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Abstract

The modern cloud computing infrastructure is shifting towards disaggregated sys-

tem architectures, primarily due to the emergence of the Compute Express Link (CXL)

technology. In such setups, byte-addressable persistent memory (PM) is anticipated

to become a fundamental building block as it provides opportunities for high-volume

pools of low-latency, non-volatile memory. While offloading critical data management

operations to the cloud is advantageous, at the same time, it is imperative to provide

reliable and trustworthy services in untrusted cloud environments. However, the incor-

poration of PM in the cloud providers’ system stack, despite its performance benefits,

introduces new challenging dependability issues, especially in the context of safety and

security.

Unfortunately, in the cloud infrastructure, the underlying storage, network, and

computing stacks are entirely managed by untrusted third-party providers. In such

settings, a powerful adversary, e.g., a malicious system administrator, can control the

entire software system stack (including the OS/hypervisor layers) and even perform

physical attacks (e.g., memory probes) aiming to compromise the security properties

of both PM data and storage operations. Moreover, attackers can gain control over the

network stack and tamper with network traffic, amplifying the vulnerability vectors in

untrusted cloud environments.

Additionally, memory safety bugs in the deployed software constitute another crit-

ical source of reliability and security issues. Memory safety bugs are also prevalent

in PM because, similarly to its volatile counterpart, it employs a byte-addressable pro-

gramming model. To this end, uncontrolled memory accesses can result in various

software bugs and severe vulnerabilities that potentially lead to information exposure

or leakage of secrets, thus posing security and privacy concerns.

In this thesis, we aim to provide system designers with the means to build an end-

to-end, dependable persistent memory architecture. Precisely, we design two memory

safety solutions tailored for PM (SAFEPM, SPP), targeting both debugging and produc-

tion environments. We base our design on effective, well-tested approaches that have

been extensively applied for volatile memory systems. On top of that, we combine

modern hardware advancements in trusted computing, high-performance networking,

and byte-addressable PM to build an end-to-end secure PM data management system

(ANCHOR). More specifically,

• SAFEPM is a memory safety mechanism for PM-based applications that detects

spatial and temporal memory safety violations. SAFEPM employs a shadow mem-

ory approach augmented with crash-consistent data structures, ensuring safety
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across reboots and crashes. It is based on Google’s AddressSanitizer (ASan) and

offers comprehensive memory safety with reasonable overheads, uncovering real-

world bugs in the Persistent Memory Development Kit (PMDK), the de-facto pro-

gramming framework for PM.

• SPP is a low-overhead, tagged pointer-based memory safety solution for PM.

SPP protects against buffer overflows in PM applications. It enhances persis-

tent pointers with memory safety metadata, which is embedded in native tagged

pointers during runtime. SPP is built on the LLVM compiler infrastructure and is

integrated with the PMDK. To promote applicability in existing toolchains, SPP

maintains the PMDK API intact and requires no source code modifications. SPP

incurs low runtime and space overheads while preserving the crash consistency

property both for the PM data and its memory safety metadata.

• ANCHOR enables building end-to-end secure PM data management systems with

reasonable performance implications. ANCHOR extends the hardware-assisted se-

curity properties — confidentiality, integrity, and freshness — of trusted execution

environments (TEEs) to PM. Precisely, ANCHOR secures PM data leveraging con-

fidential and authenticated data structures, preserves crash consistency with a

formally proven secure logging protocol, and allows for secure remote operations

via a secure network stack based on kernel-bypass networking. It further offers a

formally verified attestation protocol for trust establishment and exposes intuitive

APIs tailored for secure data management on byte-addressable storage devices.

Collectively, these systems contribute to establishing security and reliability in mod-

ern untrusted cloud infrastructures that incorporate persistent memory as their storage

medium.
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Lay summary

Cloud infrastructures host a wide range of services that manage and store private,

security-critical user data. Typical examples include streaming services, financial and

banking services, and healthcare applications. To improve the quality of their services,

cloud providers constantly update their infrastructures using state-of-the-art technolo-

gies. This trend brings in a new type of storage called persistent memory (PM), which

is fast and preserves the data across power cycles. Using PM in cloud computing has

many benefits but also comes with new safety and security challenges.

More specifically, cloud services are often managed by third-party providers who

might not be fully trustworthy. This means that someone with bad intentions, like a

malicious system administrator, could potentially control the software on their systems

or even physically tamper with the system components and the stored data to extract

valuable, potentially private information. Consequently, data stored in PM are no ex-

ception and can also be vulnerable to such types of attacks.

Apart from that, erroneous or buggy software can open up further holes that can

be exploited by attackers to achieve their goals. In the context of PM, many common

security-critical bugs are caused by so-called memory safety errors. Such bugs allow

attackers to access parts of the PM device that they are not supposed to, and unfortu-

nately, this uncontrolled access can lead to data leaks and security breaches.

To this end, this thesis aims to provide system designers with tools to build reliable

and secure PM systems for the cloud. We introduce two memory safety solutions for

PM, SAFEPM and SPP, that present different trade-offs between their memory safety

guarantees and performance overheads. These solutions are based on well-tested meth-

ods and tools for memory safety but have been carefully adapted considering the id-

iosyncrasies of PM. In simple terms, SAFEPM is capable of detecting all types of memory

safety errors in PM but incurs considerable overheads, which restricts its usage in test-

ing environments. On the other hand, SPP’s detection capabilities are limited to spatial

memory safety bugs, a popular subcategory of memory safety errors, but come with

minimal overheads constituting it suitable for production deployments.

On top of that, we also develop a secure data management system for PM, called

ANCHOR, that combines modern hardware security features, high-speed networking

techniques, and PM. It provides strong security properties, namely data confidentiality,

integrity, and freshness, supports secure remote operations on PM, provides methods

for trust establishment between remote system entities, and exposes intuitive interfaces

to facilitate application development to materialize secure PM data management.

These systems, cumulatively, aim to improve the safety and security of untrusted

cloud infrastructures that use persistent memory as a storage medium.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing infrastructures are constantly evolving towards cutting-edge disag-

gregated system architectures [67, 98, 152, 156, 323], where computational units

(e.g., CPU, GPU, FPGAs), memory (e.g., DRAM), and storage (e.g., SSDs) resources

are decoupled and can be managed and utilized separately. They become increasingly

favorable due to their ability to optimize resource allocation and enhance scalability,

allowing cloud providers to scale their system components independently. This is par-

ticularly beneficial for data-intensive tasks and applications constrained by the avail-

able memory capacity or storage bandwidth (e.g., HPC) [9, 335]. A significant driving

force behind this evolution is the emergence of Compute Express Link (CXL) technol-

ogy [47], an open standard for high-speed communications supported by industry lead-

ers that enables building large pools of memory and storage within rack [314] while

cross-datacenter interconnectivity is achieved through high-performance networking

solutions (e.g., via Ethernet).

On the storage frontier of disaggregated cloud systems, the technology of Non-

Volatile Dual In-line Memory Module (NVDIMM) or Persistent Memory (PM) [113,

192, 201] is pitched as a prominent storage medium to bridge the gap between the

volatile main memory and the SSDs. PM is a non-volatile storage medium, accessi-

ble at a byte granularity with ld/st instructions. Its performance characteristics are

similar to DRAM [143], while also ensuring data persistence across application or sys-

tem failures/reboots. Several high-performance data management systems have been

developed [37, 117, 189, 268] or are being adapted to incorporate PM in their de-

sign [253, 256].

While byte addressable storage [90, 113, 192, 201, 260, 271] is projected as a fun-

damental building block for the next generation of data management systems in the

1
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cloud, it also presents trade-offs between security and performance. Precisely, cloud

computing comes with strict scalability and performance requirements [11, 32, 85,

316]. Integrating byte-addressable storage devices in the system stack is a progres-

sive step towards meeting these needs due to their unique performance characteristics.

However, introducing new device types with their programming nuances, despite their

performance benefits, can serve as a new attack vector for malicious adversaries. Thus,

it can potentially lead to critical safety, security, and privacy issues, particularly in un-

trusted cloud environments. For instance, a powerful attacker can access, leak, or

tamper with the persistent data, compromising their security properties.

On top of that, PM is also susceptible to memory safety issues in a similar manner

as traditional volatile memory is, especially in the context of memory-unsafe languages

(e.g., C/C++). More specifically, PM content is directly mapped into an application’s

address space and can be manipulated at a byte granularity via native pointers. Uncon-

trolled memory accesses can be a source of various software bugs and security vulnera-

bilities. It has been proved that memory safety is the root cause of many reliability and

security issues in unsafe programming languages [289]. As a matter of fact, three out

of the top ten most dangerous software weaknesses are memory bugs (even in 2023!),

according to the MITRE ranking [205]. Additionally, apart from several well-known

memory safety violations [94, 96, 284], several big software vendors’ products, such

as Chromium [42], Android [7], and Microsoft Windows [206] have reported that

the majority of their systems’ vulnerabilities (70-75%) are related to memory safety

problems. Memory safety issues are exacerbated in the context of PM, where data is

durable across reboots. Importantly, a memory safety bug can lead to permanent in-

formation leaks or corruptions and vulnerabilities that remain exploitable even after

system restarts.

Likewise, in virtualized cloud infrastructures, the underlying storage, network, and

computing stacks are owned and operated by an untrusted third-party provider. Under

these circumstances, an adversary, such as a malicious system administrator or co-

located tenants, can potentially compromise the security properties of both persistent

data and query operations [261, 262]. In fact, prior work has shown that software bugs,

configuration errors, and security vulnerabilities pose a real threat to data management

systems [52, 72, 80, 171, 262]. More specifically, in the context of PM, attackers can

tamper with the persistent state and data operations, violating the confidentiality and

integrity security properties. They are also able to arbitrarily rollback the PM data into

a stale but valid state, violating the freshness property [8, 25, 31, 229, 287]. Further,

PM crash consistency mechanisms constitute another vulnerability vector, where the

required logs, i.e., for recoverability in case of a crash, are susceptible to these secu-
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rity violations. On top of that, adversaries can also manipulate the untrusted network

infrastructure and interfere with the transmitted network packets, thus making them

eligible to remotely compromise the data management operations. For instance, an at-

tacker might block network packets or intercept and alter a packet carrying a command

to update records, filling it with invalid data to overwrite or delete critical data.

To this end, the need for effective memory safety and security solutions for PM

is paramount. Therefore, this thesis strives to tackle the challenging problem: how

to design a dependable persistent memory architecture that ensures both mem-

ory safety and security while guaranteeing crash consistency and performance

within the realms of existing persistent memory programming paradigms?. To

achieve this overarching goal, we break it down into three key questions: (i) How can

we design an effective memory safety solution for PM that not only provides complete,

comprehensive memory safety but also maintains the correctness and crash consistency

properties of both the application’s data and the memory safety metadata? (ii) Is it fea-

sible to design a memory safety solution that goes beyond debugging purposes and

incurs minimal performance overheads, constituting it suitable for production deploy-

ments? (iii) How can we design a secure PM data management system for untrusted

cloud environments while preserving the crash consistency property and minimizing its

performance implications?

1.2 Problem Statement

Designing effective approaches to enforce memory safety is a well-explored area of re-

search, including both software [3, 68, 92, 170, 172, 220, 264] and hardware-based so-

lutions [14, 69, 223, 224, 322]. There has been extensive use of such memory safety ap-

proaches in commercial software products, both during development [137, 198, 264]

and production [14, 101, 280] phases.

However, existing memory safety solutions are largely tailored for volatile main

memory and are inadequate for byte-addressable persistent memory (PM) devices. Ad-

dressing memory safety issues for PM is challenging, especially due to the idiosyn-

crasies of its unique programming model [239, 276]. More specifically, unlike volatile

memory, which uses native volatile pointers, the PM programming model introduces a

PM pointer representation [243], and the persistent memory heap is handled by spe-

cialized, crash-consistent memory allocators designed for PM [57, 120]. Additionally,

although the types of memory safety vulnerabilities on PM remain the same as those

on volatile memory (e.g., buffer overflows, use-after-free), memory safety needs to be

further ensured for the recovery paths that are executed after a potential crash and/or
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a restart. Unfortunately, state-of-the-art approaches for memory safety on PM either

require adopting a new programming language [99] or are limited to offline testing

due to prohibitive performance overheads [240].

Nonetheless, providing tools to prevent memory safety vulnerabilities on PM is not

enough, as PM devices are meant to reside and be utilized within the untrusted infras-

tructures provided by cloud providers. Under this setting, a powerful malicious adver-

sary can manipulate data stored in PM in the cloud, resulting in security and privacy

risks. Therefore, it is imperative that we provide an end-to-end PM data management

system that is resilient to attacks from such powerful adversaries.

One promising direction for building a secure PM data management system des-

tined for untrusted cloud environments is to leverage Trusted Execution Environments

(TEEs). TEEs offer a hardware-protected memory area that protects both code and data

from all system layers, including the operating system and hypervisor. TEEs are now

included in several commodity CPUs [5, 12, 15, 132, 138, 177] and are available from

major cloud providers [44, 82, 103, 203]. However, despite their strong security guar-

antees, TEEs are fundamentally incompatible with PM. Precisely, TEEs are designed to

protect solely volatile memory regions [50] and do not naturally extend their security

properties to untrusted PM storage, where data persists across reboots and shutdowns

because TEEs cannot provide their guarantees for data once it leaves the secure volatile

memory region making it generally vulnerable to tampering or exposure on untrusted

persistent storage devices. Additionally, the protected memory region is typically lim-

ited in size, and its backup paging mechanism can be detrimental to the performance

of the deployed applications [16, 25, 226]. On top of that, their provided trusted

counters, which are essential to building mechanisms against rollback attacks, usually

cannot keep up with the high-performance demands of modern applications.

Another challenging aspect for PM systems is the provision of crash consistency

guarantees. This challenge is magnified when considering the need to maintain con-

sistency for both data and security metadata. To this end, a carefully designed, secure

crash consistency mechanism is mandatory to provide the necessary atomicity guaran-

tees without compromising the security properties.

Lastly, to build an end-to-end system, networking is an essential component. Unfor-

tunately, conventional network I/O methods, such as kernel-sockets, introduce signif-

icant overheads, particularly in the context of TEEs, due to context switches between

trusted and untrusted environments [51, 145]. Kernel-bypass networking can optimize

network operations but is incompatible with TEEs because untrusted DMA operations

are prohibited in protected memory [23]. On top of that, providing security proper-

ties and ensuring crash consistency when accessing PM remotely presents additional
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challenges [152].

In summary, we identify four core challenges in designing an end-to-end memory

safe and secure PM data management system that we aim to tackle in this thesis:

1. TEE limitations: The security properties of TEEs do not extend to the untrusted

stateful PM storage since TEEs are primarily designed to protect only the volatile

enclave region. On top of that, TEEs present two architectural limitations in our

context: (i) the hardware-protected memory is limited and often impractical for

modern storage systems and (ii) the trusted counters, a fundamental building block

for rollback resilience, are not suitable for high-performance applications.

