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Abstract

Distributed data management systems such as transactional databases, fault-tolerant

Key-Value stores (KVs), and shared logs are extensively deployed in the third-party

cloud infrastructure as the foundational systems to support various online applications

(banking systems, e-commerce, serverless computing, healthcare, etc.). From a high-

level overview, distributed data management systems are comprised of three layers:

the application layer that exposes programming APIs with various semantics (transac-

tions, KVs operations, etc.), the platform layer that implements decentralized protocols

to support these APIs and the infrastructure layer that includes the data and storage

systems as well as the network infrastructure.

Unfortunately, due to the untrusted nature of the third-party cloud infrastructure,

these systems are susceptible to various threats, making it challenging to offer security

and privacy for users’ data and operations. More specifically, it has been shown that

malicious adversaries can gain control, monitor, and tamper with the software system

stack of the entire cloud infrastructure (including the OS and hypervisors). Such a

powerful attacker can compromise the efficiency (performance and availability), the

correctness (consistency), and the security properties of widely used distributed data

management systems. Significantly, the vast majority of these systems in the cloud

are not shielded against such privileged attackers, allowing for users’ private data and

operations to be leaked (non-confidential access), compromised by integrity violations,

and impersonated (equivocation-based and non-authenticated execution).

In this thesis, we leverage the performance and security capabilities of modern hard-

ware in the cloud infrastructure to design robust and high-performance distributed sys-

tems with strict security properties (i.e., confidentiality, integrity, freshness, Byzantine

Fault Tolerance (BFT), etc.). Precisely, we explore the potential of the advancements in

trusted hardware (i.e., trusted execution environments (TEEs)) and high-performance

networking (direct I/O and SmartNICs) to shield and optimize the platform and infras-

tructure layers in various commonly used distributed systems while exposing powerful

semantics to users (application layer).

To this end, we design and build three systems, TREATY, RECIPE and TNIC, lever-

aging the state-of-the-art modern hardware in cloud, TEEs, direct I/O and SmartNICs.

Specifically,

• TREATY is a secure distributed transactional KV store for untrusted cloud environ-

ments that offers high-performance serializable Txs with strong security proper-

ties: confidentiality, integrity, and freshness against rollback attacks. To achieve

that, TREATY implements a secure substrate on top of TEEs and builds a secure
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distributed atomic commit protocol based on the two-phase commit and a sta-

bilization protocol for the committed transactions for ensuring crash consistency

and rollback resilience across the participating machines.

• RECIPE implements a performant generic hardware-assisted transformation of

replication protocols under the crash-fail model for the Byzantine infrastructure

that experiences arbitrary failures. We build RECIPE on top of TEEs and direct

network I/O to bypass kernel but further avoid the TEE’s expensive system calls.

In addition, RECIPE can seamlessly extend the security properties handled by

traditional BFT systems, offering confidentiality for the executed protocol and

accessed data.

• TNIC, inspired by the findings and our experiences from the previous systems,

concludes the thesis. TNIC designs a trusted NIC architecture for building trust-

worthy distributed systems, overcoming the challenges (performance, programma-

bility, and security vulnerabilities) raised by the heterogeneous and untrusted

(Byzantine) cloud infrastructure. TNIC implements a minimal, unified, and for-

mally verified trusted computing base (TCB) on top of SmartNICs. TNIC TCB

guarantees powerful security properties to ensure a scalable transformation of

crash-fail systems to BFT ones.
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Lay summary

Distributed data management systems (e.g., transactional databases, fault-tolerant

Key-Value stores (KVs), etc.) are massively deployed in the third-party cloud infras-

tructure as the foundational systems to support various online applications (banking

systems, e-commerce, serverless computing, healthcare, etc.).

Unfortunately, the third-party infrastructure is untrusted and prone to a wide range

of attacks and failures that can compromise the security properties and the correctness

semantics of the executed system. Specifically, powerful adversaries can gain control

over the entire system stack of the cloud infrastructure, including the privileged code

(OS and hypervisors). Such adversaries can compromise the security properties of

users’ private data and operations in various ways, i.e., data leakage (non-confidential

access), integrity violations, forking and replay attacks, as well as impersonation-based

attacks where the adversary attempts to “participate” in the distributed system and

convince it to take the wrong decisions.

In this thesis, we leverage modern hardware’s performance and security capabilities

in the cloud infrastructure to show that the seemingly contradictory objectives of secu-

rity and performance are no longer mutually exclusive in distributed data management

systems. Precisely, we explore the potential of the advancements in trusted hardware

(i.e., trusted execution environments (TEEs)) and high-performance networking (di-

rect I/O and SmartNICs) to shield the system (i.e., confidentiality, integrity, freshness,

Byzantine Fault Tolerance (BFT), etc.) while offering performance.

To this end, we design and build three systems, TREATY, RECIPE and TNIC, lever-

aging the state-of-the-art modern hardware in cloud, TEEs, direct I/O and SmartNICs.

Specifically,

• TREATY is a secure distributed transactional KV store for untrusted cloud envi-

ronments that offers high-performance serializable Txs with strong security prop-

erties: confidentiality, integrity, and freshness against rollback attacks. TREATY

builds a secure distributed atomic commit protocol for secure transactions’ exe-

cution and a stabilization protocol for crash-consistency and rollback-resilience

for the committed data.

• RECIPE implements a generic hardware-assisted transformation of replication pro-

tocols under the crash-fail model for the Byzantine infrastructure that experi-

ences arbitrary failures. To achieve that, RECIPE builds a performance efficient

distributed trusted computing base (TCB) on top of TEEs and direct network I/O

while showing that it can also offer confidentiality, an extra security property that

is not offered by traditional Byzantine Fault Tolerant (BFT) systems.
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• TNIC builds a trusted NIC architecture for building trustworthy distributed sys-

tems for the heterogeneous and untrusted (Byzantine) cloud infrastructure. TNIC

implements a minimal, unified, and formally verified trusted computing base

(TCB) on top of SmartNICs, exposing generic yet powerful networking primitives.

Significantly, TNIC is CPU-host agnostic, while its minimalistic and unified API

improves its adoption to the untrusted cloud for transforming crash-fail systems

to BFT ones.
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Chapter 1

Introduction

1.1 Motivation

Distributed data management systems [50, 71, 82, 216], launched by all major cloud

providers (e.g., Google, Amazon, Microsoft Azure, Facebook, etc.), are yet to resolve

the challenges of scalability, consistency, availability and efficiency that are raised by

the ever increasing amounts of data stored and processed in the cloud. These sys-

tems distribute and process the owning data in a decentralized manner across a set of

distributed cooperating machines and manifest in the third-party cloud computing in-

frastructure in various forms ranging from transactional databases [265, 71, 82, 69], to

(replicated) Key-Value stores (KVs) and storage systems [271, 186, 88, 250], processing

platforms and logs [330, 33, 86, 41, 282], etc.

Distributed (data management) systems commonly follow a layered design. From a

high-level overview, they are comprised of three layers: first, (1) the applications layer

that exposes a programming API to users (e.g., transactions, KVs and network opera-

tions, etc.). Right below the application layer, the systems build (2) the platform layer

which implements distributed algorithms or protocols to coordinate and synchronize

the computation between the distributed participating machines. Lastly, the platform

layer is built on top of (3) the infrastructure layer that is comprised of the data and

storage infrastructure as well as the network infrastructure.

These systems are the foundational building block for numerous examples of online

cloud applications (e.g., banking systems [319, 111], e-commerce [93], Function-as-

a-Service (FaaS) platforms [7, 19, 52], blockchain systems [11, 46], healthcare sys-

tems [107, 55], and others [230, 90, 145]). However, their ever-increasing cloud

adoption poses serious security challenges. In the third-party cloud infrastructure, the

cloud provider has full access to the hardware and software stack, including the oper-

ating system (OS) and the hypervisor. This privileged control allows the cloud provider

1
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to intercept all three layers of the cloud system stack by monitoring and controlling all

data and network transfers, systems’ computation (protocols) as well as users’ stored

data and operations.

Following this, a potential attacker can tamper and manipulate the entire dis-

tributed system not only by disrupting its (correct) execution and causing arbitrary

(Byzantine) failures but also by posing security and privacy risks for the users’ compu-

tation and data. Examples of such malicious attacks include breaches of confidentiality,

integrity, and data freshness in storage systems [98, 122, 78, 275, 112, 177]. For in-

stance, hackers breached AT&T’s systems, stealing personal data of current and former

customers, such as social security numbers, account numbers and passcodes [28]. The

data breach is the latest cyberattack AT&T has experienced since a leak in January

2023, that affected nine million users. AT&T is currently facing the threat of multi-

ple class action lawsuits. Along the same lines, these powerful attackers can cause

arbitrary Byzantine failures, that, especially in an untrusted cloud environment, they

can become the norm. For example, malicious adversaries can deliberately introduce

further Byzantine failures by intentionally compromising the system stack, tampering

with data, the network traffic and system operations [240], or injecting bugs into the

system code [255, 346] and others [42, 226]. Such failures and security violations can

have dramatic consequences. For instance, a single malfunctioning NIC at Los Ange-

les International Airport stalled immigration for more than 12 hours [1], while data

breaches—common occurrences [138, 98]—allow unauthorized access to private user

data.

Unfortunately, widely adopted data management systems are designed by principle

to blindly trust the cloud provider and the infrastructure [265, 69, 354, 86, 236, 103].

As such, they cannot maintain the security and correctness properties in the examples

we have discussed before. In other words, they are fundamentally incapable of ad-

dressing the privacy and security concerns as well as maintain their correctness in the

presence of privileged attackers that can control and compromise the untrusted cloud

infrastructure [274, 122]. To this end, it is imperative to architect secure distributed

systems that maintain their performance, scalability, and correctness or consistency

guarantees, while also enabling the hosting of sensitive data and workloads in un-

trusted cloud infrastructures—currently hindered by the broad surface of threats and

attacks.

A promising design direction to build robust high-performance and privacy-

preserving distributed systems for the untrusted cloud is the use of cloud’s mod-

ern (trusted) hardware. The state-of-the-art trusted execution environments (TEEs),

streamlined by all major CPU manufacturers [24, 23, 148, 15, 184], provide an isolated



1.2. Problem Statement 3

secure memory region that remains protected against all types of (privileged) software

attacks, opening up opportunities to enforce strict security properties in cloud applica-

tions. Similarly, direct network I/O stacks [209, 150] that bypass the OS kernel net-

work stack, as well as the emerging SmartNICs devices [194, 317, 47] that offload net-

work processing in the NIC-level hardware, both present great opportunities for high-

throughput and low-latency network operations that is at the core of any distributed

system. Given their premises, modern cloud hardware—TEEs [114, 68, 219, 217], di-

rect I/O stacks [36, 34, 246, 161] and SmartNICs [10, 32, 59]—have been adopted

by major cloud providers and constitute excellent design choices for improving the

performance and the security aspects in distributed systems in the cloud.

However, this modern hardware presents conceptual and architectural challenges

when building a distributed system. Importantly, TEEs are designed for local transient

processes providing no security guarantees across the system’s platform and infrastruc-

ture layers that are distributed over the untrusted network. At the same time, while

TEEs themselves have a critical performance impact on (syscall-based) networking and

storage operations, they are also not compatible with modern direct I/O stacks and

have very limited trusted memory availability for storing data. Lastly, SmartNICs are

designed for performance but cannot naturally offer foundational security primitives

required to shield a (networked) distributed system.

To this end, this thesis raises the challenging question of how to modernize the

distributed data management system stack leveraging the advancements in modern

cloud hardware to offer both performance and dependability (security and robust-

ness). As such, we identify three questions we seek to resolve: (1) How to extend the

trust provided by TEEs over the untrusted network and untrusted storage to offer se-

cure distributed transactions, a powerful programming primitive. (2) How to provide

a generic, high-performance seamless transformation, a recipe, on top of TEEs and the

state-of-the-art networking to strengthen the fault model of the widely deployed repli-

cated systems that set the foundations for fault-tolerance and availability. Lastly, (3)

how to provide a foundational secure, CPU-agnostic, and high-performance network

abstraction for the heterogeneous untrusted cloud to allow system designers to build

trustworthy distributed (networked) systems.

1.2 Problem Statement

Distributed transactions (Txs) with ACID (Atomicity, Consistency, Isolation, Durability)

properties offer a powerful programming abstraction allowing system designers and

users to transparently process and store (commit) massive datasets. Offloading Txs in
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the untrusted cloud causes severe security implications for the stored data and exe-

cuted operations. As such, re-designing the distributed transactions mechanism with

TEEs for building a secure distributed KVs for the untrusted cloud seems a promising

solution to offer ACID Txs with confidentiality (i.e., Txs and data can only be accessed

by authorized entities), integrity (i.e., unauthorized changes to the operations and data

can be detected), and freshness, (i.e., stale state can be detected). However there are

two challenges we need to take care of: (1) how to overcome the architectural limi-

tations of TEEs to extend their security properties across the network while targeting

performance and (2) how to ensure that distributed committed transactions remain

secure and crash-consistent and cannot be reverted in case of rollback attacks.

For handling failures, distributed data stores employ Crash Fault Tolerant (CFT)

replication protocols. However, CFT protocols assume that the trusted infrastructure

and the participant nodes are trusted and honest. As such, they cannot provide con-

sistent replication when they are hosted in the (Byzantine) untrusted cloud infrastruc-

ture that is subject to arbitrary failures. While conventional Byzantine Fault Tolerance

(BFT) protocols ensure secure replication in such settings, they are extremely costly

and complex to understand. Combining the two prominent technologies, i.e., TEEs for

robustness and direct network I/O for performance seems a promising design choice

to resolve the tension between security and performance. However, to provide high-

performance robust replication protocols for practical deployments in the untrusted

cloud, we need to address these two challenges: (1) how to use TEEs along with direct

I/O to build an efficient distributed trusted computing base for the executing protocol

and (2) how to materialize an approach that is as efficient as generic to aid system

designers in easily transforming existing CFT protocols for Byzantine settings without

having to be BFT experts.

TEEs are without any doubt a promising solution to build trustworthy distributed

systems. However, we have identified three core challenges that complicate their

widespread adoption in the cloud. First, cloud TEEs are heterogenous with differ-

ent programming models and libraries and varying security properties. As such, they

introduce programmability and security challenges that make it hard to combine het-

erogeneous TEEs to build a distributed system. Secondly, TEEs come with large trusted

computing bases (TCBs). Unfortunately, TEEs’ large TCBs are plagued with security

vulnerabilities and cannot be verified. Lastly, based on our empirical experience, we

have noticed that TEEs are limited in performance while they require sophisticated

optimizations in the lower-level system stack to be used effectively. To this end, we

seek to resolve all these challenges by providing a silicon-root-of-trust at the network
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interface (NIC) level that offers a minimal TCB with powerful security properties while

being CPU-agnostic and offering a unified programming interface.

1.3 Approach and Contributions

In this thesis, we leverage modern cloud hardware, i.e., TEEs and state-of-the-art net-

working technologies to design and build fundamental distributed data management

systems for the untrusted cloud that offer a variety of different programming and con-

sistency semantics with strong dependability, security and performance properties.

Figure 1.1 presents an overview of this thesis contributions. Inspired by the ques-

tion of how to leverage modern hardware to provide robust and high-performance

distributed systems, we design and build three foundational projects: TREATY [109],

RECIPE and TNIC. Each of the projects leverages (a combination of) modern hardware

technologies to design and build:

• (1) foundational semantics in the cloud application layer with strict security

properties, e.g., (i) secure distributed transactions (TREATY), (ii) secure KVs op-

erations (RECIPE) and (iii) secure networking operations (TNIC).

• (2) secure and high-performance distributed protocols and system stacks in

the platform layer, e.g., (i) a secure distributed atomic commit protocol and

a transactional engine (TREATY), (ii) a generic distributed trusted computing

base (TCB) to transform distributed replication protocols for Byzantine settings

(RECIPE) and (iii) a unified, CPU-agnostic, system stack for trusted RDMA oper-

ations (TNIC).

• (3) secure and fault tolerant infrastructure (storage and network) layer,

e.g., (i) a distributed authenticated log-structured merge tree (LSM) KVs for

the untrusted persistent storage (TREATY), (ii) a (hybrid) in-memory strongly

consistent distributed KVs for Byzantine settings with confidentiality guarantees

(RECIPE) and (iii) a trusted NIC architecture that offers a minimalistic and veri-

fiable silicon-root-of-trust on top of SmartNICs (TNIC).

More precisely, TREATY is a secure distributed transactional KV store for untrusted

cloud environments that offers high-performance serializable Txs with strong security

properties: confidentiality, integrity, and freshness against rollback/forking attacks.

TREATY builds hardware-assisted secure Txs with Intel SGX. Specifically, it realizes a

secure substrate consisting of a secure network library, a secure Tx engine, a memory

allocator, and a userland scheduler for low-latency operations. With this substrate, we
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build a shielded distributed two-phase commit (2PC) protocol with a direct I/O net-

work library on top of eRPC [162] and DPDK [150] that allows TREATY to bypass the

OS kernel for networking and optimize performance. Further, we design a stabilization

protocol for transactions to ensure that committed transactions are crash-consistent

and rollback-protected. TREATY’s stabilization protocol is built on top of two trusted

services: an asynchronous trusted counter interface and a distributed attestation ser-

vice.

We implement TREATY’s distributed storage layer extending a secure version of

RocksDB [271] (SPEICHER [39]) that served as the underlying storage engine. Our

evaluation with the YCSB and TPC-C shows reasonable overheads for TREATY, e.g., up

to 15× and 5× for distributed and single-node transactions, respectively, while provid-

ing strong security properties.

RECIPE builds a hardware-assisted transformation of Crash Fault Tolerant (CFT)

protocols to tolerate (Byzantine) arbitrary failures without any modifications to the

core of the protocols, e.g., states, message rounds, and complexity. We realize our ap-

proach by building a distributed TCB as a library leveraging modern cloud hardware.

We use TEEs (Intel SGX) to guarantee the two security properties of the transferable au-

thentication and the non-equivocation for preventing Byzantine faults. We additionally

combine trusted hardware with direct network I/O [209, 150] to improve performance

but also propose generic RECIPE APIs for the transformation.

We further show that RECIPE can easily offer confidentiality that is not provided by

traditional BFT protocols while we provide a correctness analysis for the safety and live-

ness of our transformation of CFT protocols operating in Byzantine settings. Lastly, we

use RECIPE to successfully transform a range of leader-/leaderless-based CFT protocols

enforcing different (total order/per-key) ordering semantics. We present an extensive

evaluation of four RECIPE-transformed CFT protocols: Chain Replication, Raft, ABD,

and AllConcur. Our evaluation shows that RECIPE achieves BFT while outperforming

the state-of-the-art BFT systems up to 24× better throughput.

TNIC is a trusted NIC architecture for building trustworthy distributed systems

deployed in heterogeneous, untrusted (Byzantine) cloud environments. TNIC imple-

ments a minimal, unified, formally verified, high-performance silicon root-of-trust on

top of SmartNICs [317]. Precisely, it builds a host CPU-agnostic verifiable trusted com-

puting base (TCB) to guarantee the two foundational properties of transferable authen-

tication and non-equivocation that suffice to build BFT protocols [67]. We designed

TNIC hardware architecture, an associated network stack as well as a generic set of

programming APIs and a recipe for building high-performance, trustworthy, distributed
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systems for Byzantine settings. We formally verify the safety and security properties of

our TNIC system while demonstrating how we leverage TNIC for building four trust-

worthy distributed systems: A2M, BFT, Chain Replication, and PeerReview—showing

the generality of our approach. Our evaluation of TNIC shows up to 6× performance

improvement compared to CPU-centric TEE systems while providing a low TCB with

provable security properties.

1.4 Thesis Outline

In the following chapters, we will introduce the background (Chapter 2), and provide

an in-depth look at each of the three projects: TREATY (Chapter 3), RECIPE (Chapter 4)

and TNIC (Chapter 5). The thesis will conclude in Chapter 6.



Chapter 2

Background

This chapter summarizes the foundational concepts upon which the thesis projects are

built. We design and build various distributed systems, e.g., from transactional stor-

age systems and Key-Value stores (KVs) to replication protocols, that offer improved

security and performance properties by leveraging the advancements in modern hard-

ware. We chose to implement these systems as they are widely adopted as generic

building blocks for various online services and are offered by major cloud providers

(e.g., AWS S3 [14], Google Cloud Storage [113], DynamoDB [82], ZippyDB [353],

CockroachDB [69], Spanner [71], etc.). As such, we first present an overview of the

distributed data management systems (§ 2.1) that are explored in this work. Next,

we discuss the state-of-the-art trusted hardware, i.e., trusted execution environments

(TEEs) in § 2.2, which is the foundational building block for providing security in this

thesis. Following this, we present an overview of the high-performance networking

technologies (§ 2.3). Lastly, we present an overview of the storage system (§ 2.4) that

implements the data layer in TREATY project.

Section § 2.1.1 discusses the concepts of the distributed transactions and the trans-

actional Key-Value stores (KVs) on top of which we build TREATY project in Chapter 3.

Section § 2.1.2 provides a taxonomy of the replication protocols deployed for fault

tolerance in modern data stores on top of which we build RECIPE in Chapter 4.

Section § 2.2 discusses the state-of-the-art trusted hardware, i.e., trusted execution

environments (TEEs). We cover the technologies of Intel SGX (§ 2.2.1) and remote

attestation (§ 2.2.2) used in TREATY and RECIPE while we also discuss the AMD-sev

TEE (§ 2.2.1) which is referenced in TNIC project in Chapter 5.

Section § 2.3 presents an overview of the high-performance networking technolo-

gies focusing on direct I/O network (§ 2.3.1) stacks for TREATY and RECIPE as well as

the SmartNIC devices (§ 2.3.2) on top of which we build TNIC.

Lastly, we discuss the SPEICHER storage system [39] (§ 2.4.1) on top of which we

9
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build TREATY.

2.1 Distributed Data Management Systems

Due to the increased demand for data storage and processing in the cloud infrastruc-

ture, a variety of distributed data management systems have emerged [71, 265, 336,

80]. These systems are crucial to the cloud infrastructure because they efficiently re-

solve the challenges of reliability and availability, scalability, and performance while

hiding all implementation complexities of distribution, consistency, and fault tolerance

from the users.

Traditionally, the majority of these systems is comprised of a set of distributed ma-

chines or nodes connected over the network that follows a layered design shown in

Figure 2.1. The application layer exposes a user interface to external clients with a va-

riety of operations. The platform layer implements protocols that materialize various

levels of consistency, availability, and performance across the distributed participant

nodes. For example, depending on the level of trust in the cloud provider, the imple-

mented protocols might necessitate additional machines in their system model (Byzan-

tine Fault Tolerance [57]) or costly operations such as data encryption and integrity

checks. These can impact scalability, throughput, and latency. Lastly, the infrastruc-

ture layer is comprised of storage engines that store the user data and the network

infrastructure that implements the network and data link layer.

However, these systems fail to provide the required performance, consistency, and

availability guarantees in the modern untrusted cloud infrastructure because they are

designed to unquestioningly trust the cloud provider and the entire cloud infrastructure.

This thesis solves this limitation by presenting distributed data management systems re-

designed with TEEs and networking technologies to resolve the tension between per-

formance/scalability and security while remaining correct, i.e., consistent when hosted

in the untrusted cloud infrastructure.

2.1.1 Distributed Transactional Key-Value Stores

Distributed transactions (Txs). Distributed Key-Value (KV) stores [179, 223, 75, 45,

69, 353] (KVs) reliably store and process large datasets by offering transactional (Tx)

APIs. A transaction is a set of operations that atomically processes pieces of data in an

“all-or-nothing” manner; either all of the operations complete successfully, or none of

them succeeds and the data remains intact. Similarly, a distributed transaction is a set

of operations that atomically process data that might be stored on different machines

connected over the network.
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Figure 2.1: Overview of a distributed system hosted in the cloud.

Distributed transactions are an integral part of modern distributed systems [353,

69, 71, 265, 164, 88, 80] because they hide complexities (i.e., parallelism, data races

and failures) from the user while they maintain the system’s correctness and facilitate

programming. Precisely, (distributed) Txs offer Atomicity—Consistency—Isolation—

Durability (ACID) properties.

Distributed transactions are usually implemented through a distributed atomic com-

mit protocol, e.g., the two (or three)-phase-commit protocols (2PC) where a coordina-

tor node sends the operations to the appropriate participant nodes, prepares the Tx

to ensure that all involved nodes can successfully commit, and then instructs them to

commit or abort based on the outcome of the Tx prepare phase. In addition they re-

quire a concurrency control mechanism to enforce isolation across parallel distributed

operations. In this thesis, we built TREATY, a sharded (e.g., the data/key range is di-

vided among the participating machines), non-replicated transactional KV store that

maintains all Txs ACID properties in the untrusted cloud infrastructure. Our design en-

sures shielded execution of the two-phase commit protocol (§ 3.3.1), i.e., the protocol

is executed according to its original specification and its execution cannot be com-

promized by an adversary, whereas we also build a two-phase locking algorithm that

enforces isolation as well as strict serializability [248] for correctness. A transaction

in the two-phase locking acquires locks as it goes along and releases the locks right

after its commit or abort. RocksDB [271], the storage engine on top of which we build

TREATY, supports single-node Txs (not distributed). For TREATY we adapt RocksDB’s

pessimistic Txs that acquire locks as they go along. RocksDB’s optimistic Txs validate

their read and write sets at the commit time and have high abort rates in workloads

with significant conflicts.

Tx storage engines. Distributed Tx systems (e.g., ZippyDB [353], CockroachDB [69],



12 Chapter 2. Background

Leader-based Leader-less

Total order
Raft [236], ZAB [266], AllConcur [251],

Multi-Paxos [322] Derecho [159]

Per-key order
CR [269], CRAQ [306], ABD [201], CP [181],

PB [235], CHT [62] Hermes [168]

Table 2.1: CFT protocols taxonomy.

Spanner [71], etc.) traditionally layer query processing and Txs on top of a per-node

storage persistent engine, e.g., RocksDB [271] or LevelDB [186] and others [99]) (for

Durability) as shown in Figure 2.1. These persistent storage engines are increasingly

based on log-structured merge-trees (LSM) [353, 271, 186, 179, 129, 20] due to their

high read/write performance. We build TREATY on top of RocksDB [271] where the

data is stored in multiple levels, increasing in size. Higher levels (MemTables) are

stored in the memory while the bulk of the lower levels (and thus of the data) is stored

on disk in (immutable) SSTables. Updates are applied to the MemTable and when it

exceeds a maximum size, it is merged into the next lower level (compaction) into an

immutable SSTable file, in what is known as a compaction event. If this causes the next

level to exceed its own maximum size, the compaction cascades further. The system

remains correct under failures through a combination of write-ahead logging (WAL)

and a MANIFEST file that records all changes in the system.

2.1.2 Replication in Distributed Data Stores

Distributed KV data stores must remain available and operate correctly when failures

occur. As such, they usually deploy replication protocols to create multiple consistent

copies of the data across a distributed set of cooperating machines or replicas. Replica-

tion techniques in distributed databases can vary in how data is accessed and updated,

which impacts their consistency and availability guarantees. In this thesis, we explore

protocols that enforce either sequential consistency [180] or linearizability [131], also

referred to as strongly consistent replication protocols. We divide the strongly consistent

replication protocols based on their fault model, i.e., Crash Fault Tolerant or Byzantine

Fault Tolerance.

Crash Fault Tolerant (CFT) protocols. CFT protocols assume that the infrastructure is

trusted. These protocols tolerate only benign faults; replicas can fail by stopping or by

omitting some steps [85]. As such, while having low overheads requiring at most 2 f +1

replicas to tolerate up to f benign faults, they are not suitable for modern applications

deployed in third-party untrusted cloud infrastructure [17].
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We can broadly split strongly-consistent CFT protocols into two categories (see Ta-

ble 2.1 for the taxonomy): (i) leader-based protocols (e.g., Raft [236], Chain Replica-

tion (CR) [269], Primary Backup (PB) [235]), where a node, designated as a leader,

drives the protocol execution and (ii) decentralized protocols (e.g., ABD [201], All-

Concur [251], Classic Paxos (CP) [181]), where there is no leader and all nodes can

propose and execute requests.

We further divide them based on their ordering semantics. First, protocols with

total ordering, where the protocols create a total order of all writes across all keys and

apply them in that order. Second, protocols with per-key ordering semantics where

the protocol enforces the total order of writes on a per-key basis. This protocol clas-

sification has been proven to be the most representative when studying the protocols’

performance [106].

In our RECIPE project (Chapter 4), we transform one protocol (shown in bold Ta-

ble 2.1) for Byzantine settings as a representative system to study each category.

Byzantine Fault Tolerant (BFT) protocols. In contrast to CFT protocols, BFT protocols

assume very little about the nodes and the network; faulty nodes may behave arbitrarily

while the network is unreliable. To tolerate f arbitrarily faulty processes that may

equivocate (i.e., make conflicting statements for the same request to different replicas),

BFT protocols add f extra replicas to their system model requiring at least N = 3 f +1

replicas for safety. As such, BFT protocols exhibit worse scalability compared to CFT

protocols (which only require at most 2 f +1 replicas).

BFT protocols are limited in performance, too. They incur high message complexity

(O(N2)) [165, 58, 328], multiple protocol rounds [196, 165, 58, 4, 345] and complex

recovery (O( f 2) in view-change) [196, 58, 328, 165]. As an example of this, PBFT [58],

a well-known BFT protocol, requires at least 3 f +1 nodes and executes three all-to-all

broadcast rounds incurring O(N2) message complexity.

Thirdly, BFT protocols are complex, introducing burdens to developers. Even if sys-

tem designers wish to use a state-of-the-art BFT protocol, optimizing it for the specific

application settings (e.g., network bandwidth, number of clients and replicas, crypto-

graphic libraries, etc.) can be complicated. Guerraoui et al. [30] found that most proto-

col implementations consist of thousands of lines of (non-trivial) code, e.g., PBFT [58]

and Zyzzyva [172]. Even trivial changes or intuitive optimizations can be extremely

hard and might affect other parts of the protocol (e.g., view-change in Zyzzyva).
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2.2 Trusted Computing

This thesis presents three secure distributed management systems. To offer security, we

build on top of the state-of-the-art hardware advancements in the trusted computing

domain, i.e., trusted execution environments (TEEs). Precisely, we build a secure dis-

tributed transactions protocol and robust replication protocols in TREATY (Chapter 3)

and RECIPE (Chapter 4) projects respectively on top of Intel SGX [148]. In TNIC project

(Chapter 5), we compare our trusted NIC architecture with two competitive TEEs, Intel

SGX [148] and AMD-sev [15].

2.2.1 Trusted Execution Environments

Trusted execution environments (TEEs) [148, 24, 15, 184, 23, 149] offer a tamper-

resistant confidential computing environment that provides hardware-enforced isola-

tion for executing security-sensitive application logic. TEEs can guarantee the integrity

and confidentiality of their executing code and data, whereas their content remains

resistant against all software attacks, even from privileged code (e.g., a compromised

OS and hypervisor) and physical attacks (e.g., memory probes performed on the main

memory of the system).

Compared to its “ancestors”, i.e., Homomorphic Encryption (HE) [130] and Trusted

Platform Modules (TPM) [311], TEEs are superior both in their security guarantees and

adaptability. For instance, in contrast to a typical TEE, a TPM is not programmable with

arbitrary code. Additionally, the TPM provides secure storage for secrets (e.g., encryp-

tion keys, passwords, and digital certificates), but it cannot vouch for the validity (i.e.,

authenticity and integrity) of the data signed by those keys. On the other hand, a

typical homomorphic encryption algorithm can protect arbitrary data but by itself can-

not ensure that the correct operations have been done and that the code has not been

tampered with. TEEs offer strong isolation for both the data and the code. TEE and

TPM’s properties rely on the assumption that the hardware manufacturer is trusted.

In contrast, HE executes computations on the encrypted data (without having to de-

crypt them). However, HE is not a generic technology as only some computations on

encrypted data are possible [135, 228].

TEEs have been launched by major CPU providers, e.g., Intel SGX/TDX [148, 149],

Arm TrustZone [24], Arm Realms [23], RISC-V Keystone [184], AMD-sev(-snp) [15]

and have been adopted by major cloud providers [217, 68, 114, 115, 174]. Each

of these TEEs enabling technologies offers different degrees of guarantees that can

be leveraged to increase the confidentiality and integrity guarantees in applications.

Table 2.2 summarizes the popular TEEs security features (explained below):
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Intel SGX TrustZone AMD-sev RISC-V Keystone

Integrity

Confidentiality

Freshness

Local attestation

Remote attestation

Isolation granularity Address space Secure world VM Secure world

Table 2.2: Comparison of the state-of-the-art TEEs.

• Integrity: The prevention of TEEs trusted memory from being tampered with.

• Freshness: The protection of TEEs trusted memory against rollback attacks. In

this thesis, we use the term rollback attacks to refer to attackers that strive to

revert the system state to a stale, potentially valid, state (e.g., by intentionally

shutting the system down and replacing the (persistent) data/state for recovery

with an older version of them).

• Confidentiality: The encryption of TEEs trusted memory to assure that no unau-

thorised access or memory snooping of the trusted memory area occurs.

• Local attestation: A TEE instance attests genuineness to another instance run-

ning on the same system. We elaborate more on the attestation mehanism later

in this section.

• Remote attestation: A TEE instance attests genuineness to remote parties, such

as clients or other nodes in the system (§ 2.2.2).

• Isolation granularity: The level of granularity where the TEE operates for pro-

viding isolation and attestation of the trusted software.

TEEs categorization. TEEs introduce the idea of a trusted computing base (TCB) that

denotes the code and data that are stored within the trusted hardware. In addition,

we use the terms untrusted (or normal) and trusted (secure or protected) “worlds” to

denote the untrusted and TEE-protected trusted parts of an application, respectively.

We can briefly classify modern TEEs into two categories based on their isolation

guarantees. The first category includes TEEs such as Arm TrustZone [24] and RISC-

V Keystone [184] that enforce strict isolation between the secure and normal worlds,

prohibiting the software stack and data from being shared between them. Although

the techniques discussed in this thesis can be adapted for use with this type of TEE,

their primary focus is not on providing cloud services since they have limitations on the

number of trusted worlds they support.
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Figure 2.2: Overview of Intel SGX architecture.

