlock(block) or !freshness(SST) then

return staleSST , value
end
return f resh, value

end

end
Algorithm 2: Get algorithm of SPEICHER

Input: KV-pair with the lowest key and callback method to the client
/* Build an iterator pointing to the first KV-pair */

iterator ← constructIterator(keymin);
next← True;
/* Call the provided function until the iterator is not valid anymore or a freshness proof failed or

the client request to end */

while isValid(iterator) and state = f resh and next do
state, value← Iterator.key_value;
next← callback(state, value);
Iterator ← Iterator.next;

end
Algorithm 3: Range query algorithm of SPEICHER
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Input: Start key
Result: Result of freshness proof or iterator
Function constructIterator(keymin)

/* Build an iterator for each level of the LSM pointing to the KV-pair or the next pair in the

level */

foreach level ∈ Level do
iteratorlevel ← lowerBound(level, key);
if iteratorlevel .state ̸= f resh then

return state
end
iterator.add(iteratorlevel);

end

end
Input: iterator
Result: Iterator points to the next KV-pair and freshness of the iterator
Function next(iterator)

/* Forward all iterators pointing to the current key */

foreach iteratorlevel ∈ iterator where iteratorlevel .key = iterator.key do
next(iteratorlevel);
if iteratorlevel .state ̸= f resh then

return iteratorlevel .state
end

end
/* Find the level iterator pointing to the lowest key */

for i = 0 to number_levels do
iter ← iterator[i];
if iter.state ̸= f resh then

return iter.state
end
if keylowest > iter.key then

keylowest ← iter.key;
level ← i

end

end
iterator.currentLevel(i);
return fresh

end
Algorithm 4: Iterator functions of SPEICHER
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Input: Manifest File
Result: Restored KV-store
/* Get the counter value of the first record in the manifest and check that the first record is an

inital record */

counter ← Mani f est. f irstCounterValue;
/* Iterate over all records in the Manifest */

foreach recordencrypted ∈ Mani f est do
record← decrypt;
hash← hash(record);
/* Check the records hash and counter value, if they do not match, report an error to the client

*/

if hash ̸= record.hash then
return Hash does not match

end
if counter ̸= record.counter then

return Counter does not match
end
/* If hash and counter match apply the change to the KV-store */

apply(record);
inc(counter);

end
/* Check if the last counter in the Manifest matches the trusted counter, if not report an error to

the client */

if counter ̸= tusted_counterMani f est then
return Counter does not match

end
/* Get the current WAL and its initial counter value from the Manifest */

counter ← Mani f est. f irstWALCounter;
/* Apply each record of the WAL to the KV if the counter and hash are correct, similar to the

Manifest */

foreach recordencrypted ∈WAL do
record← decrypt;
hash← hash(record);
if hash ̸= record.hash then

return Hash does notmatch
end
if counter ̸= record.counter then

return Counter does not match
end
apply(record);
inc(counter);

end
/* Check if the last counter value is the same as the trusted counter */

if counter ̸= trusted_counterWAL then
return Counter does not match

end
/* KV-store was successfully restored and no integrity or rollbacks problem were found */

return Success
Algorithm 5: Restore algorithm of SPEICHER
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Input: SSTable file to be compacted one from leveln
Result: Multiple SSTable files for leveln+1
// Creating an Iterator over the higher level SSTable file create a new file and a new data block

iteratorn ← createIterator(SSTablen);
NewSSTable← createNewSST();
block← createNewBlock();
last_key← iteratorn.key− 1;
// As long as their are KV-pairs remaining in the SSTable open the SSTable file in the next level which has the range of the smallest

possible next key based on the last key compacted. while has_next(iteratorn) do
SSTablen+1 ← findSSTFile(n + 1, last_key + 1);
iteratorn+1 ← createIterator(SSTablen+1);
// As long as the currently open SSTn+1 file has KV-pairs find the smaller next key of SSTn and SSTn+1 file. If both have the

same next key choose from SSTn file.

while has_next(iteratorn+1i) do
iteratormin ← min(iteratorn, iteratorn+1);
// test if the key value is still fresh, that is check the hash of the block compare in the SSTable file hash footer and check

against the Manifest

if iteratormin ̸= f resh then
// If the key value is not fresh return error to client

return iteratormin.state
end
// Add key to block, if the block is then over the size limit for blocks calculate a hash add the hash to the footer of the new

file and write the block to persistent storage, and create a new block

block.add(iteratormin.kv);
if size(block) > block_size_limit then

hash← hash(block);
encrypted_block← encrypt(block);
NewSSTable.write(encryptedblock);
NewSSTable.addHash(hash);
// If the file reaches the size limit after an append, write the footer to the storage and create a new SSTable

if size(NewSSTable) > SSTable_size_limit then
NewSSTable.writeFooter();
NewSSTable← createNewSST();

end
block← createNewBlock;

end
last_key = iteratormin.key;
next(iteratormin);

end

end
// After compaction, flush the block & write the footer. hash← hash(block);
encrypted_block← encrypt(block);
NewSSTtable.write(encrypted_block);
NewSSTable.addHash(hash);
NewSSTable.writeFooter();
// Write the changes to the Manifest file.

Manifest.remove(SSTn, SSTn+1inrangeofSSTn);
Manifest.add(∀NewSSTfile);

Algorithm 6: Compaction algorithm of SPEICHER
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