2. Safe & secure crash consistency: While crash consistency is already a major is-

sue in PM systems due to the non-atomic and out-of-order architectural interface

between the CPU cache and PM, this issue is exacerbated in our setting because we

not only need to ensure the crash consistency of the data but also of the associated

memory safety- and security-related metadata. Additionally, PM applications are

designed to be able to recover from abrupt crashes. This requires special code paths

that restore the PM to a consistent state. Thus, memory safety and data security

properties have to be ensured for the recovery paths of an application as well.

3. High-performance secure networking: Conventional approaches for network I/O

(e.g., kernel-sockets) incur great overheads — especially in the context of TEEs due

to switches between the trusted and untrusted world. While kernel-bypass network-

ing vastly optimizes network operations, it is incompatible with TEEs, as untrusted

DMA operations are prohibited in the enclave memory. On top of that, ensuring

security and crash consistency when accessing PM remotely is another major chal-

lenge [100].

4. Performance and transparency: Aside from its memory safety and security proper-

ties, a dependable data management system should strive for high performance and

be minimally intrusive to be practical. An effective solution should follow the estab-

lished PM programming model, require minimal or no source code modifications,

and be compatible with commodity hardware infrastructures. The induced perfor-

mance, storage, and memory overheads should also be minimized within acceptable

levels for efficient testing and debugging purposes and, ultimately, for production

deployment, if possible.

1.3 Approach and Contributions

In this thesis, our overarching goal is to provide an end-to-end, dependable persistent

memory architecture for untrusted cloud infrastructures. To this end, we design and
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build three systems that target different aspects of the dependability property; a com-

plete memory safety solution for PM in SAFEPM, a low-overhead memory safety tool for

PM targeting production environments in SPP, and an end-to-end PM data manage-

ment system with strong security properties, namely data confidentiality, integrity and

freshness, in ANCHOR.

We base the design of our memory safety tools for PM on well-established solutions

for volatile memory. We explore two approaches for ensuring memory safety for PM

applications, using either shadow memory (SAFEPM) or tagged pointers (SPP). These

approaches present a trade-off between memory safety guarantees and memory and

performance overheads. While the former allows for detecting both spatial and tem-

poral memory bugs, it incurs considerable memory and performance overheads and is

mainly targeting debugging environments. On the other hand, the latter comes with

minimal memory and performance overheads but is capable only of detecting spatial

memory violations. We provide the developer with the option to choose between those

two variants and decide upon the required level of safety and the deployment target.

On the security frontier, we leverage modern hardware extensions for trusted com-

puting, i.e., TEEs, and state-of-the-art network approaches, i.e., kernel-bypass network-

ing, to build an end-to-end PM data management system (ANCHOR). We extend the

trust of the TEE to untrusted PM by designing secure and authenticated PM data struc-

tures. Further, we preserve the security properties for both the PM data and our security

metadata across system reboots/crashes through a secure logging protocol. Lastly, to

facilitate remote PM operations, we propose a secure network stack designed with TEEs

and PM in mind, along with a remote attestation protocol for trust establishment.

More specifically, SAFEPM [30] is a shadow-memory-based mechanism that pro-

vides comprehensive memory safety for PM-based applications. SAFEPM is based on

AddressSanitizer (ASan) [264], a robust, well-tested tool for memory safety on volatile

memory systems. It reserves a PM region (persistent shadow memory) where it places

its memory safety metadata and utilizes ASan’s compiler instrumentation and runtime

libraries. SAFEPM also incorporates its own runtime library that instruments the PM

management functions to reflect their modifications in the persistent shadow memory

region in a crash-consistent manner. Thus, SAFEPM is able to detect both spatial and

temporal memory safety bugs. Importantly, it is transparent to the application; it re-

quires no modifications to the source code of the application, enabling easy integration

into existing toolchains. Our evaluation shows that SAFEPM offers complete — spatial

and temporal — memory safety for PM with reasonable performance overheads, e.g.,

1.20−2.62× slowdown for a PM KV store [117].

Safe Persistent Pointers (SPP) [286] is a spatial memory safety solution that pro-
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tects against PM buffer overflows. SPP introduces the first tagged pointer scheme

specially designed for PM. Safe Persistent Pointers enhance the durable representation

of persistent pointers with memory safety metadata which gets embedded in the native

tagged pointers during runtime. SPP’s design relies on the pointer tag representa-

tion, which implicitly indicates whether a PM pointer has surpassed its boundary and

enforces lightweight bound checks without the need for additional PM accesses. Its

compiler instrumentation and runtime library further ensure that crash consistency is

preserved for both PM data and memory safety metadata. On top of that, SPP’s pointer

encoding scheme is configurable. This option enables SPP to meet the PM management

requirements of every PM application. Overall, SPP is a practical approach that detects

PM buffer overflows, while its memory overheads and performance implications are

kept minimal (6−23% slowdown on average), based on our conducted evaluation on

several PM indices and a specialized PM KV store [117].

ANCHOR [285] is an end-to-end secure data management system for byte-addressable

PM storage. It strives to provide strong security properties — confidentiality, integrity,

authenticity, and freshness — for the data residing on PM and the (local/remote) PM

data management operations. ANCHOR combines three non-trivially compatible, re-

cent hardware advancements: TEEs, PM, and kernel-bypass networking. Our design

encapsulates confidentiality-preserving data structures to extend the trust beyond the

hardware-protected volatile memory. Further, ANCHOR leverages a trusted counter in-

terface to provide rollback resilience while also preserving crash consistency through

its formally verified secure logging protocol. Apart from that, our proposed system

extends its scope by introducing a TEE-compatible network stack for PM based on

kernel-bypass networking. ANCHOR also provides means to verify the authenticity of

its instances through a formally verified remote attestation protocol. Our system ex-

poses APIs for secure data management, networking operations, and remote attestation

within the realms of the established PM programming model [114]. Our evaluation us-

ing YCSB workloads shows that ANCHOR incurs reasonable overheads considering its

strong security properties. Thus, ANCHOR can be used to develop trusted applications

both in a single-node setup as well as in distributed setups.

1.4 Thesis Outline

The chapters of this thesis are organized as follows:

Initially, we present the required technical background information (Chapter § 2).

Then, we provide an in-depth look into our approaches to ensure memory safety solu-

tions for persistent memory (Chapter § 3), where we present SAFEPM (Section § 3.1)
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and SPP (Section § 3.2). Following, we highlight the security problems in persistent

memory systems (Chapter § 4), and introduce our solution, ANCHOR (Section § 4.1) Fi-

nally, we conclude this thesis (Chapter § 5) and also discuss future research directions.



Chapter 2

Background

The main goal of the thesis is to design tools to build dependable persistent memory

systems. To this end, this chapter provides the required background information about

the technologies and system design concepts that the projects of the present thesis are

built on. We commence our background section with a description of byte-addressable

persistent memory (§ 2.1), which is the core target device for all projects in this the-

sis, namely SAFEPM, SPP and ANCHOR. Following, we provide an overview of mem-

ory safety (§ 2.2) to better understand the problem tackled by the SAFEPM and SPP

projects. As a last part of this chapter, we describe modern, trusted computing tech-

nologies § 2.3 and high-performance networking techniques § 2.4, which are leveraged

in ANCHOR to design a secure persistent memory system.

More specifically, section § 2.1 explains the architectural characteristics and id-

iosyncrasies of byte-addressable persistent memory. It presents the established byte-

addressable persistent memory programming model § 2.1.1 and its nuances compared

to the conventional volatile memory programming model. Then, we delve deeper into

the core libraries and programming concepts of the Persistent Memory Development

Kit (PMDK) [114], such as the persistent pointers, software transactions, and PM man-

agement, as they constitute the base layer for the projects described in this thesis.

Section § 2.2 highlights the importance of memory safety in modern security-critical

systems and identifies the types of memory safety issues in low-level unsafe languages.

We present and categorize existing software-based approaches for dealing with mem-

ory safety issues in § 2.2.1. Additionally, we summarize the proposed hardware-based

approaches in § 2.2.2. Next, in § 2.2.3, we provide further design details about Ad-

dressSanitizer [264], a tool that serves as a foundation for our SAFEPM project. Lastly,

we describe the core design principles of tagged-pointer-based approaches for memory

safety, as our SPP project falls into this category, in § 2.2.4.

Section § 2.3 starts by explaining the state-of-the-art hardware extensions for trusted

9
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computing and analyzes their security guarantees in § 2.3.1. Then, we provide an anal-

ysis of the Intel SGX technology [138], followed by a detailed description of the attes-

tation mechanisms for trusted execution environments in § 2.3.2. Lastly, we present

an overview of shielded execution frameworks in § 2.3.3 that ease the application de-

ployment in TEEs. We make a special reference to SCONE, the framework that acts as a

base for ANCHOR.

Lastly, Section § 2.4 discusses the need for high-performance networking in modern

disaggregated cloud systems. It emphasizes the functionalities and benefits of kernel-

bypass networking techniques (e.g., DPDK [66], RDMA [155]). This section concludes

with the presentation of the eRPC [153] framework, where ANCHOR’s network stack is

based.

2.1 Byte-addressable Persistent Memory

Persistent memory (PM) is a byte-addressable memory type with performance prop-

erties close to DRAM while providing durability [113, 192], aiming to bridge the gap

between volatile memory and traditional storage. PM devices reside on the memory

bus [219], providing access latency similar to DRAM. Figure 2.1 presents the system

stack hierarchy, including representative capacity and latency values that highlight the

order-of-magnitude differences in terms of capacity and latency between each layer.

CPU

DRAM

PM
(e.g. SCM, NVDIMM)

SSD

HDD

Processing

Byte-addressable
memory

Traditional
storage

System Stack Hierarchy Characteristics
Capacity Latency

Registers 8-512 B < 1 ns
Caches ≈ 10 MB < 10 ns
DRAM ≈ 100 GB < 100 ns

PM ≈ 500 GB ≈ 400 ns
SSD ≈ 1 TB ≈ 10 μs
HDD ≈ 10 TB ≈ 10 ms

Figure 2.1: System stack hierarchy

The recently-emerged and evolv-

ing Compute Express Link (CXL)

technology[90] further allows these de-

vices to be attached to the PCIe bus,

and with the addition of a network in-

terface (e.g., RDMA-capable NIC), they

can be exposed over the network en-

abling the creation of large pools of byte-

addressable storage.

PM can be used in two distinct

modes [4, 127]; (i) memory and (ii) app-

direct mode. In the former, the PM de-

vice acts as a volatile memory extension,

while in the latter, data persists in PM

even when the system is powered off. In the app-direct mode, PM interfaces with the

OS via PM-aware direct access file systems (DAX) [105, 161]. DAX eliminates the page

cache from the I/O path and allows mmap(2) to establish direct mappings to PM [112].
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Thus, PM content can be directly accessed as memory-mapped files in an application’s

address space. PM devices are accessed with typical ld/st instructions. Applications

use pointers to access PM, which must be reconstructible and consistent across reboots

or crashes.

Importantly, writes to persistent memory are not guaranteed to persist until they

reside in the power failure-protected domain. To ensure that, the application must flush

the associated modified cache lines. The failure atomicity boundary is 8 B. Any update

that spans a PM range larger than 8 B is not considered fail-safe and can be torn in case

of a system crash. Fence placement (e.g., after the cache line flush) also plays a crucial

role, as cache lines can be written back to PM out-of-order. Such architectural features

have to be considered to avoid PM inconsistent states in case of system failures [254].

2.1.1 Persistent Memory Programming Model (PMDK)

Persistent Memory Development Kit (PMDK). Intel has developed a collection of

libraries in Persistent Memory Development Kit (PMDK) [239] to support and facil-

itate application development for PM. The included libraries cover a wide range of

applications and provide different ways to manage PM, ranging from low-level prim-

itives [180] to a persistent transactional object store [120, 129] or an extension of

volatile memory [122, 123], and a persistent key-value store [117]. It also exposes

interfaces to create PM resident logs [119] or to treat PM as an array of persistent,

crash-consistent blocks [118]. To enable developers to build end-to-end systems, PMDK

further provides networking support through librpma [133]. It allows for accessing

remote PM over Remote Direct Memory Access (RDMA). Lastly, PMDK provides addi-

tional tools for PM pool management [121, 124].

libpmemobj. The libpmemobj [120] library is a core component of PMDK. It contains

a PM allocator [125] and implements software-based transactions to provide support

for atomic updates to PM data leveraging redo and undo logging. It handles PM files as

flexible object stores and exposes intuitive non-transactional as well as transactional

APIs [109, 110] for PM management, similar to the conventional malloc/free API.

libpmemobj organizes PM in files called PM pools, which are mapped into contigu-

ous regions in the application’s virtual address space. The organization of a PM pool is

shown in Figure 2.2. PM pools contain a pool header, a section dedicated to the redo

and undo logs required for transactions support, called lanes, and the persistent heap,

which hosts the PM objects allocated by the application as well as heap metadata.

Persistent pointers. The operating system kernel can map PM pools to different re-

gions of the address space in different runs. To maintain consistent persistent object
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references across restarts, libpmemobj introduces the concept of persistent pointers.

In contrast to volatile pointers, persistent pointers are durable, crash-consistent data

structures that are used to reconstruct native pointers to PM objects across application

restarts or crashes. Precisely, persistent pointers employ a fat-pointer scheme [243],

where each object is identified by a 16 B structure, called PMEMoid, demonstrated

in Figure 2.2. A PMEMoid contains a pool id field (8 B) and an offset (8 B) relative

to the beginning of the pool. libpmemobj exposes the pmemobj direct() function to

construct the native pointer for an object based on its offset within the pool and the

virtual address where the pool is mapped.

PMDK transactions. PMDK introduces software transactions to ensure the crash con-

sistency of PM data updates exceeding the failure atomicity boundary of 8 B. In par-

ticular, libpmemobj exposes a transactional API [115] with durability, consistency, and

atomicity semantics. For each transaction, a redo log stores the heap metadata updates

while an undo log maintains snapshots of the PM objects involved in the transaction.

After a crash, PMDK replays any live redo/undo logs to recover PM to a consistent

state. Note that PMDK transactions do not provide data isolation; applications need to

resolve any data races themselves.

Persistent memory management. The libpmemobj library provides a PM-optimized,

crash-consistent allocator to manage the PM heap. It focuses on efficiency while min-

imizing fragmentation and avoiding PM leaks. libpmemobj splits the PM heap into

smaller parts, called chunks and runs, and maintains heap-related data structures in

volatile memory to improve its performance. It supports the common memory opera-

tions (e.g., alloc, realloc, free). It further offers both a non-transactional atomic [110]

and a transactional API [109] for which the fail-safety is ensured with the use of redo

logging.