The second category of TEEs allows the trusted world to access the untrusted state

(e.g., code and data in the normal world). The TEE software can access the unprotected

application’s memory and even switch to the unprotected, outside-of-the-TEE execution

mode, performing a “world switch”. These TEEs come with a limited trusted memory

area and specific SDKs for programmability. Intel SGX [148] serves as a prime example

of this type of TEE, which we analyze later in this section.

Modern TEEs such as Intel TDX [149], AMD-sev-(snp) [15] and ARM Realms [23]

port within the trusted hardware the entire virtual machines (VMs) offering confiden-

tial VMs (CVMs). Compared to previous TEEs systems (e.g., Intel SGX), VM-based TEEs

come with a larger TCB within the trusted environment, but they facilitate easier devel-

opment since they expose OS-based programming interfaces. Over the past few years,

there has been a growing trend towards this category of TEEs.

Intel SGX. Figure 2.2 shows the overview of Intel SGX platform. Intel SGX is a set

of x86 ISA extensions for TEE [74] that offer the abstraction of an isolated memory,

the enclave. Enclave pages reside in the Enclave Page Cache (EPC)—a specific memory

region (94 MiB in v1, 256 MiB in v2) that is protected by an on-chip Memory Encryption

Engine (MEE). For larger enclave sizes, SGX implements a rather expensive paging

mechanism [26, 39, 242] that encrypts evicted EPC pages and decrypts them when

they are brought back.

SGX applications cannot execute outside-of-the-enclave code directly, e.g., system

calls, since the OS is considered untrusted. To enable this, SGX enclave threads exit

the trusted environment (world switch) and further copy all associated data out of the

enclave since the kernel code cannot access it. After the syscall execution, threads have

to enter the enclave again and then copy the result of the syscall back to the trusted
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enclave. We refer to this as a world switch.

Confidential computing frameworks: SCONE. Confidential computing frameworks

leverage TEEs to secure unmodified applications. They can broadly be categorized as

libOS-based systems [43, 315, 256, 307], and host-based systems [26, 242, 288]. All

of these efforts seek to minimize the number of enclave transitions (world switches)

due to their high cost (e.g., TLB flushing, security checks [74]).

In this thesis, we make use of SCONE [26] framework that is built on top of Intel SGX

to overcome the performance limitations of the executing syscalls as well as to facilitate

the development effort. Particularly, we have built our TREATY and RECIPE systems on

top of SCONE [26] that exposes a modified libc library. SCONE combines user-level

threading and asynchronous syscalls [293] to reduce the cost of syscall execution.

AMD-sev. Secure Encrypted Virtualization (SEV) is an extension to the AMD-V archi-

tecture to support multiple running confidential VMs under the control of a hypervisor.

SEV integrates main memory encryption capabilities with the existing AMD-V virtual-

ization architecture to protect the running VMs from physical threats, other VMs, and

the hypervisor itself.

SEV hardware tags the VM code and data with its VM identifier. Each VM is asso-

ciated with a tag and an associated encryption key. The tag is stored with the data at

all times when inside the trusted hardware, preventing access from other VMs, includ-

ing the hypervisor. To protect the VM data residing outside the trusted hardware, SEV

employs an AES-128 engine. When data leaves or enters the SOC, it is encrypted/de-

crypted respectively by the hardware with the associated key. SEV applications require

no software modifications, and the technology is particularly applicable to cloud com-

puting, where virtual machines need not fully trust the hypervisor and administrator of

their host system.

2.2.2 Remote Attestation

Remote attestation is a security mechanism that verifies that the system state, including

the hardware and the software, on a remote machine is in the expected state. It ensures

that the correct version of the software stack is running on the intended hardware. Re-

mote attestation requires a trusted entity (i.e., root of trust), such as a trusted execution

environment (TEE), to attest its loaded code and calculate a measurement, i.e., secure

hashes over the loaded software. First, the root of trust measures the integrity of all

software elements (e.g., the bootloader, operating system kernel, hypervisor, software

within a TEE). The loaded software then measures additional components, such as

programs, and inform the root of trust about their measurements.
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The root of trust combines its own calculated hash with the new measurements,

producing a new measurement value. A remote entity (challenger) can then request

the root of trust to provide the signature of this new hash value (using a hardware key

burned in the TEE at the manufacturing process). By inspecting this signed value, the

remote process can validate the authenticity of the system’s hardware and software. To

do so, the challenger verifies the signed measurement of the root of trust by comparing

the measurement value (hash value) against a pre-established known value. Remote

attestation allows third-party entities, e.g., other nodes or clients, to gain confidence in

the integrity and security of remote system stacks.

Intel Attestation Service. To enable remote attestation, Intel offers a Intel Attestation

Service (IAS) [141]. In this thesis the CPU Manufacturer is considered trusted, hence

IAS, that is managed by Intel, is also trusted. IAS verifies the measurements (or quotes)

produced by a TEE and provides a verification report upon the TEEs’ quote successful

verification. This verification report is then sent to the TEE and can be forwarded to the

remote party that challenges the TEE. Then, the remote party can verify IAS verification

report to gain trust about the genuineness of the TEE and its running software.

2.3 High-performance Networking

High-performance networking is at the core of the distributed systems we study in this

thesis. Precisely, in this thesis we leverage the advancements in networking technolo-

gies to improve the systems performance as well as guarantee security. TREATY (§ 3.5.1)

and RECIPE (§ 4.5.2) leverage and extend a user-space direct I/O library, eRPC [162],

on top of DPDK [150] and RDMA [209] which we discuss next in § 2.3.1. Our last

project, TNIC (see § 5.4 and § 5.2), extends the scope of the state-of-the-art SmartNIC

devices (§ 2.3.2) to guarantee fundamental security properties in the network interface

controller (NIC) level.

2.3.1 Direct network I/O

The main mechanism to communicate with devices is through memory-mapped reg-

isters and device memory. I/O memory is a region of DRAM-like locations that the

device makes available to the processor over the PCIe bus. Conventional applications

use syscalls where the network stack and the I/O are handled inside the OS kernel,

incurring the overheads of kernel context switches [158, 128, 293, 326, 70]. Recent

high-performance distributed systems [168, 88, 164, 162] have shown that it can be

beneficial to perform I/O directly to or from user-space buffers. We refer to this tech-

nique with the terms direct I/O or kernel-bypass. Direct I/O improves network latency
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Figure 2.3: Comparison of direct I/O with traditional kernel networking.

and throughput because applications are capable of transferring data directly without

an extra copy through kernel space or the overhead of the context switches due to

syscalls. Figure 2.3 presents a comparison of the kernel-based networking compared to

the direct I/O approach.

The direct I/O or userspace I/O system (UIO) operates by mapping (i.e., associat-

ing) the device (i.e., device memory) to a set of userspace addresses. This mapping is

typically implemented by the device driver that appropriately creates the application’s

page table to map the device memory to an application’s virtual memory area (VMA).

As such, whenever the user program reads or writes in the assigned address range, it is

actually accessing the device.

To further optimize performance and the system’s resource utilization, modern sys-

tems usually implement direct I/O through bus mastering that enables direct memory

access (DMA) between host and device memory. DMA allows the network card inter-

face (NIC) and other peripheral components to transfer their I/O data directly to and

from main memory without the need to involve the CPU.

To further optimize the performance of direct I/O libraries, one can employ a

polling-based system and instruct the kernel to disable interrupts for the specific de-

vice. By eliminating the need for context switches, the number of interruptions caused

by device communication is significantly reduced.

However, direct I/O often requires from the application to check for incoming mes-

sages (polling) which might increase unnecessarily the CPU utilization and the appli-

cation’s latency. In this thesis we build our systems on top of eRPC library which we

discuss later in this section. eRPC builds on top of direct I/O techniques, such as DPDK
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and RDMA that do not provide abstractions of the transport layer (TCP/IP, UDP, etc.)

whereas the device is bound exclusively to a specific application. On the other hand,

the OS-based networking carefully utilizes the CPU by interrupting the execution only

when an incoming packet is ready for processing while it offers a portable API sup-

porting TCP/IP and UDP sockets. OS-based networking allows the NIC to be utilized

concurrently by multiple applications running on the same host.

DPDK and (one-sided) RDMA. Data Plane Development Kit (DPDK) [150] is a user

space direct I/O library for different platforms, i.e., x86, ARM, and PowerPC, and differ-

ent OSes, i.e., Linux, FreeBSD, and Windows. It abstracts network interface controllers

(NIC), easing the development of network applications. DPDK expects the user to pro-

vide their own network stack for the session and transport layer.

RDMA is the abbreviation of remote direct memory access that enables comput-

ers in a network to exchange data in the main memory without involving the remote

CPU. RDMA supports zero-copy networking by transferring the data directly from the

application memory to the NIC buffers and vice versa. RDMA is implemented by the fol-

lowing network protocols: RDMA on Converged Ethernet (RoCE), Internet-wide area

RDMA protocol (IWARP), and InfiniBand.

Both RDMA and DPDK [150] are widely favored for high-performance as they (i)

map a device into the user address space, effectively bypassing kernel, and (ii) replace

the costly context switches with a polling-based approach. While these technologies

have been used to improve throughput in modern distributed systems [168, 164, 88],

their naive usage might not always offer performance for free [163]. In addition, these

protocols operate in the internet or link network layers shifting the responsibility for

implementing the transport layer (TCP/IP, UDP) to the system developer.

eRPC. In this thesis, we adopt direct network I/O because it is even more well-suited to

TEEs where syscall execution is extremely expensive [109, 38]. Specifically, we lever-

age eRPC [162], a general-purpose and asynchronous remote procedure call (RPC)

library for high-speed networking for lossy Ethernet or lossless fabrics. eRPC provides

us with a UDP stack over multiple transport layers, e.g., RDMA and DPDK. As we ex-

plain in each of our projects, we extend eRPC to eliminate its trusted memory footprint

and shield the network messages against adversaries in the untrusted network infras-

tructure.

2.3.2 SmartNICs

Emerging programmable NICs, or SmartNICs [194, 317, 47, 49, 231, 10, 32, 59], rep-

resent another promising approach to improve network latency while reducing host

CPU workload and power consumption. SmartNIC devices have already shown their
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Performance Programmability Security

SoC-based NICs

FPGA-based NICs

ASIC-based NICs

Table 2.3: Comparison of SmartNIC categories.

performance benefits in networked systems [102, 197] and have already been launched

by major cloud providers [10, 32, 59].

We can systematically categorize SmartNICs into three different hardware designs:

(1) ASIC-based NICs [231] that have dedicated hardware for common network process-

ing functions (TCP checksum and segmentation, RSS, etc.), (2) (multicore) SoC-based

NICs [47, 10, 49, 194] that have an on-chip set of embedded (ARM) cores, and (3)

FPGAs [317, 292, 59] that introduce a fully programmable hardware “on-path” with

the NIC device.

All these hardware designs for SmartNICs present different characteristics in perfor-

mance and programmability, as shown in Table 2.3. The ASIC NICs provide the highest

performance potential, but they suffer from a lack of programmability and adaptability

over time [102]. On the other hand, the SoC-based SmartNICs’ on-chip cores have

full OS support and are fully programmable. Unfortunately, by the time of this thesis

writing, we only had access to Bluefield 2 [47] cards where the embedded cores are

“off-path” with no support for DMA transfers between the on-chip and host memory.

As such, a network operation would involve an extra (intra-host) network operation

for forwarding the request from the application to the device cores, increasing the op-

eration’s latency. The third category, the FPGA-based SmartNICs, combines the best of

both worlds. First, the FPGAs are fully programmable, allowing us to design and imple-

ment the exact security properties a system requires on hardware. Secondly, the FPGA

resides on-path with the NIC, allowing it to process all incoming/outgoing network

traffic on the communication path, optimizing for latency [289].

2.4 Storage Systems and Technologies

This thesis presents distributed systems that need to store data reliably across dis-

tributed cooperating machines. TREATY leverages SPEICHER storage system (§ 2.4.1)

that is also built on top of Intel SGX and extends the trust to the untrusted storage,

providing an authenticated persistent data layer.
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2.4.1 SPEICHER Storage System

SPEICHER [39] is a secure storage system based on RocksDB and SGX that offers authen-

ticated and secure LSM data structures. SPEICHER neither supports Txs nor distribution.

Clients execute PUTs whose ordering is only secured in a future synchronization point

based on an asynchronous trusted counter module. Shutdowns and crashes in the

meantime require clients to re-execute the operations, which might change their initial

order. In TREATY, we leverage SPEICHER as the underlying storage system, and we ex-

tend the following to support Txs processing (§ 3.5.2): controller, buffer management,

I/O subsystem, and LSM and logging data structures.
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TREATY:

Secure Distributed Transactions

We introduce TREATY, a secure distributed transactional KV storage system that sup-

ports serializable ACID transactions while guaranteeing strong security properties: con-

fidentiality, integrity, and freshness. TREATY leverages trusted execution environments

(TEEs) to bootstrap its security properties, but it extends the trust provided by the lim-

ited enclave (volatile) memory region within a single node to build a secure (stateful)

distributed transactional KV store over the untrusted storage, network and machines. To

achieve this, TREATY embodies a secure two-phase commit protocol co-designed with

a high-performance network library for TEEs. Further, TREATY ensures secure and

crash-consistent persistency of committed transactions using a stabilization protocol.

Our evaluation on a real hardware testbed based on the YCSB and TPC-C benchmarks

shows that TREATY incurs reasonable overheads, while achieving strong security prop-

erties.

3.1 Motivation

Transactions (Txs) are an integral part of modern cloud computing systems [82, 88,

271, 71]. They hide complexities (data distribution, concurrency, failures, etc.) from

programmers and, at the cloud scale, they provide a powerful abstraction to atomically

process massive datasets that might be distributed across different machines [14, 216,

113, 84].

While distributed transactional Key-Value (KV) stores are extensively used to build

scalable applications with a high degree of reliability and cost-effectiveness, offloading

Tx processing in the cloud also poses serious security threats [274]. In untrusted cloud

environments, adversaries can compromise the confidentiality and integrity of the data

23
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and application’s execution state while they can also violate Txs semantics (isolation,

atomicity) by intentionally returning stale/uncommitted data. Prior work has shown

that software bugs, configuration errors and security vulnerabilities pose a real threat

for storage systems [122, 78, 275, 112, 177]. These security threats are amplified in

distributed stores as the state is distributed across machines connected to the untrusted

storage and network system stacks.

This work pursues the following question: How to design a high-performance, serial-

izable, distributed transactional KV store that offers strong security properties?

A promising direction to this question is to use trusted execution environments

(TEEs)—the new trend in confidential computing—to build a secure distributed trans-

actional (Tx) KV store. TEEs provide a secure memory area (enclave) where the re-

siding code and data are protected even against privileged code (e.g., OS, hypervisor).

Based on this promise, TEEs are now being streamlined by all major CPU manufactur-

ers [24, 23, 148, 15, 184], and adopted by major cloud providers [68, 217, 114].

However, we cannot use TEEs out-of-the-box to build a secure distributed KV store

with Txs. Particularly, we need to address the following three challenges:

First, TEEs only protect a limited volatile memory region (enclave) within a single

node. These security properties do not naturally extend to the untrusted persistent

storage and network over a distributed set of nodes, which are essential to build a

secure distributed transactional KV store.

Secondly, TEEs primarily rely on the expensive syscall mechanism for I/O opera-

tions, where the enclave threads need to perform world switch to execute the syscall

that has been shown to be costly [339]. While modern confidential computing frame-

works [26, 288, 315] provide an asynchronous syscall I/O mechanism [293] to al-

leviate the performance overheads, they are still inadequate for modern distributed

storage systems that prominently rely on high-performance networking such as RDMA

or kernel-bypass [164, 284, 88, 337]. Unfortunately, it is not trivial to combine high-

performance networking with the TEEs because TEEs fundamentally prohibit unautho-

rized access to the protected enclave via a DMA connection.

Thirdly, distributed stores need to ensure secure and crash-consistent persistency

for committed Txs. Secure persistency for distributed systems can be a challenge in an

untrusted environment where adversaries can rollback the database state, to a stale yet

consistent snapshot violating correctness. While SGX [148] provides hardware-based

trusted counters, a fundamental building block for rollback protection, writes incur

prohibitively high latency [146, 39]. Further, we need to establish trust between the

nodes in the distributed setting to protect against forking attacks. TEEs’ attestation

mechanisms provide a building block to bootstrap trust. Unfortunately, they cannot
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provide collective trust for a distributed set of nodes [121].

To address these challenges, we present TREATY, a distributed KV store with serial-

izable ACID transactions [248] and strong security properties: integrity—unauthorized

changes can be detected, confidentiality—unauthorized entities cannot read the data,

freshness—stale state of the system can be detected. TREATY embodies three core con-

tributions:

1. Distributed Tx protocol: The design of a secure two-phase commit (2PC) proto-

col for distributed Txs providing strict serializability. Our protocol leverages TEEs

for security, and it is co-designed with a kernel-bypass network stack for TEEs to

ensure high-performance execution (§ 3.3).

2. Stabilization protocol: The design of a stabilization protocol that guarantees

secure and crash-consistent persistency of committed Txs. That is, the protocol

ensures crash consistency, recovery, and data freshness across rollback and fork-

ing attacks in distributed settings (§ 3.4).

3. Trusted substrate for distributed TXs: The design of a trusted substrate for

distributed Txs—with which we build TREATY—that overcomes the limitations

of TEEs. Specifically, we propose (a) a secure network library for Txs based on

kernel-bypass I/O within TEEs, (b) a secure storage engine for Tx processing, (c)

a userland-scheduler for low-latency requests, and (d) a memory allocator for

secure Tx buffers management (§ 3.5).

We implement TREATY from the ground-up as a distributed KV store [353, 69],

where we layer a distributed Tx layer (2PC) on top of per-node storage engine based

on a secure version of RocksDB’s [271] storage engine: SPEICHER [39]. Our secure

2PC is co-designed with Intel SGX as the TEE and a secure networking library based on

eRPC [162].

We evaluate TREATY with TPC-C [310] and YCSB [349] on a real hardware clus-

ter. Our evaluation shows that TREATY incurs reasonable overheads—6×-15× and 2×-

5× for distributed and single-node Txs, respectively—while providing serializable dis-

tributed Txs and strong security properties. The overheads derive mainly from TEEs as

(1) native runs of TREATY perform similarly to RocksDB, (2) encryption increases the

overhead up to 1.4× compared to non-encrypted versions and (3) stand-alone evalua-

tion of TREATY’s 2PC shows 2× slowdown w.r.t. a native version of the protocol.
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3.2 Overview

3.2.1 Threat and Fault Model

TREATY extends the standard SGX threat model [43] to provide stronger security guar-

antees even for a distributed setting, where we also consider the untrusted storage and

network. An adversary can (1) control the entire software stack outside the enclave

(including the network stack, i.e., they can drop, delay, or manipulate network traffic)

and, (2) view/modify all non-enclave memory, i.e., untrusted host memory and per-

sistent storage (SSDs). The adversary can perform rollback attacks and revert TREATY

nodes to a stale state by intentionally shutting them down and replaying older logs that

store the system state for durability and recovery. We assume a crash-recovery model:

TREATY nodes can crash at any point and will eventually recover. In-memory state is

lost upon failure; persistent state (SSDs) is preserved. TREATY guarantees serializability

and atomicity in the presence of failures, rollback attacks and other attacks that strive

to alter the order of the committed transactions. TREATY also maintains data integrity,

confidentiality and freshness. TREATY builds on a fault-tolerant trusted counter service

(see § 3.4) which replicates the trusted counters—the core building block for rollback

protection [206, 18, 300]—in a set of N SGX-equipped nodes. TREATY trusted counter

service requires N ≥ f +2u+1, where f is the maximum compromised SGX nodes (e.g.,

adversaries can violate the runtime memory, read all enclave secrets and the SGX pro-

cessor keys) and u is the maximum number of non-responsive (correct) nodes at the

time of the counter writing or reading.

We do not protect against side-channel attacks: cache timing, speculative execu-

tion [324, 325, 156, 321, 279, 227, 171, 193], access pattern leakage [343, 127],

memory safety vulnerabilities [178, 234] or denial of service attacks.

3.2.2 System Overview

Figure 3.1 illustrates our system architecture. TREATY is a sharded transactional KV

system, where we layer the Tx layer that implements a secure 2PC protocol (Agreement

protocol) on the top of on a persistent KV store (SPEICHER): multiple nodes in the

system store subsets of the data and coordinate to maintain consistency. Each node

consists of two parts: 1) a trusted set of components that resides in the enclave memory

and contains the Txs layer, lock manager, and Txs KV engine, and 2) the untrusted

network and storage stack.

Clients communicate with the system through a mutually authenticated channel.

Specifically, the system developer burns a public-private key pair into the TREATY code

that is used by clients to establish a TLS connection with TREATY nodes and proceed to
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attestation. The public key is known to the clients, e.g., it can be shared through the

(trusted) system developer. The clients establish a TLS connection with their preferred

TREATY node and then attest this node through TREATY’s Configuration and Attestation

Service (CAS) that is explained in section § 3.41. After a client successfully attests a

node, it can establish a new TLS connection for executing requests using a node’s newly

generated public key that is shared through the previous TLS connection.

The developer also burns a separate public-private key pair into the TREATY code-

base that is used by TREATY nodes to attest each other when needed through CAS.

This key pair is secret and it is not known to the clients or the cloud provider. After

the nodes have been attested through CAS, they are supplied with the the necessary

configuration and secrets as explained in § 3.4.

TREATY exposes a standard transactional API: Txs begin and end through BeginTxn()

and TxnCommit()/TxnRollback() calls, and execute operations through TxnPut() and

TxnGet() operations. More specifically, TREATY’s transactions maintain the following

properties:

1Clients also establish a TLS connection with TREATY’s Configuration and Attestation Service the same
way they establish secure communication channels with the TREATY nodes.
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Figure 3.1: TREATY’s system architecture.
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• Security. TREATY guarantees confidentiality, integrity and freshness for all Txs in

the presence of untrusted storage and networking over a distributed set of nodes.

• Programmability. TREATY offers general serializable ACID Txs which offer the

strongest possible correctness guarantees, combined with general purpose, inter-

active Txs that minimize the programming burden on developers.

• Performance. TREATY’s careful design minimizes the performance limitations of

TEEs (limits on EPC memory, high latency of trusted counter and I/O execution).

TREATY achieves security by designing two protocols: (i) a 2PC protocol for the cor-

rect and secure execution of distributed Txs (§ 3.3) and, (ii) a stabilization protocol for

secure and crash-consistent persistence of the committed Txs (§ 3.4). Lastly, TREATY’s

substrate (§ 3.5) for distributed Txs is designed and implemented with consideration

to the TEEs architectural limitations (enclave memory, I/O, scheduling).

TREATY shares the Tx execution workflows of existing systems. Clients start Txs by

selecting a transaction coordinator, who is responsible for driving the Tx’s execution.

Upon receiving a read or write request for a key, the relevant node acquires respectively

a R/W lock, storing it in a local lock table. When the Tx is ready to commit, the Tx

coordinator initiates a 2PC protocol consisting of a prepare and commit phase. The Tx

commits if all involved shards vote to commit. Otherwise, the Tx aborts. In either case,

locks are released.

Applications can use TREATY API to store and execute transactions on the stored

data with the aforementioned security properties. To further extend TREATY’s security

properties to the entire application, system designers should also run the application

code within the TEE.

3.2.3 Design Challenges and Key Ideas

While designing TREATY, we overcome the following challenges:

#1: Security for distributed transactional KV stores. In the untrusted cloud, adver-

saries can tamper with the Txs’ execution. They can compromise the confidentiality

and authenticity of the running Txs, modify the executed operations and its associated

data. In addition, they can also tamper with the execution of the distributed Txs proto-

col itself, i.e., 2PC state. All these attacks can violate the correctness guarantees of the

system. In addition, such powerful adversaries are also capable of illegally modifying or

accessing the KV store’s content which includes unauthorized modifications and access

to the users, potentially private, data.
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Key Idea: A secure distributed transaction protocol. For designing secure distributed

Txs for untrusted cloud environments, we can rely on a simple 2PC protocol that lever-

ages the security guarantees of TEEs. Unfortunately, TREATY cannot use a TEE as a

black box as its security guarantees are restricted only to the (limited and volatile) en-

clave memory of a single node. In contrast, modern transactional systems like TREATY

are distributed, communicate over the network, and store their data on a persistent

storage medium (SSDs). To implement distributed Txs with TEEs, TREATY needs to

overcome the following system challenges.

• Security and correctness for Txs. TREATY’s 2PC needs to ensure confidentiality

and integrity along with serializability detecting adversaries that aim to double

execute Txs.

• Untrusted persistent storage. TREATY needs to protect the persistent data by de-

tecting unauthorised modifications since attackers can tamper with logs to com-

promise the history of executed Txs and the 2PC state and/or can delete/modi-

fy/access the persistent data.

• Enclave memory. TREATY needs to overcome the limited enclave memory chal-

lenge. The limited enclave memory is especially problematic for LSM-based sys-

tems which rely on a large MemTable to absorb recent read/write requests (before

compacting them to the SSTable). Moreover, the Tx layer on top of LSM storage

system must also buffer the uncommitted writes for ongoing Txs. Lastly, network

buffers for communication further put pressure on the enclave page cache (EPC).

We discuss TREATY’s approach for secure distributed Txs in § 3.3. TREATY offers

secure and correct execution of distributed Txs by implementing a secure 2PC (§ 3.3.1)

leveraging TEEs and a secure network library (§ 3.5.1). Our TREATY’s design also

adopts SPEICHER’s [39] LSM data-structures as a secure store for the untrusted stor-

age (§ 3.3.2, § 3.5.2), but it extends and adapts SPEICHER’s storage engine and data

structures for the Tx processing and the design of the 2PC protocol for TEEs.

#2: Secure and high-performance networking for distributed Txs. TREATY’s nodes

communicate with each other. Traditional kernel-based approaches for network I/O

(e.g., sockets) experience high overheads due to context switches that are further de-

teriorated inside the SGX due to the costly enclave transitions.

Confidential computing frameworks, such as SCONE [26], implement async syscalls

to eliminate the expensive world switches, but they still rely on the syscall mecha-

nism for the I/O, which is slow and requires two additional data copies (enclave↔host

memory↔kernel). This I/O mechanism is ill-suited for distributed systems [164, 337,
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88, 284], like TREATY, that prominently rely on high-performance networking with di-

rect I/O or kernel-bypass. Unfortunately, these direct I/O mechanisms are incompatible

with TEEs, since TEEs prohibit enclave memory access via the untrusted DMA connec-

tion. Therefore, we need to adapt this mechanism in the context of SGX to use it and

design the secure distributed 2PC protocol.

Key Idea: A secure networking library for high-throughput and low-latency di-

rect I/O. TREATY implements a secure network library (§ 3.5.1) through which we

build the secure 2PC protocol to enable user-space direct I/O (DPDK [150]) based on

eRPC [162]. TREATY’s secure network library provides high-performance network I/O

overcoming the limitations of SGX. In addition, we ensure confidentiality and integrity

properties for the exchanged messages through encryption while we also guarantee

freshness, thus protection from network-replay attacks, for transactions.

#3: Secure persistency. TREATY needs to ensure that committed Txs are persisted,

remain crash consistent across reboots and are protected against forking and rollback

attacks. This requirement is necessary to ensure that a transaction’s commit is irre-

versible. Particularly, TREATY needs to detect violations from attackers that selectively

shut down and revert the state of some nodes in order to make the system undo parts of

a distributed transaction. These attackers primarily seek to violate the ACID properties,

thus the correctness, of the system.

Key Idea: A stabilization protocol for the committed transactions. TREATY imple-

ments a stabilization protocol to guarantee crash consistency, recovery, and committed

Txs freshness in distributed settings. The protocol needs to overcome the following

challenges:

• Trust establishment. Remote attestation (RE) ensures that the expected code is

running, thus, protecting against forking attacks. SGX’s RE, provided by Intel

Attestation Service (IAS) [141], verifies a measurement of the enclave. Unfortu-

nately, it is designed for a single-node attestation, not offering collective trust for

distributed nodes in a data center, while it incurs high latency (requires explicit

communication with the IAS). This can significantly slow down recovery after

reboots/migrations, where nodes require re-attestation.

• Crash consistency. Logs are commonly used to persist the state and updates of

Txs for durability. As these logs reside in the untrusted storage, recovery needs

also to verify their freshness and integrity.

• Distributed rollback protection. Trusted counters are widely used to protect against

rollback attacks. TREATY further extends their scope to preserve serializability
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where Txs are stored along with a trusted counter value that cannot be overwrit-

ten. Consequently, the trusted counter values reveal Txs’ order as well as the

latest trusted state of the system.

While SGX does provide us with monotonic hardware counters, they suffer from

three limitations: 1) high latency (e.g., increments can take up to 250 ms [206])

2) non-recoverability if the CPU fails—indeed, at high incrementing rates, coun-

ters wear out after a couple of days [206]2, and 3) they cannot offer rollback

protection to a set of machines as they are private per-node.

TREATY designs this stabilization protocol—incorporated into the 2PC—to ensure

crash consistent and secure persistency for Txs (§ 3.4). First, TREATY uses a Configu-

ration and Attestation Service (CAS), which is hosted within the datacenter to avoid

the calls to IAS, to attest all its nodes. Secondly, it provides crash consistency for Txs

through secured persistent logs. Lastly, we build on an asynchronous trusted counter

service to avoid the SGX counter limitations and ensure distributed rollback protection

(e.g., all parts of a distributed Tx are securely committed (persisted) to all participant

nodes).

3.3 Transaction Protocol

TREATY’s 2PC protocol ensures the correct and secure execution of distributed Txs

(§ 3.3.1). To achieve this, we leverage TEEs to harden the security properties of the

2PC, which we co-design with a high-performance network library based on kernel-

bypass (§ 3.5.1), that guarantees strong security for the untrusted network. To realize

distributed Txs, we also design single-node Txs support in SPEICHER (§ 3.3.2).

3.3.1 Secure Distributed Transactions

Distributed design. TREATY partitions data into shards that may be stored on separate

machines that fail independently from each other. Each TREATY node runs a trans-

actional single-node KV storage engine built on top of RocksDB/SPEICHER [39], as

shown in Figure 3.1. We implement a secure 2PC protocol with the userspace network

stack based on eRPC [162] to execute distributed Txs and guarantee security proper-

ties. For securing the state of the protocol as well as providing secure recovery we

make use of authenticated log files (MANIFEST, Clog and WAL) as introduced in SPE-

ICHER system [39]. More specifically, the entries of these files are encrypted, integrity

2Prior research [206] found that the non-volatile memory on top of which these Intel SGX counters are
implemented wears out after approximately one million writes. As such, these counters are not suitable for
systems like TREATY and other persistent storage systems that handle frequent state updates continuously.
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and rollback protected through trusted monotonic counters. The logs’ entry format is

explained in § 3.4. As such, while being stored in the untrusted persistent storage,

unauthorized access is prohibited and illegal modifications or rollback attacks are de-

tectable by TREATY. MANIFEST logs the changes in the state of the persistent storage

(e.g., compactions, live logs). WAL stores the MemTable updates and the prepared Txs.

Lastly, Clog is written by Txs coordinators and keeps the 2PC protocol state.

The system’s initialization requires a trusted Configuration and Attestation service

to establish trust in the distributed system. TREATY’s Configuration and Attestation

service also leverages TEEs and distributes to nodes important information about the

cluster configuration (e.g., secrets and keys’ distribution to nodes, network connec-

tions).

Clients access TREATY over the network. For each Tx, a TREATY’s node initialises

a global Tx handle that is uniquely identified by a monotonically increasing sequence

number and the node id. A Tx coordinator interacts with the client and distributes

their requests to the involved participant nodes. Participants create local private Txs

through TREATY’s single-node transactional KV store (§ 3.3.2). To ensure isolation,

TREATY’s engines own a private (per-node) keys lock table.

Lastly, we leverage the exit-less approach of executing syscalls provided by SCONE

for accessing the persistent storage. Prior work [39] has introduced SPDK [154] to

access the persistent data in the SSDs. However, we did not use SPDK for two reasons.

First, in our experiments the database persistent data fits entirely in the kernel page

cache. As such (random) read access was much faster than SPDK because the pages

were already in-memory (page cache). In contrast, while SPDK optimized the write

path due to bypassing the kernel stack, it only cached in-memory the very recent up-

dates. As such, with SPDK, random read accesses in the persistent data required much

more frequent access to the SSD, increasing a Tx’s latency. The second reason is that

we configured SCONE to best fit TREATY for storage I/O syscall execution.

Integrity, confidentiality and freshness. Each node runs a single modified SPEICHER

instance. TREATY engine runs inside the enclave to ensure integrity, confidentiality and

freshness for the execution and the resided run-time data (e.g., MemTable, transactions’

local buffers, hash values).

To extend the trust to persistent storage, we adapt SPEICHER which offers a secure

authenticated SSTable hierarchy. SPEICHER stores encrypted blocks of KV pairs as well

as a footer with the blocks’ hash values (for integrity checks). TREATY extends the

persistent data structures by adding an extra log file, the Clog for the 2PC. Lastly, to

ensure crash recovery in TREATY, we defer deleting the old SSTables and logs until

MANIFEST’s entries for that compactions are stabilized.
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Figure 3.2: TREATY’s two-phase commit protocol.

TREATY also extends the trust for the network I/O by constructing a secure message

format for Txs (§ 3.5.1). A message encapsulates an Initialization Vector (12 B) and a

MAC (16 B) for proving its authenticity and integrity. As explained in § 3.4 the network

and storage encryption keys are distributed to a TREATY node by the Configuration and

Attestation Service after the node’s successful attestation. In addition to Tx’s data, we

also add some metadata (e.g. node, Tx and operations identifiers) that allows TREATY

to protect against duplication of packages by an attacker.

Two-phase commit. TREATY offers serializable distributed ACID Txs with strong secu-

rity guarantees throughout a secure 2PC protocol implemented over our secure network

stack (§ 3.5.1). TREATY also builds a two-phase locking to ensure transactions isolation

(and strict serializability [248]). TREATY’s transactions acquire locks as they go along

and release the locks right after their commit or abort. Transactions’ write set uses ex-

clusive locks to ensure that keys are written by a single transaction at a time. The read
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set acquires shared locks for performance. Figure 3.2 illustrates the complete protocol

design. Clients are connected to TREATY nodes and thereafter, are able to execute trans-

actions. Upon a client’s request, the transaction’s coordinator node (TxC) initializes a

global Tx which is uniquely identified in the entire cluster. The TxC is responsible for

driving the secure 2PC protocol to execute the client’s request (transaction). Each RPC

is strictly owned by one thread, which minimizes shared resources.