2.2 Memory Safety

Low-level unsafe languages (e.g., C/C++) allow applications to directly interact with

the system’s memory. While this is powerful for optimizing performance, the poor

built-in memory protection capabilities of such languages can lead to memory safety
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violations with dire consequences when exploited by malicious attackers [197, 308].

There are two broad categories of memory safety bugs, spatial and temporal, illustrated

in Figure 2.3. Spatial memory safety bugs refer to accesses beyond the intended bound-

aries of the targeted memory region (e.g., buffer overflows, stack overflows), whereas

temporal memory safety bugs occur when a memory region is accessed before its alloca-

tion or after its release (e.g., dangling pointers, use-after-free, double free). These bugs

constitute one of the main targets for attackers to get access to unintended memory re-

gions and, thus, be able to hijack the control flow or leak sensitive data [197, 308].

To prevent such severe vulnerabilities, illegal memory accesses outside the allocated

memory regions must be prevented. This requires a suitable instrumentation of an ap-

plication to perform bound checks on memory accesses. Towards this direction, several

memory safety techniques have been proposed based on software implementations [3,

68, 92, 170, 172, 220, 264] or on hardware modifications [14, 69, 223, 224, 322].

Deterministic dynamic bounds-checking is widely regarded as the only way of defending

against all memory safety attacks [211, 289]. Bounds-checking techniques augment the

original unmodified program with metadata (bounds of live objects or allowed memory

regions) and insert checks against this metadata before each memory access.

2.2.1 Software-based approaches

Software-based approaches against memory safety bugs typically leverage different

techniques, such as a compiler pass instrumentation accompanied by runtime libraries

and compact representation of upper and lower pointer bounds, needed to perform the

appropriate checks. They aim to minimize performance and memory overheads while

maintaining compatibility and efficiency. More specifically, the proposed approaches

can be classified into three broad categories according to their metadata granular-

ity [211]:

(a) Trip-wire or shadow memory based approach. These approaches use a part

of the available memory to store whether or not each fixed-size chunk of memory is
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accessible. This memory part is called shadow memory. Allocated memory regions

are surrounded by guard regions, marked as inaccessible, allowing for the detection of

memory safety violations [55, 88, 92, 93, 264].

(b) Object-based approach. Such approaches check all the pointer operations to en-

sure that the resulting pointer is not out-of-bounds with respect to the object it points

to [3, 60, 61, 68, 69, 71, 147, 259]. They track metadata on a per-object level, i.e.,

they store the object bounds information on each object’s allocation. Thus, they can

verify that the pointer’s object is not altered and the pointer remains valid. Relax-

ing this requirement, such as in SAFECode [61], allows for efficient optimizations and

simplification of the runtime bounds checks.

(c) Pointer-based approach. Approaches of this category [146, 170, 212, 213, 216,

218, 275] store metadata on a pointer-based level. This metadata indicates the bounded

memory region (i.e., upper and/or lower bounds) that a pointer is permitted to access.

On every memory access, a bound check is performed to query the validity of the op-

eration. Note how SoftBound [212] associates metadata not with an object but rather

with a pointer to the object. This allows pointer-based techniques to detect intra-object

overflows (e.g., one field overflowing into another field of the same struct) by narrow-

ing the bounds associated with the particular pointer.

2.2.2 Hardware-based approaches

There also exists a large body of work that enforces memory safety for volatile memory

using hardware extensions [14, 59, 69, 166, 209, 224, 322]. The introduction of hard-

ware modifications primarily aims to achieve a lower performance overhead. Lowfat

pointers [69] enforce spatial safety by associating the pointer with its bounds. In par-

ticular, Lowfat pointers approach is based on encoding the bounds information (size

and base) directly into the native bit representation of a pointer itself. This bounds

information can then be retrieved at runtime and be checked whenever the pointer is

accessed, thereby preventing out-of-bounds accesses. It contains gate-level implemen-

tations of the logic for updating and validating the compact fat pointers. Cheri [322]

ensures memory safety bug detection with the support of hardware capabilities. Cheri

uses a fat pointer which includes bounds information and permission bits. Upon every

memory access, this embedded metadata is checked. However, the implementation

requires modifications to the entire system, including the pipeline stages, compiler,

language runtime, and the OS. Intel MPX [224] is a hardware-assisted pointer-based

mechanism. It provides ISA extensions of Intel x86-64 architecture for memory pro-

tection. Arm MTE [14] is an ARM extension that enables hardware-assisted memory

tagging to detect both temporal and spatial memory safety bugs. Nevertheless, the
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complexity of the required hardware modifications for these approaches and their in-

ability to be applied to commodity hardware are a burden towards their incorporation

in the production of established systems.

2.2.3 ASan: a Shadow Memory-based approach

Among all the memory safety approaches, the shadow memory-based approach, as

adopted by AddressSanitizer (ASan) [264], is the most popular memory safety tech-

nique [289]. It is widely used by Google and other organizations to detect memory

safety violations. ASan supports both GCC [76] and Clang/LLVM [43]. It consists of a

compiler instrumentation module and a runtime library. The design of this approach is

shown in Figure 2.4.

In particular, ASan reserves a part of the address space for shadow memory, where

it keeps metadata indicating the state (i.e., accessible or not) of the memory regions

of an application, including the stack, heap, and global variables. ASan updates the

shadow memory whenever an object is created, freed, or moved. It surrounds objects

with memory regions, called red zones, which are marked as inaccessible (poisoned)

in the shadow memory. On each memory access, ASan checks if the requested address

is addressable. These checks are added via ASan’s compiler instrumentation module.

Any access to an unallocated region or red zone is detected, usually resulting in the

crash of the program before its state can be corrupted or sensitive information leaks.

Additionally, to ensure temporal memory safety, ASan implements a quarantine zone

for recently freed objects, which prevents their regions from being allocated for some

time.

Further, ASan is shipped with a runtime library, which is responsible for the initial-

ization of the shadow memory. The size of the shadow memory is 1/8th of the virtual

address space. ASan’s runtime library also replaces the memory management functions

(e.g., malloc, free) to perform the required red zone allocations and to mark both the

red zones and the entire freed objects as inaccessible in the shadow memory during

runtime.

However, ASan also comes with some known limitations. The additional memory
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(≈12.5%) and runtime overhead (≈70% [264] introduced by red zones, shadow mem-

ory, and frequent memory access checks can slow down applications, especially those

with intensive memory usage. Moreover, ASan primarily detects spatial and, probabilis-

tically, temporal memory errors but may miss other certain types of code injection or

control-flow attacks, i.e., when they exploit vulnerabilities outside of strictly allocated

regions. As a result, while ASan is highly effective for memory safety violations, it may

not fully protect against all classes of memory safety vulnerabilities.

2.2.4 Tagged pointer approaches

Tagged pointer approaches [14, 170, 172, 216, 326] encode memory safety metadata

within the pointer representation. Thus, they can determine — directly or via addi-

tional memory accesses — the ranges (i.e., upper and/or lower bounds) that a pointer

is allowed to access and perform runtime checks on every ld/st. Such approaches

present trade-offs in terms of (i) efficiency, (ii) runtime overheads, and (iii) compatibil-

ity [215]. Overall, their adoption in production systems is limited mostly due to their

performance overheads (50%-150%), stemming from their application instrumenta-

tion, costly runtime checks, and extra memory accesses.

Delta Pointers. Tagged pointer approaches, such as Delta Pointers [170], provide a

practical approach to ensure buffer-overflow attack prevention having low performance

and memory overheads by avoiding extra memory accesses for memory safety metadata

fetching and omitting the explicit runtime bound checks. More precisely, Delta Pointers

employ a pointer tagging scheme to detect buffer overflows. Each pointer incorporates

its upper bound encoded in its spare bits. Note that the altered pointer representation

does not violate the language specification, promoting compatibility. The pointer tag

is updated on every pointer arithmetic operation and its value indicates whether a

pointer has surpassed its assigned boundary. The actual bound checking is performed

at pointer dereference and requires no additional memory access to metadata. Any

attempt to access an invalid pointer leads to an application crash, prohibiting data

corruption and information leaks. Delta Pointers rely on a compiler instrumentation

module to inject the appropriate code instructions that manage the pointer tags.

2.3 Trusted Computing

2.3.1 Trusted Execution Environments

Trusted Execution Environments (TEEs) [5, 12, 15, 132, 138, 177] provide a hardware-

protected volatile memory region (or enclave) that ensures the confidentiality and in-
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tegrity properties of the enclosed running code and data residing within this isolated

memory region. TEEs introduce the concept of a trusted computing base (TCB), which

encompasses the code and data protected by trusted hardware. Overall, TEEs pro-

tect the executed software and runtime data against any software attacks, even from

privileged code, e.g., a compromised operating system or hypervisor.

TEEs are a significant advancement over the previous state-of-the-art approaches

for trusted computing, namely Homomorphic Encryption (HE) [95] and Trusted Plat-

form Modules (TPM) [294]. TPMs have standard pre-configured functionalities by the

manufacturer which ensure the integrity and confidentiality properties of the executed

code. They provide similar properties for their securely stored secrets (e.g., encryption

keys). However, TPMs cannot provide any further security guarantees for the used

data. On the other hand, while HE allows computations on encrypted data without

decryption, it lacks the capability to ensure the confidentiality and integrity of the ex-

ecuted code. On top of that, HE is limited as only certain computations on encrypted

data are feasible [97, 208]. Unlike the former approaches, TEEs can execute arbitrary

code securely and provide strong isolation for both data and code in use. Thus, they

offer better security guarantees and adaptability than HE and TPMs, which come with

inherent functionality limitations.

More specifically, the key security features of TEEs are:

• Confidentiality: TEEs encrypt the trusted, isolated memory to prevent unauthorized

access or memory snooping.

• Integrity: TEEs prevent the tampering of the hardware-protected memory regions.

• Data freshness: TEEs protect against rollback attacks on their trusted memory re-

gions, where attackers might attempt to revert the system to a stale but valid state.

TEEs [12, 138, 177] typically distinguish between untrusted and trusted ”worlds”

in a system. Therefore, they mandate the separation of the applications into untrusted

and TEE-protected parts and require their rewriting using specialized Software Devel-

opment Kits (SDK) [162, 267] or designated APIs [296] to efficiently use the hardware-

protected memory regions. However, newer TEE technologies, such as AMD-SEV(-

SNP) [5], Intel TDX [132] and ARM Realms [15], have emerged, which integrate entire

virtual machines (VMs) within the protection domain of the trusted hardware, offer-

ing Confidential VMs (CVMs). In particular, they offer a different layer of protection

by creating a virtualized secure environment within each VM instance, which encrypts

data-in-use and further ensures the isolation of sensitive data and applications. CVMs,

compared to earlier TEEs, feature a larger TCB but simplify the application develop-

ment process by exposing OS-based programming interfaces. This trend towards VM-
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based TEEs has been growing over the past few years due to their enhanced ease of use

and deployment.

To this end, various major CPU providers have developed TEEs, including Intel

SGX [138], Intel TDX [132], AMD-SEV(-SNP) [5], Arm TrustZone [12], Arm Realms [15]

and RISC-V Keystone [177]. These technologies have been adopted by significant cloud

providers like Amazon Web Services (AWS) [21], Microsoft Azure [202, 203], Alibaba

Cloud [44], and Google Cloud [81, 82] enabling clients to deploy security-critical ap-

plications in the cloud.

Intel SGX. Intel SGX [138] consists of a set of x86 ISA extensions for TEEs, com-

mercially available from the Skylake generation [321]. Some of its key architectural

components and its deployment model are depicted in Figure 2.5(a). It is designed to

provide applications with a protected area of execution, known as an enclave, which

ensures that sensitive data and code are isolated and protected. To make use of the

enclave memory, the developers need to use a specialized SDK [267] and define the

parts of the application (e.g., security-critical code and data) that need to be placed

in the hardware-protected memory region. The enclave memory in SGX is mapped in

the physical memory as an Enclave Page Cache (EPC), where the pages are protected by

an on-chip Memory Encryption Engine (MEE). Precisely, the EPC is a reserved area in

the CPU’s memory hierarchy where the encrypted enclave pages are stored. The EPC

ensures that the pages of an enclave are kept separate from those of other enclaves

and regular applications, enforcing strong isolation. The MEE is responsible for the

encryption and decryption of the contents of the enclave when they are stored in the
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main memory. This component ensures that the data is protected from any attacks that

involve direct access to the memory [84], such as cold boot attacks.

Importantly, the EPC is limited in terms of size; 128MB—256MB for SGX-v1/v2,

respectively. To accommodate larger enclave sizes, SGX offers a secure paging mech-

anism. However, this mechanism incurs prohibitive performance overheads (up to

2000×) [16, 25, 226] due to the mandatory encryption/decryption during the pag-

ing process. To alleviate this limitation, recent Intel CPUs switched from using the MEE

to Advanced Encryption Standard - XEX Tweakable Block Cipher with Ciphertext Stealing

(AES-XTS) [1] to be able to support up to 512GB of EPC [221].

Aside from the often limited EPC size, system designers have to consider the fol-

lowing important Intel SGX architectural aspects. SGX applications cannot execute

code outside of the enclave directly (e.g., system calls), as the operating system is not

trusted. To perform system calls, SGX enclave threads must exit the protected domain,

namely, perform a ”world switch” and copy all associated data outside the enclave to

make it available for the kernel to access. After the system call is processed, the threads

must re-enter the enclave and copy the results back into the trusted environment. This

process is an expensive, performance-heavy (5×) operation [293]. Additionally, Intel

SGX includes the Platform Services Enclave (PSE) in its software package [249]. The

PSE provides additional services such as monotonic counters and trusted time, which

can be used by applications within the enclave to implement their time-related logic

(e.g., certificate expiration). Nonetheless, not all of the services are designed with per-

formance and sustainability in mind. For instance, while Intel SGX offers a hardware-

trusted monotonic counter, it is quite slow (60-250ms) and can wear out after some

days of continuous use [194].

2.3.2 Attestation

Attestation is a security mechanism that confirms the integrity of both the hardware

and software states on a machine, ensuring that the correct, expected software stack is

running on the designated hardware. This process requires a trusted entity, known as

the root-of-trust, e.g., the underlying TEE hardware, to verify the loaded code and gen-

erate a secure, cryptographic hash value that resembles a measurement of the loaded

software. Initially, the root-of-trust calculates a measurement of all fundamental soft-

ware components, including the bootloader, OS kernel, hypervisor, and preliminary

software within the TEE, whichever is applicable. Subsequently, the loaded software

measures additional components, such as arbitrary code of loaded applications, and re-

ports these measurements to the root of trust. The root-of-trust then combines its initial

cryptographic hash value with the new measurements, resulting in the final measure-



20 Chapter 2. Background

ment value. This value can then be signed using a hardware key embedded in the

platform during the manufacturing and later be used to prove that the software inside

the TEE has not been tampered with and is running on a legitimate platform.