The TxC distributes the Tx’s requests to the responsible nodes and/or processes its

own requests. As shown in Figure 3.2, before forwarding the requests to the partici-

pants, each Tx reserves (untrusted) memory for the requests and responses 1⃝. These

message buffers have to remain allocated until the entire request has been served 3⃝.

To eliminate paging overheads, they reside encrypted in the untrusted host memory.

Once the message is constructed, the TxC enqueues the request 2⃝. Note that en-

queuing the request does not transmit the message. In case of multiple requests, coor-

dinators can defer the transmissions until all requests are enqueued. Once the TxC has

executed its own-managed requests and has forwarded all requests to the participants,

it yields and periodically checks if the participants have replied 4⃝.

At a commit, TREATY first prepares the Tx for a distributed commit accross all parties

involved. Every Tx/operation is logged to Clog with its own unique trusted counter

value 5⃝. Afterwards, all participants prepare their local Tx. Participants delay replying

back to the coordinator until the prepare entry in the log is stabilized 8⃝. TREATY’s

stabilization ensures that coordinators will not consider the Tx as successfully prepared

until all participants ensure that they are able to recover and commit the transaction

after a crash. If not all participants ensure that their prepare phase is stabilized, after a

crash this entry cannot be safely recovered. Especially in cases where the participants

had already committed the entry but only some of them could recover the committed

Tx after a crash, the system would be in a inconsistent state where distributed Txs are

partially committed to some, but not all involved, nodes.

The TxC, before committing/aborting, also stabilizes the prepare’s phase decision

on the Clog 6⃝- 7⃝. If the TxC crashes before this entry is stable, the recovered coor-

dinator will re-execute the prepare phase. Once this is rollback protected, the Tx can

commit. We do not need to wait for the commit entry to be stable to reply to the

client. Even if the system crashes, this Tx can be committed in the exact same order as

before the crash. Permanent failures of the TxC block a transaction’s execution. Also,

the TxC shard (key space) is not accessible to transactions that are initiated by other

node coordinators. For ongoing transactions in the prepare or commit phase the locks

on its keys cannot be released and as such the transaction will block infinitely. Prior

to prepare-phase, ongoing transactions acquire timed locks to resolve deadlocks. This
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behavior is in line with the traditional, non-secure, version of the protocol.

3.3.2 Secure Single-node Transactions

KV Storage engine and single-node Txs. TREATY’s storage engine runs inside the en-

clave for which the security properties are guaranteed. TREATY leverages SPEICHER’s

data model that offers an authenticated LSM structure for the persistent storage but

also optimizes the usage of EPC memory. Particularly, TREATY adapts SPEICHER’s MemTable

design by separating the keys from the values. We keep keys along with their version

number inside the enclave, while we place the encrypted values in the untrusted host.

To access values and prove their authenticity we similarly keep a pointer to the value

as well as its secure hash value along with the key.

However, SPEICHER cannot support Txs; therefore we extend it to integrate both

optimistic and pessimistic Txs exporting an interface to the upper Tx layer to access

the LSM-data structure. We preserve the RocksDB’s interface and semantics. For the

persistent storage, TREATY extends the persistent data structures by adding an extra log

file, the Clog for the 2PC. TREATY’s distributed Txs can then be viewed as the set of all

participants’ single node Txs.

Pessimistic Txs take locks on their keys while optimistic Txs use sequence numbers

to identify conflicts at the commit phase. For optimistic Txs, each key has a seq. number

showing its the latest version and is atomically increased during the commit phase. At

commit, Txs log their updates to the WAL and update the MemTable. We only reply to

a client after the Tx becomes stable, ensuring that upon a crash, clients will not have

to re-execute successfully committed transactions. Thus, conflicting transactions will

maintain their initial ordering.

Lock tables. Nodes store a table of locks for their keys that is divided across shards,

each protected with a lock, by splitting the key space. TREATY runs with a big number

of shards (configurable by the system designer) to avoid locking bottlenecks. Txs that

fail to acquire a lock within a timeframe, return with a timeout error.

3.4 Stabilization Protocol

TREATY’s stabilization protocol ensures secure and crash-consistent persistency for the

committed Txs. To achieve this, our protocol relies on three core principles. First,

TREATY establishes trust between the nodes based on collective remote attestation.

Secondly, after the 2PC’s execution (§ 3.3), TREATY ensures crash consistency for the

committed Txs. Lastly, once Txs are crash-consistent, TREATY ensures rollback protec-

tion in distributed settings. We next explain these three principles.
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Distributed trust establishment. Upon startup TREATY bootstraps a Configuration and

Attestation Service (CAS) on a TEE in a node in the network to provide scalable remote

attestation and authentication. For attestation, the service provider verifies the CAS

over Intel Attestation Service (IAS). On success the service provider deploys an instance

of TREATY’s local attestation service (LAS) on TEEs on all nodes, verified by the CAS

over IAS. The LAS replaces the Quoting Enclave (QE)3, collecting and signing quotes

for all TREATY instances, running on the node. After the CAS verified a new instance,

it supplies securely the instance with the necessary configuration, e.g., network and

storage encryption keys, nodes’ IPs, etc. TREATY nodes use a shared symmetric key for

network communication. Each node has its own storage key that is different from the

network key. CAS and LAS cannot be compromised and leak secrets because they are

hosted within a TEE. However, CAS remains a single point of failure; failures in CAS

will block the attestation of new or recovered TREATY nodes. LAS instances can also

fail and block attestation, however, as long as CAS is operating the system designer can

bootstrap new LAS instances.

The CAS is used to attest TREATY nodes and establish trust between TREATY and

clients, i.e., clients can attest a TEE and verify the received attestation through CAS.

Crash consistency and recovery. After the 2PC’s execution, TREATY ensures crash con-

sistency and recoverability using three persistent log files; MANIFEST, WAL and Clog.

As discussed in § 3.3, Clog logs the 2PC states, WAL the committed data and MANI-

FEST stores the state changes in the SSTables. TREATY relies on each of individual logs

being written sequentially; thus, it assigns to each of their entries a unique, monotonic

and deterministically increased trusted counter value. Specifically, a log’s entry consists

of the encrypted data (e.g., KV pair), the assigned trusted counter value (encrypted) ,

and a cryptographic hash over both as in [39]. The recovery protocol replays the log’s

entries verifying the authenticity and the integrity of the entry by decrypting them and

checking the entry’s hash value over the calculated expected hash value. I also relies

on the monotonic increments of the assigned trusted counter values to detect rollback

attacks or verify freshness and state continuity. Precisely TREATY’s recovery verifies

that the state of the persistent storage and logged Txs is the most recent (through the

verification of the logs) and recovers the most recent stable state.

Upon restart MANIFEST is replayed first; it recovers the SSTable hierarchy and

loads metadata (hashes of SSTable’s blocks) that will be used to verify the integrity and

the freshness of a SSTable upon access into the enclave. Note that TREATY’s garbage

3The Quoting Enclave (QE) is a special enclave on every SGX processor that enables remote attestation
through Intel Attestation Service (IAS). It receives measurements (reports) from the application enclaves
in the same machine, verifies them (local attestation) and signs them with the attestation key producing
a quote that is verifiable by IAS.
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collector only deletes SSTable files when the newly compacted ones refer to stabilized

entries in MANIFEST. MANIFEST also recovers all the “live” WAL and Clog files. Sim-

ilarly, TREATY makes sure that the old versions of the logs are not deleted before their

effect to the database has been rollback protected (stabilized). For example, a WAL

is marked for deletion as long as the matching MemTable has been successfully com-

pacted and this compaction action refers to a stable entry in the MANIFEST. The Clog

is deleted as long as there are no unstable entries and does not contain any unfinished

prepared transaction entry.

After the MANIFEST, TREATY replays in order all live WALs to restore the latest

MemTables. The WAL also contains the prepared Txs. Therefore, each node will also

re-initialize all prepared Txs that are not yet committed. For each prepared Tx, the

node communicates with the Tx’s coordinator for either committing or aborting.

Lastly, Clog is replayed. TREATY restores the state of the 2PC protocol for all pre-

pared on-going Txs. The coordinator will re-execute the prepare phase, if it cannot

guarantee that the Tx will succeed. If the prepare phase decision is logged, then,

thanks to the stabilization function of TREATY, these Txs are also prepared in the par-

ticipant nodes. The coordinator will then instruct the participants to commit. If a node

has already committed the Tx, this message is ignored.

Distributed rollback protection. For secure persistency, TREATY provides rollback

protection across distributed Txs by leveraging a trusted counter service. While our

design is independent of the trusted counter service, we adopt Rote [206], a fault-

tolerant distributed system where enclaves preserve the counters freshness with 2 ms

average latency.

For each log file, TREATY initializes a unique trusted counter and assigns a monoton-

ically and deterministically increasing counter value to each log entry. TREATY’s crite-

rion for freshness is that 1) only log entries with counter value less than the trusted ser-

vice’s value can be recovered, 2) the counter values are deterministically increased—for

state continuity, e.g., deleted or reordered entries are detected, and 3) last log entry’s

value match the counter’s value.

TREATY accesses the trusted counter service through the network. The commu-

nication is asynchronous to avoid blocking and maximize throughput. As discussed

in § 3.3 the 2PC incorporates the stabilization protocol ensuring distributed rollback

protection—Txs are only considered committed (and clients get notified) after the com-

mit decision has been stabilized in the logs.

In TREATY we use Rote [206] as our system’s trusted counter service. In contrast

to the single-node persistent trusted SGX counter [146], Rote offers trusted counters

by implementing a distributed system of N SGX machines (protection group) where
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the trusted counters values are kept in the secure enclave memory. Rote targets a

threat model that is similar to the SGX threat model, thus to TREATY’s threat model.

Importantly, Rote overcomes the limitations of the SGX counters, at the cost, however,

of extra machines. Assuming that up to f SGX machines can be compromised and up

to u machines are unreachable or non-responsive at time of a counter’s increment or

access, Rote requires N to be at least equal to f +2u+1 for the system to proceed (and

remain safe). Although Rote requires that at least the quorum (q), where q= f +u+1,

of the SGX machines are up and running, it successfully overcomes the limitations

of SGX counters as follows: firstly, it supports unlimited increments because it keeps

the trusted counter values in the TEE secure memory, secondly, it improves latency

because the executing distributed protocol (which we discuss next) outperforms the

SGX hardware counters increments/writes latency.

Rote implements an echo broadcast [268] protocol with an extra confirmation mes-

sage. A sender-enclave (SE) sends the counter update to all enclaves of the protection

group. Receivers-enclaves (REs) send back to the SE an echo-message which they store

along with the counter value in the protected memory. Once the SE receives echo-

messages from the quorum (q ≥ N/2) it starts a second round of echo-messages. Upon

receiving back the echo, each RE verifies that the received counter value matches the

one it keeps in-memory and RE replies with a (N)ACK message. After receiving q ACKs,

the SE returns the incremented counter value to TREATY nodes.

Secure persistency guarantees. TREATY’s attestation and its secure LSM-data struc-

ture [39] ensure that TREATY maintains its security properties after a crash as (1) only

trusted nodes obtain the encryption keys for the persistent storage, (2) nodes perform

integrity checks on accessed persistent data blocks and, (3) at recovery, TREATY verifies

the logs’ freshness. As the underlying cloud infrastructure is owned by a third-party,

TREATY detects but cannot prevent unauthorized modifications to persistent state. If

TREATY detects security violations in the persistent data, it stops operating as the sys-

tem state is not recoverable. Consequently, clients lose permanently their access to

TREATY’s data.

Stabilization protocol correctness. TREATY stabilization protocol remains correct as

TEEs guarantee its correct execution on all nodes. Any faults, e.g., crashes or network

partitions, can only affect availability. While TREATY’s trusted counter offers crash fault

tolerance, Configuration and Attestation Service (CAS) can be a single point of failure.

In case CAS fails, crashed nodes cannot recover whereas the alive nodes operate as

usual.
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3.5 Trusted Substrate for Distributed TXs

To support secure Tx processing, we design the following four cross-layer subsystems

for our trusted substrate: a secure network library (§ 3.5.1), a secure storage engine

for Txs based on Speicher [39] (§ 3.5.2), a userland thread scheduler (§ 3.5.3), and a

memory allocator for Tx buffers (§ 3.5.4).

3.5.1 Network Library for Txs

To implement TREATY’s 2PC, we build a secure networking library that implements

asynchronous remote procedure calls (RPCs) for Txs execution. Our network library

relies on eRPC [162], but we had to extend and adapt the codebase to (i) overcome the

architectural limitations of TEEs (I/O, enclave memory and DMA-ed memory) and, (ii)

ensure confidentiality, integrity and freshness between TREATY’s nodes communication

over the network in the presence of malicious attackers.

Architectural limitations of TEEs. To avoid the execution of expensive syscalls for net-

work I/O, we adapt eRPC with DPDK as the transport layer. DPDK offers direct I/O,

bypassing the kernel and eliminating the syscalls overheads using userspace drivers

and polling.

To secure the software stack, we build eRPC/DPDK with SCONE assuring that the

device’s DMA mappings reside in the host memory, thus accessible by both enclave

and NIC. We achieve this overwriting the mmap() of SCONE to bypass its shield layer

and allow the allocation of untrusted host memory as well as the creation of memory

mappings to the hugepages.

Furthermore, we change the library’s memory allocator and we place all message

buffers in the host memory (in hugepages of 2 MiB), thus reducing the EPC pressure

at the cost of encrypting them. While eRPC by default creates shared memory regions

for message buffers in hugepages, a naive port of eRPC with SCONE allocates all of

these buffers inside the enclave triggering the costly EPC paging. Lastly, we eliminate

rdtsc() calls to reduce the number of OCALLs from the hot path by replacing the call

with a monotonic counter.

Message layout. TREATY’s networking library constructs a secure message to guarantee

the integrity and confidentiality of messages through a en-/decryption library based

on OpenSSL [239]. Additionally, we ensure freshness, i.e., at-most once execution

semantics for Txs’ execution. The message is comprised of a 12 B Initialization Vector

(IV), a payload of 4 B (for memory alignment), a 80 B Tx metadata and Tx data that

contains the size of the data and the size of the key and/or value followed by the key

and/or value. The message is followed by a 16 B MAC. MAC and IV are necessary to
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prove the authenticity and integrity in the remote host. Only the metadata and data

are encrypted; in case IV or MAC are compromised the integrity check will fail. The

metadata contains the coordinator node’s id (8 B) and the Tx id (64 B), monotonically

incremented in the coordinator node. Both are necessary for uniquely identifying the

transaction in the recipient side. The operation identifier (8 B) is also unique for each

Tx request. This unique tuple of the node’s, Tx and operation ids ensures that an

operation/Tx is not executed more than once. Therefore, along with the two-phase

locking which ensures that only one Tx can modify a resource, nodes can verify that no

already executed Txs are processed again. Similarly, the participants’ reply, except for

the ACKs, also include the coordinator’s node, Tx id and the operation id.

TREATY’ networking protocol enqueues requests, e.g., a user-defined message, that

triggers a request handler for this request type in the remote machine. The execution

returns after enqueuing the request. The node can enqueue more requests or pro-

cess received ones. Once the request is processed in the remote machine, the receiver

replies back to the sender. A continuation function is triggered in the host machine to

notify that the request has been completed. The sender can now deallocate any related

resources, e.g., message buffers.

3.5.2 Storage Engine: Extensions to SPEICHER for Txs

To offer persistent Txs in TREATY, we extend SPEICHER’s storage engine [39] to support

single-node pessimistic and optimistic transactions as discussed in § 3.3.2.

Additionally, we implement an extra persistent log file, the Clog. Clog’s entries are

similar to MANIFEST and WAL entries format; they are comprised of a counter value,

the encrypted Tx data and metadata and a cryptographic hash. Clog’s deletions are

also logged in the MANIFEST. Clog is thread-safe; coordinators append their entries

independently and isolation is ensured with a mutex.

In TREATY, we allow group commits for Txs to flush bigger data blocks to the per-

sistent storage and optimize the SSD throughput. The writer threads in each per-node

storage engine that execute the transactions and write to the logs, elect a leader writer

thread that merges their and all followers’ Txs buffers into a larger buffer. The leader

thread is elected based on a first-come-first-serve policy in a lock-free manner. The

leader then writes this buffer into WAL and MemTable. This approach also improves

system throughput because TREATY requests a trusted counter value for each batch

of transactions rather than for each individual transaction. We further defer logging

(yield) at commit, allowing us to format group commits of bigger data blocks. For the

LSM structures, we implement a MemTable skip list that supports parallel updates for

concurrent Tx processing.
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Lastly, we change the I/O sub-system of SPEICHER, where we replace the SPDK-

based direct I/O for accessing the SSDs with async syscalls to optimize the usage of

cores for our eRPC/DPDK-based networking library.

3.5.3 Userland Scheduler

Timer based scheduling in the enclave is extremely expensive, as it involves interrupts

that result in world switches. While SCONE implements its own userspace scheduler, it

is non-preemptive, relying on threads to either go to sleep or issue syscalls for ensuring

progress. This design is not well-suited for TREATY; (i) our direct I/O networking

library leads to starvation and high latency, and (ii) in the presence of multiple clients

creating too many threads is inefficient.

We overcome these by implementing a userland scheduler on top of SCONE’s sched-

uler. Precisely, each thread spawns one userland thread (fiber) for each connected

client. Our userland scheduler implements a per-core round-robin (RR) algorithm for

fibers’ scheduling and a set of queues (run queue and sleeping/waiting queue) for the

fibers.

When a fiber needs to block, e.g., acquiring a lock, waiting on condition variables

or sleeping, TREATY’s userland scheduler places the fiber into a sleeping queue. It

picks and schedules the next eligible fiber from the run queue (based on the RR algo-

rithm). Our userland scheduler does not involve interrupts, syscalls and context/world

switches when scheduling another fiber. Lastly, we adapted our scheduler to frequently

yield threads allowing SCONE to schedule others. Precisely, if no fiber is in a running

state, our scheduler sleeps; thereby invoking a syscall. Our scheduler’s sleep function

yields to another SCONE thread and increases the amount of time before future yields

are triggered. In this way, fibers allow us to both maximize CPU utilization and increase

scalability.

Our userland scheduler’s implementation is based on Boost [48]. We configure

SCONE with 8 kernel and 8 application threads each spawning one fiber per client.

3.5.4 Memory Management

We minimize EPC usage or paging; TREATY’s in-memory data structures are divided

between the enclave and untrusted host memory. All network buffers are kept in host

memory at the cost of encryption. Note that transmission is asynchronous so heavy

network traffic could exceed EPC limit and trigger paging if the message buffers were

allocated in the enclave.

TREATY’s engine keeps the updates of uncommitted in-progress Txs into local buffers.
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We implement Txs’ buffers as a stream of bytes (std::string) that allocate continu-

ous memory to eliminate paging.We also explored the case to adopt a design similar

to the MemTable for Txs buffers, where we keep only the keys in the enclave (for the

read-my-own writes semantics). However, we decided against it as it does not offer any

performance improvements; at commit, we still need to perform integrity checks, re-

collect and encrypt all the KV pairs in the enclave memory for logging. We implement

a scalable memory allocator for host and enclave memory that relies on a mempool.

It assigns threads to different heaps based on the hash of the get id() and recycles

unused memory, drastically reducing the amount of mapped memory.

Implementation details. We implement TREATY in C/C++; 4000 LoC for the 2PC,

encryption library and modifications to eRPC, DPDK, boost and SPEICHER codebases.

We use Java and Rust for the workload generator and CAS respectively.

3.6 Evaluation

3.6.1 Experimental Setup

Testbed. We perform our experiments on a real hardware testbed using a cluster of

6 server machines. We run TREATY on 3 SGX server machines with CPU: Intel(R)

Core(TM) i9-9900K each with 8 cores (16 HT), memory: 64 GiB, caches: 32 KiB (L1

data and code), 256 KiB (L2) and 16 MiB (L3). TREATY nodes are connected over a

40GbE QSFP+ network switch. Clients generate workload on 3 machines and are con-

nected with TREATY over a secondary 1Gb/s NIC.

Benchmarks/workloads. We evaluate TREATY’s 2PC w/o any underlying storage (§ 3.6.2).

For the distributed (§ 3.6.3) and single-node (§ 3.6.4) Txs evaluation, we use YCSB [349]

and TPC-C [310]. We configure TPC-C with 10 Warehouses, as in [80]. For distributed

Txs, we also run a TPC-C workload with 100 Warehouses. Lastly, we evaluate the net-

work stack (§ 3.6.5) by stress-testing the network using: (i) iPerf [155] (implemented

w/ kernel-sockets), and (ii) our own server/client application, build with eRPC [162],

that implements iPerf. Unless stated otherwise, we refer to overheads for throughput

(tps).

3.6.2 TREATY’s 2PC Protocol

We evaluate TREATY’s 2PC protocol designed over eRPC with the YCSB workload (50 %R-

50 %W). TREATY’s 2PC runs without any underlying storage to isolate the protocol’s

overheads. We compare two Secure (w/ SCONE) versions of TREATY 2PC with and w/o

Enc(ryption) against two Native executions of the protocol with and w/o Enc(ryption)
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Figure 3.4: Performance evaluation of distributed Txs under a W-heavy (20 %R) and a

R-heavy (80 %R) YCSB workload.

respectively. All four versions “saturate” with 300 clients, each of which executes a

YCSB workload (10 Ops/Tx, 1000 B value size).

Figure 3.3 shows the slowdown in the throughput of 3 versions of TREATY’s 2PC

protocol (Native 2PC w/ Enc, Secure 2PC w/o Enc, Secure 2PC w/ Enc) normalized

to a native, non-secure version of 2PC. Some Tx’s operations might be served by the

coordinator node; therefore not all operations are sent thought the network to partici-

pants and thus, be en-/decrypted. Our evaluation shows minimal encryption overhead

in the native case. Further, TREATY’s secure 2PC w/o Enc experiences 1.8× slowdown

w.r.t. a native execution while encryption (Secure 2PC w/ Enc) increases the overheads

leading to a 2× slowdown in comparison with native 2PC.

3.6.3 Distributed Transactions

Baselines and setup. We evaluate the performance of distributed Txs under two TPC-C

workloads, with 10 (approx. 1 GB of data in the persistent storage at loading time) and
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Figure 3.5: Performance evaluation of distributed transactions under two TPC-C work-

loads with 10 Warehouses and 100 Warehouses respectively.

100 Warehouses (approx. 9.8 GB of data in the persistent storage at loading time), and

two YCSB workloads (Zipfian distribution and 10K distinct keys)4: read-heavy (80 %R)

and write-heavy (20 %R). We show the overheads of TREATY’s throughput normalized

w.r.t. a native execution of 2PC with RocksDB as the underlying storage (DS-RocksDB).

We study the performance behavior of three systems: (i) TREATY w/o Enc, (ii) TREATY

w/ Enc and (iii) TREATY w/ Stab(ility) w/ Enc. All three versions run with SCONE and

our TREATY’s secure storage system.

Results. YCSB. Figure 3.4 (left) shows the throughput slowdown of the three systems

with reference to DS-RocksDB. TREATY’s performance is 9×—15× worse compared to

DS-RocksDB where SCONE overheads fast dominate the performance (TREATY runs w/

and w/o Enc have little differences). For the W-heavy workload, DS-RocksDB achieves

18.5 ktps. All four systems are saturated with 96 clients equally divided across all

three machines (each serving 32 clients). Distributed Txs require both participants

and coordinator to stabilize their entries and therefore, TREATY rollback protection

increases latency further for write-heavy Txs, as shown in Figure 3.4 (right).

For the R-heavy workload, TREATY w/ Enc slows down the execution 11× while the

un-encrypted version of the system shows a slowdown of 9.5×, both compared to native

DS-RocksDB that achieves 24 ktps. Encryption overheads are reasonable; reading from

SSTables requires integrity checks as well as proving the freshness of the entry. All four

systems present different scaling capabilities. DS-RocksDB and TREATY w/o Enc scale

up to 92 clients while encrypted versions cannot scale more than 60 clients. Therefore,

TREATY is over saturated in the benchmark, explaining the higher latency values.

TPC-C (10W). Figure 3.5 (left) shows the throughput overheads and the latencies

4TREATY and RocksDB do not support in-place updates, each update appends a new entry in the
MemTable. As such the dataset size of the system depends on the experiment duration rather than the ini-
tial loaded data in the system. In addition, the dataset size is also affected by the background compaction
process which removes duplicate and stale KV pairs. We ran all experiments for 90 seconds; 15 seconds
warm-up/warm-down period and 60 seconds runtime.
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of three versions of TREATY (all run in SCONE) w.r.t DS-RocksDB under TPC-C with

10 Warehouses. TREATY is 8×—11× slower compared to the native, non-secure DS-

RocksDB. This configuration presents heavy W-W conflicts; DS-RocksDB achieves 780

tps. Consequently, DS-RocksDB, TREATY w/o Enc and TREATY w/ Enc cannot scale

for more than 10 clients. However, TREATY w/ Enc w/ Stab scales up to 16 clients

as the stabilization period (where locks are released) allows the system to serve more

requests.

TPC-C (100W). Figure 3.5 (right) shows the throughput overheads and the latencies

of three versions of TREATY (all run w/ SCONE) w.r.t DS-RocksDB under TPC-C with

100 Warehouses (total dataset size equals to 10GB divided equally to all 3 nodes).

This configuration presents less conflicts than the previous case; DS-RocksDB achieves

1200 tps. Our evaluation shows reasonable overheads (4×-6×) and similar behavior

for TREATY w/ Enc and Stab; while all the three other systems (DS-RocksDB, TREATY

w/ Enc, TREATY w/o Enc) are saturated with 60 clients, TREATY w/ Enc w/ Stab is

saturated with 84 clients.

3.6.4 Single-node Transactions

Baselines and setup. We evaluate the performance of TREATY’s pessimistic and opti-

mistic single-node Txs with TPC-C and YCSB. TPC-C is configured with 10 Warehouses

as in [80] and YCSB with: 10 ops/Tx, value size to be equal to 1000 B, uniform dis-

tribution with 10 k unique keys. For the pessimistic Txs, we measure the performance

against read-heavy (80 %R-20 %W) and write-heavy (20 %R-80 %W) workloads, while

for the optimistic Txs we use the read-heavy workload. Our experiments stress-test EPC

usage since both TREATY and RocksDB do not support in-place updates. We evaluate the

throughput (tps) and latency for 6 versions of the single-node TREATY; (i) RocksDB, (ii)

Native TREATY, (iii) Native TREATY w/ Enc, (iv) TREATY w/o Enc (SCONE), (v) TREATY

w/ Enc (SCONE) and (vi) TREATY w/ Enc w/ Stab (SCONE).

Results. Pessimistic Txs. Figure 3.6 shows the throughput and latency of the TPC-C

for the pessimistic Txs. TREATY executed natively (Native TREATY) performs equiva-

lently to RocksDB. Additionally, we deduce that Native TREATY w/ Enc adds minimal

overhead compared to the non-encrypted versions. Further, SCONE’s overheads are

reasonable. TREATY w/o Enc has roughly 1.6× slowdown compared to RocksDB while

TREATY w/ Enc has 2× slowdown. Lastly, the stabilization period seems not to have

great impact on the overall throughput. We experience a 2.1× slowdown compared to

RocksDB. Regarding the latency, we see that all TREATY SCONE versions do not scale as

good as the native execution. However, the latency of SCONE systems is equivalent or

smaller to the natively executed versions. This behavior is reasonable since the native
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Figure 3.6: Performance evaluation of pessimistic single-node transactions under TPC-

C and YCSB benchmarks. YCSB performance is evaluated with a write heavy (20 %

reads) and a read heavy (80 % reads) workload.
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Figure 3.7: Performance evaluation of optimistic single-node transaction under TPC-C

and YCSB benchmarks. YCSB performance is evaluated with a read heavy (80 % reads)

workload.



3.6. Evaluation 49

versions are “saturated” to 64 clients while the SCONE versions to 32 clients.

Additionally, Figure 3.6 shows the throughput and latency of all 6 systems for the

two YCSB workloads. YCSB’s configuration, in contrast to TPC-C, present little con-

flicts. That said, for the read-heavy workload, encryption, adds a throughput overhead

of 1.3× and 2.7× compared to native and SCONE versions respectively while the re-

spective overheads for latency are 1.6× and 4.6×. For the write-heavy workload, we

have 1.2× and 2.8× slowdown to native and SCONE versions compared with RocksDB.

The latency overheads are 1.5× and 4.7× respectively. Similarly to TPC-C, TREATY’s

stabilization function does not impact performance dramatically. We experience 3.5×
slowdown for the read-heavy workload and 3.2× slowdown with respect to RocksDB

for the write-heavy workload compared to when de-activating the stabilization mecha-

nism. Further, especially for the read-heavy workload, we find out that TREATY w/ Enc

w/ Stab takes advantage of the “idle” (stabilization) time to improve the scalability;

TREATY w/ Enc w/ Stab becomes saturated in 64 clients while the other versions are

saturated in 32 clients.

Optimistic Txs. Figure 3.7 shows that TREATY w/ Enc w/ Stab performs 5× and 4×
worse compared to the native RocksDB for TPC-C and YCSB, respectively. We see

that TREATY’s stabilization does not incur extra throughput overhead compared to the

TREATY w/ Enc as the system, thanks to our userspace fiber scheduler, continues to

process requests. TREATY w/ Enc w/ Stab’s compared to TREATY w/ Enc experiences

roughly 10 % latency overhead. Further, we notice that TREATY w/ Enc w/ Stab’s satu-

ration point under YCSB is 128 clients while RocksDB’s one is 32. TREATY shows similar

overheads as SPEICHER [39] which is the most related system.

3.6.5 Network Library for Txs

We evaluate the performance of TREATY’s networking library using iPerf against six

competitive baselines: eRPC (SCONE), eRPC (native), iPerf-UDP (native), iPerf-UDP

(SCONE), iPerf-TCP (native), and iPerf-TCP (SCONE). All native (eRPC and iPerf) ver-

sions do not provide any security. Additionally, SCONE (eRPC and iPerf) versions do not

secure network layer; we only use the secure message format for TREATY-networking.

Note that iPerf build with SCONE is optimized w.r.t to SGX since SCONE uses the async

syscalls [293] for performance.

For the sockets (native and SCONE), we use iPerf to measure the throughput. For

the eRPC versions and TREATY-networking, we implement a client-server model with

eRPC to implement iPerf. Our experiments saturate network bandwidth where we

compare the performance with different packet sizes. iPerf supports TCP and UDP,

eRPC supports only UDP.
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Figure 3.8: Throughput in network bandwidth of TREATY-networking, eRPC (native

and SCONE), iPerf-TCP and iPerf-UDP (native and SCONE).

Figure 3.8 shows the throughput in network bandwidth for all seven systems dis-

cussed (TREATY networking, eRPC (SCONE), eRPC (native), iPerf-UDP (native), iPerf-

UDP (SCONE), iPerf-TCP (native), and iPerf-TCP (SCONE)). We see that eRPC is com-

parable to iPerf-TCP while iPerf-UDP performs poorly. Especially for large messages (>

MTU), UDP throughput equals zero as many messages are dropped. In contrast to UDP,

TCP performs equivalently and better than eRPC. We deduct this to the fact that TCP

is optimized for high speed bulk transfers and, additionally, the entire TCP/IP stack

processing is frequently offloaded to the network controller. For small and medium

packets sizes that are still smaller than the MTU (1460 B), we observe performance dif-

ferences between eRPC and iPerf-TCP. Especially, for packet sizes of 256 B and 1024 B,

eRPC shows roughly 30 % and 22 % slowdown respectively compared to iPerf-TCP. For

larger messages, both eRPC and iPerf-TCP perform almost equivalently.

Our exaluation shows the following: (a) SCONE’s overhead is significant—SCONE

deteriorates up to 8× for iPerf-TCP (SCONE) while up to 4× for eRPC (SCONE); and

(b), due to the amount of kernel syscalls, eRPC in SCONE performs up to 1.5× faster

than iPerf-TCP (SCONE). As discussed, syscalls execution in the enclave incurs heavy

overheads. Note the smallest the packet size is, the worse the performance becomes.

Lastly, we see that TREATY network stack which also fully secures the network and

includes the encryption overheads performs equivalently to iPerf-TCP (SCONE) that do

not provide any security. As a result, iPerf-TCP (SCONE) is an inappropriate design.
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Version Slowdown Version Slowdown

TREATY w/o Enc 1.5× TREATY 2.0×

Table 3.1: Recovery overheads w.r.t. native recovery.

3.6.6 Recovery Protocol

We next evaluate the overheads of TREATY recovery w/ and w/o Enc compared with

native recovery. We construct logs of 800K entries each that lead to log sizes of 69 MiB

and 91 MiB for the non-encrypted and encrypted entries respectively. In this experiment

we use relatively small log entries (e.g 100 B per log entry) which is the worse case for

TREATY as: (i) we have more syscalls, and (ii) we have more decryption calls.

Table 3.1 shows that TREATY recovery without decryption costs incurs roughly 1.5×
slowdown compared to the native recovery. Further, encryption increases the overheads

by up to 2× slower than the native recovery.

3.7 Related Work

Confidential computing frameworks [26, 43, 315, 118] leverage TEEs to build secure

systems [173, 39, 278, 257, 312, 314, 313, 259, 37]. TREATY leverages SCONE to

build the first secure distributed transactional KV storage system with TEEs that offers

integrity, confidentiality and data freshness.

Secure stores with TEEs. Secure systems for cloud computing [247, 253, 80, 316,

257, 95, 22, 352, 40, 205, 214, 38] offer different security properties, interfaces, threat

model, and security enforcement mechanisms. EnclaveDB [257] is the most related

work. In contrast to TREATY, it (1) is a single-node in-memory system (w/o persis-

tence and distribution), (2) runs in emulated h/w and, (3) assumes unlimited enclaves.

TREATY targets a distributed storage system, where we extend the security properties to

storage and network and overcome the limitations of TEEs. ShieldStore [170] builds

a secure in-memory KV store, providing similar APIs as SPEICHER, using Intel SGX.