There exist two distinct types of attestation:

• Local attestation refers to the attestation process between two TEE instances on the

same platform. In this scenario, one TEE instance, the challenger, can request a

cryptographic report containing the final measurement of the other TEE instance’s

code and data, which is then signed by the processor’s hardware, as described above.

The challenger can use this report to confirm that the instance in question executes

the expected software on the same platform. Typically, this process involves a trusted

verifier entity, supported by the TEE, running on the same platform.

• Remote attestation refers to the attestation process between a TEE instance and a

third-party entity that does not reside on the same platform. The remote entity, or

challenger, can request the root of trust to sign the final measurement using the em-

bedded hardware key. By examining this signed value, the remote process can verify

the authenticity of the entire remote system stack, including the legitimacy of the

hardware as well as the software state. The challenger achieves this by comparing

the signed measurement, obtained from the root of trust, with an already calcu-

lated value based on the combination of the hardware of the target platform and the

intended executable software. Typically, the remote attestation process involves a

remote trusted entity provided by the hardware vendor [6, 102, 139].

Intel SGX Attestation. Intel SGX includes mechanisms for attestation, i.e., to prove

the identity and integrity of an enclave to remote parties, and sealing, i.e., to securely

store data that can only be accessed by the same enclave in future sessions. These

mechanisms rely on keys derived from a hardware root-of-trust. An enclave can derive

an enclave-specific SGX Report, which is forwarded to the Quoting Enclave, where an

SGX quote is produced. The SGX quote contains the measurement of the code and

data residing inside the enclave, enclave-specific attributes, and other security-relevant

fields and is tied to the identity of the Quoting Enclave on this platform. This SGX

quote can then be sent to a remote entity to perform the remote attestation process.

To facilitate remote attestation, Intel provides the Intel Attestation Service (IAS).

The CPU manufacturer, and consequently the IAS that is managed by Intel, is consid-

ered within the trust boundaries. IAS can verify the quotes produced by a legitimate

TEE and then issue a verification report upon successful validation of the TEE’s quote.

This verification report is then sent back to the TEE and can be provided to a remote

challenger upon request. The remote challenger can then verify the IAS report to gain

confidence in the authenticity of the TEE and its running software.
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2.3.3 Shielded execution

TEEs are widely adopted by cloud providers to support secure applications in the

cloud [21, 44, 81, 82, 103, 202, 203]. However, to attract the interest of clients,

supporting legacy applications without the need to port them to use specific SDKs or

APIs is crucial. To this end, shielded execution frameworks [16, 27, 226, 247, 272,

293, 297], built based on TEEs, aim to provide strong confidentiality and integrity

guarantees for unmodified applications deployed on an untrusted computing infrastruc-

ture. The core system stack and deployment model of shielded execution is highlighted

in Figure 2.5(b). Such frameworks require no application source code modifications

and transparently confine the application address space inside the TEE’s hardware-

protected volatile memory region. Further, modern shielded execution frameworks

have employed direct I/O stacks in the context of TEEs [23, 25, 293, 295] to minimize

the performance implications caused by enclave transitions (world switches) and keep

up with the ever-increasing performance demands in cloud computing.

In particular, the SCONE [16] framework is built based on Intel SGX. In SCONE [16],

the applications are linked against a modified standard C library (SCONE libc). In this

model, the interaction with the untrusted memory is performed via the system call

interface. SCONE runtime provides an asynchronous system call mechanism [277] in

which threads outside the enclave asynchronously execute the system calls. SCONE

protects the executing application against Iago attacks [16, 35] through shields. Fur-

thermore, it offers the option to prevent memory safety bugs in the applications running

inside the SGX enclaves [172]. Lastly, SCONE provides an integration with Docker to

allow for seamlessly deploying containers.

2.4 Kernel-bypass Networking

For modern disaggregated cloud systems, high-speed networking [65, 108, 152, 329]

is an essential and performance-critical component to provide a holistic environment

for high-performance computing and reap the benefits of the fast storage devices, i.e.,

persistent memory.

More specifically, high-performance networking infrastructure in the cloud is in-

creasingly based on userspace, kernel-bypass abstractions [22, 301–306] such as

DPDK [66] and RDMA [86, 155]. Unlike conventional system call-based network-

ing, where the network stack and the I/O handling are managed by the OS kernel,

kernel-bypass networking eschews the OS and alleviates any potential bottleneck in the

kernel networking stack by directly interacting with the network interface card (NIC)

hardware, as presented in Figure 2.6. The direct memory access (DMA) mechanism
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allows for setting up a direct communication channel between the NIC and the system,

enabling the NIC to read from or write to the system’s main memory without CPU in-

tervention. With DMA, an application can establish a mapping of the system memory

region allocated for DMA transfers — not the NIC’s internal memory or configuration

space — to its virtual address space with the assistance of the operating system.

In this way, the device can be controlled directly from the userspace. Thus, the

kernel-bypass approach improves both the network latency and throughput as the over-

heads stemming from extra data copies in and out of the kernel as well as from expen-

sive context switches [51, 89, 145, 277, 311] are eliminated.

More specifically, one-sided RDMA [155] allows for data movement to or from a

remote node without CPU intervention. It enables zero-copy networking as the data

is moved directly between the application memory and the NIC buffers. The CPU on

the initiator node (regardless if it is a read or a write operation) only needs to start

the operation. Then, the NIC leverages DMA to transfer the data directly between the

system memory of the participating remote nodes.

To simplify kernel-bypass network programming, remote procedure call (RPC) frame-

works such as eRPC [153] provide a general yet performant API for asynchronous RPCs

designed for high-speed networking for lossy Ethernet or lossless fabrics. Typically, such

frameworks bind the device to an application and do not expose the abstractions of the

transport layer (e.g., TCP/IP). They hide the complexities of managing the low-level in-

terfaces of the transport layer (RDMA, DPDK, and RoCE) from the developer, resulting

in an easier programming experience.

RDMA-based RPCs have been demonstrated by research and industry efforts [10,

67, 104, 136] to be the most efficient programming paradigm for high-performing
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cloud systems, especially when they incorporate fast, byte-addressable storage [37,

133, 142].

Inter-data-center communication usually relies on traditional networking protocols

(e.g., Ethernet, TCP/IP) offered by telecommunication providers, while RDMA is typi-

cally used within the same data center, where the high-speed and low-latency network

fabric can be tightly controlled. Thus, in such settings, security is often assumed to be

inherent. In these environments, RDMA implementations often prioritize performance

over extensive security features, assuming a relatively secure and controlled intra-data-

center environment.

Nonetheless, as data center networks evolve, even within a single data center, the

threat landscape broadens with the emergence of programmable network devices, such

as SmartNICs and programmable switches. These devices, if compromised, could po-

tentially be leveraged to leak or manipulate RDMA traffic. Addressing such threats is

crucial, especially when security-sensitive or private data is being involved. Therefore,

security assumptions around RDMA need to be reevaluated, and security mechanisms

tailored to protect against intra-data center attacks (e.g., traffic encryption and access

control at the NIC level) need to be solidified.
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Memory Safety for Persistent

Memory

3.1 SAFEPM: A Sanitizer for Persistent Memory

In this section, we introduce SAFEPM, a memory safety mechanism that transparently

and comprehensively detects both spatial and temporal memory safety violations for PM-

based applications. SAFEPM’s design builds on a shadow memory approach, and aug-

ments it with crash-consistent data structures and system operations to ensure memory

safety even across system reboots and crashes. We implement SAFEPM based on the

AddressSanitizer compiler pass and integrate it with the PM development kit (PMDK)

runtime library. We evaluate SAFEPM across three dimensions: overheads, effective-

ness, and crash consistency. SAFEPM overall incurs performance and memory over-

heads comparable with ASan while providing comprehensive memory safety, and has

uncovered real-world bugs in the widely-used PMDK library.

3.1.1 Motivation

Performance-critical software systems are prominently written in low-level languages,

such as C/C++. While these languages allow the programmer to explicitly control the

application’s memory, they can, unfortunately, lead to memory safety bugs, i.e., illegal

accesses to unintended memory regions [28, 70, 289, 308, 332]. More specifically, mem-

ory safety violations are categorized as spatial and temporal errors. Spatial violations

occur when an operation accesses a memory region outside its assigned boundaries

(e.g., buffer overflows). Temporal violations are accesses to a memory object before its

creation or after its deletion (e.g., dangling pointers).

This fundamental trade-off between performance and memory safety in the con-

25
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text of low-level unsafe languages manifests in the form of numerous dependability

issues in software systems. For instance, apart from several well-known memory safety

violations [94, 96, 284], three major projects: Chromium [42], Android [7] and Win-

dows [206] report that 70− 75% of their discovered issues are memory safety bugs.

These safety violations are widespread —three out of ten most critical software weak-

nesses are memory safety issues [205]. More importantly, Szekeres et al. [289] illus-

trate that memory safety is the root cause of security issues in software systems.

Byte-addressable persistent memory (PM), similar to volatile memory, is also sus-

ceptible to memory safety violations. In particular, PM is a non-volatile storage medium,

accessible at a byte granularity via load/store instructions with access latencies close

to DRAM [143]. PM content is directly mapped into an application’s address space and

is manipulated at a byte granularity through native pointers, making PM programming

prone to memory safety errors, especially in the context of memory-unsafe languages

(e.g., C, C++).

Over the last two decades, a range of hardware- and software-based memory safety

approaches [223] have been proposed to tackle the problem of memory safety for

volatile memory (§ 3.1.6). These approaches are prominently designed based on deter-

ministic dynamic bounds-checking, which relies on compile-time code instrumentation

and enhances the original application’s memory layout with memory safety metadata,

which is checked during the runtime upon each memory access.

While these memory safety approaches are extensively used in commercial software

eco-systems for volatile memory-based applications, either during development [137,

198, 264] or production phases [14, 101, 280]—there exists a distinct research gap

when we consider memory safety issues in the context of the emerging persistent mem-

ory technology. That is, there exists no memory safety mechanism designed for PM-based

applications written in unsafe languages.

Importantly, the state-of-the-art memory safety approaches for volatile memory are

insufficient for PM. Unlike volatile memory, which uses native volatile pointers, the

PM programming model introduces a persistent pointer representation for its objects,

and the persistent memory heap is handled using memory allocators designed for PM,

which rely on persistent heap metadata [57, 120]. In addition, although the types

of memory safety vulnerabilities on PM remain the same as those on volatile memory

(e.g., buffer overflows, dangling pointers), memory safety needs to be further ensured

for the recovery code paths designated to be executed after a potential crash and/or a

restart.

Therefore, we need to design a memory safety mechanism that simultaneously en-

sures the correctness and crash consistency of both the application’s data and the mem-
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ory safety metadata.

To address this problem, we propose SAFEPM, a memory safety mechanism for PM-

based applications. More precisely, SAFEPM provides comprehensive memory safety by

detecting both spatial and temporal memory safety bugs. It is transparent to the appli-

cation: while it requires recompilation of the application, no source code modifications

are necessary. Lastly, SAFEPM ensures the crash consistency property while incurring

tolerable performance and memory overheads for its debugging purposes.

At a high level, SAFEPM’s design is based on a shadow memory approach (§ 2.2).

It reserves a PM region (persistent shadow memory) where it places its memory safety

metadata. This PM part stores the state — accessible or not — of each 8-byte chunk of

PM. The persistent shadow memory is also mapped over a specific, precisely calculated

location of the virtual address space (§ 3.1.3.1). We call this operation overmap. Thus,

SAFEPM checks this overmapped PM region on every memory access during runtime.

These checks are injected in the application through the compiler pass instrumentation

of AddressSanitizer (ASan) [264]. Further, SAFEPM ensures that each PM object is

surrounded by guard regions (red zones) that are marked as inaccessible in the persis-

tent shadow memory. Lastly, SAFEPM incorporates a runtime library that instruments

the PM management functions to reflect their modifications in the persistent shadow

memory region in a crash-consistent manner.

We implement SAFEPM based on Intel’s PMDK and ASan [264]. SAFEPM’s per-

sistent shadow memory adopts the same format as that of ASan, i.e., it preserves

the internal structure of ASan’s shadow memory and uses the same byte-to-byte map-

ping scheme, where every 8 bytes of application memory are represented by 1 byte of

shadow memory. This shadow memory is stored as part of the persistent pool created

by SAFEPM. SAFEPM keeps PMDK’s memory layout intact, such that a persistent pool

created by SAFEPM is a valid PMDK pool. When a persistent pool is opened, SAFEPM

maps its persistent shadow memory over the relevant portion of the ASan’s shadow

memory. Further, SAFEPM’s runtime library augments the functionality of PMDK’s libp-

memobj [120] PM management routines to incorporate the handling of the persistent

memory safety metadata. Thus, the PM heap operations that modify the state of a PM

range transparently update the corresponding part of the persistent shadow memory.

These operations allow SAFEPM to keep the ASan’s compiler pass and optimizations in-

tact and use them for memory checks while supporting the programming interface and

semantics of PMDK without requiring modifications to an application’s source code.

We evaluate SAFEPM along three dimensions: (i) performance and space overheads

using PMDK’s benchmark framework, pmembench [126] and a persistent KV store,

pmemkv [117], (ii) effectiveness using the RIPE framework [320] and (iii) crash con-
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sistency, which we validate for pmembench using the established pmemcheck tool [240].

Our evaluation shows that SAFEPM offers the same memory safety guarantees for per-

sistent memory as ASan provides for volatile memory with reasonable performance

overheads, e.g., 1.20− 2.62× slowdown for the KV store while ensuring crash con-

sistency. Through SAFEPM, we have also identified two memory safety bugs in the

widely-used PMDK library.

Overall, SAFEPM makes the following contributions:

• We present the design (§ 3.1.3) of SAFEPM, the first solution for comprehensive

spatial and temporal memory safety for PMDK-based PM applications.

• Our design leverages a shadow memory approach transparently supporting the es-

tablished SNIA NVM programming model [276], as implemented by PMDK [114],

thus allowing seamless integration into existing testing workflows and toolchains.

• We prototype (§ 3.1.4) and extensively evaluate SAFEPM across three metrics: over-

heads (§ 3.1.5.2, § 3.1.5.3, § 3.1.5.6), effectiveness (§ 3.1.5.4, § 3.1.5.7) and crash

consistency (§ 3.1.5.5).