In contrast to SPEICHER, thus TREATY, ShieldStore offers weak persistency allowing for

rollback attacks; they conduct periodic snapshots that are stored persistently along with

a hardware monotonic counter (for rollback attacks protection). However, ShieldStore

comes with an untrusted time window where rollback attacks are possible on the very

latest state. Specifically, any updates after the last snapshot are lost, if a crash occurs.

Precursor [214] combines SGX with RDMA offloading the cryptographic operations to

clients. In contrast, TREATY provides distribution, persistency and Txs.

Secure databases and storage systems. Encrypted databases, such as CryptDB [253],
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Seabed [247], Monomi [316] and DJoin [229], focus on ensuring confidential compu-

tations in untrusted environments. TREATY, on the other hand, guarantees confidential-

ity, integrity, and freshness for both the computation, i.e., transactions and the stored

data. TDB [205] presents a secure database on untrusted storage by designing a log-

structured data store for confidentiality, integrity, and freshness. In contrast to TREATY

that implements a hardware-protected trusted computing base (TCB) with Intel SGX,

TBD assumes a TCB overseeing many practical challenges arisen in a real-world system.

Obladi [80] supports transactions focusing on hiding access patterns against the

cloud provider and incurs performance overheads that are similar to TREATY, i.e., 5×—

12×, compared to its non-secure version. Since TREATY provides confidentiality, infor-

mation about the transactions and the requested data cannot be leaked to the cloud

provider.

Other storage systems vary on hardware, security guarantees and interfaces: KV

APIs [39, 170, 173] and filesystems [105, 338, 320].

Secure distributed storage systems. Secure distributed storage systems [204, 333,

252] provide consistency, availability, durability and integrity. CloudProof [252], sim-

ilarly to TREATY, distrusts the cloud provider but it requires (1) clients to guarantee

these security properties and (2) a trusted proxy which limits scalability. TREATY lever-

ages TEEs to avoid such limitations. Opaque [352] supports oblivious operators for

queries that scan or shuffle full tables and relies on Intel SGX to run a query opti-

mizer. Depot [204] sustains failures in terms of durability, consistency, availability, and

integrity. Salus [333] designs a block store robust storage system guaranteeing data

integrity in the presence of commission failures. TREATY, on the other hand, further

provides confidentiality.

I/O for shielded execution. Other distributed systems [164, 284, 337, 88] deploy

RDMA as TREATY. However, we target security which is more challenging; DMA con-

nections for direct I/O are not allowed by TEEs. ShieldBox [313] uses DPDK to over-

come this limitation, but it targets only layer 2 in the OSI model which is limiting for

distributed systems. SPEICHER [39] uses SPDK [154] for direct I/O to the SSDs. rkt-

io [307] provides a library OS in the enclave including a full network stack. We build

on these advancements to build a secure direct network I/O mechanism for TEEs with

which we design a 2PC protocol.

BFT-based system design without TEEs. TREATY guarantees freshness building on

a trusted counter service, Rote [206], that implements fault-tolerant trusted counters

even when some of the involved TEEs are compromised (Byzantine). Alternative ap-

proaches that do not make use of TEEs could involve the adoption of Byzantine Fault

Tolerant (BFT) consensus protocols, such as PBFT [57] and those discussed in the next
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Chapter 4, to design fault-tolerant, monotonically increased trusted counters for guar-

anteeing freshness. Further, for offering confidentiality without TEEs, this alternative

system could store the data encrypted in an untrusted KV store.

Such a hypothetical design can provide strong freshness guarantees and confiden-

tiality for the data. However, we argue that leveraging TEEs offers important ad-

vantages both in performance and in the security properties of the system. First, by

leveraging TEEs, TREATY’s counter, Rote, downgrades its replication degree compared

to a classical BFT protocol [206] which translates to less required machines and po-

tentially higher system throughput. The next Chapter 4 elaborates more on how to

downgrade the replication degree of robust fault-tolerant systems using TEEs in the

untrusted cloud.

Secondly, by encrypting the data in the untrusted KV store, the system cannot en-

sure confidentiality for the operations which might reveal the access patterns on confi-

dential or sensitive data (e.g., banking, healthcare). In addition, since the operations

execution is unprotected, the system cannot guarantee integrity flow, i.e., the opera-

tions or transactions are executed correctly. In contrast, TREATY on top of TEEs is ca-

pable of offering strong confidentiality for all the operations, the transaction protocol

and the accessed and stored data. As such, private information or the access patterns

cannot be leaked.

Thirdly, for the operations execution, this hypothetical system have two options:

(1) first, use homomorphic encryption (HE) and (2) secondly, allowing access to the

KV encryption key for decrypting and iterating through the stored entries, e.g., keys.

The first approach is limited because HE cannot easily be adapted for transactions. The

second approach makes the system untrusted since the encryption key can be leaked by

the cloud provider. In contrast, the use of TEEs in TREATY guarantees that the storage

encryption key remains secure and thus data are accessible only by the current TCB

while we are able to support a wide range of operations (e.g., transactions, queries)

that due to shielded TEEs’ execution will be executed correctly.

Lastly, the use of TEEs in TREATY allows the system to verify and detect integrity

and freshness violations by executing all the checks securely within the trusted hard-

ware. In the hypothetical design, such checks could only be conducted in the (trusted)

clients’ side. While such client-centric designs [79, 252, 172] have been introduced in

various domains (database isolation, security enforcement and BFT consensus, etc.),

in our hypothetical system, recovery and validation would require clients to retrieve

and recover and validate the entire state of the database which is inefficient. Overall,

we believe that the use of TREATY presents a transparent and clean design for offering

security.



54 Chapter 3. TREATY

3.8 Summary

In this chapter, we present TREATY, a secure distributed transactional KV store for un-

trusted cloud environments. TREATY offers high-performance serializable Txs with

strong security properties.We achieve these design goals by building on hardware-

assisted secure Txs with SGX and designing a distributed 2PC protocol with a direct

I/O network library based on eRPC. Further, we design a stabilization protocol for Txs

using an asynchronous trusted counter interface along with a distributed attestation

service. We implement an end-to-end secure Tx processing system from the ground-up

based on RocksDB/SPEICHER as the underlying storage engine. Our evaluation with

the YCSB and TPC-C shows reasonable overheads for TREATY, while it provides strong

security properties.



Chapter 4

RECIPE: A Hardware-Accelerated

RECIPE For Designing Byzantine

Fault Tolerant Replication Protocols

In the previous chapter, we discussed TREATY which implements a secure distributed

transactional KV storage system. Unfortunately, TREATY cannot continue operating

when failures occur as the key space of the failed nodes cannot be accessed. To address

this, distributed systems employ Crash Fault Tolerant (CFT) replication protocols [236,

269, 266, 12, 201, 181, 168] to maintain a consistent view of the datasets guaranteeing

fault tolerance, i.e., reliability and availability in the presence of failures [353, 82, 179,

265, 271, 186, 103]. However, CFT protocols cannot tolerate arbitrary (Byzantine)

failures that occur in the modern untrusted cloud environments.

To this end, we propose RECIPE, a generic approach to transform existing Crash-

Fault Tolerant (CFT) protocols to tolerate Byzantine failures in untrusted cloud envi-

ronments. RECIPE leverages the advances in trusted hardware (e.g., trusted execution

environments) and direct network I/O to guarantee non-equivocation and transferable

authentication, i.e., the ability to establish trust among the distributed nodes over the

untrusted network and infrastructure in the presence of Byzantine actors (for exam-

ple, a node can verify who is the original sender of a message even this message is

forwarded from a node other than the original sender). At the same time, RECIPE

aims to offer performance and resource overheads on par with CFT protocols. Impor-

tantly, RECIPE’s APIs are generic and can easily be adapted to existing codebases—we

have transformed a range of leader-/leaderless-based CFT protocols enforcing different

(e.g., total order/per-key) ordering semantics. Our evaluation based on the transfor-

mation of four CFT protocols (Raft, ABD, Chain Replication, and AllConcur) against

the state-of-the-art Byzantine-Fault Tolerant (BFT) protocols shows that RECIPE can in-

55
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crease throughput up to 5.9×—24×, while requiring fewer replicas, i.e., 2 f +1 replicas

instead of 3 f +1 replicas to tolerate f faults. Lastly, we provide a correctness analysis

for safety and liveness properties of our transformation of CFT protocols operating in

Byzantine settings.

4.1 Motivation

Distributed data stores are widely used in online cloud services [286, 327, 353, 111,

230, 55, 132]. For performance and fault tolerance requirements, distributed data

stores employ a replication protocol. As such, they maintain a consistent view of the

datasets while improving the performance for read-heavy workloads and, more impor-

tantly, guaranteeing fault tolerance, i.e., reliability and availability in the presence of

failures [353, 82, 179, 265, 271, 186, 103].

For handling failures, distributed data stores predominately employ Crash Fault

Tolerant (CFT) replication protocols [236, 269, 306, 266, 12, 201, 181, 168] to pro-

vide consistent replication assuming a fail-stop fault model, i.e., replicas are honest and

can only fail by crashing [85]. Unfortunately, CFT protocols are inadequate for mod-

ern untrusted cloud environments, where the underlying cloud infrastructure can be

compromised by an adversary, e.g., co-located tenants or even a misbehaving cloud

operator that may eavesdrop or actively influence the replicas’ behavior. In such an

untrusted environment, the surface of faults and attacks expands beyond the CFT

fail-stop model, ranging from software bugs and configuration errors to malicious at-

tacks [122, 287, 127]. CFT protocols are fundamentally incapable of providing consis-

tent replication in the presence of non-benign faults in untrusted cloud environments.

To overcome the limitations of CFT protocols, Byzantine Fault Tolerant (BFT) pro-

tocols [182] offer important foundations for developing distributed data stores with

stronger guarantees in the presence of Byzantine failures, i.e., nodes can fail in arbitrary

ways. While BFT protocols can tolerate Byzantine failures, including malicious adver-

saries, they are unfortunately not adopted in practice because of their performance and

replication resource overheads, and implementation complexity [254]. For instance,

BFT protocols require at least 3 f + 1 replicas [57, 303] instead of the 2 f + 1 replicas

required by CFT protocols for tolerating f faults. BFT protocols also require additional

communication round-trip rounds (at least three execution phases, e.g., Pre-Prepare,

Prepare and Commit in PBFT [57], instead of two phases in the CFT model [106]);

thus incurring high latency and reduced read/write throughput. Lastly, BFT protocols

are extremely complex and hard to understand, let alone to implement correctly and

optimize [5]: even intuitive algorithmic optimizations can strongly affect other parts
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of the protocol [30].

The “CFT vs. BFT” conundrum creates a fundamental design trade-off between the

efficiency of CFT protocols for practical deployments and the robustness of BFT protocols

for Byzantine settings of modern cloud environments. To strike a balance, our work tar-

gets the following research question: How can we design robust and efficient replication

protocols for distributed data stores hosted in untrusted cloud environments?

The key idea. Our work leverages modern cloud hardware for transforming exist-

ing CFT protocols for Byzantine settings in untrusted cloud environments. Specifically,

our transformation underpins the robustness and efficiency axes. For robustness, we

leverage trusted hardware available as part of confidential cloud computing to harden

the security properties of CFT protocols [148, 184, 15, 149]. In particular, we lever-

age trusted execution environments (TEEs) which are capable of providing two key

properties necessary for successfully transforming a CFT protocol to operate in Byzan-

tine settings [67]: (a) transferable authentication, i.e., the ability to establish trust

in nodes in distributed settings by designing a remote attestation protocol, and (b)

non-equivocation, i.e., once the trust is established in a node via the remote attesta-

tion protocol, the node follows the CFT replication protocol faithfully, and therefore, it

cannot send conflicting statements to other nodes.

For efficiency, we leverage the modern networking hardware, such as RDMA/DPDK

for kernel-bypass, to design a highly optimized communication protocol for replicating

the state across nodes in distributed settings [209, 150, 162], while overcoming the

I/O bottlenecks in trusted computing [307].

Our proposal: RECIPE. RECIPE leverages TEEs along with direct I/O to resolve the ten-

sion between security and performance by building an efficient and practical transfor-

mation of unmodified CFT replication protocols for Byzantine settings. RECIPE achieves

this by implementing a distributed trusted computing base (TCB) that shields the repli-

cation protocol execution and extends the security properties offered by a single TEE

(whose security properties are only effective in a single-node setup) to a distributed set-

ting of TEEs. Our design is comprised of a transferable authentication phase (§ 4.4.3)

for distributed trust establishment, a highly performant network stack for secure com-

munication over the untrusted network (§ 4.5.1) and a memory-efficient KV store

(§ 4.5.3).

We realise RECIPE approach as a generic library, RECIPE-lib (§ 4.5), on top of Intel

SGX and the SCONE framework [26]. We carefully build RECIPE’s high-performance

network stack for TEEs, extending eRPC [162] to enable direct I/O, essentially DMA

operations, within the protected TEE domain while shielding the exchanged messages

(i.e., calculating and sending the message along with its MAC) to maintain authenticity
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and non-equivocation across the network. Lastly, our lock-free KV store is designed for

the limited trusted area in TEEs [39, 170].

Our evaluation assesses RECIPE’s generality and efficiency. Specifically, to show

the generality of our approach, we apply and evaluate RECIPE on real hardware with

four well-known CFT protocols (from now on, an ‘R-’ prefix stands for the trans-

formed protocol); a decentralized (leaderless) linearizable multi-writer multi-reader

protocol (ABD) [201] (R-ABD), two leader-based protocols with linearizable reads,

Raft [236] (R-Raft) and Chain Replication (CR) [269] (R-CR), and AllConcur [251]

(R-AllConcur), a decentralized consensus protocol with consistent local reads. To eval-

uate performance, we compare RECIPE protocols with two competitive BFT replication

protocols, BFT-smart [295], the state-of-the-art implementation of PBFT [58] that has

been adopted in industry [96], and Damysus [83] a state-of-the-art BFT replication

protocol that uses TEEs for reducing its replication degree. Our evaluation shows that

RECIPE achieves up to 24× and 5.9× better throughput w.r.t. PBFT and Damysus, re-

spectively, while improving scalability—RECIPE requires 2 f +1 replicas, f fewer replicas

compared to PBFT (3 f + 1). We further show that RECIPE can offer confidentiality—a

security property not provided by traditional BFT protocols—while achieving a speedup

of 7×—13× w.r.t. PBFT and up to 4.9× w.r.t. Damysus.

4.2 System Model

Model sketch. We model the distributed system as a set of N TEEs in N nodes (or

replicas) that host either follower or coordinator processes which execute a CFT protocol

and communicate by exchanging messages. We assume that RECIPE’s nodes run in

a third-party untrusted cloud infrastructure. A coordinator serves client requests by

initiating the implemented CFT replication protocol. Upon completion, it replies back

to clients. In leaderless protocols, coordinators are selected randomly (any node can act

as a follower and/or a coordinator). In leader-based protocols, only the active leader

can act as a coordinator, the rest of the nodes are followers.

Communication model. Nodes communicate via a fully-connected, bidirectional, point-

to-point and unreliable message-passing network, where messages can be arbitrarily

delayed, re-ordered or dropped. In line with previous BFT protocols, we adopt the par-

tial synchrony model [92], where there is a known bound ∆ and an unknown Global

Stabilization Time (GST), such that after GST, all communications arrive within time

∆.

Fault and threat model. We say that a node is faulty if it exhibits Byzantine behav-

ior [182]. The unprotected (out-of-the-TEE) infrastructure (e.g., host memory, OS, NIC,
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network infrastructure/adversaries) can exhibit Byzantine behavior while we assume

that the TEEs can only crash-fail. We say that a node is faulty if one of the following

holds true: (i) the TEE fails by crashing or (ii) the unprotected infrastructure is Byzan-

tine. For liveness we assume that for N ≥ (2 f + 1) nodes up to f can be faulty. While

the cloud provider and the cloud infrastructure can be Byzantine, we assume that the

CPU Manufacturer, hence the provided TEEs hardware, as well as the protocol designer

and the codebases are trusted.

4.3 RECIPE Overview

4.3.1 Architecture Overview

Distributed data stores architecture. Figure 4.1 shows the overview of a distributed

data store that builds on top of the RECIPE system. Distributed data stores implement

a tiered architecture consisting of a distributed data store layer, replication layer, and

data layer. In our case, the replication and data layers are provided by RECIPE. The

distributed data store layer maintains a routing table that matches the keyspace with

the owners’ nodes. This layer is responsible for forwarding client requests to the appro-

priate coordinator nodes (e.g., leader of the replication protocol) for execution. The

RECIPE replication layer is responsible for consistently replicating the data by executing

the implemented protocol. After the protocol execution, RECIPE nodes store the data

in their KV stores (data layer), and they reply to the client [265, 271, 186, 103].

RECIPE architecture. RECIPE design is based on a distributed setting of TEEs that

implement a (distributed) trusted computing base (TCB) and shield the execution of

unmodified CFT protocols against Byzantine failures. RECIPE’s TCB contains the CFT

protocol’s code along with some metadata specific to the protocol. The code and TEEs

of all replicas are attested before instantiating the protocol to ensure that the TEE

hardware and the residing code are genuine. All authenticated replicas receive secrets

(e.g., signing or encryption keys) and configuration data securely at initialization.

Further, RECIPE builds a direct I/O layer comprised of a networking library for low-

latency communication between nodes (§ 4.5.1). The library bypasses the kernel stack

for performance and shields the communication to guarantee non-equivocation and

transferable authentication against Byzantine actors in the network. RECIPE guaran-

tees both properties by layering the non-equivocation and authentication layers on top

of the direct I/O layer. In addition, to strengthen RECIPE’s security properties and elim-

inate syscalls, we map the network library software stack to the TEE’s address space.

Lastly, RECIPE builds the data layer on top of local KV store instances. Our design of

the KV store increases the trust to individual nodes, allowing for local reads (§ 4.5.3).



60 Chapter 4. RECIPE

R
ep

lic
at

io
n

pr
ot

oc
ol

 la
ye

r

Ke
rn

el
TE

E 
C

on
tro

lle
r

Va
lu

es

M
sg

bu
ffe

rs
M

sg
bu

ffe
rs

M
sg

bu
ffe

rs
M

sg
bu

ffe
rs

TX
/R

X
qu

eu
es

N
IC

D
at

a 
la

ye
r

N
et

w
or

k 
la

ye
r

C
FT

 P
ro

to
co

l

Au
th

en
tic

at
io

n 
+ 

N
on

-e
qu

iv
oc

at
io

n 
la

ye
rs

D
ire

ct
 n

et
w

or
k 

I/O

Ke
ys

 +
m

et
ad

at
a

R
EC

IP
E

bu
ffs

D
ire

ct
 I/

O
 la

ye
r

B
yz

an
tin

e 
ne

tw
or

k

N
od

e 
#1

N
od

e 
#k

C
FT

 P
ro

to
co

l

Au
th

en
tic

at
io

n 
+ 

N
on

-e
qu

iv
oc

at
io

n 
la

ye
rs

D
ire

ct
 n

et
w

or
k 

I/O

Ke
ys

 +
m

et
ad

at
a

R
EC

IP
E

bu
ffs

C
FT

 P
ro

to
co

l

Au
th

en
tic

at
io

n 
+ 

N
on

-e
qu

iv
oc

at
io

n 
la

ye
rs

Ke
ys

 +
m

et
ad

at
a

R
EC

IP
E

bu
ffs

D
PD

K/
R

D
M

A

R
PC

 o
bj

s
H

an
dl

er
s

Ke
rn

el
TE

E 
C

on
tro

lle
r

Va
lu

es

D
M

A-
ed

 N
IC

 M
em

or
y

N
IC

N
od

e 
#2

Ke
rn

el
TE

E 
C

on
tro

lle
r

Va
lu

es

D
M

A-
ed

 N
IC

 M
em

or
y

N
IC

Pr
ot

oc
ol

 c
oo

rd
in

at
or

R
ou

tin
g 

ta
bl

e 
(C

on
si

st
en

t h
as

hi
ng

)
D

is
tr

ib
ut

ed
 d

at
a

 s
to

re
 la

ye
r

Pr
ot

oc
ol

 fo
llo

w
er

R
ou

tin
g 

ta
bl

e 
(C

on
si

st
en

t h
as

hi
ng

)

Pr
ot

oc
ol

 fo
llo

w
er

R
ou

tin
g 

ta
bl

e 
(C

on
si

st
en

t h
as

hi
ng

)

C
lie

nt
1 

re
qu

es
t

C
lie

nt
2 

re
qu

es
t

C
lie

nt
3 

re
qu

es
t

Figure 4.1: RECIPE’s system architecture.

Our KV store achieves two goals; first, we guarantee trust to individual replicas to

serve reads locally, and secondly, we limit the TCB size, optimizing the enclave memory
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usage. As shown in Figure 4.1, RECIPE keeps bulk data (values) in the host memory and

stores only minimal data (keys + metadata) in the TEE area. The metadata, e.g., hash

of the value, key’s timestamps or versions, a a pointer to the value memory address

etc., are kept along with keys in the TEE for integrity verification.

4.3.2 Transformation Requirements: CFT to BFT

The basic requirements for transforming a CFT protocol for Byzantine environments

are established in a theoretical result published by Clement et al. in PODC 2012 [67].

This seminal paper shows that non-equivocation and transferable authentication are

necessary to go from 3 f + 1 to 2 f + 1 replicas for a reliable broadcast in Byzantine

settings. Our work, inspired by this paper, shows that not only can this lower bound

be achieved in practice, we can do so while providing high performance by leveraging

modern hardware in a cloud environment. In fact, TEEs offer stronger security than

these two key properties as their running software is shielded from Byzantine actors

that might try to tamper with the execution. Next we discuss how RECIPE satisfies these

two fundamental requirements, while § 4.3.3 elaborates on how to design practical and

efficient protocols that meet these requirements.

Property 1: The transferable authentication property refers to the authenticity of a

received message, requiring that a replica must be able to verify that the supposed

sender indeed had sent the message. The authentication is transferable if the original

sender can be verified even for forwarded messages.

Mechanism 1: The seminal paper by Clement et al. [67] suggests the use of digital sig-

natures to ensure the transferable authentication property. In contrast, RECIPE employs

more performant cryptographic primitives such as MAC for shielding the network mes-

sages in combination with an attestation protocol an attestation protocol. The crypto-

graphic primitives ensure that nodes can generate and validate authenticated messages

while RECIPE’s attestation protocol (§ 4.4.3) ensures that only trusted replicas access

the cryptographic keys and execute the protocol.

Property 2: The non-equivocation property guarantees that replicas cannot execute

conflicting requests for the same round of execution. That implies that RECIPE must

detect attacks where adversaries try to compromise the protocol by sending invalid

requests or by re-sending valid but stale requests (replay attacks).

Mechanism 2: The seminal paper assumes monotonically incremented message coun-

ters to ensure that Byzantine nodes cannot equivocate, i.e., send different messages to

different replicas for the same round of the protocol. In addition, transformed proto-

cols need to replay all previous protocol messages to ensure that the protocol has been

executed correctly. In contrast, our work builds on top of TEEs that by design pro-
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vide strong security guarantees that combat equivocation and ensure correctness for

the execution. In fact, RECIPE prevents equivocation by materializing a distributed TCB

that shields the protocol’s (distributed) execution, thus the protocol runs as expected,

as well as shielding the network communication based on an authenticated message

format (§ 4.4.1).

4.3.3 System Design Challenges

Our work shows how to leverage modern hardware to build efficient, robust, and eas-

ily adaptable distributed protocols by meeting the aforementioned transformation re-

quirements (see Q1—Q3 below). Motivated by the recently launched cloud-hosted

blockchain systems, we also argue that confidential BFT protocols are required to sat-

isfy modern applications’ needs for confidentiality (see Q4 below). Specifically, we

address the following research questions.

Q1: How to use TEEs efficiently? TEEs are not a panacea: due to their architec-

tural limitations (limited trusted memory1 and slow syscalls’ API) [170, 109], their

naive adoption to build practical systems does not necessarily translate into perfor-

mance improvements. For example, communication in the state-of-the-art BFT proto-

cols [83, 328, 213], which is at the core of any distributed protocol, primarily builds

on standardised kernel interfaces (e.g., sockets) suffering from big latencies and not

exploiting the full potential of the system [339].

In RECIPE, we carefully address these TEE limitations without introducing an addi-

tional burden to developers. We build a secure remote procedure call (RPC) framework

on top of a direct I/O network stack for TEEs that achieves three goals. First, it boosts

performance by avoiding expensive syscalls within TEEs. Secondly, it extends the trans-

ferable authentication and non-equivocation primitives across the untrusted network

infrastructure realising the transformation in practice. Lastly, we follow an established

RPC-programming paradigm that has proven to be the most effective one for building

distributed protocols [168, 88, 164, 162].

Q2: How to use TEEs to transform and build practical systems? While Clement

et al. show that a translation of a CFT protocol to a BFT protocol exists, it adopts an

impractical strategy when it comes to building real systems. The entire (transformed)

system relies on an expensive mechanism to ensure the correct execution of the un-

derlying CFT protocol. In each round, each replica needs to receive the history of all

previous messages, verify their authentication and replay the execution of the proto-

col’s entire history. This way, it is ensured that non-Byzantine replicas rebuild their
1At the time of writing this thesis, we had access to Intel SGX v1, which provided approximately 94 MiB

of trusted memory [148]. Currently, newer TEEs support larger areas of trusted memory. A discussion on
the impact of these advanced TEEs on the systems described in this thesis can be found in section § 6.3.
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state correctly and also that the currently executed message is legitimate (i.e., derives

from a valid execution scenario of the protocol).

Secondly, the transformed protocol may amplify the native semantics of the origi-

nal CFT protocol such as linearizable local reads. As in classical BFT protocols, clients

cannot trust individuals, instead, they build collective trust by receiving a quorum cer-

tificate, that is f +1 identical replies from different replicas which ensures that at least

one correct replica has responded (and verified the correctness of the result).

We design RECIPE to work out-of-the-box to build real systems. RECIPE leverages the

properties offered by TEEs to shield the correct protocol execution while our network

stack extends the security properties to the network. As a result, our approach does not

impose any dependency on the history execution of the protocol, and the original pro-

tocol’s message complexity is not affected. We also offer an authenticated, per-node,

in-memory KV store to allow replicas to store data detecting integrity and authenticity

violations and supporting local reads individually (if the implemented protocol sup-

ports them). Our approach improves performance, but enables easy adoption as well;

developers do not have to worry about maintaining protocols’ semantics in Byzantine

settings. Note that RECIPE’s KV is not required to shield the states and the workflow of

the RECIPE’s protocols. As explained, it is used to evaluate the performance of RECIPE-

transformed systems on top of a distributed data layer (§ 4.7) while preserving the

original CFT protocol’s operations (e.g., local consistent reads).

Q3: How to realize initialisation, recovery, and failure detection? While the trans-

formation remains agnostic with respect to the transformed CFT protocol in normal

operation, the system designers still need to design recovery mechanisms when fail-

ures occur. Specifically, Clement et al. do not address how the system initialises its

state, detects failures, and recovers from them. Different CFT protocols have different

mechanisms for recovery and failure detection. Some protocols continue to operate

when failures occur [201, 235] while others rely on accurate timeouts to detect non-

responsive leaders and nodes [168, 236, 269]. Unfortunately, TEEs come with neither

a trusted initialisation mechanism for distributed systems [141] nor a trusted timer

source [224, 151].

RECIPE builds on a secure substrate that overcomes these limitations. We build on

a mechanism for collective attestation and a trusted lease mechanism [312] which is

a foundational primitive for trusted timeouts with which system designers build failure

detectors [139], leader election algorithms [101], etc.

Q4: Is BFT enough? The case for confidential BFT protocols. Applications that man-

age sensitive data (e.g., health-care applications [176]) adopt blockchain solutions for

privacy. To this end, cloud-hosted blockchain solutions have been launched [11, 46,
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335, 143, 241]. However, these cloud-hosted blockchain systems that fundamentally

build on agreement protocols for serialising the ledger [97], jeopardise the blockchain

principles of decentralised trust [213]. Indeed, applications are compelled to put too

much trust in the cloud provider regarding the integrity and confidentiality of the

hosted application.

While BFT protocols offer an important foundation to build trustworthy systems,

we argue that more and more modern applications [107, 244, 64, 233, 253, 40, 66]

seek confidentiality beyond the scope of the BFT model. RECIPE is a promising step on

this direction. Built on top of TEEs, RECIPE transparently offers confidential execution

for the distributed protocol. The use of TEEs add significant performance overheads

to RECIPE compared to traditional CFT protocols. However, we evaluated four RECIPE

protocols against two state-of-the-art BFT protocols and we showed that RECIPE can

outperform them (§ 4.7). As shown in our evaluation RECIPE seems to offer better

throughput compared to BFT even when offering confidentiality by encrypting the net-

working messages and the KV store data.

4.4 RECIPE Protocol

Clients in RECIPE execute requests through a PUT/GET API. As discussed in § 4.3.1, the

request is forwarded to the protocol’s coordinator node. Upon the request’s execution

the node replies back to the client. For the communication between the clients and the

RECIPE nodes we assume that the system developer (who wrote the RECIPE protocol)

passes through the system initialisation phase (§ 4.4.3) a public-private key pair. As

such, clients and RECIPE nodes establish TLS connections similarly to TREATY system

in Chapter 3. Figure 4.2 shows as an example a RECIPE implementation of Raft (R-

Raft) including all three execution phases of a typical RECIPE protocol: the transferable

authentication phase (blue box), the initialization phase (green box) and the normal

execution phase where the transformed CFT protocol executes clients’ requests (red

box)2. Prior to the protocol execution, nodes pass through a transferable authentica-

tion phase (§ 4.4.3) to prove that the TEEs and loaded code are genuine, followed by

initialization and the protocol’s normal operation3.

2We implemented and benchmark the original description of Raft where the leader commits and replies
to clients once the majority acknowledges the replication phase [236] (one-phase commit) to optimize for
latency. However, to discuss in detail the protocol’s workflow, we, on purpose, allow the leader to complete
the commit phase entirely and then reply to the client. This does not violate the safety of the protocol and
does not affect the leader election algorithm.

3A node is in normal operation when it is not a faulty node and it is not recovering.
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Figure 4.2: Example of the RECIPE version of Raft (R-Raft) execution.
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4.4.1 Normal Operation

We first explain the initialization and the normal execution phases, assuming all par-

ticipant nodes executed the transferable authentication phase successfully. The nodes

execute the initialization phase, initializing their own local KV stores B.1 , e.g., allocate

host memory. Afterward, each node initiates its network connections (e.g., configures

NIC-memory, network ports, etc.) and finally establishes connections with other peers

B.2 based on the configuration it securely received at the attestation process A.7 . The

leader then runs the underlying CFT protocol (in our case, Raft C.1 — C.9 ) to execute

the client request R.1 . Upon completion, it replies back to the client R.2 . Next, we

discuss the RECIPE abstraction under the normal operation.

We use the notation [hcσc , payload] to denote an attested or shielded message that is

comprised of the signed hash (hcσc) of payload (certificate) along with the raw payload

data. We use the symbol σc to denote that a piece of data is signed with a key c. For

simplicity in Figure 4.2, we use the notation (α, kv) for an attested message referring

to a Key-Value pair kv with certificate α.

#1: Clients send to the coordinator their request of the form [hcσc , (metadata, req data)]

R.1 . The req data is the request’s associated data and the metadata might include

among others the client’s and the request’s id, the leader’s and term’s ids (known to the

client).

#2: Nodes receive and process a request after successfully verifying their integrity and

authenticity by verifying the received message MAC. In addition, the implemented pro-

tocol itself might impose further constraints that are also inherrited in RECIPE version

of the protocol. For example, in our Raft, requests that have a wrong view of the term

and the leader or have already been processed (e.g., their id is known to the node) are

dropped.

#3: Upon the reception of a client’s request:

#3.1 The coordinator (leader) verifies the integrity and authenticity of the message

using RECIPE’s authentication layer. It also verifies the metadata, e.g., the message is

invalid if the term and the leader (if any) known to the client are incorrect. The leader

updates the client table with the latest processed request for each client.

#3.2 Next, the leader initializes the protocol for that request. In our example,

the Raft leader shields the message C.1 , generating a trusted message format (α1,

kv) where α1 is the certificate of kv, and broadcasts the request to the followers C.2

(replication phase).

#3.3 The messages exchanged between replicas are of the form [hrσcq , (metadata,

req data)]. The metadata includes a per-request unique tuple (view, cq, cntcq) that con-
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tains: (1) the view, an identifier that is optionally set by the implementation for every

new leader (as such, leaderless protocols might leave it uninitialized) (2) the commu-

nication channel id (cq) that is uniquely identified as a tuple containing the connected

nodes’ ids, and (3) a sequencer id or a message counter (cntcq) that is assigned to the

messages sent over this channel and is increased monotonically for every new message.

This unique message sequencer allows nodes to detect stale or missed messages and as

such combat network attacks that aim to re-order or double execute requests.

#4: When a replica receives a message from another replica:

#4.1 If the replica is in normal state operation, it verifies the validity of the message.

Else, it refuses to process the request.

#4.2 The replica verifies the received sequencer id (cntcq) to see if it is consistent

with its local counter (recvcnt). If the cntcq equals (recvcnt+1), the replica executes the

request immediately, increases its local counter, acknowledges to the sender node and

updates the client table. If the cntcq refers to a “future” message (cntcq>recvcnt+1),

the replica queues the request in the protected area. Periodically, it applies the queued

requests eligible for execution and notify coordinators accordingly.

#5: In our example, the followers verify the request (e.g., MAC verification for message

integrity and authenticity as well metadata verification to ensure that the request is

send from the elected leader and has not been seen before) C.3 , enqueue the un-

committed request in a TEE buffer, and send ACKs back to the leader. The leader,

upon receiving the majority of ACKs marks the request as replicated C.4 and proceeds

to the second round of the protocol instructing the followers that replied to commit

the update ( C.5 — C.7 ). At this point, each follower instructed to commit applies

the request to its local KV store C.8 and ACKs the commit to the leader. Similarly to

the replication phase, the leader finally commits C.9 when it receives ACKs from the

majority.

#6: After the protocol’s execution, the coordinator marks the request as committed

and notifies the client R.2 .