3.1.2 Overview

SAFEPM is an efficient tool that provides comprehensive memory safety for PM applica-

tions developed with PMDK. Current state-of-the-art approaches for ensuring memory

safety for PM incorporate prohibitive memory and performance overheads (e.g., mem-

check [198]) or involve source code modifications, the adoption of a new library and

its APIs, or even the rewriting of the application to a memory-safe language, such as

Rust (e.g., Corundum [99]). Unlike those, SAFEPM is transparent to the application,

requiring no changes to application source code or to existing PMDK-based libraries.

Instead, SAFEPM operates at the compiler level, instrumenting the application code au-

tomatically and incurs reasonable overheads comparable to those of ASan for volatile

memory.

SAFEPM leverages ASan to detect spatial and temporal memory safety violations

within a PM pool without requiring any source code modifications. Our key insight is to

benefit from the optimizations and the efficiency of the solidly engineered, well-tested,

and widely-used ASan. Therefore, SAFEPM keeps ASan intact and adds metadata to

PM pools to integrate with ASan (§ 3.1.3). In SAFEPM, the memory safety metadata

follows the ASan’s format, and the runtime checks are inserted by ASan ’s compiler

pass. The core difference is that SAFEPM keeps this metadata valid across application

restarts/crashes and pool re-openings by placing it inside the persistent memory pool

and updating it in a crash-consistent manner. More specifically, SAFEPM modifies the

PM pool layout and transparently stores the persistent shadow memory as a PM object,
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Figure 3.1: Overview of SAFEPM.

which is retrievable through the introduced shadow root object (§ 3.1.3.1). Thus,

SAFEPM is compliant with PM programming concepts and is able to detect persistent

memory safety violations even after unexpected shutdowns/crashes.

An overview of SAFEPM’s modified PM pool design is shown in Figure 3.1. PM

pools are directly mapped to the virtual address space. SAFEPM reserves a part of the

PM pool heap for the persistent shadow memory (PSM), which maintains the memory

safety metadata of the pool. The part of the pool corresponding to PSM is mapped over

the ASan’s shadow memory during the initialization phase of SAFEPM. We name this

core operation of SAFEPM as overmap. Further, SAFEPM’s memory allocator inserts

and poisons the appropriate red zones in the same way ASan does for volatile memory

while preserving the PM programming model and the crash consistency of the data and

metadata.

Design goals. SAFEPM achieves the following goals:

• Memory safety: SAFEPM provides memory safety for a wide range of potential PM

access violations, including both spatial (e.g., PM object-overflows) and temporal

(e.g., use-after-free) in a similar manner as ASan does for volatile memory.

• Transparency & compatibility: We design SAFEPM based on PMDK and ASan, which

allows for seamless integration in existing PM applications without code modifica-

tions.

• High code coverage: SAFEPM should be able to detect memory safety violations in dif-

ferent code paths , including recovery paths for abrupt shutdowns. This is achieved

by ensuring the crash consistency for both PM (meta)data and SAFEPM’s metadata
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leveraging the transactional interfaces and logging mechanisms provided by PMDK.

• Performance: SAFEPM keeps the compiler pass of ASan intact and leverages its op-

timizations to limit the introduced overheads due to the additional memory checks,

making SAFEPM suitable for performance-critical environments.

3.1.2.1 System Model

Fault model. SAFEPM aims to ensure memory safety for PMDK-based applications. It

is capable of detecting and reporting both spatial (e.g., object overflows) and temporal

(e.g., use-after-free) memory safety bugs in PM.

SAFEPM must also preserve the crash consistency property, as it targets PM-enabled

applications. Crashes or unexpected system shutdowns can lead to data inconsisten-

cies. This means that SAFEPM has to enforce mechanisms to ensure the recovery to a

consistent state not only for the PM (meta)data but also for the memory safety-related

metadata. Further, SAFEPM extends the scope to also provide memory safety guaran-

tees for the recovery path.

Usage model. SAFEPM is a generic testing tool to prevent memory safety bugs in

PMDK programs during the development phase. It provides the same memory safety

guarantees as ASan. Further, it also offers “partial safety coverage” to manually select

the code parts where the checks will be applied to limit the performance overhead.

Programming model. SAFEPM is based on PMDK which is entirely written in the un-

safe C/C++ languages. SAFEPM preserves the PM programming model, its semantics

as well as the PMDK APIs intact.

3.1.2.2 Design Challenges

#1: Transparency. An effective memory safety testing tool should require no source

code modifications. State-of-the-art approaches, like ASan [264] and memcheck [198],

already cover this need with the instrumentation of the volatile memory management

functions. SAFEPM should provide the same level of transparency for the PM pool heap

management APIs.

Approach: SAFEPM preserves the PM programming model and instruments the PM

management functions via carefully designed wrappers (§ 3.1.4). Precisely, SAFEPM

adapts the functions that manage the pool (create/open/close) and the PM objects

(alloc/realloc/free) so that their changes are reflected in the PSM. SAFEPM supports

PMDK’s PM management APIs, requiring no source code modifications.

#2: Compatibility with ASan. ASan is one of the most prominent tools to detect mem-

ory safety violations in the volatile memory regions of an application. SAFEPM needs
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to extend ASan checks to objects residing in PM, which are managed by libpmemobj’s

memory management functions.

Approach: During pool creation, SAFEPM reserves a shadow memory region inside PM

pools for the PSM. This region corresponds to the respective shadow memory used

by ASan. To comply with ASan’s design, SAFEPM also augments the PMDK allocator

to surround the PM objects with poisoned red zones as well as to modify the PSM

following the same binary format as ASan. To preserve transparency, SAFEPM wraps

memory allocators to skip the red zones and return pointers to the object data as a

programmer would expect.

#3: Durability and crash consistency. PM applications have to ensure the durability

and the crash consistency for the PM data in case of an unexpected shutdown. In

SAFEPM, the scope of crash consistency is extended to include memory safety metadata

as well. This implies that to integrate PMDK with ASan, SAFEPM has to ensure the

durability and crash consistency of the memory safety metadata required by ASan along

with the user-specific PM residing data. This is imperative to ensure that protection

against memory safety vulnerabilities remains intact even after crashes and unexpected

shutdowns, without the need to reconstruct the metadata from scratch.

Approach: SAFEPM reserves the memory safety metadata as a part of the PM pool, thus

achieving its durability. Metadata durability ensures that upon an application restart or

recovery after a potential crash, SAFEPM is aware of the (de)allocations made inside

the PM pool and is able to correctly check for memory safety violations based on the

persistent, valid state of the memory safety metadata.

To ensure crash consistency and, subsequently, the validity of its memory safety

metadata along with PM pool’s (meta)data, SAFEPM leverages PMDK’s software trans-

actions. Each PM object modification (alloc/realloc/free) needs to be reflected in the

shadow memory representation. Since SAFEPM’s metadata is part of the pool, its mod-

ifications are performed inside transactions along with the respective PM management

operations, guaranteeing crash consistency via PMDK’s logging mechanism.

#4: Coverage of recovery paths. PM applications are designed to be able to recover

from abrupt crashes. This requires special code paths that restore the PM to a consistent

state. SAFEPM has to ensure memory safety for these recovery paths.

Approach: SAFEPM maintains the memory safety metadata as part of the PM pool. Un-

like with ASan, where the memory safety metadata is volatile and reconstructed from

scratch on each application run, SAFEPM’s memory safety metadata remains consistent

and can be retrieved across reboots or failures. Thus, SAFEPM ensures the durability

of its metadata along with its crash consistency and can enforce memory safety on PM

objects even on the application’s recovery code paths.
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3.1.3 Design

Figure 3.2 illustrates an overview of SAFEPM’s components. SAFEPM reserves part

of the PM pool for the PSM and overmaps it to the location expected by ASan in the pro-

gram’s virtual address space. Moreover, SAFEPM augments the memory management

operations of PMDK to surround allocated objects with poisoned red zones and update

the PSM accordingly.

Precisely, at the startup of an application, SAFEPM reserves a shadow memory re-

gion 1 to track the state of each memory area, similar to ASan. Then, SAFEPM pro-

ceeds with the creation or opening of PM pools that are mapped to the virtual address

space 2 . During pool creation, SAFEPM allocates a portion of the pool as its PSM to

store the state of each byte in the PM pool 3 . SAFEPM then maps the PSM onto its

corresponding shadow memory region in the virtual address space (overmap), ensuring

that any state updates to shadow memory are reflected in the PM file 4 . A shadow

root object holds a reference to the PSM, which is set in a crash-consistent so that it

preserves its validity across reboots/restarts 5 . When objects are allocated, SAFEPM

places red zones around them in PM and marks the corresponding shadow memory

regions—payload as valid and red zones as invalid 6 . Note that this process is per-

formed atomically. When accessing memory, SAFEPM checks the shadow memory to

validate the state of the address: if valid, the access proceeds; if not, a memory safety

violation is reported.

Further, listing 3.1 illustrates an application using SAFEPM, which opens a PM pool

and allocates and accesses PM objects. The highlighted lines of code indicate the ad-

ditional operations and checks inserted by SAFEPM (in blue) and ASan (in red). On

line 3, the application opens an existing PM pool. SAFEPM transparently initializes the

pool’s PSM, if needed (line 4), and overmaps it on the relevant section of the ASan’s

shadow memory (line 5). Then, the application allocates N objects (line 11). Note that
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1 struct my_obj { int src; int dest; } // object structure

2 ...

3 PMEMobjpool *pop = pmemobj_open(path); // open the PM Pool

4 init_shadow_memory(pop);

5 overmap_pool(pop);

6 ...

7 PMEMoid obj_oid[N]; // declare the object handles

8 size_t size = sizeof(struct my_obj);

9 for (int i=0; i<N; i++) {

10 TX_BEGIN(pop){

11 pmemobj_alloc(pop,&obj_oid[i],size+2*RZ,...);

12 snapshot_and_set_shadow_memory();

13 } TX_END

14 }

15 ...

16 int val;

17 for (int i=0; i<M; i++) {

18 sh_src = get_shadow(&D_RO(object_oid[i])->src);

19 if (*sh_src != 0 && ...)

20 error(sh_src);

21 val = D_RO(object_oid[i])->src; //load from PM

22 sh_dest = get_shadow(&D_RW(object_oid[i])->dest);

23 if (*sh_dest != 0 && ...)

24 error(sh_dest);

25 D_RW(object_oid[i])->dest = val; //store to PM

26 }

27 ...

28 pmemobj_close(pop); //close the PM pool

29 unmap_shadow_mem();

Listing 3.1: SAFEPM code transformation: lines in blue are injected by SAFEPM’s

wrappers and lines in red by ASan.

SAFEPM transparently converts each allocation to a transaction in order to ensure the

crash consistency of its memory safety metadata (lines 10-13). The application then

accesses the PM objects (lines 21 and 25), and ASan introduces the appropriate shadow

memory checks (lines 18-20, 22-24). These checks get redirected to the overmapped

PSM and leverage the memory safety metadata to ensure that the requested PM ad-

dresses are addressable. In case any of these tests fail, an error is reported (e.g., if

M > N). Finally, the PM pool is closed, and SAFEPM unmaps the PSM (line 29).

3.1.3.1 Persistent Memory Safety Metadata

SAFEPM constructs PM data structures to store the required PM safety metadata. SAFEPM

does not consume additional memory compared to ASan and reserves the same portion
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of an application’s virtual address space as ASan does. However, it differentiates itself

as the memory safety metadata is placed on PM, which has to be set and updated in a

fail-safe manner so that it remains valid across application restarts. More specifically,

SAFEPM introduces the following persistent metadata data structures: (i) persistent

shadow memory, (ii) persistent red zones, and (iii) the shadow root object.

The persistent shadow memory. The central data structure of SAFEPM’s design is

the persistent shadow memory (PSM), which stores information about which PM pool

regions are addressable. To be compatible with ASan’s compiler pass, we use the same

format for the PSM as the one used by ASan, which requires allocating one byte of PSM

for every 8 bytes of a PM pool. Following the format of ASan for the (volatile) shadow

memory, the PSM is an array of bytes, where each byte stores the number of accessible

bytes for its 8 corresponding bytes, or 0 to mark them all accessible. For non-accessible

8-byte blocks, it can store why they are non-accessible, for example, that they were

freed or are part of a red zone. ASan’s runtime library reserves 1/8th of the virtual

address space for shadow memory. SAFEPM maps the PSM over ASan’s shadow mem-

ory at the corresponding location that ASan uses for the mapped pool’s virtual address

range. Importantly, this overmap operation allows SAFEPM to leverage ASan’s shadow

memory checks without modifying its runtime library. By reserving a fixed region in the

lower part of the virtual address space, the corresponding shadow memory address can

be easily found with a simple address translation formula, where the offset is platform

and OS-dependent:

1 #define GET_SM(addr) (void *)((long long)addr >> 3 + offset)

SAFEPM needs to persist the PSM data and ensure its crash consistency. To this end,

SAFEPM creates PSM as a persistent object during the creation of a new persistent pool.

The size of the PSM is at least 1/8th of the pool size requested by the application. Fur-

ther, SAFEPM initializes the PSM as inaccessible. This ensures that the application code

cannot manipulate any PM regions that are not explicitly allocated by the application,

including unallocated PM heap parts, PM pool’s metadata, and the PSM.

The persistent red zones. Similar to ASan, SAFEPM places red zones around PM ob-

jects, which are 16 B in size by default. A red zone is a region of memory marked

inaccessible (poisoned) in the shadow memory, which prevents user code from access-

ing it. This enables the checks inserted by ASan’s compiler pass to detect out-of-bounds

accesses. Persistent red zones are allocated on object (re)allocation. Upon object deal-

location, the red zones are removed along with the object and are marked inaccessible

in the PSM, providing temporal violation detection capabilities.

The red zone size constitutes a trade-off between safety (i.e., buffer overflow detec-
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tion capabilities) and space efficiency (i.e., memory consumption overhead). Large red

zones waste space, while small red zones might fall short in detecting non-contiguous

memory violations. For instance, in case two objects are separated by a 16 B red zone,

SAFEPM will not detect under-/overflows of more than 16 B as the problematic memory

access might fall within another object’s boundaries.

Shadow root object. PM pools contain a root object that is used as the reference point

by the application to reach the other pool’s objects. SAFEPM creates a shadow root

object during the pool creation. It contains persistent pointers to the PSM and the user

root object, as well as the size of the user root object. From libpmemobj’s perspective,

the shadow root object is the root object of the PM pool. SAFEPM’s wrappers hide the

additional fields of the shadow root object by returning the expected app root field to

the application when requested by the programmer.

1 struct shadow_root {

2 PMEMoid psm; //PMEMoid of the PSM

3 PMEMoid app_root; //PMEMoid of the app’s user root object

4 uint64_t app_root_size; // size of the user root object

5 };

3.1.3.2 System Operations

In this section, we describe the operations of SAFEPM that manipulate the PSM and the

red zones to transparently ensure both memory safety on PM and crash consistency.