4.4.2 View Change

While decentralized protocols remain available as long as most nodes are part of the

membership, the leader-based protocols do not progress if the leader goes down. To

remain available after the leader crashes, the followers need to closely monitor the

leader (e.g., heartbeat messages in inactive periods) and, in case it is unreachable, to

elect a new one, i.e., perform a view change.

In line with the CFT protocols, RECIPE leader-based protocols must assign a leader
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with a term and the node identifier that is stored securely within the TEE. The term

identifier can be seen as an epoch, a monotonically increasing counter that uniquely

identifies the current view of the system. To continue serving requests after a leader

election, the majority of the replicas of the membership (quorum) need to confirm the

new leader along with the new term. Since a leader needs to be acknowledged by

the majority of the nodes to operate, the latest term will survive in at least one node,

ensuring the term’s monotonic increments.

Correctness. The correctness condition for leader elections is that every commit must

survive into the new leader election in the order selected for it at the time it was exe-

cuted. RECIPE does not make further assumptions, protocols can rely on their election

algorithms [18] as we guarantee that the replicas are trusted (§ 4.6).

Failure detection. CFT protocols [236, 269] often require trusted or accurate timers

to detect failures and continue operating. RECIPE builds on top of Intel SGX, which

does not secure timers [151, 224]. Unfortunately, OS-timers and software clocks can-

not be trusted too. To overcome this, RECIPE builds on top of SCONE that implements a

trusted lease mechanism [312]. This mechanism supports all the properties of classical

leases [120] in untrusted environments even in the presence of attackers that manipu-

late the clock. Precisely, the mechanism ensures that (1) the lease terms can be mea-

sured securely and accurately by the lease granter (i.e., the process that grands valid

leases upon request) and the lease holder (i.e., the process that requests leases from

the granter), (2) the underlying timer has not been manipulated and in case of manip-

ulation suspicions the mechanism ensures that the lease term on granter is always a

superset of the lease term on the holder and (3) the lease checks and the operations

executions can be executed atomically to avoid time-of-check to time-of-use (TOCTOU)

attacks. RECIPE users can build trusted timeout systems, failure detectors [139], leader

election algorithms [101], etc. However, this is beyond the scope of this thesis.

4.4.3 Transferable Authentication

Before initialization, all participant nodes run the transferable authentication phase

(are attested). The phase ensures that only authenticated replicas receive configura-

tions and secrets and participate to the protocol, guaranteeing the transferable authen-

tication property and protecting against Sybil attacks [87]. RECIPE materializes this

phase using a remote attestation protocol.

The attestation protocol is initialized by the protocol designer (PD) (challenger) who

establishes TLS connection with the Configuration and Attestation service (CAS) A.1 .

CAS is responsible for proving the authenticity of a TEE to others (e.g., clients, re-

covered nodes). For now, we focus solely on the attestation protocol; we explain the
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mechanism of CAS in § 4.5.4. The CAS also establishes secure communication chan-

nels with the participant nodes. The secure communication channel establishment is

achieved as in section § 3.2.

The PD sends an attest request to the CAS A.2 , which is then forwarded to the

replicas A.3 . The replicas perform local attestation [249], i.e., they calculate a mea-

surement of their code and generate a quote that is uniquely bound to that particular

TEE A.4 . The quotes are sent over the TLS channel to the CAS that verifies them.

Upon a successful attestation, the CAS notifies the PD that might want to forward con-

figuration data (e.g., singing or encryption keys for the network and the KV store as

well as private-public key pairs for the client-node communication), to the replicas

A.7 — A.8 .

4.4.4 Recovery

As nodes fail, new or recovered nodes need to be added to continue operating at peak

performance. To add a new node, the membership needs to be reliably updated, fol-

lowing that all other live replicas are notified of the new node’s intention to join the

replica group. Once the replicas acknowledge this notification, the new node starts

operating as a shadow replica that participates as a follower for the writes but does not

serve client requests. Additionally, it might read chunks from other replicas to fetch

the latest state similarly to [89, 237]. For non-equivocation, recovered nodes always

start as fresh nodes and as such are assigned unique (increasing) node ids by the CAS

through the attestation phase. As such, RECIPE does not recycle the same (view, cq,

cntcq) for different messages from different nodes. Overall, a new joining node follows

the next steps:

#1: A recovering node needs first to be attested before any secrets and membership

information are shared. Before the control passes to the CFT protocol, the node sends

a join request to a designated node (challenger-node), notifying it about its willingness

to join the cluster.

#2: The challenger-node that receives the request inittializes a remote attestation to

verify its trustworthiness as discussed in § 4.4.3.

#3: After a successful attestation, the challenger-node shares the network signing or

encryption keys and the configuration of the membership as a response to the join-

request. In RECIPE all nodes use the same symmetric key for the networking between

the RECIPE nodes and the same symmetric key for the KVs operations that is different

from the network symmetric key. This design has been decided for simplicity and it

is not a restriction imposed by RECIPE; we could configure the system with a unique

symmetric key per connection and per local KVs. The challenger-node also broadcasts
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a message to the other replicas about the successful attestation of the new node. Once

the new joiner acknowledges the response from the challenger-node, it establishes con-

nections with the other replicas.

#4: The new node joins as a shadow replica fetching the state of the system. If the

CFT protocol allows, this node can participate in writes while recovering. Once it is

synchronized with the system’s state, it transits to normal operation and executes the

protocol.

4.5 RECIPE Library

This section describes four core components of RECIPE. Table 4.1 summarizes the

RECIPE’s API for each component.

4.5.1 RECIPE Networking

RECIPE adopts the remote procedure call (RPC) paradigm [36] over a generic network

library with multiple transportation layers (Infiniband, RoCE, and DPDK), while also

favorable in the context of TEEs where traditional kernel-based networking is imprac-

tical [178].

Initialization. System developers that build RECIPE protocols need to initialize the net-

working layer, e.g., nodes’ connections, the types of the available requests and by reg-

istering the appropriate (custom) request handlers. In RECIPE terms, a communication

endpoint corresponds to a per-thread RPC object (RPCobj) with private send/receive

queues. All RPCobjs are registered to the same physical port (configurable). Initially,

RECIPE creates a handle to the NIC which is passed to all RPCobjs. Developers need to

define the types of the RPC requests, each of which might be served by a different re-

quest handler. Request handlers are functions written by developers that are registered

with the handle prior to the creation of the communication endpoints. Lastly, before

executing the application’s code, the connections between RPCobjs need to be correctly

established.

send/receive operations. We offer asynchronous network operations following the

RPC paradigm. For each RPCobj, RECIPE keeps a transmission (TX) and reception

(RX) queue, organized as ring buffers. Developers enqueue requests and responses

to requests via RECIPE’s specific functions which place the message in the RPCobj’s

TX queue. Later, they can call a polling function that flushes the messages in the

TX and drains the RX queues of an RPCobj. The function will trigger the sending of

all queued messages and process all received requests and responses. Reception of a

request triggers the execution of the request handler for that specific type. Reception of



4.5. RECIPE Library 71

Attestation API

attest(measurement)
Attests the node based on

a measurement.

Initialization API

create rpc(app ctx) Initializes an RPCobj.

init store() Initializes the KV store.

reg hdlr(&func) Registers request handlers.

Network API

send(&msg buf) Prepares a req for transmission.

respond(&msg buf) Prepares a resp for transmission.

poll() Polls for incoming messages.

Security API

verify msg(&msg buf) Verifies the authenticity/integrity and the sequencer id of a msg.

shield msg(&msg buf) Generates a shielded msg.

KV Store API

write(key, value) Writes a KV to the store.

get(key, &vT EE)
Reads the value into vT EE

and verifies integrity.

Table 4.1: RECIPE library APIs.

a response to a request triggers a cleanup function that releases all resources allocated

for the request, e.g., message buffers and rate limiters (for congestion).

Non-equivocation and authentication layers. RECIPE’s networking library embodies

a non-equivocation and an authentication layer through two TEE-assisted primitives,

the shield request() and verify request(), shown in Algorithm 1.

Non-equivocation layer: RECIPE prevents replay attacks in the network with sequence

numbers for the exchanged messages. Each replica maintains local sequence tuples

of the form (view, cq, cntcq) where view is the current view number, cq is the com-

munication endpoint(s) between two nodes, and cntcq is the current trusted counter

value in that view for the latest request sent over the cq. The sender assigns to mes-

sages a unique tuple of the form (view, cq, cntcq) and then increments cntcq to guar-

antee monotonicity. Replicas execute the implemented CFT protocol for verified valid

requests. Replicas can verify the freshness of a message by examining its cntcq (ver-

ify request() primitive). The primitive verifies that the message’s id (as part of the

metadata) is consistent with the receiver’s local counter rcntcq (rcntcq is the last seen
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Algorithm 1: RECIPE’s authentication primitives.

1 ▷ cntcq: the latest sent message id from cq

2 ▷ rcntcq: the last committed message id from cq

3 function shield request(req, cq) {
4 cntcq ← cntcq+1; t← (view, cq, cntcq);

5 [hσcq , (req,t)]← singed hash(req, t);

6 return [hσcq , (req,t)];

7 }
8 function verify request(hσcq , req, (view, cq, cntcq)) {
9 if verify signature(hσcq , req, (view, cq, cntcq)) == True then

10 if view == current view then

11 if cntcq <= rcntcq then

12 return [False, req, (view, cq, cntcq)];

13 if cntcq == (rcntcq+1) then rcntcq ← rcntcq+1;

14 buffer locally(req, (view, cq, cntcq));

15 return [True, req, (view, cq, cntcq)];

16 return [False, req, (view, cq, cntcq)];

17 }

valid message counter for received messages in cq). RECIPE’s replicas are willing to

accept “future” valid messages as these might come out of order, i.e., messages whose

cntcq is > (rcntcq+1). These messages are processed and committed according to the

CFT protocol.

Authentication layer: For the authentication, we use cryptographic primitives (e.g.,

MAC and encryption functions when RECIPE aims for confidentiality) to verify the in-

tegrity and the authenticity of the messages. Each message m sent from a node ni to

a node n j over a communication channel cq is accompanied by metadata (e.g., cntcq,

view, sender and receiver nodes id) and the calculated message authentication code

(MAC) hcqσq. The MAC is calculated over the m and the metadata. The sender node

calls into the shield request(req, cq) and generates such an trusted message for the

request req.

API. We offer a create rpc() function that creates a bound-to-the-NIC RPCobj. The

function takes as an argument the application context , i.e., NIC specification and port,

remote IP and port, creates a communication endpoint and establishes connection with

the remote side. The function returns after the connection establishment. RPCobjs of-

fer bidirectional communication between the two sides. Prior to the creation of the RP-

Cobjs, developers need to register the request types and handlers using the reg hdlr()

which takes as an argument a reference to the preferred handler. The handlers are part

of the protocol codebase and as such are executed within the TEE.
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For exchanging network messages, we designed a send() function which takes as

arguments the session (connection) identifier, the message buffer to be sent, the request

type and the cleanup function. This function submits a message for transmission. Upon

a reception of a request, the program control passes to the registered request handler

where the function respond() can submit a response or ACK to that request. Lastly,

the function poll() needs to be called regularly to fetch, process and send the incoming

responses or requests and send the queued responses and requests respectively.

4.5.2 Secure Runtime

RECIPE’s protocol codebases are executed within the TEE. We have build our codebase

in C++ using SCONE to access the TEE hardware. SCONE exposes a modified libc

library and combines user-level threading and asynchronous syscalls [293] to reduce

the cost of syscall execution. While we limit the number of syscalls, leveraging SCONE’s

exit-less approach allows us to optimize the initialization phase that vastly allocates

memory for networking and the KV store. To enable NIC’s DMA operations and memory

mappings to the hugepages (for message buffers and TX/RX queues) (§ 4.5.1), we

overwrite the mmap() syscall of SCONE to bypass its shield layer and allow the allocation

of (untrusted) host memory.

For the cryptographic primitives, we build on OpenSSL [239]. Lastly, we build on a

lease mechanism [312] in SCONE for auxiliary operations, e.g., failures detection and

leader’s election.

4.5.3 RECIPE Key-value Store

RECIPE provides a lock-free, high-performance in-memory Key-Value (KV) store based

on an in-memory skip-list. We partition the keys from the values’ space by placing

the keys along with metadata (and a pointer to the value in host memory) inside the

enclave and storing values (encrypted) in the host memory. Our partitioned KV store

reduces the number of calculations for integrity checks, compared to prior work [170]

which implements (per-bucket) merkle trees and re-calculates the root on each update.

Importantly, separating the (keys + metadata) and the values between the trusted

limited enclave and untrusted unlimited memory decreases the EPC pressure.

RECIPE’s KV store design resolves Byzantine errors since the metadata (and the code

that accesses them) reside in the enclave. That said, RECIPE allows for local reads as

nodes can verify the integrity of the stored values prior to replying to the client. Our

partitioned scheme strengthens the system’s security properties and can easily offer

confidentiality by encrypting the values that reside outside the TEE. Similarly to the
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original RECIPE KV store that only offers integrity for the stored data, the KV store

encryption keys are shared across initialization at the transferable authentication phase

through CAS.

4.5.4 RECIPE Attestation and Secrets Distribution

Remote attestation is the building block to verify the authenticity of a TEE, i.e.,

the code and the TEE state are the expected [249]. As such, RECIPE provides attest(),

generate quote() and remote attestation() primitives (Algorithm 2) that allow repli-

cas to prove their trustworthiness to other replicas or clients. The attestation takes

place before the control passes to the protocol’s code. Only successfully attested nodes

get access to secrets (e.g., signing or encryption keys, etc.) and configurations. For

RECIPE’s attestation we use the same mechanism as in TREATY. In the remainder of the

chapter we discuss the attestation primitives (from the TEE perspective) that RECIPE

implements.

Algorithm 2: RECIPE’s attestation primitive.

1 function remote attestation() {
2 nonce← generate nonce();

3 send(nonce, kpub); DHKE(); quoteσkpub
← recv();

4 if verify signature(quoteσkpub
) == True then

5 µT EE ← decrypt(quoteσkpub
, kpriv);

6 if (verify quote(µT EE) == True) send secrets();

7 }
8 function attest() {
9 µ← gen enclave report(); return µ;

10 }
11 function generate quote(µ, kpub) {
12 keyhw ← EGETKEY();

13 quote← sign(µ, keyhw); quoteσkpub
← sign(quote, kpub);

14 return quoteσkpub
;

15 }

The attestation process is initialized by the challenger, a remote process that can ver-

ify the authenticity of a specific TEE. The challenger executes the remote attestation()

function to send an attestation request to the application—usually in the form a nonce

(a random number). The challenger and the application, then, establish a mutual au-

thenticated TLS connection, e.g., passing through a Diffie-Hellman key exchange pro-
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cess [212]. The application generates an ephemeral public key which is used by the

challenger later to provision any secrets.

When the TEE receives the nonce, it calls the attest() and generates a measure-

ment (µ) of its state and loaded code. Following this, the TEE calls into the gener-

ate quote(µ,kpub) to sign µ (quote) with the keyhw which is fetched from the TEE’s h/w

(EGETKEY()). The TEE signs and encrypts the quote quoteσkpub
over the challenger’s

public key kpub which is, then, sent back to the challenger. Upon successful verifications

of the quoteσkpub
, the challenger shares secrets and configurations.

To offer low-latency attestations within the same datacenter that RECIPE runs, we

build a Configuration and Attestation service (CAS). The Protocol Designer (PD) de-

ploys the CAS inside a TEE and attests it through the hardware vendor’s attestation

service—e.g., Intel Attestation Service (IAS [141]). Once the CAS is attested, it is

trusted and the PB can upload secrets and configurations.

4.6 RECIPE Analysis

4.6.1 Requirements Analysis

We next show how RECIPE satisfies the non-equivocation and the transferable authen-

tication properties.

Non-equivocation. RECIPE prevents equivocation attacks through a trusted monoton-

ically increasing message counter that assigns sequence numbers to the network mes-

sages. The sender assigns a monotonically increasing sequence id to every message of

a given round, guaranteeing a total ordering of all network messages between any two

communication endpoints. On the receiving side, it suffices for replicas to verify that

the message’s counter is consistent with their local known sequencer for this communi-

cation endpoint. RECIPE’s sequencer prevents the repeating of stale (but authenticated)

network messages which can be indistinguishable from equivocation. In addition, a

Byzantine node may “appear” to not send messages to some (weak non-equivocation)

or all (strong non-equivocation) other nodes during a given operation [202]. RECIPE is

responsible for neither—we rely on the CFT as both weak and strong non-equivocation

are indistinguishable from crash failures [202].

Transferable authentication. RECIPE ensures the following two core properties from

its TEE-assisted primitives: property #1: RECIPE distributes the configuration, keys

etc. in a secure manner to trusted nodes, and property #2: RECIPE preserves the

authenticity and integrity of the network messages.

Transferable authentication is provided implicitly by properties #1 and #2. Prop-

erty #1 ensures that for every communicating pair of processes, their signing keys
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are shared after their successful attestation. This, in turn, follows that only trusted

(correct) processes are capable of signing (and generating) valid messages. This also

follows that Byzantine adversaries cannot forge “future” messages but, instead, they

are only limited to re-playing old messages.

Property #2 ensures that Byzantine actors cannot both alter a message’s contents

and forge a new valid message by generating a verifiable MAC over the message

without the network symmetric key. Lastly, authenticity is transferable and can be

verified in the exact same way that any two directly communicating nodes do. The

combined power of these properties satisfies the transferable authentication and non-

equivocation requirements.

4.6.2 Correctness Analysis

CFT protocols need to provide the following safety properties regarding the messages

delivered by the network [133, 134]. We show how these are provided by RECIPE’s

non-equivocation and (transferable) authentication layers.

Safety. If a correct process pi receives and accepts a message m from a process p j, then

the sender p j is correct and has executed the send operation with m.

Integrity. If a correct process pi receives and accepts a message m, then m is a valid and

correct message generated according to the protocol specifications.

Freshness. If a correct process pi receives and accepts a valid message m jx sent from a

correct process p j, then it will not accept any future message m jy with y = x, ∀x,y ∈N+.

Next, we explain how RECIPE satisfies these properties. Safety and integrity are

directly satisfied by our transferable authentication mechanisms. Firstly, recall that

only trusted and correct processes can generate valid messages (messages that can

be successfully verified). Therefore, a message m accepted by some correct process pi

must have been generated and sent by a correct process p j. Moreover, correct processes

cannot deviate from the protocol’s specification in order to generate messages that do

not adhere to it. Adversaries can neither forge nor alter messages that do not adhere

to it either (§ 4.6.1). In any case, when a correct process pi receives and accepts a

message m it must be a valid message generated according to the underlying protocol’s

specifications.

Freshness is directly satisfied by our non-equivocation layer that imposes a total

order on messages between two communication endpoints. A correct process pi drops

already received messages to sustain replay equivocation attacks.
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4.7 Evaluation

4.7.1 How to Apply the RECIPE Library?

Developers can use the RECIPE-lib API to transform their preferred CFT protocol for

Byzantine settings without further modifying the core states of the protocol. Listing 4.1

illustrate Raft’s transformation using the same example of R-Raft from Figure 4.2. In

Listing 4.1, the blue sections show the native Raft code, whereas the orange sections

show the modifications introduced by RECIPE.

At a high level, developers need to use the RECIPE’s network API and replace the

conventional unsecure RPC-API [209, 162, 106] with RECIPE-lib’s networking functions

(Lines:6, 14, 20-23, 32-25). Some of the RECIPE’s API remains equivalent to the native

API; typical examples are the poll() (Line: 33) and reg hdlr() (Lines: 22-23) functions.

On the other hand, we introduced some slight modifications in send() operation (e.g.,

Lines:32, 35) and Initialization APIs (e.g., Lines:19,20). To effectively use them, devel-

opers must register a (configurable) amount of the host memory for the KV store data.

Lastly, the code must shield the message (Line: 14, 32, 35) before transmission and

verify it upon reception (Lines: 4, 10) in the request handler function.

1 // ----------- Requests handlers definition -----------

2 void replication_hdlr(Raft_ctx* ctx, Msg* recv_msg) {

3 // verifies recv_msg integrity and counter

4 [msg, cnt] = verify_msg(recv_msg);

5 ... // appends the req to the on-going reqs buffer

6 conn.respond(shield_msg(ACK_repl)); // transmits ACK

7 }

8 void cmt_hdlr(Raft_ctx* ctx, Msg* recv_msg) {

9 // verifies recv_msg integrity (and counter)

10 [msg, cnt] = verify_msg(recv_msg);

11 auto [key, val] = decode(req);

12 // moves val in host mem and stores its certificate in TEE

13 ctx->kv.write(key, val);

14 conn.respond(shield_msg(ACK_cmt)); // transmits ACK

15 }

16 // ----------- Init phase (leader and followers) -----------

17 auto ctx = new Raft_ctx(metadata, node_type); // context object

18 // init local KV with host allocated memory and a cipher

19 ctx->kv = init_store(HostMemSize, cipher);

20 RPC_obj conn = create_rpc(enc_key); // create RPC handle

21 // registers handlers

22 conn.reg_hdlr(&cmt_hdlr);

23 conn.reg_hdlr(&replication_hdlr);
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24 // ----------- Raft leader -----------

25 for (auto& node : followers_list) {

26 conn.wait_until_connected(node); // connects with followers

27 }

28 for (;;) {

29 ... // gets client request and marks it as on-going

30 for (auto& follower : connections)

31 // generates a shielded message and bcast to followers

32 follower.send(shield_msg(rep_req), TypeRepl);

33 conn->poll(); // periodically polls to flush TX/RX queues

34 for (auto& follower : connections) ... // bcast commit

35 follower.send(shield_msg(cmt_req), TypeCmt);

36 ... // if commit phase finishes, apply changes to local kv

37 ctx->kv.write(key, val);

38 }

Listing 4.1: Raft transformation using RECIPE: blue sections (native Raft) and orange

sections (RECIPE additions).

4.7.2 RECIPE in Action for CFT Protocols

Experimental setup. We run our experiments on real hardware in a cluster of three

SGX machines with CPU (NixOS, 5.15.43): Intel(R) Core(TM) i9-9900K each with 8

cores (16 HT), NIC: Intel Corporation Ethernet Controller XL710 for 40GbE QSFP+

(rev 02) and a 40GbE QSFP+ network switch. For the evaluation, we use the YCSB

benchmark [349] (configured with approx. 10K distinct keys with Zipfian distribution)

with various R/W ratios and value sizes.

To show the benefits of our approach, we implement four widely adopted CFT pro-

tocols (one of each category in § 2.1.2, Table 2.1), with the RECIPE-lib API. We build

R-ABD, R-Raft, R-AllConcur and R-CR which are the RECIPE versions of ABD, Raft, All-

Concur and CR respectively. We compare these protocols with BFT-smart [295], an

optimized version of PBFT [58] and Damysus [83], the state-of-the-art version of Hot-

Stuff [4] with 2 f + 1 on top of SGX. Next, we discuss the characteristics of protocols

categories, our chosen protocol and our evaluation results.

A: Leaderless w/ per-key order. Protocols in this family agree on a per-key order of

writes in a distributed manner. All nodes can coordinate a write that is completed in

at least two rounds. A typical example is Classic Paxos (CP) that achieves consensus in

three broadcast rounds. Several works [225, 94, 137, 168, 201] simplify the complexity

of CP to boost performance. Protocols such as [225, 94, 137] can offer consensus in

two rounds but fall back to CP if conflicts occur. Others [168, 201] execute writes in
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two rounds enforcing all messages to be received by all nodes or relaxing the Read-

Modify-Write semantics. These protocols offer linearizable reads by executing quorum

reads to consult (at least) the majority. Protocols like [168] where writes need to reach

all nodes allow for local reads (at the cost of availability—if a node fails, writes block).

Choice: ABD [201]. We implemented ABD, a multi-writer, multi-reader protocol with

RECIPE (R-ABD). R-ABD offers linearizable (quorum) reads using Lamport timestamps

(logical clocks) [182] for each Key-Value (KV pair). R-ABD broadcasts requests to all

replicas and waits for acks from the quorum.

Writes are executed in two rounds of broadcasts. First, the coordinator asks from

all replicas to hand over the key’s timestamp (TS), securely stored inside the TEE (KV

store metadata). Upon receiving a majority of the timestamps, the coordinator creates

a higher TS for that key by increasing the highest received TS. Finally, it broadcasts the

new KV pair along with its new timestamp to all replicas which, in turn, insert the KV

pair into their KV store. Upon gathering a majority of acks it replies to the client.

R-ABD (usually) executes reads in one round by collecting all values (and their TS)

from the majority. If the majority agrees on the latest seen TS, the coordinator replies

to the client. Otherwise, the coordinator chooses the highest TS and invokes the second

round of the write-path (for availability).

B: Leader-based w/ total ordering. These protocols [236, 266, 322] serialize writes

at the leader, offering total order. The write-path usually requires two broadcast rounds;

the leader proposes writes to (passive) followers which they ack the proposal. Once the

leader collects the acks from the majority it runs the commit round where, the nodes

apply the proposed writes in their total order. Since writes are propagated to the ma-

jority where the leader is always part of it, it follows that the leader can always know

the latest committed write for all keys. As such, leaders can always read locally while

followers must forward reads to the leader. Some protocols [266] allow followers to

read locally. This is achieved in two ways: they might forego linearizability and down-

grade to sequential consistency [29] (w/ the possibility of reading stale values [266]),

or ensure that all writes reach all followers at the cost of availability.

Choice: Raft [236]. As a representative protocol of this family we implemented Raft

with RECIPE (R-Raft). We target linearizability; all reads are forwared to the leader that

also serializes writes. The leader proposes writes to replicas and commits the request

when the majority of them acknowledges the proposal.

The leader receives write requests and stores them in an uncommited queue in-

side the TEE. We spawn a dedicated (worker) thread for managing this queue and

serializing all writes. Then, the worker thread broadcasts the request (or a batch of

consecutive requests) to all followers. The follower nodes verify the messages. As an
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optimization, followers accept future messages storing them in a separate queue. The

followers commit requests respecting leader’s total order. The followers send acks for

one or more consecutive requests. Leader only commits a request and responds back

to the client when it receives a response from the majority.

C: Leader-based w/ per-key order. Protocols in this class use the leader node to only

serialize writes to the same key. All writes are steered to the leader node, which ensures

that writes to the same key are applied in the same order by all replicas. These protocols

can offer linearizability (it is a compositional property) similarly to the leader-based

protocols with total order. While writes are propagated to a majority of nodes, reads are

propagated to the leader. As the protocols do not respect a total ordering, local reads

to followers lead to weak guarantees such as eventual consistency [329]. As before, we

can allow for local reads to all nodes when writes are guaranteed to propagate to all

followers.

Choice: Chain Replication [269]. As a representative to this category, we imple-

mented Chain Replication (R-CR) with RECIPE. In R-CR, the nodes are organized in

a chain, through which writes are propagated from the head of the chain to its tail.

Similarly to [106], we consider CR among the leader-based protocols as the head node

is the leader to serialize all writes. A write traverses the chain until it reaches the tail

where it is considered committed, which guarantees that all writes reach all nodes. As

such, we can offer linearizable by reading locally from the tail.

D: Leaderless w/ total ordering. Such protocols do not serialize writes in a central lo-

cation but rely on a predetermined static allocation of write-ids to nodes. For example,

all nodes know that the writes 0 to N-1 will be proposed and coordinated by node-0,

the next N writes will be proposed by node-1 and so on. Therefore, in each round each

node can calculate the place of each write in the total order based on its own node-id,

without synchronizing with any other node. Then, the node broadcasts its writes along

with their place in the total order. Typically a commit message is broadcast after gath-

ering acks from a majority of the nodes. Crucially, all nodes must apply the writes in

the prescribed total order.

Choice: AllConcur [251]. To study this category, we implemented AllConcur with

RECIPE (R-AllConcur), a decentralized replication protocol with total order that relies

on an atomic broadcast primitive. Nodes are organized in a digraph (G) [251] where

the fault tolerance of the system is given by G’s connectivity. For example, to tolerate

1 node failure on a 3-node system, we calculated the vertex-connectivity to be equal

to 2, namely, each node is connected to the other 2 nodes. For the writes, all nodes

track all messages for each round and commit them in a predefined order without

synchronization. We can treat reads as writes (for linearizability) or, we allow for local
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Figure 4.3: Throughput of four protocols with RECIPE compared with PBFT (BFT-

smart).

reads to replicas offering sequential consistency [140].

4.7.3 Evaluation Analysis

Reads ratio R-ABD R-CR R-Raft R-AllConcur

50% 6.5× 13.7× 5.3× 6.8×
75% 13.3× 14.8× 10.05× 9.4×
90% 13× 24× 16.5× 9×
95% 12.8× 21× 10.7× 9.5×
99% 12.3× 23× 9.8× 10.5×

Table 4.2: Speedup in throughput of four protocols with RECIPE compared with PBFT

(BFT-smart).

RECIPE vs PBFT. Figure 4.3 shows the throughput (Op/s) and the speedup of the four

case studies we implemented with RECIPE compared to BFT-smart [295] (PBFT) for

different read/write workloads (and constant value size/payload, 256 B). Our eval-

uation shows that all four protocols with RECIPE outperform the classical BFT 5× to

24× as shown in Table 4.2. We observe that the local linearizable reads offered by

R-CR greatly improve performance. Unfortunately, we see less speedup in read-heavy

workloads for the protocols with local reads (e.g., R-Raft and R-AllConcur). We found

out that in these protocols, the total ordering was the bottleneck. In case of R-Raft

the writer thread that serialized all reqs was slower than the other worker threads

(which executed reads or enqueued writes to the writer thread’s queue). Additionally,

for R-AllConcur we saw that monitoring and waiting for all messages of each round
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decreased throughput.

Speedup in R-ABD, R-Raft and R-AllConcur is moderate for write-heavy workloads

where writes require two rounds of messages. R-ABD has lighter read-path; reads

require the majority to agree on a value which is typically resolved in one round. R-

CR outperforms R-ABD as reads are done locally. Lastly, we see that as the workload

becomes more read heavy, the performance is not improved due to (1) request rate

limiter and (2) single-node bottlenecks.

RECIPE vs Damysus. We compare RECIPE against Damysus [83]. Damysus is an op-

timized version of HotStuff [4] that, similarly to RECIPE relies on SGX to reduce the

number of required replicas to 2 f +1. In addition, Damysus makes use of two trusted

services, which we discuss next, to also optimize the protocol latency reducing the

protocol phases to two (instead of the three core phases of HotStuff). Damysus is

a competitive baseline to RECIPE because it requires similar trusted hardware (Intel

SGX), same number of replicas (2 f +1) and it is also a two phase protocol as R-Raft,

R-ABD and R-AllConcur.

We next discuss the HotStuff protocol in comparison to PBFT and the optimizations

introduced to this protocol by Damysus. HotStuff is a BFT (streamlined) protocol that

rotates the leader on each command to guarantee safety and liveness while eliminating

the heavy state transitions of the PBFT-like protocols during the view change. HotStuff

compared to PBFT has additional communication phases4, but it offers linear message

complexity as opposed to the quadratic all-to-all communication of PBFT. Damysus is

an SGX-based (optimized) derivative of HotStuff that also offers linear message com-

plexity and reduces the core phases of the protocol to two (instead of the three of

the classical HotStuff) by implementing two SGX-based services, the Accumulator and

the Checker. The Checker guarantees that a Byzantine leader cannot send multiple

valid proposals in a given round (equivocation) by assigning to each message a unique

identifier based on a monotonically increased counter. In addition the Checker stores

information about the prepared and pre-committed (locked) commands. In combina-

tion with the Accumulator, that certifies that a command has the highest view among a

given set of commands, the two services also guarantee that a leader always proposes

to the replicas the latest prepared command.

We compare RECIPE (ran in real SGX hardware) against Damysus [83] with SGX

in simulation mode due to the protocol’s driver incompatibility with our system. The

setup shows the upper bounds for throughput for Damysus that achieves throughput of

4HotStuff has in total five execution phases. However, it is considered a three-phase protocol as it has
three core phases that follow the propose-vote paradigm: prepare, pre-commit, and commit to agree on
blocks. The protocol is complemented by two additional half phases: new-view to submit latest prepared
commands, and decide to execute blocks once it is safe to do so.
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Figure 4.4: Throughput of RECIPE (w/ confidentiality) compared with PBFT (BFT-

Smart).

320 kOp/s, 230 kOp/s and 152 kOp/s for payload sizes 0 B, 64 B and 256 B respectively.

Our RECIPE (w/ 256 B payload) outperforms 1.1×—2.8× and 2.3×—5.9× Damysus

with 0 and 256 B payloads.

RECIPE with confidentiality. Figure 4.4 shows the throughput of RECIPE when we also

strive for confidentiality; an extra property that is not offered by classical BFT proto-

cols. We guarantee confidentiality by encrypting all data that leave the TEE (network

messages, values residing in the host memory). Briefly, the cost for this extra prop-

erty is a throughput reduction by a factor of 2. Surprisingly, R-ABD shows minimal

degradation compared to R-ABD w/o confidentiality. The reason is that R-ABD quickly

saturated all memory resources in our system so throughput was limited mainly by the

requests’ rate limiter. We see that even with stronger properties, i.e., confidentiality,

RECIPE achieves higher throughput than PBFT: on average we calculate 7× and 13×
speedup for 50% and 95% workloads respectively.

RECIPE w/ confidentiality boosts throughput up to 4.9× w.r.t. Damysus that does

not offer confidentiality (256 B payload).

Value size. Figure 4.5 shows the throughput for different value sizes (under a 90% R

workload) for each of the four protocols. The performance drops as the value size is

increased due to the EPC’s limited size. While RECIPE places the values and network

buffers in the untrusted (unlimited) memory, the bigger the allocations are the more

we stress test the (limited) enclave memory. R-Raft and R-AllConcur show the greatest

slowdown (2× to 7× for 4096 B). We interestingly found out that the batching tech-

nique in these protocols with value size of 4096 B deteriorates the performance and,

even, crashes the system by consuming all SCONE’s memory. For these two protocols

with value size 4096 B we depict the numbers with little (< 4) or no batching factor. The
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Figure 4.5: Performance of RECIPE for different value sizes.
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Figure 4.6: Performance overheads of TEEs.

other two protocols, R-ABD and R-CR, also show similar behavior. In these protocols

we did not use batching as an extra optimization.