PM pool creation. When a program calls the function pmemobj create, SAFEPM’s

wrapper creates the PM pool, allocates and initializes the shadow root object as well

as the PSM in a crash-consistent way. If the operation is torn after the pool is cre-

ated but before the initialization of the shadow root object and the PSM completes, the

pmemobj open wrapper will recover the persistent pool using the transaction capabili-

ties of libpmemobj and recreate the PSM. During the creation of the pool, the PSM is

initialized so that no region of PM is user-accessible, guaranteeing that an application

cannot modify the pool’s metadata or access non-allocated PM regions.

1 PMEMobjpool pmemobj_create(path, size) {

2 //create a pool with extra 1/8th of size for the PSM

3 PMEMobjpool* pool = pmemobj_create_orig(path, size+size/8);

4 //transactionally create the PSM , set to inaccessible

5 PMEMoid sm_root = init_psm(pool);

6 //mmap the PSM to its designated region

7 overmap_psm(sm_root);

8 return pool;

9 }
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Note that the PSM of a memory pool is stored alongside the data of the pool. The

PSM can be located at an arbitrary position within the mapped PM pool. Thus, ASan’s

compiler pass won’t be able to correctly map virtual addresses within the PM pool to the

PSM. This would require changes to ASan’s compiler pass, hampering the transparency

property. As a workaround, after a PM pool is mapped to the virtual address space

during pmemobj create, SAFEPM overmaps the PSM region of the pool to the position

determined by the virtual-address-to-shadow-address formula used by ASan. Figure 3.2

shows a schematic that visualizes this operation.

PM pool opening. pmemobj open is called to open an existing PM pool . SAFEPM’s

wrappers check the pool’s root object to determine if the shadow root object and the

PSM are set up correctly. If this is the case, the creation of the PM pool was completed,

and the PSM gets overmapped to the respective location in the virtual address space

according to the memory location returned by PMDK’s original pmemobj open. Other-

wise, the creation of the pool must have been torn, and the transaction for creating and

initializing the shadow root object and the PSM is executed again before the overmap

operation.

1 PMEMobjpool pmemobj_open(path) {

2 PMEMobjpool* pool = pmemobj_open_orig(path);

3 // ensure the shadow root and PSM are set up correctly

4 recover(pool);

5 overmap_psm(pool);

6 return pool;

7 }

Memory management operations. PMDK supports different memory management

operations to (re/de)allocate memory regions within a PM pool. We classify these

operations into two distinct types: transactional operations (e.g., pmemobj tx alloc)

that operate within a programmer-defined transaction and non-transactional opera-

tions (e.g., pmemobj alloc) that do not require a transaction, but leverage atomic op-

erations to ensure crash consistency.

Transactional PM management operations. The transactional memory management

operations are executed within a transaction and use redo/undo logs to ensure crash

consistency. SAFEPM builds on this and uses the memory snapshotting capabilities of

libpmemobj to guarantee that the changes made to the PSM during a PM operation

are atomic with respect to the changes made to the PM heap state, even in case of a

torn operation or the abortion of a transaction. SAFEPM snapshots the respective PSM

region, thereby adding it to the undo log of the current transaction, before performing

any in-place updates to the PSM to demarcate the user-accessible regions.
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The transactional allocation takes into account the size of the red zones and adds

it to the object size requested by the user. Then, the relevant region of the PSM is

snapshotted, and the user-accessible region is marked as such, while the adjacent red

zones are marked inaccessible. Note that the PMEMoid returned by PMDK’s allocator

indicates the offset at the left red zone. Therefore a simple translation is performed to

return to the application the offset of the object’s actual payload.

1 PMEMoid pmemobj_tx_alloc(size) {

2 //allocate an object with extra space for the red zones

3 PMEMoid *oid = pmemobj_tx_alloc_orig(size+2*RZ_SIZE);

4 //get the corresponding address within PSM

5 void *oid_psm = get_psm_address(oid);

6 //add the existing PSM region to the undo log

7 snapshot(oid_psm, sm_size);

8 //update the PSM region with the correct values

9 mark_addressable(oid_psm, size);

10 //set the pointer returned to the start of the payload

11 oid.off += RZ_SIZE;

12 return oid;

13 }

The transactional reallocation might cause an existing object to be moved. In this

case, SAFEPM marks the old location of the object as inaccessible. The corresponding

PSM region to its new location is modified to reflect the new user-specified size of the

object. Still, all changes to the PSM are crash consistent, thanks to the transactional

support of libpmemobj.

1 PMEMoid pmemobj_tx_realloc(oid, new_size) {

2 oid.off -= RZ_SIZE;

3 //reallocate the object to the new size

4 PMEMoid *new_oid = pmemobj_tx_realloc_orig(oid, new_size+2*RZ_SIZE);

5 void *oid_psm = get_psm_address(oid);

6 if (oid != new_oid) { //object has been moved

7 //add the old corresponding PSM region to undo log

8 snapshot(oid_psm, sm_size);

9 //mark the old PSM region as freed

10 mark_non_addressable(oid_psm, size);

11 }

12 void *new_oid_psm = get_psm_address(new_oid);

13 snapshot(new_oid_psm, new_psm_size);

14 mark_addressable(new_oid_psm, new_size);

15 new_oid.off += RZ_SIZE;

16 return new_oid;

17 }
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The transactional deallocation uses the relevant original PMDK routine to free the

specified object (pmemobj tx free). SAFEPM’s respective wrapper marks the memory

region inaccessible. Note that libpmemobj includes built-in protection against double-

frees, but it is based on the state of the persistent heap, the modification of which

is delayed until the transaction is committed. Thus, double-frees that happen within a

single transaction escape detection. To detect such cases, the wrapper explicitly verifies

that the region the application is attempting to free is accessible. Unlike ASan, SAFEPM

has no explicit quarantine for freed memory regions, but based on our experience,

libpmemobj delays reallocating a deallocated region of PM.

1 void pmemobj_tx_free(oid) {

2 oid.off -= RZ_SIZE;

3 //verify object’s validity

4 void *oid_psm = get_psm_address(oid);

5 if (!is_addressable(oid_psm))

6 error();

7 //free the requested object

8 pmemobj_tx_free_orig(oid);

9 snapshot(oid_psm, sm_size);

10 mark_non_addressable(oid_psm, size);

11 }

Non-transactional PM management operations. SAFEPM transparently replaces the

non-transactional memory management operations with their transactional counter-

parts. This is functionally correct but forgoes the performance advantage of non-

transactional operations. Unfortunately, it is inevitable because each memory man-

agement operation causes modifications to the shadow memory, which cannot be per-

formed with a single atomic operation in conjunction with the actual PM heap metadata

modification.

3.1.3.3 Additional Design Details

Crash consistency. SAFEPM ensures crash consistency for the memory safety metadata

stored on PM: if an application crashes, both the application data and the SAFEPM

metadata will be able to recover to a consistent state. To achieve this, we leverage the

transactional interface of PMDK, which is specifically built for crash consistency [237].

In PMDK, a transaction is defined as a series of operations on PM objects that either

all or none occur. If a transaction is interrupted by a crash or power failure, PMDK

uses undo and redo logs to restore the PM pool to its last consistent state: the undo

log reverts any changes from incomplete transactions, while the redo log applies all

committed changes. In SAFEPM, all PM management operations, whether transactional
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or atomic, are executed using their transactional counterpart. A pool’s PSM object is

allocated, and its shadow root object is initialized in a single transaction during the

creation of that pool, and the modification of the PSM happens within the transaction

that modifies that state of an object. The shadow memory is modified after its state is

snapshotted using the undo log, hence guaranteeing that the modifications are crash-

consistent.

System recovery. If an application crashes abruptly during the execution of a trans-

action, SAFEPM’s metadata may be left in an incorrect state. However, whenever a

pool is opened, PMDK checks if there exists any valid redo or undo logs. A transaction

that is interrupted before atomically validating its redo log, will apply its valid undo

log to revert the PM pool’s data to a consistent state. Otherwise, if a transaction is

interrupted after persisting its redo log, its redo log entries will be applied. Neither

case affects the correctness of the state as PSM modifications are performed in place,

and its initial content is tracked in the transaction’s undo log. One unique case is when

an application fails after the pool was created but before the transaction that allocates

and initializes the PSM, and the shadow root object persisted its redo log. To handle

such cases, after a pool is opened successfully, SAFEPM checks if the pointer to the PSM

object within the shadow root object is null. In this case, the PSM will be reinitialized,

and the shadow root object will be set accordingly.

Temporal safety. Similar to ASan, SAFEPM provides probabilistic temporal safety ca-

pabilities. When a PM object is freed or moved, the corresponding shadow memory is

marked as free. Any subsequent access to this region will be detected by the shadow

memory checks inserted by ASan. Further, the PMDK PM allocator does not reuse freed

memory regions immediately but postpones their re-allocation. This enables SAFEPM

to detect violations such as use-after-free or double frees that occur before the PM

region is allocated again.

Multi-threading support. PMDK transactions do not provide any level of thread safety

for the PM objects and it is the programmer’s responsibility to ensure the application is

free of race conditions. Because different persistent objects have disjoint corresponding

regions in the PSM, unless the application is racy, the modifications on the PSM will be

thread-safe. Further, PMDK reserves a space within the pool that is divided into lanes.

Lanes are thread-specific and are used to store the logs of each thread’s transaction.

Consequently, SAFEPM’s transactional operations are also thread-safe.

Metadata protection. SAFEPM initializes the PSM and marks all the PM pool as inac-

cessible, including the heap metadata of PMDK. As the heap metadata region is never

allocated via the libpmemobj API, its corresponding shadow memory is never set to

accessible. Accordingly, any access to a metadata region by the application’s code will
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be detected by SAFEPM, thus providing metadata protection without the need for any

changes to PMDK, unlike state-of-the-art approaches [57].

Partial safety coverage. ASan is mostly used in offline testing phases due to its pro-

hibitive instrumentation costs for every memory access. Therefore, ASan provides the

option to disable the instrumentation for specific global variables and functions with

the (no sanitize("address")) attribute. This option deducts all ASan checks from

the annotated function. It is designed for cases where the programmer trusts specific

functions and wants to avoid the performance overhead.

SAFEPM also supports this functionality. It allows users to denote functions that

will not be instrumented. For such code parts, SAFEPM exposes a series of ‘unsafe’-

prefixed wrappers, which internally call the PMDK’s PM management functions with-

out performing any PSM and red zones management. However, SAFEPM imposes one

limitation: objects allocated with unsafe wrapper functions should only be accessed

in uninstrumented functions. Accessing them in instrumented code causes SAFEPM to

report an error, as their corresponding bytes in PSM remain marked as inaccessible.

Limitations. SAFEPM follows the same design for the shadow memory as ASan and

relies on the ASan’s compiler pass for detecting memory safety violations. Hence, it

inherits the same limitations. SAFEPM is incapable of detecting intra-object overflows

as the red zones are inserted at the object level to avoid changing the objects’ mem-

ory layouts. SAFEPM also misses out-of-bounds access that falls within the boundaries

of another object. Potential solutions to these limitations could involve using a finer-

grained boundary detection (e.g., byte-level) for intra-object overflows and disallowing

dereference of pointers that have been constructed via pure offset manipulation. How-

ever, these solutions would be invasive in ASan’s design, resulting in high performance

and memory overheads (e.g., if red zones are needed for each memory byte) or modi-

fying the programming model, thus violating the important transparency property.

Furthermore, in SAFEPM, the persistent shadow memory is allocated and handled

as an individual PM pool object and cannot exceed the size of 16 GB [56]. This is

a limitation imposed by PMDK. Thus, since the persistent shadow memory occupies

one eighth of the persistent pool, SAFEPM can currently support persistent pools up

to 128 GB in size. To alleviate this issue, PMDK could be modified to support objects

larger than 16 GB, and SAFEPM’s PSM layout could be adapted to allow larger PM

pool sizes by segmenting the shadow memory across multiple pool objects. The latter

would require careful internal handling to ensure that the crash consistency of the PSM

metadata is preserved across pools.

Usage in production. In SAFEPM, there are two sources that contribute to the higher

latency of PM operations and the overall performance overhead: (i) ASan ’s instrumen-
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tation, and the resulting PSM accesses, and (ii) the metadata bookkeeping of SAFEPM’s

wrappers.

Persistent pools created by PMDK are not compatible with SAFEPM, and vice versa.

However, an application linked with SAFEPM can be used in production with ASan ’s

instrumentation disabled during compilation. The overheads of such an approach can

be observed in our SAFEPM w/o ASan variant (§ 3.1.5). Note that, in this case, the

memory safety violations are not detected. For this reason, we encourage SAFEPM to

be used in development phases or make use of the partial safety coverage if production

use is desired.

Further, if an application passes the development phase and no longer requires

SAFEPM to be enabled, it can be linked against the vanilla PMDK for production

use without any source code modifications. Unfortunately, the PM pool recreation

is mandatory in this scenario. Thus, the overheads introduced both by ASan and

SAFEPM’s wrappers can be avoided entirely. This level of transparency is a key en-

abler that makes our approach practical.

Future extensions. SAFEPM builds on PMDK and ASan. However, the underlying

design can be ported to other persistent memory libraries, provided they support trans-

actional updates on PM pools. The port can be achieved by creating the respective

wrappers around the memory management functions, as SAFEPM performs for libp-

memobj [120].

The applicability of SAFEPM’s approach to other memory safety checking tools de-

pends on the methods that the tool uses to enforce memory safety. SAFEPM can be

modified to support other shadow-memory based approaches [39, 250] by adopting

their logic for the shadow memory handling and memory safety metadata updates. For

SAFEPM, we choose ASan because it is widely used and integrated into several compiler

toolchains [43, 76].

3.1.4 Implementation

SAFEPM consists of (i) a runtime library based on PMDK and (ii) the ASan’s compiler

pass for the instrumentation of the application code.

Runtime library. We implement the runtime library of SAFEPM as a fork of PMDK

v1.9. In SAFEPM, we develop wrappers around the exposed PM management func-

tions, which require modifications to the PSM. These wrappers augment the PMDK

functions with their respective shadow memory operations while ensuring crash consis-

tency for both the PM pool (meta)data and the memory safety metadata, as explained

in § 3.1.3.2. Table 3.1 enumerates the functions that were wrapped by SAFEPM.
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Pool management

pmemobj create creates a PM pool

pmemobj open opens an existing memory pool

pmemobj close closes a memory pool

Memory management

pmemobj tx alloc transactional allocation

pmemobj tx realloc transactional reallocation

pmemobj tx free transactional deallocation

pmemobj alloc atomic allocation

Other operations

pmemobj alloc usable size returns allocated size

pmemobj type num returns object’s type number

pmemobj first returns the first pool object

pmemobj next iterates over the objects

Table 3.1: List of PMDK API modified to support SAFEPM

To ensure transparency and compatibility with existing PMDK-based applications,

SAFEPM’s wrappers are named after their PMDK equivalent function. Thus, the func-

tion calls from an unmodified PMDK application, which is linked against SAFEPM, get

redirected to their respective wrapped version to include the memory safety metadata

management.