Transformation and TEEs overheads. Figure 4.6 shows the overheads introduced by

RECIPE where we compare a native implementation of the protocols with the same net-

work stack without the authentication layer. Overall, an R-CFT protocol experiences

2×—15× slowdown compared to its native execution. The overheads mainly derive

from the TEEs. To prove that, we also ran these protocols in simulation mode in

SCONE where the trusted memory (EPC) is unlimited: we found the throughput to be

almost equivalent to the native runs’ results. Our observation is also explained from the

fact that the higher overheads are for AllConcur and Raft. To optimize these protocols

we found extremely helpful the batching. However, batching requires allocations/de-

allocations of bigger continuous (virtual) memory buffers which stress test SCONE

memory subsystem.
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Figure 4.7: Performance comparison of RECIPE network stack (RECIPE-lib (net)), kernel

sockets in native execution (kernel-net), kernel sockets within TEEs (kernel-net (TEEs),

and kernel-bypass execution using eRPC on top of RDMA/DPDK in native and TEEs

execution (direct I/O and direct I/O (TEEs), respectively) for various packet sizes.

RECIPE-lib network performance. Figure 4.7 shows the network throughput (Gbps)

of five competitive network stacks: (i) a native and a TEE-based network stack on

top of kernel sockets [155], (ii) a native and a TEE-based direct I/O for networking

(RDMA/DPDK) and (iii) our TEE-based RECIPE-lib network library. This is to isolate

the performance gains of the RDMA-based stack in RECIPE.

We deduct two core conclusions. First, TEEs (SCONE) can degrade network through-

put 4×—8× for both kernel-net and direct I/O networking compared to their unpro-

tected (native) runs. Consequently, a naive adoption of TEEs for BFT does not nec-

essarily translate to performance gains. Secondly, RECIPE-lib network performs up to

1.66× faster than the kernel-based networking (kernel-net (TEEs)). As a takeaway the

performance speedup (24× w.r.t. PBFT and 5.9× w.r.t. Damysus) for all our four use-

cases with RECIPE are primarily due to the transformation (RECIPE) rather than the use

of direct I/O.

Attestation. Table 4.3 shows the latencies of Intel’s Attestation Service (IAS) [141] and

RECIPE CAS. We found that the (mean) average of our CAS is 0.17 s, i.e., 18× faster

than the IAS (2.9 s). However, in contrast to IAS that is managed by the hardware

vendor, RECIPE’s CAS runs in the cloud provider as a single-node system. As such, if

the CAS crashes or it is being shutdown (e.g., by malicious adversaries or the cloud

provider), RECIPE’s availability can be affected because (recovered) nodes cannot join

the membership or be attested to new clients.
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Mean / s Speedup

RECIPE CAS 0.169 18.2×
IAS 2.913

Table 4.3: The end-to-end latency comparison between the attestation mechanisms

using RECIPE CAS and IAS.

4.8 Related Work

Table 4.4 compares the (most) related work with RECIPE. The resilience is the number

of faulty nodes a protocol withstands (for safety and liveness). We divide these works

into two categories; the first includes efficient BFT protocols that require 3 f + 1 par-

ticipating replicas [4, 295, 303, 172, 31, 167] and the second category [124, 328, 44,

196, 65, 165] refers to hybrid BFT protocols that use trusted modules downgrading the

replication degree to 2 f +1. In contrast to our RECIPE, these approaches still require a

working understanding of BFT; a task as challenging as it is error-prone [5].

Classical BFT protocols. In the first category, PBFT [58] and its variations [283] run a

three-phase protocol. Replicas broadcast messages and transit to the next phases after

receiving quorum certificates [58] from at least 2 f +1 distinct replicas leading to O(n2)

message complexity. Zyzzyva [172] offloads to the clients the responsibility to correct

replicas’ state in case of a Byzantine primary. However, prior work [5] found safety

concerns in the protocol.

Streamlined protocols [4, 60, 51, 61] avoid heavy state transfers at the view-change

by rotating the leader on each command at the cost of additional rounds. HotStuff [4]

adds two extra phases to commit the latest blocks. Basil [303] targets operability when

Byzantine nodes sabotage the execution requiring 5 f +1 replicas.

Trusted hardware for hybrid BFT protocols. The second category includes hybrid

protocols [83, 328, 124, 109, 38, 219] that leverage trusted hardware to optimize

the performance of classical BFT at the cost of generalization and easy adoption. For

example, MinBFT [328] (a PBFT derivative optimized with TEEs), Damysus [83] (a

HotStuff derivative optimized with TEEs) and Hybster [44] use TEEs to decrease repli-

cation factor whereas others [187, 65, 345] utilize trusted counters and logs. Similarly,

CheapBFT [165] and FastBFT [196] build on trusted modules to use f +1 active repli-

cas but transit to fallback BFT protocols in case of Byzantine failures. HotStuff-TPM [4]

uses TPM [249] at the cost of an extra phase.

Similarly to RECIPE, CCF [283] builds within a distributed setting of TEEs a varia-

tion of Raft consensus protocol (which operates under the CFT model). CCF in contrast

to RECIPE builds a ledger, an append-only log, whereas RECIPE is designed as a generic
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library to strengthen any CFT replication protocol that does not necessarily offer con-

sensus.

Engraft [332] follows a similar approach to RECIPE implementing a CFT protocol,

specifically Raft, inside Intel SGX. Engraft targets the same system model as RECIPE

assuming 2 f + 1 nodes out of which up to f can exhibit Byzantine behavior and all

TEEs (enclaves) are well-behaved. Engraft primarily focuses on ensuring liveness as

well as rollback protection for the Raft (persistent) log which are not addressed by

RECIPE. In contrast RECIPE targets on providing high-performant BFT leveraging SGX

and direct network I/O.

FlexiTrust [124] follows an opposite approach to RECIPE arguing that the classical

system model with 3 f + 1 is the key to fulfilling the potential of TEEs in BFT. In fact,

they identify core challenges in modern hybrid BFT protocols with TEEs such as the lack

of liveness, some safety violations due to rollback attacks and performance limitations.

As such, FlexiTrust, strives to make minimal use of TEEs while supporting parallel con-

sensus instances and reducing the number of the necessary protocol phases. Compared

to RECIPE, it adds f extra replicas to its system model.

Programmable hardware for hybrid BFT protocols. Other works leverage programmable

hardware, e.g. FPGAs [165], SmartCards [187] and switches [301] to provide founda-

tional primitives for ensuring BFT. For example, NeoBFT [301] targets the BFT model

for permissioned (BFT) blockchain systems [17] by designing an authenticated ordered

multicast primitive in the programmable switch. To overcome the computation and

scalability bottlenecks, they connect to the switch an FPGA device that serves as a

cryptographic coprocessor. Compared to NeoBFT where the switch is a single point

of failure, RECIPE offloads security into a distributed setting of TEEs providing better

availability guarantees while it allows system designers to transform unmodified CFT

protocols.

Lastly, Trinc [187] and CheapBFT [165] rely on peripherals to generate attestations

for the exchanged message with extremely expensive latencies (50us—105ms) [187,

165]. In addition, similarly to all previous hybrid protocols, they are specifically de-

signed to optimize a particular variation of a BFT system and do not offer a generic

methodology for any replication protocol.

Software-based CFT-to-BFT translation. In this chapter, we extensively discussed the

theoretical work by Clement et al.[67]. XFT [199] enables the design of efficient proto-

cols that tolerate non-crash faults without relying on trusted hardware. When applied

to the Paxos consensus protocol, XFT uses 2 f +1 replicas to tolerate non-crash failures,

provided that a majority of the replicas are correct and communicate synchronously

with each other.



4.8. Related Work 89

Similar work, PASC [72], enables CFT protocols to tolerate a subset of Byzantine

faults through ASC-hardening. Specifically, ASC-hardening modifies an application by

maintaining two copies of the state at each replica. It tolerates Byzantine faults under

the assumption that a fault will not corrupt both copies of the state in the same way.

However, PASC does not tolerate Byzantine faults that affect the entire replica (e.g.,

when both state copies are compromised).

To sum up, RECIPE is differentiated from previous systems in two important as-

pects. First, we implement a generic library to seamlessly transform CFT protocols for

Byzantine settings. Prior works optimize existing BFT protocols, we harden the CFT

protocols to provide performance and scalability, and minimize developers’ effort—

system designers can now easily implement robust replication for the untrusted Byzan-

tine cloud infrastructure. Second, while previous research focuses on algorithmic op-

timizations sometimes with the help of specialized hardware, we leverage two promi-

nent and widely adopted hardware technologies; RECIPE extends the use of TEEs to

distributed settings with direct network I/O and ensures the two key properties, non-

equivocation and transferable authentication, improving CFT protocol robustness. Our

evaluation with the state-of-the-art BFT protocol, BFT-smart [295] showcases the im-

pact of modern hardware in the context of BFT: we offer up to 23× better performance.

Interestingly, our approach can also offer confidentiality (which is not provided by BFT

protocols) with a 7×—13× speedup compared to BFT and integrity for the exchanged

messages while it also allows for local (trusted and linearizable) reads.
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4.9 Summary

In conclusion, we make the following contributions:

• Hardware-assisted transformation of CFT protocols: We present RECIPE, a

generic approach for transforming CFT protocols to tolerate Byzantine failures

without any modifications to the core of the protocols, e.g., states, message

rounds, and complexity. We realize our approach by implementing RECIPE-lib

leveraging the advances in modern hardware; we use trusted hardware to guar-

antee transferable authentication and non-equivocation for thwarting Byzantine

errors. Further, we combine trusted hardware with direct network I/O [209, 150]

for performance.

• Generic RECIPE APIs: We propose generic RECIPE APIs to transform the exist-

ing codebase of CFT protocols for Byzantine settings. Using RECIPE APIs, we

have successfully transformed a range of leader-/leaderless-based CFT protocols

enforcing different (total order/per-key) ordering semantics.

• Confidential replication protocols: We further show that RECIPE can offer con-

fidentiality, that is an extra security property not provided by traditional BFT

protocols.

• Correctness analysis: We provide a correctness analysis for the safety and live-

ness of our transformation of CFT protocols operating in Byzantine settings.

• RECIPE in action: We present an extensive evaluation of RECIPE by applying it

to four CFT protocols: Chain Replication, Raft, ABD, and AllConcur. We evaluate

these four protocols against the state-of-the-art BFT protocol implementations

and show that RECIPE achieves up to 24× and 5.9× better throughput.
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TNIC:

A Trusted NIC Architecture

In the previous chapter, we introduced RECIPE that offers a seamless transformation

of (any) CFT replication protocol to a more robust one for Byzantine settings. While

RECIPE allows system designers to offer high-performance robust replication protocols

that outperform classical BFT systems, it requires low-level optimizations in the net-

work stack and data layer (KV store) as well as expertise in systems programming; the

entire protocol and network stack code needs to “live” within the TEEs. Consequently

RECIPE heavily relies on TEEs programmability and security properties, complicating

its widespread adoption in commodity cloud environments that are comprised of het-

erogeneous machines, thus, heterogeneous TEEs.

To this end, we introduce TNIC, a trusted NIC architecture for building trustwor-

thy distributed systems deployed in heterogeneous, untrusted (Byzantine) cloud en-

vironments. TNIC realizes this goal by offering a minimal, unified, formally verified,

high-performance silicon root-of-trust at the network interface level. In particular, the

TNIC architecture strives for three primary design properties: (1) A host CPU-agnostic

unified security architecture by providing trustworthy network-level isolation; (2) A

minimalistic and verifiable TCB based on a silicon root-of-trust by providing two core

properties of transferable authentication and non-equivocation; and (3) A hardware-

accelerated trustworthy network stack by leveraging SmartNICs. Based on the TNIC ar-

chitecture and associated network stack, we present a generic set of programming APIs

and a recipe for building high-performance, trustworthy, distributed systems for Byzan-

tine settings. We formally verify the safety and security properties of our TNIC system

while demonstrating how we leverage TNIC for building four trustworthy distributed

systems: A2M, BFT, Chain Replication, and PeerReview—showing the generality of our

approach. Our evaluation of TNIC shows up to 6× performance improvement com-

91
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pared to CPU-centric TEE systems while providing a low TCB with provable security

properties.

5.1 Motivation

Distributed systems are integral to the third-party cloud infrastructure [13, 218, 260,

117]. While these systems in the cloud manifest in diverse forms, ranging from storage

systems [82, 54, 50, 71, 108, 354, 14] and management services [140, 53] to comput-

ing frameworks [33, 35, 116], they all must be fast and remain correct when failures

occur.

Unfortunately, the widespread adoption of the cloud has drastically increased the

surface area of attacks and faults [122, 287, 127] that are beyond the traditional fail-

stop (or crash fault) model [85]. The modern (untrusted) third-party cloud infras-

tructure severely suffers from arbitrary (Byzantine) faults [182] that can range from

malicious (network) attacks to configuration errors and bugs and are capable of irre-

versibly disrupting the correct execution of the system [122, 287, 127, 58].

A promising solution to build trustworthy distributed systems that remain correct

even when Byzantine failures occur is based on the silicon root of trust—specifically, the

trusted execution environments (TEEs) that all major CPU manufacturers offer [74, 23,

15, 270, 149]. While the TEEs offer a (single-node) isolated trusted computing base

(TCB), we have identified three core challenges (§ 5.3.3) that complicate their adop-

tion for building trustworthy distributed systems spanning multiple nodes in Byzantine

cloud environments.

First, TEEs in heterogeneous cloud environments introduce programmability

and security challenges. A cloud environment offers diverse heterogeneous host-side

CPUs with different TEEs (e.g., Intel SGX/TDX, AMD SEV-SNP, AWS Nitro Enclaves,

Arm TrustZone/CCA, RISC-V Keystone). These heterogeneous host-side TEEs require

different programming models and offer varying security properties. Therefore, they

cannot (easily) provide a generic substrate for building trustworthy distributed systems.

Our work overcomes this challenge by designing a host CPU-agnostic silicon root of trust

at the network interface (NIC) level (§ 5.4). We provide a generic programming API

(§ 5.6) and a recipe (§ 5.6.2) for building high-performance, trustworthy distributed

systems (§ 5.7).

Secondly, TEEs with a large TCB are plagued with security vulnerabilities, ren-

dering them non-verifiable. With hundreds of security bugs already uncovered [100],

TEEs’ large TCBs further increase their security vulnerabilities [175, 221], making it

impossible to formally verify their security properties. To overcome this, we build a
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minimalistic verifiable TCB (§ 5.4.1). Our TCB resides at the NIC-level hardware and is

equipped with the lower bound of security primitives; we provide only two key security

properties of non-equivocation and transferable authentication for building trustwor-

thy distributed systems (§ 5.2.1). Since we strive for a minimal trusted interface, we

can (and we did) formally verify the security properties of our TCB (§ 5.4.4).

Thirdly, TEEs report significant performance bottlenecks. TEEs syscalls execution

for (network) I/O is extremely costly [339], whereas even state-of-the-art network

stacks showed a lower bound of 4× slowdown [38]. We attack this challenge based on

two aspects. First, we build a scalable transformation with our minimal TCB’s security

properties (§ 5.6.2) to transform Byzantine faults (3 f +1) to much cheaper crash faults

(2 f +1) for tolerating f (distributed) Byzantine nodes. Secondly, we design hardware-

accelerated offload of the security computation at the NIC level by extending the scope

of SmartNICs with the lower bound of security primitives (§ 5.4) while offering kernel-

bypass networking (§ 5.5).

To overcome these challenges, we present TNIC, a trusted NIC architecture for build-

ing trustworthy distributed systems deployed in Byzantine cloud environments. TNIC

realizes an abstraction of trustworthy network-level isolation by building a hardware-

accelerated silicon root of trust at the NIC level. Overall, TNIC follows a layered design:

• Trusted NIC hardware architecture (§ 5.4): We build a minimalistic, verifiable,

and host-CPU-agnostic TCB at the network interface level as the key component

to design trusted distributed systems for Byzantine settings. Our TCB guaran-

tees the security properties of non-equivocation and transferable authentication

that suffice to implement an efficient transformation of systems for Byzantine set-

tings. We build TNIC on top of FPGA-based SmartNICs [317]. We formally verify

the safety and security guarantees of our TNIC system protocols using Tamarin

Prover [208].

• A software-based network stack (§ 5.5) and library (§ 5.6): Based on the TNIC

architecture, we design a HW-accelerated network stack to access the trusted

hardware bypassing kernel for performance. On top of TNIC’s network stack, we

present a networking library that exposes a simple programming model. We show

how to use TNIC APIs to construct a generic transformation of a distributed system

operating under the CFT model to target Byzantine settings.

• Trusted distributed systems using TNIC (§ 5.7): We build with TNIC the fol-

lowing (distributed) systems for Byzantine environments: Attested Append-only

Memory (A2M) [65], Byzantine Fault Tolerance (BFT) [57], Chain Replication [269],

and Accountability with PeerReview [126]—showing the generality of our approach.
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We evaluate TNIC with a state-of-the-art software-based network stack, eRPC [162],

on top of RDMA [209]/DPDK [150] with two different TEEs (Intel SGX [148] and

AMD-sev [15]). Our evaluation shows that TNIC offers 3×—5× lower latency than the

software-based approach with the CPU-based TEEs. For trusted distributed systems,

TNIC improves throughput by up to 6× compared to their TEE-based implementations.

5.2 Design Requirements for Fast Trustworthy Distributed Sys-

tems

We first examine the design requirements for high-performance, trustworthy distributed

systems for cloud environments.

5.2.1 Trustworthy Distributed Systems

Byzantine fault model. In the untrusted cloud infrastructure, arbitrary (Byzantine)

faults are a frequent occurrence in the wild [122, 287, 348, 347]. To this end, system

designers introduced Byzantine Fault Tolerant (BFT) systems that remain correct even

under the presence of (a bounded number of) Byzantine failures [182]. While BFT

accurately captures the realistic security needs in the cloud [91], it is rarely adopted in

practice [294] due to its complexity and limited performance [290, 30]. In contrast,

the vast majority of cloud applications operate under the fail-stop (crash fault) model,

optimistically assuming that the entire cloud infrastructure is trusted and only fails by

crashing [85]. While Crash Fault Tolerant (CFT) systems usually offer performance and

scalability [106], they are ill-suited for the modern cloud as they are fundamentally

incapable of ensuring safety in the presence of non-benign faults.

Security properties for BFT. We seek to offer BFT while reducing its programmability

and performance overheads. As such, we materialize the minimum security properties

required to build trustworthy systems under the BFT model [67]:

• Transferable authentication refers to a machine’s capability to verify the original

sender of a received message, even if it is forwarded by other than the original

sender.

• Non-equivocation guarantees that a node cannot make conflicting statements

to different nodes. Equivocation also manifests as network adversaries or replay

attacks that send invalid messages or re-send valid but stale messages.
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5.2.2 High-Performance Distributed Systems

The aforementioned two security properties are sufficient to correctly transform (any)

CFT distributed system to operate in the BFT model [67, 73]. However, a fundamental

design trade-off exists between efficiency and robustness for practical deployments in

the cloud. Our work aims to resolve this tension.

Trusted hardware for BFT. System designers established trusted hardware, TEEs, as

the most effective way to eliminate a system’s Byzantine components [38, 328, 44, 83].

While TEEs can be used to offer BFT, prior research illustrated significant performance

and architectural limitations in the context of networked systems [38, 83, 44, 328].

Based on performance and security studies [9, 8], TEEs’ overheads in the heteroge-

neous cloud, in addition to their heterogeneity in programmability and security guar-

antees, are incapable of offering high-performance trusted networking under the BFT

model.

SmartNICs for high-performance and BFT. We leverage the state-of-the-art hardware-

level networking accelerators, i.e., SmartNICs [194, 317, 47, 49, 231, 10, 32, 59], to

address the trade-off between performance and security, overcoming the limitations

of TEEs. Our design choice of leveraging SmartNICs is not hypothetical; SmartNIC

devices have already been launched by major cloud providers [10, 32, 59], present-

ing great opportunities for performance thanks to their integrated fully programmable

hardware (e.g., ARM cores [47, 10, 49, 194], FPGAs [317, 292, 59]). Precisely, we

rely on two promising directions: (1) security and network processing offloading at the

NIC-level hardware and (2) an efficient transformation for BFT.

We extend the scope of FPGA-based SmartNICs [317, 292] by offloading an RDMA

protocol implementation to the FPGA and extending its security properties, offering

non-equivocation and transferable authentication. Our system not only leverages hard-

ware acceleration for performance, but seamlessly offers the foundations of a scalable

transformation of distributed systems for BFT. These properties also guarantee that a

CFT-to-BFT transformation for state machine replication (SMR) always exists with the

same replication factor of the original CFT system [67, 73] (2 f +1), offering better

scalability and less message complexity than the traditional BFT (3 f +1).

5.3 Overview

5.3.1 System Overview

We propose TNIC, a trusted NIC architecture for high-performance, trustworthy dis-

tributed systems, formally guaranteeing their secure and correct execution in the het-
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erogeneous Byzantine cloud infrastructure. TNIC is comprised of three layers (shown

in Figure 5.1): (1) the TNIC trusted hardware architecture (green box) that imple-

ments trusted network operations on top of SmartNIC devices (§ 5.4), (2) the TNIC

network stack (yellow box) that intermediates between the application layer and the

TNIC hardware (§ 5.5), and (3) the TNIC network library (blue box) that exposes

TNIC’s programming APIs (§ 5.6).

Our TNIC hardware architecture implements the networking IB/RDMA protocol [262]

on FPGA-based SmartNICs [317]. It extends the conventional protocol implementation

with a minimal hardware module, the attestation kernel, that materializes the secu-

rity properties of the non-equivocation and transferable authentication. The user-space

TNIC network stack configures the TNIC device on the control path while it offers the

data path as kernel-bypass device access for low-latency operations. Lastly, the TNIC

network library exposes an API built on top of (reliable) one-sided RDMA primitives.

5.3.2 Threat Model

We inherit the fault and threat model from the classical BFT [58] and trusted com-

puting domains [148]. The cloud infrastructure (machines, network, etc.) can exhibit

Byzantine behavior. At the same time, it is subject to attackers that can gain control

over the host CPU (e.g., the OS, VMM, etc.) and the SmartNICs (post-manufacturing).

The adversary can attempt to re-program the SmartNIC, but they cannot compromise

the cryptographic primitives [187, 328, 58]. The physical package, supply chain, and

manufacturer of the SmartNICs are trusted [351, 165]. The TNIC implementation (bit-

stream) is synthesized by a trusted IP vendor with a trusted tool flow for covert chan-

nels resilience. Lastly, we do not distinguish between different types of untrusted soft-

ware components. Whether the network library and stack or the application code is

compromised, the node is considered faulty (Byzantine) in both cases and must con-

form to the BFT application system model [58].

5.3.3 Design Challenges and Key Ideas

While designing TNIC, we overcome the following challenges:

#1: Heterogeneous hardware. CPU-based TEEs in the cloud infrastructure are het-

erogeneous with different programmability [43, 26, 339, 280, 315, 307] and security

properties [245, 203, 211] that complicate their adoption and the system’s correct-

ness [280]. Prior systems [44, 83, 328, 196] could not address this heterogeneity

challenge as they require homogeneous x86 machines with SGX extensions of a specific

version. This is rather unrealistic in modern heterogeneous distributed systems where
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Figure 5.1: TNIC system overview.

system designers are compelled to stitch heterogeneous TEEs together. TEE’s hetero-

geneity in programmability and security semantics hampers their adoption and adds

complexity to ensuring the system’s overall correctness.

Key idea: A host CPU-agnostic unified security architecture based on trustworthy

network-level isolation. Our TNIC offers a unified and host-agnostic network-interface

level isolation that guarantees the specific yet well-defined security properties of the

non-equivocation and transferable authentication. TNIC also offers generic program-

ming APIs (§ 5.6.1) that are used to correctly transform a wide variety of distributed

systems for Byzantine settings. We demonstrate the power of TNIC with a generic trans-

formation recipe (§ 5.6.2) and its usage to transform prominent distributed systems

(§ 5.7).

#2: Large TCB in the TEE-based silicon root of trust. TEEs based on a silicon root of

trust are promising for building trustworthy systems [38, 328, 44, 83]. Unfortunately,

the state-of-the-art TEEs integrate a large TCB; for example, we calculate the TCB size

of the state-of-the-art Intel TDX [149]. The TEE ports within the trusted hardware

the entire Linux kernel (specifically, v5.19 [192]) and “hardens” at least 2000K lines

of usable code, leading to a final TCB of 19MB. Such large TCBs have been accused of

increasing the area of faults and attacks [175, 221] of commercial TEEs that are already

under fire for their security vulnerabilities [27, 267, 153, 6, 152]. Importantly, TEE’s

large TCBs complicate their security analysis and verification, rendering their security

properties incoherent.
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Key idea: A minimal and formally verifiable silicon root-of-trust with low TCB. In

our work, we advocate that a minimalistic silicon root of trust (TCB) at the NIC level

hardware is the foundation for building verifiable, trustworthy distributed systems. In

fact, TNIC builds a minimalistic and verifiable attestation kernel (§ 5.4.1) that guar-

antees the TNIC security properties at the SmartNIC hardware. Moreover, we have

formally verified the TNIC secure hardware protocols (§ 5.4.4).

#3: Performance. TEE’s overheads are significant in the context of networked sys-

tems [38, 109, 328, 83]—the foundational building block in the core of any distributed

system. Prior research [38] reported 4×—8× performance degradation with even a so-

phisticated network stack. Others [83, 44, 328] limit performance due to the commu-

nication costs between their untrusted and TEE-based counterparts [165]. The actual

performance overheads in heterogeneous distributed systems are expected to be more

exacerbated [9, 8]. As such, TEEs cannot naturally offer high-performance, trusted

networking.

Key idea: Hardware-accelerated trustworthy network stack. Our TNIC bridges the

gap between performance and security with two design insights. First, TNIC attesta-

tion kernel offers the foundations to transform CFT distributed systems to BFT systems

without affecting the number of participating nodes, significantly improving scalability.

Second, TNIC user-space network stack (§ 5.5) bypasses the OS and offloads security

and network processing to the NIC-level hardware.

5.4 Trusted NIC Hardware

Figure 5.2 shows our TNIC hardware architecture that implements trusted network op-

erations on a SmartNIC device. In this section, we introduce two key components: (i)

the attestation kernel that guarantees the non-equivocation and transferable authenti-

cation properties over the untrusted network (§ 5.4.1) and (ii) the RoCE protocol kernel

that implements the RDMA protocol including transport and network layers (§ 5.4.2).

We also introduce a bootstrapping and a remote attestation protocol for TNIC (§ 5.4.3)

and formally verify them (§ 5.4.4).

5.4.1 NIC Attestation Kernel

The attestation kernel shields network messages to ensure the properties of non-equivocation

and transferable authentication by generating attestations for transmitted messages.

As shown in Figure 5.2, the attestation kernel resides in the data pipeline between the

RoCE protocol kernel that transmits/receives network messages and the PCIe DMA that



5.4. Trusted NIC Hardware 99

transfers data from/to the host memory. The kernel processes the messages as they flow

from the memory to the network and vice versa to optimize throughput.

Hardware design. The attestation kernel is comprised of three components that repre-

sent its state and functionality: the HMAC component that generates the message au-

thentication codes (MAC), the Keystore that stores the keys used by the HMAC module,

and the Counters store that keeps the message’s latest sent and received timestamp.

The system designer initializes each TNIC device during bootstrapping with a unique

identifier (ID) and a shared secret key—ideally, one shared key for each communication

channel or session that is identified by an id (c id)—stored in static memory (Keystore).

The configurations and secrets, e.g., c ids and their matching keys are shared between

TNIC instances securely after the device has been attested successfully (see § 5.4.3) and

remain unknown to the untrusted parties.

TNIC holds two counters per session in the Counters store: send cnts, which holds

the count of the number of the messages sent, and recv cnts, which holds the latest

seen counter value for each session. The counters represent the messages’ timestamp

and are increased monotonically and deterministically after every send and receive op-

eration to ensure that messages are assigned to unique counters for non-equivocation.

Consequently, lost, re-ordered, or doubly executed can be detected by TNIC.

Algorithm. Algorithm 3 shows the functionality of the attestation kernel. The module

implements two core functions: Attest(), which authenticates a message with a MAC,

and Verify(), which verifies the MAC of a received message. Throughout this chapter

we also use the term attestation to refer to a message’s MAC. The message transmission

invokes Attest(), and likewise, the reception invokes Verify().

Upon transmission, as shown in Figure 5.2, the message is first forwarded to the

attestation kernel. The attestation kernel executes Attest() and generates an attested

message comprised of the message data and its attestation certificate α. The function

calculates α as the HMAC of the message concatenated with the counter send cnt

and the device ID (for transferable authentication1) with the key for that connection

(Algorithm 3: L4). It also increases the next available counter for subsequent future

messages (Algorithm 3: L2). The function forwards the message with its α to the RoCE

protocol kernel (Algorithm 3: L4).

Upon reception, the received message passes through the attestation kernel for ver-

ification before it is delivered to the application. Specifically, Verify() checks the

authenticity and the integrity of the received message by re-calculating the expected

1The seminal paper of Clement et al. [67] suggested the use of digital signatures to ensure transferable
authentication for the messages. However, as digital signatures are expensive, we ensure transferable
authentication by assigning to each message a unique per-device ID. Our approach is similar to what
practical systems are suggesting [187].
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Figure 5.2: TNIC hardware architecture.

attestation α’ based on the message payload and comparing it with the received attes-

tation α of the message (Algorithm 3: L7—8). The verification also ensures that the

received counter matches the expected counter for that session—identified by c id in

Algorithm 3—to ensure continuity, i.e., that messages are received in the order they

are sent and the receiver does not miss any past messages (Algorithm 3: L8).

5.4.2 RoCE Protocol Kernel

The RoCE protocol kernel implements a reliable transport service on top of the Infini-

band (IB) Transport Protocol with UDP/IPv4 layers (RoCE v2) [144] (transport and

network layers). As shown in Figure 5.2, to transmit data, the Req handler module

in the RoCE kernel receives the request opcode (metadata) issued by the host. The

message is fetched through the PCIe DMA engine and passes through the attestation

kernel. The request opcode and the attested message are forwarded to the Request

generation module that constructs a network packet.

Upon receiving a message from the network, the RoCE kernel parses the packet

header and updates the protocol state (stored in the State tables). The attested message

is then forwarded to the attestation kernel. The message is delivered to the application’s
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Algorithm 3: Attest() and Verify() functions.

1 function Attest(c id, msg) {
2 cnt← send cnts[c id]++;

3 α← hmac(keys[c id], msg||ID||cnt);

4 return α||msg||ID||cnt;

5 }
6 function Verify(c id, α||msg||ID||cnt) {
7 α’← hmac(keys[c id], msg||ID||cnt);

8 if (α’ = α && cnt = recv cnts[c id]++ )

9 return (α||msg||cnt);

10 assert(False);

11 }

(host) memory upon successful verification.

Hardware design. The RoCE protocol kernel is also connected to a 100Gb MAC IP and

an ARP server IP.

100Gb MAC. The 100Gb MAC kernel implements the link layer connecting TNIC to the

network fabric over a 100G Ethernet Subsystem [318]. The kernel also exposes two

interfaces for transmitting (Tx) and receiving (Rx) network packets.

ARP server. The ARP server has a lookup table containing MAC and IP address corre-

spondences. Right before the transmission, the RDMA packets at the Request generation

first pass through a MAC and IP encoding phase, where the Request generation mod-

ule extracts the remote MAC address from the lookup table in the ARP server.

IB protocol. The RoCE protocol kernel implements the reliable version of the IB pro-

tocol. Similarly to its original specification [262], the kernel implements State tables

to store protocol queues (e.g., receive/send/completion queues) as well as important

metadata, i.e., packet sequence numbers (PSNs), message sequence numbers (MSNs),

and a Retransmission Timer.

Dataflow. The transmission path is shown with the blue-colored axes in Figure 5.2.

The Req handler receives requests issued by the host and initializes a DMA command

to fetch the payload data from the host memory to the attestation kernel. Once the at-

testation kernel forwards the attested message to the Req handler, the module passes

the message from several states to append the appropriate headers IB hdr along with

metadata (e.g., RDMA op-code, PSN, QP number). The last part of the processing gen-

erates and appends UDP/IP headers (e.g., IP address, UDP port, and packet length).

The message is then forwarded to the 100Gb MAC module.

Similarly, the reception path is shown with the red-colored axes in Figure 5.2. The

Request decoder extracts the headers, metadata, and attested message. The message

is forwarded to the attestation kernel for verification and finally copied to the host



102 Chapter 5. TNIC

memory.

The message format in TNIC follows the original RDMA specification [262]; the

difference between our TNIC and the original RDMA messages is that the attestation

kernel extends the payload by appending a 64B attestation α2 and the metadata. The

metadata includes a 4B id for the session id of the sender, a 4B ID for the device id

(unique per device), and the appropriate send cnt. This payload extension is negligible

and does not harm the network throughput. TNIC also offers support for the original

RDMA operations that bypass the attestation kernel. We explain TNIC APIs in section

§ 5.6.1.

5.4.3 Remote Attestation Protocol

We design a remote attestation protocol to ensure that the TNIC device is genuine and

the TNIC bitstream and secrets are flashed securely in the device. Although TNIC’s

attestation protocol has not been implemented, we have verified the security properties

of the protocol in the symbolic model (sections § 5.4.4 and § 5.9).

Design assumptions. We base our design on a NIC Controller hardware compo-

nent that drives the device initialization with no access to confidential information as

in [351]. The Controller can be implemented as a soft CPU [215, 232, 351] while after

TNIC’s initialization, it monitors JTAG/ICAP interfaces to prevent physical attacks [281],

ensuring that the bitstream is not modified before use.

Bootstrapping. The Manufacturer (at the construction) burns a secret, unique to the

device, key HWkey. The System designer, who builds the distributed BFT application,

shares the configuration and secrets (e.g., session ids, keys, network IPs of the partic-

ipating devices) with the IP vendor (who implements and provide the bitstreams of

TNIC) and instructs the cloud provider to load the (encrypted) FPGA firmware which is

then decrypted with the HWkey. The firmware loads the controller binary Ctrlbin, gen-

erates a key pair Ctrlpub,priv for the specific device and binary (which we assume they

are not compromised or leaked to untrusted parties), and signs the measurement, i.e.,

the cryptographic hash, of the Ctrlbin and the Ctrlpub with the HWkey (Ctrlbincert).