The PSM is created as an object within a PM pool. To be able to perform the

overmap operation, the size of the PSM must be a multiple of the page size (4KB for

x86/AMD64). mmap also requires that the in-file offset of the portion to be memory-

mapped is a multiple of the page size. The in-pool offset of the persistent shadow

memory must satisfy this condition. Furthermore, the PSM must be mapped to a start-

ing address that is page-aligned, which requires that the persistent pool is mapped

to a starting address that is aligned to eight times the page size. Finally, the entire

pool needs to be padded to a multiple of eight times the page size since each shadow

byte corresponds to eight application bytes. SAFEPM’s wrapper for pmemobj create is

responsible for enforcing all of these padding and alignment constraints.

ASan prevents the application code from modifying the shadow memory by using

mprotect to set the shadow memory’s protection level to PROT NONE, making it entirely

inaccessible. Thanks to mprotect, ASan avoids allocating additional physical memory

to protect the shadow memory itself. Unlike ASan, SAFEPM relies on the PSM being

initialized to inaccessible to ensure these guarantees. However, since the PSM is physi-

cally allocated during pool creation, SAFEPM’s approach, similar to ASan, does not add

extra memory overheads.
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Compiler pass. SAFEPM leverages ASan’s compiler pass without any modifications.

When an application is compiled with the -fsanitize=address flag enabled, the com-

piler runs the ASan compiler pass, as shown in Listing 3.1. ASan’s compiler pass runs

after all other compiler optimizations so that only memory accesses that remain after

the optimizations are instrumented. In SAFEPM we assume that PMDK is correct and

has no memory safety violations. Therefore, we do not compile the PMDK internal

functions with ASan. Note that this is necessary as these functions manipulate both the

PMDK metadata and the PSM.

3.1.5 Evaluation

Our evaluation is structured around three dimensions.

Space & performance overheads. We evaluate the performance (§ 3.1.5.2) and

space (§ 3.1.5.3) overheads of SAFEPM using PMDK’s micro-benchmarks as well as

pmemkv [117], a persistent KV store. We further evaluate the efficiency of the partial

safety coverage approach (§ 3.1.5.6).

Effectiveness. We evaluate the effectiveness of SAFEPM (§ 3.1.5.4) using the RIPE

framework [320] to test the exploitability of a wide range of memory vulnerabilities.

We also report some memory safety bugs and programming anomalies discovered dur-

ing our experiments (§ 3.1.5.7).

Crash consistency. Lastly, we validate the crash-consistency property (§ 3.1.5.5) for

both the application data and SAFEPM’s metadata using the pmemcheck tool [240]

provided by the PMDK’s Valgrind fork. Note that, in these experiments, ASan is disabled

due to its incompatibility with Valgrind.

3.1.5.1 Experimental Setup

Testbed. We conduct our experiments on a server machine equipped with Intel(R)

Xeon(R) Gold 6212U CPU with 24 cores, 192 GB (6 channels × 32 GB/DIMM) DRAM,

and 768 GB (6 channels × 128 GB/DIMM) Intel Optane DC DIMMs running Ubuntu

20.04.02 with Linux kernel version 5.4.0.

Variants. We conduct the experiments with the variants described in Table 3.2. Native

refers to the application being linked against the native PMDK without ASan instru-

mentation, while ASan indicates that the application was compiled with gcc’s ASan

extension and linked against native PMDK. These two variants serve as our baselines

as they represent unhardened applications and applications hardened only with ASan,

respectively. The ASan version indicates the inevitable overheads introduced by ASan’s

instrumentation. SAFEPM w/o ASan uses the SAFEPM’s wrappers without compiling
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Variant Compile w/ ASan SAFEPM wrappers

Native No Disabled

ASan Yes Disabled

SAFEPM w/o ASan No Enabled

SAFEPM Yes Enabled

Table 3.2: Benchmarking variants
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Figure 3.3: Performance overheads of persistent indices for PMDK w/ ASan, SAFEPM

w/o ASan and SAFEPM versions.

the application with the ASan extension. The goal of this variant is to demonstrate the

overheads incurred by our wrappers without ASan’s compiler pass instrumentation.

Based on this variant, we can determine the introduced overhead of SAFEPM’s addi-

tional management operations to assure the crash consistency of the memory safety

metadata. Finally, SAFEPM denotes our complete tool; applications are linked against

our PMDK fork and are compiled with the ASan instrumentation enabled.

3.1.5.2 Performance Overheads

We evaluate the performance overheads of SAFEPM using four different persistent in-

dices (ctree, rbtree, rtree and hashmap) and a persistent KV store (pmemkv [117]).

We further measure the performance of SAFEPM for the atomic and transactional PM

management operations (alloc, realloc and free), as well as creating and opening a

PM pool. Lastly, we evaluate the effect of SAFEPM on the recovery process.

All experiments are conducted with a red zone size of 16 bytes. Each object is

surrounded by two red zones. The reported values are the average of at least 3 runs.

Persistent indices. We evaluate the performance of SAFEPM for four persistent in-

dices over the four variants shown in Table 3.2. We use pmembench [126], shipped

with PMDK, and perform one million insert, get, and remove operations on each data
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Figure 3.4: Performance overheads w.r.t. to native PMDK of pmemkv under different

workloads and thread count.

structure. The keys are 8 bytes, and the operations choose keys at random following a

uniform distribution.

Figure 3.3 illustrates the slowdown for ASan, SAFEPM w/o ASan, and SAFEPM ver-

sions normalized to the native PMDK execution. In general, SAFEPM is 1.68-2.00×,

1.16-1.50×, and 1.68-1.87× slower than the native PMDK for the insert, get and re-

move operations, respectively. Figure 3.3 further indicates that the usage of SAFEPM’s

wrappers w/o ASan does not significantly affect the performance of the indices except

for the case of rtree insert where it incurs a 1.34× slowdown. In the other cases, the

respective overhead w.r.t. PMDK remains below 20%. This demonstrates the ability of

SAFEPM to achieve its performance goal by keeping its overheads very close to those

of the highly optimized ASan. The only exception is the case of the hashmap get, where

inserting red zones changes the objects’ alignment, leading to additional cache line

accesses.

Persistent KV store. We evaluate SAFEPM’s performance using pmemkv [117], a per-

sistent KV store designed for PM, with its default cmap backend storage engine. We use

the pmemkv-bench [111] benchmark suite with different workloads: (i) update inten-

sive (50% reads-50% writes), (ii) read intensive (95% reads-5%writes), (iii) random

reads and (iv) sequential reads. The KV store is populated with 1M entries at the be-

ginning of each run. Each workload consists of 10M operations where keys and values

are set to 16B and 1024B, respectively.

Figure 3.4 reports the slowdown of the throughput of PMDK w/ ASan and SAFEPM

w.r.t. to native PMDK while varying the number of threads. Enabling ASan with PMDK
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Figure 3.5: Performance overhead of SAFEPM’s wrappers for selected memory opera-

tions across different object sizes.

slows down the queries’ execution by 1.14-2.36× depending on the workload. The

respective values for SAFEPM are 1.20-2.55×. The additional performance overhead

for SAFEPM stems from the extra operations that SAFEPM needs to perform in order

to ensure the crash consistency of memory safety metadata. The marginally higher

overheads of SAFEPM compared to ASan further demonstrate the ability of SAFEPM

to achieve its performance goal in real-life workloads. Furthermore, SAFEPM does not

affect the scalability of the KV-store as its behavior is similar to PMDK and PMDK w/

ASan, even for an increasing number of threads. We can notice, though, a significant

drop in the overheads beyond 8 threads in the update-intensive workloads. This is

attributed to the native application suffering from increasing levels of contention while

the instrumentation decreases this stress.

Atomic and transactional PM operations. We next measure the performance of the

basic atomic and transactional PM management operations (alloc, realloc and free)

for SAFEPM. We design a microbenchmark based on pmembench where we execute

100K operations per experiment with varying object sizes. The reported results are the

average of 10 runs.

Figure 3.5 shows the throughput slowdown of SAFEPM for several PM operations

normalized w.r.t. native PMDK. For object allocation, we observe that the overhead

decreases for both atomic and transactional allocation as the object size grows (2.4-

5.8×). The reallocation operation maintains a relatively constant overhead for all the

tested data sizes (1.85-2.25×). SAFEPM incurs a higher performance overhead for

the free operation (3.5-7.0×) compared to alloc and realloc for every object size. The

aforementioned overheads are caused by (i) runtime checks introduced by ASan in-

strumentation and (ii) the added operations of SAFEPM to ensure crash consistency for

PM safety metadata. Lastly, as was expected, SAFEPM poses a higher overhead for the

atomic versions of the operations, as it transparently converts them into their transac-

tional counterpart in order to atomically update the appropriate PSM region along with
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Figure 3.6: Performance overheads for creating and opening pools of various sizes.

heap state in a crash-consistent manner.

PM pool create/open. Figure 3.6 shows the average time of the PM pool create and

open operations for the variants listed in Table 3.2. We created a microbenchmark using

the pmembench framework, where we create/open PM pools of various sizes ranging

from 256MB to 128GB. We observe that opening a pool with SAFEPM takes ∼30ms

instead of 10ms with native PMDK, a slowdown of up to 3×. The slowdown appears

to be largely caused by the introduced ASan checks because the performance of the

SafePM w/o Asan variant is close to that of the native PMDK. Further, during pool

creation, SAFEPM incurs a significant slowdown, which increases with the pool size,

causing the create operation to take a few seconds to complete. This overhead stems

from the need to overmap and initialize the PSM object, which grows with the size of

the pool. It is worth noting, though, that pool creation is an one-time operation, hence,

the high overhead is largely irrelevant to application performance.

Recovery time. Table 3.3 presents the average time of the recovery process with var-

ious log sizes for the variants listed in Table 3.2. The critical parameter that affects

the recovery process is the size of the log that contains the entries whose application

reverts the PM data to a consistent state. For this experiment, we design a microbench-

mark where we create a PM pool, allocate persistent objects, each being 1 KB in size,

and snapshot their content in the undo log of a transaction. The number of allocated

objects in each experiment is equal to the desired length of the undo log in KBs. Thus,

the size of the logs depends on the number of snapshot objects. Further, we inject a

crash at this point and then reopen the pool. The time to reopen the pool includes the

recovery process. We perform this experiment 100 times for each configuration.

We observe that in all variants, the recovery time gets higher as the log size in-

creases. With ASan disabled, SAFEPM’s wrappers introduce insignificant overhead

(¡300 µs) in the recovery time compared to PMDK. When we enable ASan, the shadow

memory checks incur an inevitable but minor overhead (approximately 10 ms). Over-
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Log size

Variant 4 KB 128 KB 512 KB 2 MB 4 MB

PMDK 15.00 15.06 15.45 17.01 19.13

SAFEPM w/o ASan 14.99 15.31 15.74 17.31 19.38

ASan 25.23 25.40 25.75 27.26 29.45

SAFEPM 25.44 25.39 25.78 27.43 29.79

Table 3.3: Recovery time in milliseconds (ms).

Data structure insert remove get

ctree 12.5% 12.5% 12.5%

rtree 14.25% 13.8% 13.8%

rbtree 12.5% 12.5% 12.5%

hashmap tx 12.5% 12.5% 12.5%

Table 3.4: SAFEPM space overhead

all, SAFEPM does not introduce any further delays in the recovery process other than

those of ASan.

3.1.5.3 Space Overhead

We measure the extra PM space that SAFEPM requires. The space overhead is com-

prised of (i) the persistent shadow memory and (ii) the object red zones. This section

ignores the shadow root object, as it represents a small, fixed overhead independent

of the pool size or allocated objects. Note that SAFEPM uses the same virtual address

ranges reserved by ASan (§ 3.1.3.1). We conduct experiments on the same four persis-

tent indices performing insert, get and remove operations, as discussed in § 3.1.5.2.

We report the peak space overhead when applications are linked against SAFEPM.

Table 3.4 summarizes the PM space overheads of SAFEPM expressed in percent-

age of the total pool size. The persistent shadow memory always occupies one eighth

of the pool, which corresponds to an overhead of 12.5%. For the ctree, rbtree and

hashmap tx, we observe that this is the only considerable space overhead as the per-

sistent object red zones occupy space which is wasted to padding by the native PMDK

allocator. For the rtree index, the object red zones increase persistent memory us-

age, leading to slightly higher space overheads. However, even in this case, the main

contributor to the increase in PM space usage is the persistent shadow memory.
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RIPE variant Always Sometimes Never

Intact 306 14 1014

ASan w/ system heap 27 1 1306

ASan w/ PM pool heap 119 12 1203

SAFEPM 27 1 1306

memcheck 62 0 1272

Table 3.5: Number of RIPE attacks that always, sometimes, or never succeed with

different protection mechanisms.

3.1.5.4 Effectiveness

We evaluate the effectiveness of SAFEPM using the RIPE framework [320], a compre-

hensive suite of memory vulnerability exploits. We modified the 64-bit port of the

RIPE benchmark [255] to compare the effectiveness of the following variants: (i) In-

tact, where the victim application is unmodified, (ii) ASan w/ system heap, where the

application is compiled with ASan, (iii) ASan, where the application uses the persis-

tent heap and is compiled with ASan, which protects only the volatile heap and not

the PM heap, (iv) SAFEPM, which extends ASan’s memory safety to the PM heap, and

(v) memcheck [238], the current state-of-the-art for detecting memory violations in

persistent memory. All variants use gcc 9.3.0 and are compiled with the default GCC

stack protections enabled.

The RIPE benchmark performs each exploit several times, 3 by default. If an exploit

succeeds in all attempts, in some trials, or in none of the runs, it is marked as always,

sometimes, or never, respectively. Note that, we run the RIPE benchmark suite several

times to make sure the results are stable.

Table 3.5 reports the number of exploits that either always, sometimes, or never

succeed. We observe that when the victim application uses the volatile (system) heap,

ASan is able to prevent most attacks. When the victim application is modified to use the

PM heap, the number of exploitable vulnerabilities increases, as the layout of the per-

sistent heap is not available to ASan. However, linking the application against SAFEPM

restores ASan’s protection capabilities even for memory violations occurring in the per-

sistent heap, reducing the number of exploitable vulnerabilities back to the levels ob-

served with the system heap. In other words, SAFEPM achieves memory safety effec-

tiveness for the PM heap equivalent to that achieved by ASan for the volatile (system)

heap. Finally, we observe that SAFEPM is able to detect and prevent a higher number

of memory vulnerabilities compared to the state-of-the-art memcheck [238].
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Figure 3.7: Performance overheads of persistent hashmap index with varying percent-

age of unsafe PM objects.