Remote attestation. Figure 5.3 shows our suggested remote attestation design for

TNIC. The IP vendor sends a random nonce n for freshness to the Controller. The IP

vendor’s public key IPVendorpub is embedded into the Ctrlbin and as such is known to

the Controller. The Controller generates a certificate cert over the Ctrlbincert and n

(2) which signs with Ctrlpub and sends it to the IP vendor (3).

2While 16B are typically sufficient for a MAC, TNIC reserves 64B for the MAC because it builds on top
512-bit AXI4 Stream interfaces for the data path. This is an implementation detail rather than a TNIC

restriction.
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Figure 5.3: TNIC remote attestation protocol.

The IP vendor verifies the authenticity of the cert (4)—(5) and establishes a mu-

tually authenticated TLS connection with the Controller. First, the vendor verifies the

authenticity of m with the HWkey, ensuring that a genuine Ctrlbin and a genuine device

has signed m (4). As such, the vendor ensures that the Ctrlbin runs in a genuine TNIC

device by verifying that the measurement of the Ctrlbin has been signed with an appro-

priate device key installed by the Manufacturer. Lastly, the vendor verifies the nonce n

and cert to ensure freshness3 (with the Ctrlpub included in m).

Now, a mutually authenticated TLS connection is established; the IP vendor veri-

fies the authenticity by checking for the desired Ctrlpub and the Controller checks for

it’s embedded IPVendorpub (6.1)—(6.3). Once the mTLS session is established the IP

Vendor sends the Controller the configurations and secrets (provided by the System

designer) and the TNIC bitstream, TNICbit (7)—(8) that are protected by the mTLS

guarantees.

3We assume that the Ctrlpriv is not compromised.
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5.4.4 Formal Verification of TNIC Protocols

We formally verify the security and safety properties of TNIC hardware with Tamarin [208],

a security protocol verification tool that analyzes symbolic models of protocols speci-

fied as multiset rewriting systems. We verify TNIC’s bootstrapping and the remote at-

testation protocol that provides a formal model to argue about non-equivocation and

transferable authentication. We next present the verified security properties of TNIC;

proofs are available in § 5.9.

Remote attestation. We model the bootstrapping and remote attestation protocols

based on Figure 5.3. We define lemmas to ensure the secrecy of the private information

involved in the protocol and the main attestation lemma, which holds if and only if:

once the last step of the remote attestation protocol is completed, the TNIC device is in

a valid, expected state.

Transferable authentication. We extend the model with rules for the network oper-

ations that execute Attest() and Verify() (Algorithm 3) upon the message trans-

mission and reception, respectively. The model extension allows us to reason about

transferable authentication by defining an additional lemma: any accepted message

was sent by an authentic TNIC device in a valid configuration.

Non-equivocation. We further extend the model by three lemmas that help to reason

about non-equivocation as follows: for any message that is accepted, it holds that (i)

there is no message that was sent before but not accepted, (ii) there is no message that

was sent after, but accepted before this one, (iii) this message has not been accepted

before.

To sum up, Tamarin successfully shows that there is no sequence of transitions that

leads to any state where our lemmas are violated. Thus, the attestation and transferable

authentication lemmas hold for our model, and the counters behave as expected to

ensure non-equivocation.

5.5 TNIC Network Stack

We build a software TNIC system network stack that operates as the middle layer be-

tween the TNIC programming APIs (see § 5.6.1) and the hardware implementation of

TNIC. Figure 5.4 shows an overview of the network stack design that is comprised of

two core components: (1) the TNIC driver and mapped REGs pages that are responsi-

ble for initializing the device and configuring host—device communication and (2) the

RDMA OS abstractions that execute networking operations.
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Figure 5.4: TNIC network system stack.

5.5.1 TNIC Driver and Mapped REGs Pages

The TNIC driver is invoked at the device initialization, before the remote attestation

protocol (§ 5.4.3), to configure the hardware with its static configuration (the device

MAC address, the device QSFP port, and the network IP used by the application).

Additionally, the driver enables kernel-bypass networking—similar to the original

(user-space) RDMA protocol—by mapping the TNIC device to a user-space addresses

range, the Mapped REGs pages. In our TNIC, we reserve one Mapped REGs page at

the page granularity of our system for each connected device that is represented as

pseudo-devices in /dev/fpga<ID>. Read and write access to the pseudo-device is equal

to accessing the control and status registers of the FPGA. As such, the applications

can directly interact with the control path of the TNIC hardware at low latency while

bypassing the host OS.

5.5.2 RDMA OS Abstractions

The RDMA OS abstractions are a user-space library that enables the networking oper-

ations in the TNIC hardware, bypassing the OS kernel for performance. As shown in

Figure 5.4, invocations of the TNIC programming API calls into the RDMA OS library

are comprised of two parts: the network (RDMA) library (colored in purple) that imple-

ments the software part of the RDMA protocol and the OS library (colored in red) that

schedules the TNIC requests.

Network (RDMA) library. The network (RDMA) library includes all the logic and data
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(e.g., Tx/Rx queues per connection, local and remote memory addresses, RDMA keys

that denote memory access permissions) required to implement the RDMA protocol. It

executes the application’s networking operations by posting the requests to the hard-

ware. More specifically, it creates an internal representation of the request and the

associated data and metadata (i.e., request opcode, remote IP, source/destination ad-

dresses, data length, etc.) and writes them into specific offsets in the REGs pages to

update the control registers of the TNIC hardware.

As shown in Figure 5.4, the transmission and reception of requests and responses

mandate the allocation of application network buffers. We adopt memory management

similar to that in widely used user-space networking libraries [162, 150, 209]. Impor-

tantly, the network buffers need to be mapped to a specific TNIC-memory, called the

ibv memory. The ibv memory area is allocated at the connection creation in the huge

page area by the application through the ibv library. It resides within the application’s

address space with full read/write permissions and is eligible for DMA transfers.

OS library. The TNIC-OS library is a lightweight user-space library responsible for

scheduling the requests and ensuring isolated access to the mapped REG pages. For

performance, the TNIC data path eliminates unnecessary data copies throughout the

network stack; the data to be sent is directly fetched by the hardware through DMA

transfers. The OS library creates a TNIC-process object to represent each TNIC device.

This TNIC-process in TNIC is not a separate scheduling entity (i.e., a thread as in classical

OSes). In contrast, it is an object handle, exposed to the ibv library but managed by

the TNIC-OS library that acquires locks on the respective REG pages to ensure isolated

access to the TNIC hardware.

5.6 TNIC Network Library

We present TNIC’s programming APIs (§ 5.6.1), and a generic recipe to transform exist-

ing distributed systems (§ 5.6.2).

5.6.1 Programming APIs

TNIC implements a programming API (Table 5.1) that resembles the traditional RDMA

programming API [162] used in modern distributed systems[106, 88, 168, 163, 123,

200, 222]. We further extend the security semantics, offering the properties of non-

equivocation and transferable authentication (§ 5.2.1).

Initialization APIs. The TNIC application first needs to configure the TNIC system to

establish peer-to-peer RDMA connections. The application creates one ibv struct for

each connection with ibv qp conn(), which sets up and stores the queue pair, the
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Initialization APIs

ibv qp conn() Creates an ibv struct

alloc mem() Allocates host ibv memory

init lqueue() Registers local memory to TNIC

ibv sync() Exchanges ibv memory addresses

Network APIs

local send/verify() Generates/verifies attested messages

auth send() Transmits an attested message

poll() Polls for incoming messages

rem read/write() Fetches/writes remote memory

Table 5.1: TNIC programming APIs.

local and remote IP addresses, device UDP ports, and others. The application also

invokes alloc mem() to allocate the ibv memory and then register the ibv memory

to the TNIC hardware. Lastly, the application synchronizes with the remote machine

using ibv sync() to exchange necessary data (e.g., ibv memory address, queue pair

numbers).

Network APIs. TNIC executes trusted one-sided, (unreliable) ordered RDMA based on

the classical one-sided RDMA over Reliable Connection (RC), i.e., a FIFO ordering (per

connection), similar to TCP/IP networking. TNIC auth send() can offer reliability and

FIFO-ordering guarantees between two nodes in the absence of network adversaries.

However, in case of network attacks TNIC detects lost or compromised messages but

does not “automatically” re-transmits them.

TNIC offers auth send() to send an attested message with RDMA reliable writes.

We support classical RDMA operations for reads and writes: rem read() and rem write().

The remote side runs poll() to fetch the number of completed operations; poll() is

updated only when the message verification succeeds at the TNIC hardware. We offer

local operations for generating and verifying attested messages within a single-node

setup: local send() and local verify().

TNIC does not support a hardware-assisted multicast. To implement an equivocation-

free multi-casting, system developers can rely on the TNIC’s API to generate and verify

attested messages locally, e.g., local send() and local verify(). Each multicast

group is a associated with a session identifier, the c id. Nodes can be part of multi-

ple multicast groups each of which is identified by its c id. As such, counters remain

consistent across all nodes within a multicast group. As discussed in Algorithm 3,
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each node’s TNIC attestation kernel rely on this c id to correctly find and check the

message’s assigned counters. System developers can implement equivocation-free mul-

ticast by uni-casting the same attested message, i.e., the sender must generate an at-

tested message with local send() as in [187] and send this attested message to the

multicast group through peer-to-peer connections, for example, by using the RDMA’s

(classical) write operation. Recipients can verify the received attested message by call-

ing into local verify(). The local verify() as before checks for the authenticity of

the message. The send cnts and recv cnts of the multicast group are identified by

the same c id and as such, equivocation can be prevented; different messages will be

assigned different send cnts [187].

5.6.2 A Generic Transformation Recipe

Transformation properties. We show how to use TNIC APIs to transform an existing

(CFT) distributed system into one that targets Byzantine settings. Our transformation

is defined as wrapper functions on top of the send and receive operations [67]. For

safety, our transformation needs to meet the following properties to provide the same

guarantees expected by the original CFT system [67, 133, 134]:

• Safety. If a correct receiver receives a message m from a correct sender S, then S

must have sent with m.

• Integrity. If a correct receiver receives and delivers a message m, then m is a valid

message.

1 void send(P_id, char[] msg) {

2 state = hash(my_state);

3 tx_msg = msg || state || receiver_state;

4 auth_send(follower, tx_msg);

5 }

6

7 void recv(recv_msg) {

8 auto [att, msg || state || receiver_state] = deliver();

9 [msg, cnt] = verify_msg(msg);

10 verify_sender_state(state);

11 local_verify(receiver_state);

12 verify_system_view(receiver_state); apply(msg);

13 }

Listing 5.1: Generic send and recv wrapper functions using TNIC. TNIC additions are

highlighted in orange.
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Listing 5.1 shows our proposed send (L1-5) and recv (L7-13) operations, assuming

a two-node scenario where the first node (sender) receives client requests and forwards

them to the second node (receiver). For transmission, the sender sends the client

message msg, its current state (e.g., the sender’s action to the msg), and the receiver’s

previous state (known to the sender). The receiver’s state is optional depending on

the consistency guarantees of the derived system and can be used to ensure that both

nodes have the same system view.

Upon receiving a valid message (L8-9), the receiver simulates the sender’s state to

verify that the sender’s action to the request is as expected (L10). The receiver also

ensures that it does not lag, and both nodes have the same “view” of the system inputs

by verifying that the sender has seen the receiver’s latest state (e.g., message) (L11-12).

Our generic transformation recipe satisfies the requirements listed above. First,

TNIC’s transferable authentication property directly satisfies the safety requirement. A

faulty node cannot impersonate a correct node4; if TNIC validates and delivers a mes-

sage m from a sender, the sender must have sent m. TNIC’s network operations ensure

liveness properties between correct nodes. In any case, liveness can be ensured by

re-trying the message transmission.

Second, our transformation satisfies the integrity property. The property requires

the receiver to ensure that a sender’s message derives from a valid (correct) execution

scenario of the business logic. Our transformation with the transferable authentication

mechanism allows the receiver to simulate the sender’s output. Consequently, correct

receivers can verify the sender’s state and that their received message (from the sender)

derives from a correct execution scenario of the business logic, namely, that the sender

obeyed to the protocol specification.

Consistency property for replication. Our transformation further needs to meet the

consistency property [67]: If correct receivers R1 and R2 receive valid messages mi

and m j respectively from sender S, then either (a) Bpgi is a prefix of Bpg j , (b) Bpg j

is a prefix of Bpgi, or (c) Bpgi = Bpg j (where Bpgx is the process behavior, i.e., the

execution history of the protocol that supports the validity of the message mx. Namely,

the message derives from a correct execution scenario ensured by the state machine

replication and the consensus protocol).

The consistency requirement is enforced through the TNIC’s non-equivocation prim-

itive that assigns a (unique) monotonic sequence number to each outgoing message,

enforcing a total order on the sender’s outgoing messages. Along with the integrity

requirement, the total order suffices for consistency. Importantly, TNIC ensures that

4Recall that each device is uniquely identified by an ID and the keys to authenticate the messages are
only known to the TNIC and cannot be read by the untrusted CPU.
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correct receivers cannot miss any past messages. Following this, two followers that re-

ceive from the same sender (using the equivocation-free multicast discussed in § 5.8.2)

follow the same transition (execution) path.

5.7 Trusted Distributed Systems

Using TNIC as the foundation, we transform the following four distributed systems to

operate in Byzantine environments. The implementation details are covered in § 5.10.

Attested Append-Only Memory (A2M). We design an Attested Append-Only Memory

(A2M) [65] leveraging TNIC, which can be used to shield and optimize various sys-

tems [3, 58, 189, 76]. The original A2M, and hence our implementation over TNIC,

builds append-only (trusted) logs, associating each entry with a monotonically increas-

ing sequence number to combat equivocation. While A2M has a large TCB and stores

the log within the TEE, our implementation has only a minimal TCB in hardware and

it can robustly store the log in the untrusted host memory, improving memory effi-

ciency [187].

As in the original A2M, we build the append and lookup operations. The append

calls into TNIC to generate an attestation for the log entry while associating it with a

monotonically increased sequence number (sent cnt). The sequence number denotes

the entry’s position in the log. The lookup operation retrieves entries locally without

verification.

Byzantine Fault Tolerance (BFT). We design a Byzantine Fault-Tolerant protocol (BFT)

using TNIC. The protocol builds a replicated counter as a foundational service for vari-

ous systems [97, 330, 160, 276, 86]. Our system model considers a network of replicas

with at most f Byzantine replicas out of N = 2 f +1 total replicas. One replica serves as

the leader, and the others act as followers. The system prevents equivocation through

TNIC, which enforces and validates the ordering of messages. This reduces the number

of replicas required and the message complexity compared to the classical BFT (3 f +1).

Clients send increment counter requests to the leader, who performs the requests

and broadcasts the change along with a proof of execution (PoE) message to followers.

The proof of execution is a TNIC-attested message with the original client’s request, the

leader’s counter value, and metadata. The followers leverage their local state machine

to detect a faulty leader (or follower) [134]. Subsequently, if and only if a follower

has not applied the message before, it applies the incremented counter value to its

state machine before forwarding its own PoE message to all other replicas and replying

to the client. A quorum of at least f + 1 identical messages from different replicas

guarantees a correctly committed result for the client.
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Chain Replication (CR). We design a Byzantine CR system [323] using TNIC as the

replication layer of a Key-Value store. As in the CFT version of CR, the replicas, e.g.,

head, middle, and tail, are connected in a chained fashion.

Clients execute requests by forwarding them to the head. The head orders and

executes the request, creating his own proof of execution message (PoE), which is sent

along the chain. The PoE consists of the original request and the head’s output that TNIC

attests. Each node in the chain verifies the previous nodes PoE, executes the request,

and creates its own PoE, which consists of the last PoE and the node’s output.

Unlike the CFT CR, all operations must traverse the chain as local operations in the

tail cannot be trusted (e.g., local reads). Replicas reply to clients with their output after

forwarding their PoE message. Clients wait for identical replies from all chained nodes.

Accountability (PeerReview). Lastly, we design an accountability system with TNIC

based on the PeerReview system [126] to detect malicious actions in large deploy-

ments [302, 220].

We detect faults impacting the system’s network messages logged into the partici-

pant’s tamper-evident log. We frame the protocol within an overlay multicast protocol

for streaming systems where the nodes are organized in a tree topology. Witnesses

assigned to each node audit the node’s log to detect faults. The witnesses replay the

log entries, comparing them with a reference deterministic implementation to iden-

tify inconsistencies. Our TNIC prevents equivocation at NIC hardware efficiently, which

eliminates the expensive all-to-all communication of the original PeerReview that does

not use trusted hardware [187].

5.8 Evaluation

We evaluate TNIC across three dimensions: (i) hardware (§ 5.8.1), (ii) network stack

(§ 5.8.2) and (iii) distributed systems (§ 5.8.3).

Implementation. We implement our prototype of TNIC extending the Coyote [77]

codebase on top of Alveo U280 [317]. We build the attestation kernel based on the

HMAC module provided by Xilinx with the SHA-384 as the hashing algorithm [342].

We adopt 512-bit AXI4 Stream interfaces for the data paths and AXI4 memory-mapped

interfaces for the control paths. For the data transfers, TNIC builds on top of an XDMA

IP [340, 341] that enables DMA over PCIe. The 100Gb MAC is implemented with a

CMAC IP [318] that exposes two 512-bit AXI4-Stream interfaces to the RoCE protocol

kernel for the transmitting (Tx) and receiving (Rx) network paths.

Evaluation setup. We perform our experiments on a real hardware testbed using two

clusters: AMD-FPGA Cluster and Intel Cluster. AMD-FPGA Cluster consists of two ma-
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System (host) TEE-free Tamper-proof

SSL-lib Yes No

SSL-server/Intel-x86*/AMD Yes No

SGX/AMD-sev No Yes

TNIC Yes Yes

Table 5.2: Host-sided baselines and TNIC. (*) We use the term SSL-server for this run

unless stated otherwise.
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Figure 5.5: Attest function latency.

chines powered by AMD EPYC 7413 (24 cores, 1.5 GHz) and 251.74 GiB memory. Each

machine also has two Alveo U280 cards [317] that are connected through 100 Gbps

QSFP28 ports. Intel Cluster consists of three machines powered by Intel(R) Core(TM)

i9-9900K (8 cores, 3.2 GHz) with 64 GiB memory and three Intel Corporation Ethernet

Controllers (XL710).

5.8.1 Hardware Evaluation: T-FPGA

Baselines. We evaluate the performance of Attest() of the TNIC’s attestation kernel

(§ 5.4.1) compared with four host-sided systems shown in Table 5.2. For these host-

sided versions, we build OpenSSL servers that run natively or within a TEE. The servers

attest and forward network messages to the host application. We use the terms Intel-

x86 and AMD for a native run of the server process (SSL-server) and SGX and AMD-sev
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Figure 5.6: Attest latency breakdown.
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for their tamper-proof versions within a TEE. The server and host process run in the

same machine to eliminate network latency and communicate through TCP sockets.

We implement SGX using the SCONE framework [26] while AMD-sev runs in a QEMU

VM using the official VM image [16]. In addition, we build (non-temper-proof) SSL-lib,

which integrates the Attest function as a library.

Methodology and experiments. We use Vitis XRT v2022.2 and the shell xilinx u280-

gen3x16 xdma base 1 for the stand-alone evaluation of the TNIC attestation kernel:

synchronous data transfers between the host and device (U280). We measure and

report the average latency and communication costs by executing an empty function

body of Attest().

Results. Figure 5.5 shows the average latency of Attest() based on the HMAC algo-

rithm for 64B and 128B data inputs. The latency of Verify() is similar, and as such,

it is omitted. Our TNIC achieves performance in the microseconds range (23 us) and

outperforms its equivalent TEE-based competitors at least by a factor of 2. Importantly,

TNIC is approximately 1.2× faster than AMD, which is not tamper-proof.

Figure 5.6 shows the latency breakdown of Attest(). Accessing the TNIC device

and TEEs can be expensive, ranging from 30% to 90% of the total operation latency

among the systems. Regarding TNIC, the transfer time (16us) accounts for 70% of the

execution time. We expect that TNIC effectively eliminates this cost by enabling asyn-

chronous (user-space) DMA data transfers. Regarding the TEE-based systems (SGX,

AMD-sev), the communication and system call execution costs account for up to 40%

of the total execution. To our surprise, this implies that the HMAC computation within

any of the two TEEs experiences more than 30× overheads compared to its native run.

To analyze TEEs’ behavior, we instrument the client’s code to measure the operations’

individual latency at various periods of time during the experiment accurately.

Figure 5.7 illustrates the individual operation latency, where SGX-empty indicates

SGX without HMAC computation. As shown in Figure 5.7, the HMAC execution within

the TEE often experiences huge latency spikes. We attribute this behavior to the

scheduling effects and asynchronous exitless system calls involved by SCONE [26]. We
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various security properties.
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observe similar variations for AMD with latencies spiking up to 200–500 us.

5.8.2 Software Evaluation: TNIC Network Stack

Baselines. To evaluate the TNIC performance, we discuss (1) the effectiveness of of-

floading the network stack to the TNIC hardware and (2) the overheads incurred by the

CFT systems transformation for the BFT model. We compare TNIC across four other

software/hardware network stacks with different security properties as follows: (i)

RDMA-hw, an untrusted RoCE protocol on FPGAs, (ii) DRCT-IO (direct I/O), untrusted

software-based kernel-bypass stack, (iii) DRCT-IO-att, altered DRCT-IO that offers trust

by sending attested messages but does not verify them, and (iv) TNIC-att, altered TNIC

that similarly sends attested messages without verification. We build (i) RDMA-hw on

top of Coyote [77] network stack similarly to TNIC. For (ii) (iii) DRCT-IOs, we base our

design on eRPC [162] with DPDK [150] that offers similar reliability guarantees with

RDMA-hw. The TNIC-att and the DRCT-IO-att network stacks are evaluated to quantify

solely the overhead of the Attest() function. The hardware network stacks run on

AMD-FPGA Cluster, whereas the rest run on Intel Cluster.
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Methodology and experiments. Our experiments measure the latency and throughput

for respective network stacks, which run through a single-threaded client-server imple-

mentation. For the latency measurement, the client sends one operation at a time,

whereas for the throughput measurement, one client can have multiple outstanding

operations.

Results. Figure 5.8 and 5.9 show the latency and throughput of the send operation

with various packet sizes. First, regarding (1) the effectiveness of network stack of-

floading, RDMA-hw is 3×—5× faster than DRCT-IO, which indicates that the network

offloading boosts performance. Although DRCT-IO offers minimal latency (16-16.6us)

for small packet sizes up to 1 KiB due to its zero-copy transmission/reception opti-

mizations [162], they are only effective for up to 1460B (MTU is 1500B, but 40B are

reserved for metadata), and RDMA-hw still achieves 3× lower latency (5-5.5us). For

bigger data transfers, the RDMA-hw latency increases steadily up to 19 us, whereas

DRCT-IO does not scale well with latencies up to 100us.

Second, regarding (2) the TNIC performance overhead, TNIC offers trusted network-

ing with 3×—20× higher latencies than the untrusted RDMA-hw. The latency increase

stems from the HMAC calculation of the TNIC hardware. As this algorithm fundamen-

tally cannot be parallelized, the higher the message size, the higher the latency our

TNIC incurs. More specifically, for packet sizes less than 1 KiB, doubling the packet

size in TNIC results in a 13%—20% increment in the overall latency. For packet sizes

bigger or equal to 1 KiB, doubling the packet size increases the latency by 30%—40%.

Compared to DRCT-IO-att (82us), TNIC is up to 5.6× faster. Importantly, DRCT-IO-att

reports extreme latencies (2000us or more) for packet sizes larger than 521B, which

are omitted to avoid plot distortion. We attribute these latencies to the scheduling

effects of SCONE [26].

5.8.3 Distributed Systems Evaluation

We implement the four systems of § 5.7 with TNIC in a three-node setup (N = 3) except

for the single-node A2M system.

Methodology and experiments. We execute all four of our codebases on Intel Cluster,

utilizing all its three servers (as the minimum required setup capable of withstanding

a single failure, N = 2 f + 1, where f = 1). Due to our limited resources, we cannot

install Alveo U280 cards on all these servers. Instead, we build our codebase using the

DRCT-IO stack (detailed in § 5.8.2) and inject busy waits to all three servers to emulate

the delays incurred by TNIC for generating and verifying attested messages.

We evaluate each codebase using five systems that generate and verify the attesta-

tions: (i) SSL-lib (no tamper-proof), (ii) SSL-server (no tamper-proof), (iii) SGX, (iv)
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Throughput (Op/s)

System append lookup

SSL-lib 790K 256M

SGX-lib 380K 3.8M

AMD-sev 30K 263M

TNIC 158K 257M

Latency (us)

append lookup

1.26 0.0039

2.6 0.26

32.37 0.0038

6.34 0.0039

Figure 5.10: Throughput and latency of A2M.
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Figure 5.11: Throughput (and latency numbers) of BFT.

AMD-sev, and (v) TNIC. To perform a fair comparison, we integrate into our codebases a

library that accurately emulates all latencies (measured in § 5.8.1) within the CPU. For

the AMD latency, we use 30us, representing the lower bound of the latencies measured

in § 5.8.1. We do not emulate the SSL-lib latency.

Given that DRCT-IO, which is used for the emulation, is at least 3× slower than the

hardware RDMA network stack (RDMA-hw), the latencies outlined in this section are

anticipated to reflect the upper limit for all four systems with TNIC.
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Figure 5.12: Throughput (and latency numbers) of Chain Replication.
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A2M. We first evaluate our TNIC-A2M system. For SGX, we port the entire log within

the TEE, labeled as SGX-lib. This version builds a large TCB that is similar to the orig-

inal A2M. However, we implemented the system as single SGX process that generates

and executes the workload (operations) locally within the trusted area. As such the

measured latency and throughput do not consider the inevitable communications costs

between the A2M (within SGX) and the untrusted (host) process that would uses this

system. We decided this setup to show the upper bound of A2M. All other versions place

the attested log in the untrusted host memory, using the trusted systems to generate

attestations as in [187]. In the evaluation of these systems we generate the workload

in a process in the untrusted host area and as such, by design, their evaluation include

the communication costs between the trusted and untrusted components. In this ex-

periment, we construct a 9.3GiB log with 100 million entries and then lookup them

sequentially/individually.

Results. Figure 5.10 shows the throughput and mean latency of the append/lookup op-

erations. The native execution (SSL-lib) achieves the highest throughput as it incurs no

communication costs. Compared to SSL-lib, SGX-lib experiences only a 2× slowdown

because we avoid the costly communication w.r.t. an SGX-based server implementation.

On the other hand, AMD-sev, which runs the SSL server, incurs a 15× slowdown. Lastly,

TNIC incurs 5× and 2.4× slowdown compared to SSL-lib and SGX-lib, respectively, due

to the HMAC calculation.

Regarding the lookup operation, SSL-lib, AMD-sev, and TNIC report similar through-

put and latency because they lookup untrusted host memory for the requested entry.

However, SGX-lib reports a 66× slowdown due to its trusted memory size constraints

and expensive paging mechanism [109]. As a result, while TNIC increases append la-

tencies, it greatly optimizes lookup latencies due to its minimal TCB.

BFT. We evaluate the performance of our BFT protocol with various network batching
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factors. We implement network batching as part of the application’s message format.

Results. Figure 5.11 shows the throughput and latency of the protocol, which highlights

that TNIC significantly outperforms TEE-based versions (SGX, AMD-sev), improving

the throughput and latency 4—6×. On the other hand, TNIC incurs 2.4× throughput

overhead and up to 7× higher latency compared to SSL-lib. We recall that SSL-lib is

not tamper-proof, i.e., it is embedded to the application’s process which runs natively

without a TEE (Table 5.2), and reduces the communication overheads incurred by other

tamper-proof solutions (SGX, AMD-sev).

We also observe that batching improves the throughput and latency proportionally

to the number of batched messages. For all except SSL-lib, the batching factors equal to

8 and 16 achieve 7× and 15× higher throughput than without batching, respectively.

For SSL-lib, they are moderately effective: approximately 4—6× faster. It is primarily

because the native execution of the attestation function is fast enough to saturate the

network bandwidth. As such, conventional techniques can drastically eliminate the

overheads for BFT and improve TNIC’s adoption into practical systems.

CR. In this experiment, we evaluate the performance of our CR. We allocate one mes-

sage structure per client request comprising 60B context, 4B operation type, and a 32B

attestation.

Results. Figure 5.12 shows the throughput and latency of our Chain Replication. We

highlight that our TNIC is 5× and 3.4× faster than SGX and AMD-sev, respectively.

While TNIC incurs 4.6× overheads compared to SSL-lib, it is 30% faster than SSL-server,

which is not tamper-proof. The performance benefit stems primarily from hardware

acceleration by the TNIC’s attestation kernel on the transmission/reception data path.

PeerReview. We evaluate our PeerReview system’s performance by both activating and

deactivating the audit protocol. The system uses one witness for the source node that

periodically audits its log. In our experiments, the witness audits the log after every

send operation in the source node until both clients acknowledge the receipt of all

source messages.

Results. Figure 5.13 shows the throughput and latency of our PeerReview system with

and without enabling the audit protocol. Without the audit protocol, the TEE-based

systems (SGX, AMD-sev) result in up to 30× slower throughput than SSL-lib, whereas

our TNIC mitigates the overheads: 3—5× better throughput compared to AMD-sev and

SGX.

Similarly, with the audit protocol, TNIC outperforms AMD-sev and SGX by 3.7—5×.

Importantly, when using TNIC, the audit protocol itself consumes about 25% (17us)

of the overall latency, leading to 1.33× performance slowdown. However, even with

the audit protocol, TNIC offers 3.7—5.42× lower latency compared to its TEE-based
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competitors.

5.9 Formal verification Proofs

We present the detailed security proofs for TNIC security protocols using the Tamarin

Prover [208].

Proof artifact. The complete proofs, including the detailed formal models used to

generate them, can be found under the following link: [309].

Symbolic model. We prove the security properties of TNIC in a symbolic model.

Compared to other approaches, e.g., TLA+ [308] and the computational model [2],

Tamarin analyzes protocols in symbolic models and can prove properties by verifying

user-defined lemmas. More significantly, TLA+ does not consider security aspects. The

computational model is implementation dependant on the cryptographic functions and

gives probabilities for the success of and attack. In contrast, we leverage Tamarin’s

built-in primitives and automated and interactive analysis to verify the correctness of

the security protocols.

We impose a set of assumptions on our proofs motivated by Tamarin’s symbolic

model: (i) The symbolic model does not reason about about the individual bits of mes-

sages directly. Instead, it assumes a set of atomic terms and functions that operate on

these terms. All messages that are part of the model are composed of such atomic terms

and functions applied on these terms (ii) These cryptographic functions are assumed to

be perfect with no side-effects, e.g., hash functions are irreversible, and hash collisions

are impossible. This allows for proving lemmas without considering the probabilities of

violating specific properties and thus significantly reducing the complexity. The compu-

tational model is an alternative to the symbolic model that considers such probabilities.

(iii) Attackers can read and delete all messages that are sent on the network and modify

them in accordance with the set of defined functions.

Tamarin works on symbolic models specified using multiset rewriting rules that op-

erate on the system’s state. Different states of the system are expressed as a set of facts

with rules capturing the available transitions from one system state to another. Rules

are used to model the actions of agents running the protocol and the adversary’s ca-

pabilities. In addition to the rules, Tamarin also makes use of restrictions. Restrictions

further refine the sources of facts in the protocol to improve the efficiency of the proof

generation.

Our verification work relies on properties of the already analyzed TLS handshake [304].

It provides a model and lemmas for the security properties of the protocols presented

in this chapter.
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To prove the correctness of our lemmas, Tamarin computes possible executions for

each rule. Tamarin employs constraint solving to refine its knowledge about the se-

quence of protocol transitions. To check the correctness of the protocol model we also

employ sanity lemmas which ensure that there exists a sequence of transitions to reach

a predefined valid state. These lemmas ensure that the protocol can be executed as

intended.

In the following paragraphs, we give an overview of the rules and lemmas used to

model the TNIC protocols.

Rules. The data-structure rules, which create datastructures, that are used by the other

rules:

• create bitstream: Models the creation of a bitstream by the IP Vendor.

• create secrets: Models the creation of new communication secrets by the IP Ven-

dor.

• create IPVendor certificate: Models the creation of a new asymmetric key pair for

the IP Vendor.

• create controller: Models the creation of a new controller and embedding of a

creator (e.g. IP Vendor) certificate.

• publish firmware: Models the hardware manufacturer publishing a new firmware

version.

The bootstrapping rules, in accordance with the bootstrapping steps in § 5.4.3.

• bootstrapping 1: Models step (1), the generation and burning of the hardware

key by the TNIC manufacturer.

• bootstrapping 2: Models step (2), the loading and verification of firmware from

the insecure storage medium.

• bootstrapping 3 4 5: Models step (3-5), the loading, key and certificate genera-

tion of the controller.

• publish firmware: Models the hardware manufacturer publishing a new firmware

version.

• get tnic public key: Models the retrieval of the public TNIC key for verification.

The attestation rules, in accordance with the attestation steps in § 5.4.3.
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• attestation 1: Models step (1), the receiving of the configuration data from the

protocol designer, and the request for the controller certificates from the TNIC

device.

• attestation 2 3: Models step (2-3) on the TNIC side, which generates and replies

with a signed controller certificate.

• attestation 4 5 6a: Models step (4-6) on the IP Vendor side, which comprises the

verification of the obtained certificate and start of the mTLS handshake.

• attestation 6b: Models step (6) on the TNIC side, the lookup of the IP Vendor

certificate and the mTLS handshake.

• attestation 6c 7 8: Models step (6-8) on the IP Vendor side, the completion of the

mTLS handshake, and the sending of bitstream and secrets in the now encrypted

mTLS session.

• attestation 9: Models the TNIC device receiving and acknowledging the bitstream

and secrets.

• attestation 10: Models the final step of the IP Vendor after which the attestation

protocol is completed.

The communication rules, in accordance with the functions provided in § 5.4.1.

• init ctrs: Models the initialization of the send and receive counters for each ses-

sion. Is restricted to guarantee the uniqueness of the session counters.

• send msg: Models sending an arbitrary message by attesting it before sending

it over the secure channel. Is restricted to guarantee the session counters are

increased.

• recv msg: Models receiving an arbitrary message by only accepting it after a suc-

cessful verification.

The compromising rule, which model an attacker compromising arbitrary sensitive in-

formation, including: TNIC private key, controller private key, IP vendor private key,

bitstreams and communication secrets.

Lemmas. The sanity lemmas, which ensure the protocol can be executed as intended:

• sanity (verified in 20 steps): Ensures that the protocol allows for successfully

completing the bootstrapping & attestation phase, such that the IP Vendor and

uncompromised TNIC device are in an expected state.
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• send sanity (verified in 63 steps): Ensures that the protocol allows for successfully

verifying a message sent during the communication phase after two TNIC devices

are successfully initialized.

The attestation lemmas, which ensure the bootstrapping & attestation phase behaves

as expected:

• sensitive info stays secret (verified in 202 steps): Ensures all sensitive information

stays secret and can not be obtained by an attacker through means of the protocol.

A special case are the bitstream and communication secretrs, as those can only

be obtained if the attacker was able to compromise the private keys of either IP

Vendor, controller or the TNIC device.

• fresh info is not reused (verified in 48 steps): Ensures that the symmetric key,

which is established during the attestation is fresh, as long as the keys of the IP

Vendor and the controller are not compromised.

• initialization attested (verified in 154 steps): Ensures that after the IP Vendor

finished the attestation during the initialization phase, the TNIC device is in an

expected state and loaded the correct configuration.

The transferable authentication lemma:

• verified msg is auth (verified in 92 steps): Ensuring that each message that is

successfully accepted by a TNIC device is sent by a genuine TNIC device, assuming

the hardware of the TNIC devices was not compromised.

The non-equivocation lemmas:

• no lost messages (verified in four steps): Ensures that for all messages that are

successfully accepted by a genuine TNIC device, there are no messages that were

sent before but not accepted by the same TNIC device.

• no message reordering (verified in 307 steps): Ensures that for all messages that

are successfully accepted by a genuine TNIC device, there are no messages that

were sent after that message but accepted before.

• no double messages (verified in 614 steps): Ensures that a genuine TNIC device

does not accept the same message multiple times.

5.10 Protocols Implementation

We next present the implementation details of four distributed systems shown in Ta-

ble 5.3 using TNIC, presented in § 5.7.
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System N f (N = 3) Byzantine faults

A2M 1 0 Prevention

BFT 2 f +1 f = 1 Prevention

Chain Replication f +1 f = 2 Prevention

PeerReview f +1 f = 2 Detection

Table 5.3: Properties of the four trustworthy distributed systems implemented with

TNIC.

5.10.1 Clients

Clients in a TNIC distributed system execute requests by sending singed request mes-

sages to TNIC nodes through the network. TNIC assumes Byzantine (untrusted) clients;

as such, its installed shared keys cannot be outsourced. We assume that at the initial-

ization, the system designer also loads to TNIC devices a (per-device) key pair Cpub,priv

where the Cpub is distributed to clients. TNIC then replies to a client by verifying the

(under transmission) attested message and signing it with Cpriv. As such, TNIC is re-

stricted to only sending valid attested messages to clients where clients can prove the

transferable authentication and validity of the message. The only attack vector open to

a Byzantine machine is to try to equivocate by sending a stale, valid, attested message

that does not reflect the current execution round. However, clients can detect this by

verifying that the original request is theirs.

5.10.2 Attested Append-Only Memory (A2M)

We designed a single-node trusted log system based on the A2M system (Attested

Append-Only Memory) [65] using TNIC. A2M has been proven to be an effective

building block in improving the scalability and performance of various classical BFT

systems [189, 58, 3]. We show the how to use TNIC to build this foundational system

while we also show that TNIC minimizes the system’s TCB jointly with the performance

improvements demonstrated in § 5.8.

System model. Our TNIC version and the original A2M systems are single-node systems

that target a similar goal; they both build a trusted append-only log as an effective

mechanism to combat equivocation. The clients can only append entries to a log; each

log entry is associated with a monotonically increasing sequence number. Each data

item, e.g., a network message, is bound to a unique sequence number, a well-known

approach for equivocation-free operations [67, 44].

A2M was originally built using CPU-side TEEs—specifically, Intel SGX— whereas
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we build its TNIC derivative. While the original A2M system keeps its entire state and

the log within the TEE, we use TNIC to keep the (trusted) log in the untrusted memory.

As such, in contrast to the original A2M, TNIC effectively reduces the overall system’s

TCB. Our evaluation showed that naively porting the application within the TEE has

adverse performance implications in lookup operations.

Execution. Similarly to A2M, we expose three core operations: the append, lookup,

and truncate operations to add, retrieve, and delete items of the log, respectively.

A2M stores the lowest and highest sequence numbers for each log. Upon appending

an entry, A2M increases the highest sequence number and associates it with the newly

appended entry. When truncating the log, the system advances the lowest sequence

number accordingly. We next discuss how we designed the operations using TNIC APIs.

Algorithm 4: Attested Append-Only Memory (A2M) using TNIC.

1 function append(id, ctx) {
2 [α,i,ctx]← local send(id,ctx);

3 log[id].append(log entry(α,i,ctx));

4 return [α,i,ctx];

5 }

6 function lookup(id, i) {
7 return log[id].get(i);

8 }

9 function truncate(id, head, z) {
10 [α,tail,ctx]← append(id, TRNC||id||z||head);

11 e← append(MANIFEST,[α,tail,ctx]);

12 return e;

13 }

14 function verify lookup(id, e, head, tail) {
15 assert(e.i>=tail);

16 local verify(id, e);

17 }

Append operation. The append(id,ctx) operation takes a data item, ctx, and ap-

pends it to the log with identifier id. A log entry at index i is comprised of three items:

the sequence number of that entry (i), the context of the entry (ctx), and the authen-

ticator field, namely the digest of the ctx||i as in [187]. In our implementation, we

additionally support the original A2M authenticator format calculated as the cumula-

tive digest c digest[i] for that entry which is calculated as

c digest[i]=hash(ctx||i||c digest[i-1]) where c digest[0]=0. The sequence

number i is then increased to distinguish any entry that will be appended in the future.
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Lookup operation. The lookup(id, i) retrieves the log entry at index i of log with

identifier id. Compared to A2M, where lookups are compelled to access the trusted

hardware, TNIC-log only performs a local memory access. The function does not verify

whether the entry is legitimate. Developers need to implement the verify lookup(id,

entry, head, tail) to verify the attestation. The boundaries of the log (i.e., head

and tail) can constantly be retrieved by replaying a specific log, which keeps the state

changes, the MANIFEST. We explain how MANIFEST works in the next paragraph.

Truncate operation. The truncate(id, head, z), where z is a nonce provided by

the client for freshness, “forgets” all log entries with sequence numbers lower than

head. A non-Byzantine client can never successfully verify a forgotten log entry. To do

that, TNIC-log uses an additional log MANIFEST, which keeps the logs’ state changes.

First, the operation attests to the tail of the log by appending a specific entry, which

includes the nonce for a correct client to be later able to verify the operation. Then,

the algorithm will append the last attested message of the log to the MANIFEST log and

return the attested message for the second append. To retrieve the boundaries of a log,

clients can always attest to the tail of the MANIFEST and read backward until they find

a TRNC entry.

System design takeaway. TNIC minimizes the required TCB in the A2M system while

offering faster lookup operations than its original version.

5.10.3 Byzantine Fault Tolerance (BFT)

As a second example of TNIC applications, we build a Byzantine Fault Tolerant proto-

col (BFT) that implements a robust counter based on state machine replication (SMR).

Clients send increment counter requests to the SMR and receive the updated value of

the counter. Despite its simplicity, this particular system can represent an ordering ser-

vice, which is a fundamental building block of various distributed applications ranging

from event logging and database systems to serverless and blockchain [97, 330, 160,

276, 86]. Our BFT combats equivocation by leveraging the attestation kernel of TNIC.

As such, via TNIC, it reduces (i) the number of replicas and (ii) the message complexity

(and latency) required by classical BFT.

System model. We consider a system of N = 2 f +1 replicas (or nodes) that communi-

cate with each other over unreliable point-to-point network links. At most f of these

replicas can be Byzantine (aka faulty), i.e., can behave arbitrarily. The rest of the repli-

cas are correct. Recall that classical BFT protocols require an extra set of f replicas, in

total 3 f +1, to handle f Byzantine failures. One of the replicas is the leader that drives

the protocol, whereas the remaining replicas are (passive) followers. There is only a

single active leader at a time.



126 Chapter 5. TNIC

For liveness, we assume a partial synchrony model [92, 63]. We have only explored

deterministic protocol specifications; the correct replicas begin in the same state, and

receiving the same inputs in the same order will arrive at the same state, generating

the same outputs. Lastly, as in classical BFT protocols, we cannot prevent Byzantine

clients who otherwise follow the protocol from overwriting correct clients’ data.

Execution. We implement BFT with TNIC as a leader-based SMR protocol for a Byzan-

tine model that stores and increases the counter’s value. The leader receives clients’

requests to increment the counter. The leader, in turn, executes the protocol and ap-

plies the changes to its state machine—in our case, the leader computes and stores

the next available counter value. Subsequently, the leader broadcasts the request along

with some metadata to the passive followers. The metadata includes, among others, the

leader’s calculated output in response to the client’s command, namely, the increased

counter value the leader has calculated.

The followers, in turn, execute and apply the incremented counter value to their

state machines. However, they first attest to the leader’s (and other followers’) ac-

tions to detect misbehavior. Importantly, followers validate if the state (counter) of the

replicas (including the leader and all other replicas) match the expected value.

After a follower applies the increments to its local counter, it replies to the leader.

It also forwards the leader’s request to every other replica to ensure that all correct

replicas will eventually receive and apply the same command. Once the majority ac-

knowledges the reception it replies to the client. Replicas that have already applied the

request ignore it; otherwise, they validate it and apply it. The leader, upon successful

validation, will also reply to the client. The client can trust the result if they receive

identical replies from a majority quorum, i.e., at least f + 1 identical messages from

different replicas (including the leader). This guarantees that at least 1 correct replica

have verified the correct result.

Failure handling. Our strategy to verify the replica’s execution jointly with the prim-

itives of non-equivocation and transferable authentication offered by TNIC shields the

protocol against Byzantine behavior. The leader cannot equivocate; even if it attempts

to send different requests for the same round to different followers, executing the

local send() will assign different counter values, which healthy followers will detect.

As such, a leader in that case will be exposed.

Likewise, the equivocation mechanism allows correct followers to discard stale mes-

sage requests sent through replay attacks on the network. If a follower is Byzantine, a

healthy leader or replica can detect it. For f ≥ 2, it is impossible for a faulty leader and,

at most, f −1 remaining Byzantine followers to compromise the protocol. Either these

faults will be detected by a healthy replica during the validation phase, or the protocol
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will be unavailable, i.e., if the leader in purpose only communicates with the Byzantine

followers. This directly affects BFT correctness requirements; a client will never get at

least f +1 matching replies. Even in the extreme case of a network partition or a faulty

leader that purposely excludes some healthy replicas from its multicast group, when

the network is restored, these replicas will not accept any future messages unless they

receive all missed ones. Suppose the leader fails in the middle of the broadcast. In that

case, the last step in the follower’s protocol ensures that if a correct replica accepts a

request, all correct replicas will eventually apply the same request. Since the reliability

aspect and FIFO ordering are implemented in hardware, healthy replicas will ultimately

receive and deliver all past messages in the proper order. For protocols to progress in

the case of a faulty leader, they must pass through a recovery protocol or view-change

protocols similar to those described in previous works [328, 58]. Recovering is beyond

the scope of this work, and as such, we did not implement it.

System design takeaway. TNIC optimizes the replication factor and the message

rounds compared to classical BFT.

5.10.4 Chain Replication (CR)

We implement a Byzantine Chain Replication using TNIC that represents the replication

layer of a Key-Value store. Chain Replication is a foundational protocol for building

state machine replication and initially operates under the CFT model using f +1 nodes

to tolerate up to f failures. We show how to use TNIC to shield the protocol without

changes to the core of the algorithm (states, rounds, etc.) while keeping the same

replication factor.

System model. We make the same assumptions for the system as in the previous BFT

system. For error detection and reconfiguration, we assume a centralized (trusted)

configuration service as in [323] that generates new configurations upon receiving

reconfiguration requests from replicas. Recall that the classical Chain Replication under

the CFT model relies on reliable failure detectors [269] as well. For liveness, we also

assume that the configuration service will eventually create a configuration of correct

replicas that do not intentionally issue reconfiguration requests to perform denial of

service attacks.

Clients send requests to put or get a value and receive the result. The replicas (e.g.,

head, middle, and tail nodes) are chained, and the requests flow from the head node

to the tail through the intermediate middle replicas.

Malicious primaries, i.e., the head that does not forward the message intentionally,

are detected on the client’s side and trigger reconfiguration [58, 328].

Execution. To execute a request req, e.g., put/get, a client first obtains the current
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Algorithm 5: BFT using TNIC.

1 function leader(req) {
2 output← execute(req);

3 msg← req||output;

4 attested msg← local send(msg);

5 rem write(FOLLOWERS[:], attested msg);

6 upon reception of ack from FOLLOWERS:

7 [α || f attested msg || f output || f id]

8 ← upon delivery(ack);

9 assert(validate follower(f attested msg,

10 f output));

11 incr req acks if not incr before(f id);

12 auth send(CLIENT,msg);

13 }

14 function follower() {
15 upon reception of attested msg:

16 [α || req || output]←
17 upon delivery(attested msg);

18 assert(validate sender(req, output));

19 if (in order not applied(req))

20 current output← execute(req);

21 f attested msg← local send(req||current output);

22 ack← f attested msg

23 auth send(LEADER, ack);

24 auth send(FOLLOWERS[:],f attested msg);

25 upon reception of f acks:

26 auth send(CLIENT, f attested msg);

27 else

28 auth send(NODE, reception ack);

29 }
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Algorithm 6: Chain Replication using TNIC.

1 function head operation(req) {
2 output← execute(req);

3 msg← req||output;

4 auth send(MIDDLE,msg);

5 auth send(CLIENT,msg);

6 }

7 function middle tail operation(msg) {
8 assert(validate chain(msg));

9 output← execute(req);

10 chained msg← msg||output;

11 if (!TAIL)

12 auth send(MIDDLE,chained msg);

13 auth send(CLIENT,req||output);

14 }

15 function validate(msg) {
16 len← sz;

17 [req, out, cmt]← unmarshall(msg[0:len]);

18 assert(memcmp(req, out));

19 assert((cmt == expected cmt));

20 for (i = 1; i < NODE ID; i++) {
21 [out, cmt]← unmarshall(msg[len:len+sz]);

22 assert(memcmp(req, out));

23 assert((cmt == expected cmt));

24 len← len + sz;

25 return True;

26 }
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configuration from the configuration service and sends the req to the head of the chain.

The head orders and executes the request, and then it creates a proof of execution

message, which is sent along the chain. The proof of execution includes the req and

the leader’s action (out) in response to that request. In our case, the leader sends the

req along with the assigned commit index. The message is then sent (signed) to the

middle node that follows in the chain.

The middle node checks the message’s validity by verifying that the head’s output is

correct, executes the req, and forwards the request to the following replica. Similarly,

every other node executes the original request, verifies the output of all previous nodes,

and sends the original request and a vector of all previous outputs. A replica must

construct a proof of execution message that achieves one goal. TNIC allows the following

replicas in the chain to verify all previous replicas. As such the messages are of the

form < .. <<req, outleader>σ0 , outmiddle1>σ1 , .., outtail>σN . The tail is the last node in

the chain that will execute and verify the execution of the request.

In contrast to the CFT version of the Chain Replication protocol, local operations in

the tail, get or ack in a put request cannot be trusted. As such, the replicas in the chain

need to reply to the clients with their output after they have forwarded their proof of

execution message. Clients can wait for all f +1 replicas replies to collide. Clients can

execute the get requests similarly to write requests, traversing the entire chain, or

clients to improve latency can consult the majority and broadcast the request to f + 1

replicas, including the tail.

Failure handling. By the protocol definition, all nodes will see and execute all mes-

sages in the same order imposed by the head node. As such, all correct replicas will

always be in the same state. In addition, network partitions that may split the chain

into two (or more) individual chains that operate independently cannot affect safety:

the clients must verify at least f + 1 identical replies. Suppose a correct replica or a

client detects a violation (by examining the proof of execution message or having to

hear for too long from a node). In that case, they can expose the faulty node and

request a reconfiguration.

System design takeaway. TNIC seamlessly shields the Chain Replication system for

Byzantine settings with the same replication factor as the original CFT system.

5.10.5 Accountability (PeerReview)

We implement an accountability protocol based on the PeerReview system [125, 126].

Compared to the previous three BFT systems that prohibit an improper action from tak-

ing effect, accountability protocols [134, 125, 126] slightly weaken the system (fault)

model in favor of performance and scalability. Specifically, our protocol allows Byzan-
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tine faults to happen (e.g., correct nodes might be convinced by a malicious replica to

permanently delete data). Still, it guarantees that malicious actions can always be de-

tected. Accountability protocols can be applied to different systems as generic guards

that trade security for performance [126], e.g., NFS, BitTorrent, etc.

The original version of the system did not use trusted components and as such it in-

curs a high message complexity, i.e., all-to-all communication to combat equivocation.

We use TNIC to improve that message complexity.

System model. We only detect faults that directly or indirectly affect a message, im-

plying that (i) correct nodes can observe all messages sent and received by that node

and (ii) Byzantine faults that are not observable through the network cannot be de-

tected. For example, a faulty storage node might report that it is out of disk space,

which cannot be verified without knowing the actual state of its disks.

We further assume that each protocol participant acts according to a deterministic

specification protocol. As such, detection can be accomplished even with a single cor-

rect machine, requiring only f +1 machines. This does not contradict the impossibility

results for agreement [92] because detection systems do not guarantee safety.

Execution. The participants communicate through network messages generated by

TNIC. In addition, each participant maintains a tamper-evident log that stores all mes-

sages sent and received by that node as a chain. A log entry is associated with an entry

index, the entry data, and an authenticator, calculated as the signed hash of the tail of

the log and the current entry data.

We frame our protocol in the context of an overlay multicast protocol [56] widely

used in streaming systems. The nodes are organized as a tree where the streaming

content (e.g., audio, video) flows from a source, i.e., root node, to clients (children

nodes). To support many clients, each can be a source to other clients, which will be

connected as children nodes.

In our implementation, we consider nodes in a tree topology. The tree’s height

equals one, comprising one source node and two client (children) nodes connected to

the source. When the source sends a context (executes the root() function), it implic-

itly includes a signed statement that this message has a particular sequence number

(generated by TNIC). The clients execute the child() function that validates the re-

ceived message, logs the received message, executes the result, and responds to the

source.

Each node is assigned to a set of witness processes to detect faults. Similarly to the

original system, we assume that the set of nodes and its witnesses set always contain a

correct process. The witnesses audit and monitor the node’s log. To detect destructive

behaviors (or expose non-responsive nodes), the witnesses read the node’s log and
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Algorithm 7: PeerReview using TNIC.

1 function root(ctx) {
2 auth send(CHILD,ctx);

3 upon reception of response:;

4 assert(validate reception(response));

5 log(response);

6 }

7 function child(α||cmd||seq) {
8 assert(validate reception(α||cmd||seq));

9 log(α||cmd||seq);

10 result← execute(cmt);

11 response← log(result||cmd);

12 auth send(ROOT, response);

13 }

14 function log audit() {
15 while last id < log tail {
16 entry← validate log entry at(last id);

17 last id++;

18 assert(replay(entry));

19 }
20 }

replay it to run the participant’s state machine. As such, they ensure the participant’s

state is consistent with proper operation.

Specifically, each witness for a participant node keeps track of n, a log sequence

number, and s, the state that the participant should have been in after sending or

receiving the message in log entry n. It initializes n to 0 and s to the initial state of the

participant.

Whenever a witness wants to audit a node, it sends its n and a nonce (for freshness).

The participant returns an attestation of all entries between n and its current log entry

using the nonce. The witness then runs the reference implementation, starting at state

s, and progressing through all the log entries. If the reference implementation sends the

same messages in the log, then the witness updates n, which is the state of the reference

implementation at that point. If not, then the witness has proof it can present of the

participant’s failure to act correctly.

The original PeerReview system requires a receiver node to forward messages to the

original sender’s witnesses so they can ensure this message is legitimate, i.e., it appears

in the sender’s log. No other conflicting message is sent to another peer (equivocation).
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As such, a peer must communicate with the witness set of any other peer, leading to a

quadratic message complexity. TNIC eliminates the overhead; a participant that sends

or receives a message needs to attest and append the message and its attestation in

each log. A participant can process received messages only if they are accompanied by

attestations generated by the sender’s TNIC hardware.

System design takeaway. TNIC can be used to optimize the message complexity in

accountable systems.

5.11 Related work

Trustworthy distributed systems. Classical BFT systems [58, 303, 4, 60, 51, 61, 295,

31] provide BFT guarantees at the cost of high complexity, performance, and scalability

overheads. TNIC bridges the gap between BFT and prior limitations, designing a silicon

root-of-trust with generic trusted networking abstractions that materialize the required

security properties for BFT.

Trusted hardware for distributed systems. Trustworthy systems [83, 328, 124, 83,

109, 38, 219] leverage trusted hardware to optimize the performance of classical BFT

at the cost of generalization and easy adoption. The systems suffer from high la-

tencies (50us—105ms) [187, 165], build large TCBs [109, 38], and rely on specific

TEEs [328, 44]. In contrast, our TNIC aims to offer performance and generality, while

our minimalistic TCB is verifiable and unified in the heterogeneous cloud.

SmartNIC-assisted systems. Networked systems offer fast network operations with

emerging (programmable) SmartNIC devices [194, 317, 47, 49, 231, 10, 32, 59]. Some

of them [21, 102, 119, 142, 183, 191, 210, 261, 298, 299, 285, 291] offload the net-

work functions to the hardware and reduce the host processing and energy overheads.

In contrast, others [197, 169, 198, 207, 258, 243, 277, 190, 188, 195, 273, 185] build

generic execution frameworks to optimize a wide variety of distributed systems. Our

TNIC follows a similar approach by building a high-performance unified network stack

with SmartNICs and offloading security properties to the NIC hardware.

SmartNIC-assisted network stacks. SmartNICs effectively provide high-performance

network stacks. Another line of research [77, 136, 289, 272, 334, 104, 238] re-designs

generic networking protocols, from RDMA/RoCE to TCP/IP network stacks, on top of

FPGA-based SmartNICs for performance. Our TNIC further extends its security seman-

tics with the properties of non-equivocation and transferable authentication.

Programmable HW for network security. Programmable hardware, SmartNICs, and

switches are used to shield networking. Recent systems [301, 350, 166, 344, 331]

leverage programmable switches and FPGAs to offload security processing and boost
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performance in the context of blockchain systems [301] or security functions (e.g.,

access control, DNS traffic inspection) [350, 166, 344]. Our TNIC similarly offloads

security into the hardware, but it carefully uses SmartNICs to overcome the processing

bottlenecks of the switches.

5.12 Summary

In this chapter, we present the design and implementation of TNIC, a trusted NIC ar-

chitecture. TNIC proposes a host CPU-agnostic unified security architecture based on

trustworthy network-level isolation. We materialize the TNIC architecture using Smart-

NICs by exposing a minimal and formally verified silicon root-of-trust with low TCB,

relying on just two fundamental properties of transferable authentication and non-

equivocation. Using TNIC, we implement a hardware-accelerated trustworthy network

stack that efficiently transforms a range of distributed systems under the fail-stop op-

eration model for untrusted (Byzantine) cloud environments. Notably, we realize the

TNIC architecture-based FPGA-based SmartNICs on Alveo U280 cards; we believe other

commercial SmartNIC vendors can implement our NIC-level interface.
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Conclusion and Future Work

6.1 Conclusion

With major cloud providers providing as part of their computing infrastructure the

state-of-the-art hardware for trusted computing (i.e., TEEs) and high-performance net-

working (i.e., direct I/O and SmartNICs) there are opportunities to improve the per-

formance as well as the security aspects of widely deployed distributed data manage-

ment systems in the cloud. This thesis explores the synergies between modern cloud

hardware and the design of general-purpose distributed data management systems to

resolve the trade-off between performance, scalability, and security.

We addressed this challenge by building the following systems.

First, we build TREATY, a distributed persistent KVs for the untrusted cloud in-

frastructure, that offers serializable distributed (ACID) transactions (Txs) with strong

security properties for the operations and the stored data, i.e., confidentiality, integrity,

and freshness. We achieve these design goals by building on top of TEEs to offer a se-

cure substrate for distributed Txs that extend TEEs trust across the untrusted network

and storage and overcome their architectural limitations. TREATY guarantees the cor-

rect execution of the distributed transactions by implementing a secure version of the

two-phase commit protocol and a secure storage engine on top of TEEs and direct I/O

networking. In addition, it makes use of two trusted services, a trusted counter and

a configuration service to guarantee secure persistency, i.e., committed transactions

remain crash-consistent and rollback-resilient across reboots. TREATY incurs reason-

able overheads, 5× to 15× that derive from the TEEs’ usage as well as encryption and

decryption operations.

Secondly, we build RECIPE, a distributed trusted computing base (TCB) imple-

mented as a library that exposes shielded remote procedure calls RPCs and put/get

135
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KVs APIs, offering a fast, scalable transformation of Crash Fault Tolerant (CFT) pro-

tocols for Byzantine settings in the untrusted cloud. RECIPE builds its distributed TCB

combining TEEs, direct I/O, and an attestation service that materializes the transforma-

tion and resolves the engineering and architectural (performance) challenges of these

technologies. RECIPE’s TCB prevents equivocation (i.e., sending conflicting statements

for the same round to different nodes) and ensures (transferable) authentication; these

two properties are the lower security bounds for such a transformation. Compared to

TREATY that assumes a crash-fail recovery model with no availability guarantees in

case of failures, RECIPE offers fault tolerance and availability. RECIPE is generic and

easy to use, we transformed four CFT protocols without important alterations to the

core protocol specification while we outperformed the state-of-the-art BFT by a factor

of 5×—24×.

Lastly, we build TNIC, a trusted NIC architecture that offers high-performance

trusted network operations for building trustworthy (networked) distributed systems

for the Byzantine and heterogeneous cloud infrastructure. Similarly to RECIPE, TNIC

materializes a trusted silicon-root-of-trust that exposes the properties of (transferable)

authentication and non-equivocation. However, TNIC builds on top of SmartNICs to

effectively address RECIPE’s limitations. First, in contrast to RECIPE that relies on CPU-

sided TEEs, TNIC is CPU-agnostic and exposes a unified network library to ease pro-

grammability in the modern cloud infrastructure that is comprised of thousands of

hundreds of heterogeneous machines with security properties and SDKs. Secondly,

TNIC offloads these two fundamental properties on the NIC hardware, extending the

scope of the SmartNIC devices to also offer security. As such, compared to RECIPE,

TNIC has a minimalistic TCB that is fully verifiable. Lastly, TNIC is generic and offers

better programmability and performance in heterogeneous settings compared to the

RECIPE approach, which relies on sophisticated optimizations at the TEEs system stack.

We applied TNIC to build and optimize BFT systems for the untrusted cloud, showing

its generality and simplicity as well as its superiority in performance compared to a

TEE-based approach.

6.2 Critical Analysis

In this thesis, we advocate and prove that leveraging modern cloud hardware is an effi-

cient design choice to address the current challenges and trade-offs in distributed data

management systems regarding their security, performance, and scalability require-

ments. As such, we studied and implemented four systems leveraging the advance-

ments in trusted computing (TEEs), high-performance networking (direct I/O, RDMA)
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and SmartNICs.

We now critically review our design decisions with the benefit of hindsight.

Firstly, while we argued that TEEs’ offer a powerful building block for security with-

out giving up on performance and scalability—as we showed in TREATY and RECIPE—

the truth is that we had to build a lot of software and engineering techniques to over-

come their limitations regarding their trusted enclave memory area and syscalls execu-

tion. In addition, we explored Intel SGX as our foundational TEE to offer trust. The

security semantics, as well as the architectural and programming libraries, can possibly

vary between different TEEs. As such, we conclude that TEEs naive usage does not

necessarily translate to performance efficiency and generality in distributed systems.

Our experiences and observations from building TREATY and RECIPE with CPU-

based (distributed) TEEs motivate our work on TNIC. TNIC offers minimalism (and it

is verifiable) by offloading only the necessary security processing to the specialized NIC

hardware rather than the entire business logic of the system. In TNIC, we argue that

the heterogeneity in CPU-based TEEs can complicate the development of trustworthy

systems because these TEEs expose different programming APIs and security proper-

ties to system developers. The need for unified security protocol implementations has

also been recognized in the industry. For example, there is an ongoing effort to unify

the remote attestation protocol implementations for heterogeneous TEEs [263]. How-

ever, due to significant differences in TEEs hardware implementations, this approach

often relies on software modifications. In contrast, TNIC designs a remote attesta-

tion protocol that leverages the existing hardware security mechanisms of commodity

FPGAs [351], e.g., Xilinx [317] and Intel [264] FPGAs. Additionally, in contrast to het-

erogeneous CPU-based TEEs, TNIC exposes a unified RDMA-based network API that

is consistent across heterogeneous FPGA-based NICs. The network stack (bitstream) is

implemented once and provided by a trusted vendor, eliminating the need for system

designers to program the FPGA. Consequently, TNIC does not require system designers

to be experts in system programming or to introduce complex low-level optimizations

or sophisticated data structures.

Finally, while TNIC guarantees that a CFT-to-BFT protocol scalable transformation

always exists, it does not provide it automatically as RECIPE does. System designers

with TNIC are still required to carefully think about the system’s business logic specifi-

cations.
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6.3 Future work

In this thesis, we studied the design of distributed (data management) systems when

deployed in the untrusted third-party cloud infrastructure that is equipped with TEEs,

SmartNICs, and RDMA-based NICs. As these technologies are becoming more mature,

there are many other directions to advance this field of general-purpose, highly avail-

able, and trustworthy distributed systems, which is why it remains a very active area

of research. Below, we briefly discuss some possible directions, and finally, we discuss

how this work can impact future directions.

Trusted VMs. Recent developments in trusted hardware involve trusted virtual ma-

chines (TVMs) on top of advanced TEE designs [15, 147, 25]. Based on our pro-

gramming experiences with AMD Secure Encrypted Virtualization technology (AMD-

sev) [15] as part of the TNIC project, which offers an isolated encryption-protected

(AMD-SEV-SNP also offers integrity and confidentiality) Linux-based VM, we believe

that these advancements offer opportunities to reevaluate some of the design decisions

in TREATY and RECIPE. Importantly, trusted VMs allow the use of larger in-memory

data structures and TCBs. While this might increase the surface of possible vulnera-

bilities, we believe that future directions of our work mitigate the implementation and

low-level optimization burdens and focus more on techniques to harden and verify the

TCBs.

Trusted disaggregated architectures. The emergence of SPDM/TDISP protocols [296,

305] to secure I/O devices in conjunction with confidential virtual machines (CVMs) as

offered by a new generation of CPUs, e.g., AMD-SEV-SNP [15], Intel TDX [147], and

Arm CCA [25], could adapt our work by augmenting TNIC with an “SPDM-broker”

to build an end-to-end secure trusted domain design. Since TNIC already supports

remote attestation and authentication, it can also support an encrypted channel be-

tween a CVM and the target NIC. Additionally, given the premises of PCIe-enabled CXL

standard [81], we believe TNIC’s architecture can significantly influence the design

of future “secure bridges” because our minimalistic interface can also be realized on a

CXL-expander card.

Network devices. Programmable (Smart)NICs and switches are becoming the norm

in the cloud infrastructure [59, 32] whereas they are used to accelerate parts of ex-

isting systems or even motivate the design of new ones [195, 301, 157]. We believe

that the minimal yet powerful properties of TNIC could be integrated into ASIC-based

NICs, leading to even better performance while also simplifying the remote attesta-

tion process. In addition to this, future network devices could offer hardware-assisted

trusted networking group-communication primitives as the fundamental building block
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of most state machine replication protocols. An example of this would be the design of

a reliable, equivocation-free, multicast algorithm at the NIC level.
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LEY, B. B. SoK: A Systematic Review of TEE Usage for Developing Trusted

https://github.com/Xilinx/open-nic
https://www.oracle.com/blockchain/


164 Bibliography

Applications. In Proceedings of the 18th International Conference on Availability,

Reliability and Security (ARES’23) (2023).

[246] Enable DPDK on ESXi. https://docs.paloaltonetworks.com/vm-series/

10-1/vm-series-deployment/set-up-a-vm-series-firewall-on-an-esxi-server/

performance-tuning-of-the-vm-series-for-esxi/enable-dpdk-on-esxi.

[247] PAPADIMITRIOU, A., BHAGWAN, R., CHANDRAN, N., RAMJEE, R., HAEBERLEN,

A., SINGH, H., MODI, A., AND BADRINARAYANAN, S. Big Data Analytics over

Encrypted Datasets with Seabed. In 12th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI) (2016).

[248] PAPADIMITRIOU, C. H. The Serializability of Concurrent Database Updates. Jour-

nal of the ACM (JACM) 26, 4 (Oct. 1979), 631–653.

[249] PARNO, B., MCCUNE, J. M., AND PERRIG, A. Bootstrapping Trust in Commodity

Computers. In Proceedings of the 2010 IEEE Symposium on Security and Privacy

(S&P) (2010).

[250] pmem-rocksdb. https://github.com/pmem/pmem-rocksdb.

[251] POKE, M., HOEFLER, T., AND GLASS, C. W. AllConcur: Leaderless Concurrent

Atomic Broadcast. In Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing (HPDC) (2017).

[252] POPA, R. A., LORCH, J. R., MOLNAR, D., WANG, H. J., AND ZHUANG, L. En-

abling Security in Cloud Storage SLAs with CloudProof. In Proceedings of the

2011 USENIX Conference on USENIX Annual Technical Conference (USENIX ATC)

(2011).

[253] POPA, R. A., REDFIELD, C., ZELDOVICH, N., AND BALAKRISHNAN, H. CryptDB:

protecting confidentiality with encrypted query processing. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles (SOSP) (2011).
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