3.1.5.5 Crash Consistency

We validate the crash-consistency property for both the application data and SAFEPM

metadata using existing tools, pmemcheck [240] and memcheck [220]. To perform our

experiments, we disable ASan as it is incompatible with Valgrind. As SAFEPM wraps

PMDK routines instead of modifying them or the pool layout, these tools work without

modifications. We run the persistent indices and PM operations benchmarks described

in § 3.1.5.2 with pmemcheck and memcheck enabled. The number of operations for each

index is limited to 10000 to keep the runtime reasonable despite the slowdown caused

by Valgrind. We observe that for the tested indices, neither pmemcheck nor memcheck

report any error. For the PM operations benchmark, pmemcheck again reports no error,

while memcheck does not report any error beyond the ones also reported for the case of

unmodified PMDK.

3.1.5.6 Partial Safety Coverage

We evaluate the efficiency of our proposed partial safety coverage approach. In this

experiment, we use the persistent hashmap in a similar fashion to 3.1.5.2. We vary the

proportion of operations that are performed using memory-safe (instrumented) and

memory-safe (uninstrumented) objects. Figure 3.7 illustrates the performance slow-

down for each operation as the proportion of used unsafe objects increases, normalized

w.r.t. the native PMDK execution. We observe that for all three operations, the relative

overhead decreases as more objects are excluded from the ASan instrumentation and

runtime checks. However, there is still an inevitable overhead that stems from ASan

intercepting the volatile heap management functions, which are used by PMDK inter-

nally. Note that with the get operation, there is no overhead as there are no intercepted

malloc/free calls.
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3.1.5.7 Discovered Bugs and Anomalies

Our experiments led to discovering and reporting the following bugs [235, 236]: (i) in

the btree example of PMDK version 1.9.2, a call to memmove on line 378 of btree map.c

causes an off-by-one overflow on PM residing data objects and (ii) in the transactional

operations benchmark, shipped as part of pmembench, a configuration file lacks the

configuration setting nestings. This causes the transaction to not be aborted, which

triggers invalid frees at line 295 in pmemobj tx.cpp, that is detected by SAFEPM, when

the benchmark attempts the cleanup.

3.1.6 Related work

Persistent-memory based systems. Several well-known, high-performant data man-

agement systems, such as RocksDB [256] and Redis [253], have already been adapted

to incorporate persistent memory in their system stack [117, 199, 253, 256]. Apart

from that, there exist proposed filesystems specially designed to benefit from PM

as a storage medium [46, 157, 312, 325]. Additionally, accessing PM remotely

is an active area of research in order to enable PM usage in distributed settings

[116, 133, 152, 189, 273, 329]. While these systems mainly target to ensure crash

consistency and high performance with the use of innovative PM technology, SAFEPM

focuses on the important aspect of memory safety in PM programming.

SW-based memory safety. Protecting against DRAM memory safety bugs with

software-based approaches has been the target of several works [3, 170, 172, 264].

They leverage different techniques, such as compiler pass instrumentation accom-

panied by runtime libraries and compact representation of upper and lower pointer

bounds, needed to perform the appropriate runtime checks. They aim to minimize per-

formance and memory overheads while maintaining compatibility and efficiency. An-

other alternative for ensuring memory safety is to use memory-safe languages. Corun-

dum [99] is a generic library for PM management written in Rust, which statically

enforces language-based memory safety for PM. SAFEPM, contrary to Corundum, does

not require programmers to use specific libraries or languages but targets applications

developed using PMDK, the de facto library for PM while requiring no source code

modifications. The memcheck tool [238] uses Valgrind and instrumentation built into

PMDK to achieve memory safety similar to SAFEPM. Unlike ASan, it does not require

compiler support, as it uses runtime translation. Further, unlike SAFEPM, it has no PM

overhead. The trade-offs are that it incurs a much larger performance overhead, and

its spatial violation detection capabilities are not as precise as SAFEPM’s.

HW-based memory safety. There exists a large body of work that enforces memory
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safety for volatile memory using hardware extensions [14, 69, 223, 224, 322]. Lowfat

pointers [69] enforce spatial safety by associating the pointer with its bounds. It con-

tains gate-level implementations of the logic for updating and validating the compact

fat pointers. Cheri [322] ensures memory safety bug detection with the support of

hardware capabilities. Intel MPX [223, 224] provides ISA extensions of Intel x86-64

architecture for memory protection. Arm MTE [14] is an ARM extension that enables

hardware-assisted memory tagging to detect both temporal and spatial memory safety

bugs. Besides being designed for volatile memory only, these solutions require spe-

cialized hardware, whereas SAFEPM can be deployed in commodity servers to ensure

memory safety for PM.

PM debuggers, allocators and libraries. Several frameworks have been developed

to test the correctness of PM software [62, 75, 83, 185–187, 217, 240], an orthogonal

problem to memory safety. Many projects strive to manage persistent memory effi-

ciently while also ensuring crash consistency [45, 57, 120, 313]. Mnemosyne [313]

exposes a simple interface for PM programming with respect to crash consistency and

persistence. NVHeaps [45] is a lightweight, high-performance persistent object system

with transaction support and persistency semantics. Poseidon [57] is another allocator

designed for PM that relies on Intel MPK [228] to avoid the corruption of the persistent

metadata by memory bugs.

3.1.7 Summary

In this section, we present SAFEPM, a framework that ensures the memory safety of

PMDK-based PM applications by detecting spatial and temporal memory safety viola-

tions. To this end, SAFEPM leverages the compiler pass and reporting mechanism of

the popular ASan. During the creation of a memory pool, SAFEPM creates a persistent

shadow memory object that is mapped when the pool is opened to the correspond-

ing location in ASan’s shadow memory. SAFEPM manipulates the persistent shadow

memory along with the persistent heap in a transparent and crash-consistent manner.

Consequently, any PMDK-based application can make use of SAFEPM without source

code modifications to test for memory violations at runtime, including the recovery

process. Our extensive evaluation shows that SAFEPM provides the same level of mem-

ory safety guarantees for PM applications as ASan provides for volatile memory at a

cost of marginal overheads.

Software artifact. SAFEPM is publicly available along with its experimental setup.

https://github.com/TUM-DSE/safepm


3.2. SPP: Safe Persistent Pointers for Memory Safety 53

3.2 SPP: Safe Persistent Pointers for Memory Safety

In this section, we present Safe Persistent Pointers (SPP), a practical memory safety

approach against buffer overflows for PM applications. Our goal with SPP is to provide

a memory safety solution that overcomes the performance limitations that SAFEPM

(§ 3.1) introduces, minimizes the PM space overheads and aims to be applicable in

production deployments.

In a nutshell, SPP augments persistent pointers with memory safety properties.

SPP is based on a simple combination of tagged pointers, efficient persistent memory

layout, and transactional updates to the memory safety metadata for ensuring crash

consistency. SPP’s efficient pointer representation does not require additional memory

lookup operations at run-time while incurring minimal space overheads for storing the

memory safety metadata.

We implement SPP based on the LLVM compiler infrastructure accompanied by a

runtime library and an adapted version of the PM development kit (PMDK). Our evalu-

ation demonstrates that SPP incurs low runtime and space overheads while preserving

the crash-consistency property and maintaining the PMDK API intact, i.e., requiring no

source code modifications.

3.2.1 Motivation

Low-level unsafe languages, such as C/C++, provide developers with control over the

system’s memory. While this is crucial performance-wise [232], it can lead to poten-

tially harmful memory safety bugs [28, 70, 289, 308, 332]. These bugs are broadly

separated into two categories: spatial, e.g., buffer overflows, and temporal, e.g., dan-

gling pointers.

Memory safety bugs cause many critical security and reliability issues [94, 96, 205,

284]. The severity of memory safety violations is also confirmed by the reports of

major software projects, such as Windows [206], Android [7] and Chromium [42],

where 70− 75% of the detected issues stem from memory safety bugs. According to

Szekeres et al. [289], the majority of security attacks in software systems occur through

exploiting memory safety vulnerabilities.

Designing efficient approaches to enforce memory safety is an active area of re-

search for the volatile main memory, including software and hardware-based memory

safety solutions (§ 3.2.6). At a high level, these approaches implement deterministic dy-

namic bounds checking [211, 289], which utilizes runtime metadata (bounds informa-

tion) [170], rather than relying on probabilistic heuristics [28, 190]. These approaches

instrument the code during compilation and inject run-time metadata management
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into an application that allows deterministic run-time checks for validating memory

accesses.

Unfortunately, existing memory safety approaches are restricted to the volatile main

memory devices and are inadequate for byte-addressable persistent memory (PM) devices.

In particular, the emergence of the Compute Express Link (CXL) technology [47] is

enabling byte-addressable PM storage devices [90, 271]. These PM devices are either

attached to the memory bus [219] or the PCIe bus [47] and, with the use of NICs,

can also be accessed over the network (e.g., via RDMA) [133]. PM applications mem-

ory map (mmap()) these devices directly to their address space. Using pointers, their

mapped content is accessed at a byte granularity via the ld/st interface.

However, the PM pointer representation is persistent, i.e., its offset and the asso-

ciated PM object are durable. Therefore, addressing memory safety issues for PM is

challenging, especially due to the idiosyncrasies of the PM programming model [239].

More specifically, PM applications rely on persistent pointers [243] and use special-

ized, crash-consistent memory allocators [57, 120]. This entails two challenges: (a)

how do we preserve crash consistency for memory safety metadata?, and (b) how do

we ensure memory safety on the recovery paths after a system crash or reboot? Unfor-

tunately, current memory safety mechanisms for PM, with the most prominent being

SafePM [30], our previously proposed shadow memory-based memory safety solution

(§ 3.1), are deemed as impractical since they either require adopting a new program-

ming model/language [99] or are restricted to the offline testing phase [30, 240] due

to prohibitive performance costs.

To this end, we propose Safe Persistent Pointers (SPP), a practical memory safety

approach for applications accessing byte-addressable PM storage devices via PM point-

ers. SPP provides PM buffer overflow protection. Its design is based on DeltaPoint-

ers [170], a memory safety approach for volatile memory. SPP essentially extends

DeltaPointers to PM. SPP is built on the prevalent PM programming model and em-

ploys tagged pointers, as well as an efficient PM layout, in combination with transac-

tional updates to the memory safety metadata.

Our SPP prototype consists of an adapted PMDK [239] version, the state-of-the-art

PM programming toolchain, and an instrumentation using LLVM [175]. The evalua-

tion of SPP is structured around three dimensions: performance and space overhead,

effectiveness, and crash consistency. We measure the performance and space overheads

of SPP using PMDK micro-benchmarks and a persistent KV store [117]. We evaluate

the effectiveness of SPP with the RIPE framework [320] that contains a set of memory

safety exploits. Lastly, we validate the crash consistency of SPP’s metadata using the

pmemcheck [240] tool. SPP incurs low performance overheads and requires no source
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Figure 3.8: The SPP PM pointer representation (SPP PMEMoid) is used to derive the

tagged pointer to the PM object (SPP pointer representation). On a PM access, the PM bit

and the pointer tag get masked while the overflow bit is preserved. If the access is valid (in

green), the overflow bit is 0, and the access succeeds. In the case of a PM buffer overflow

(in red), the overflow bit is 1, which makes the address invalid.

code modifications while preserving the crash consistency property.

Altogether, SPP makes the following contributions:

• SPP introduces safe persistent pointers (§ 3.2.3), a spatial memory safety solution

against PM buffer overflows for PMDK applications. They are the first tagged pointer

scheme specifically designed for PM. They consist of an enhanced, durable represen-

tation of PMDK’s persistent pointers and a native-pointer tagging scheme.

• SPP offers a configurable pointer encoding scheme, inspired by DeltaPointers [170],

to fit the PM management requirements of every PM application. The number of bits

in the pointer tag is adjustable and and can be easily tuned without breaking the

compatibility with pre-compiled, uninstrumented libraries.

• We implement the SPP prototype and design our compiler optimizations based on

LLVM (§ 3.2.4). Our evaluation (§ 3.2.5) indicates that SPP is a practical approach

that prevents PM buffer overflow exploits while incurring low performance and neg-

ligible space overheads.

3.2.2 Overview

SPP is a system that provides spatial memory safety for PMDK-based applications. It

requires no source code modifications and introduces minimal performance and space

overheads. Thus, SPP is a practical PM safety solution, in contrast to the state-of-the-



56 Chapter 3. Memory Safety for Persistent Memory

SPP
transformation

pass

Transformed
LLVM

intermediate
representation

Hardened
binary

SPP LTO
pass

SPP
runtime
library

PMDK with
SPP

wrappers

External
libraries

Compilation phase Linking phase

Unmodified
persistent
memory

application

LLVM
intermediate

representation

LLVM
optimizer

LLVM LTO
passes

Figure 3.9: SPP overview (yellow colored boxes denote the SPP components): The

unmodified PM application is converted to its LLVM IR, where the SPP transformation

pass transforms the runtime function calls for the pointer tag management. At the link

phase, SPP applies its optimizations via its LTO pass, and the transformed application is

linked against the SPP runtime library, adapted PMDK version and external libraries to

produce the final binary.

art approaches that incur significant space and runtime overheads [30, 198] or demand

the usage of specific memory safe languages [99].

Figure 3.8 captures the SPP PM pointer representation (SPP PMEMoid), the tagged

pointer structure and how SPP handles PM accesses. Precisely, SPP enhances the SPP

PMEMoid with a field containing the object size. This persistent data structure is used

to generate the tagged pointer [170] to a PM object. Importantly, SPP sets and up-

dates the SPP PMEMoid in a crash-consistent manner either by wrapping its content

inside transactions or through atomic operations. In the case of a PM access, SPP pre-

serves only the virtual address and the overflow bit of the tagged pointer. If the access

lies within the bounds of the PM object, the overflow bit is clear, and the access pro-

ceeds normally using the virtual address. However, if the pointer is beyond the object’s

boundaries, the overflow bit is set through the SPP pointer tag operations, rendering

the address invalid. Thus, the upcoming access triggers a fault.

An overview of SPP’s workflow is shown in Figure 3.9. An unmodified PM applica-

tion is initially instrumented with SPP’s transformation pass that inserts the PM pointer

tag operations and the runtime checks. The instrumented code is then linked against

SPP’s runtime library and the modified PMDK that includes the enhanced PM pointer

representation and the adapted PM management functions. Note that the program-

ming model and the APIs of PMDK remain intact. During the linking process, SPP’s

link time optimization (LTO) pass scans the application for external function calls and

masks away the tag from the PM pointers passed as arguments to preserve compati-

bility. Thus, SPP can be seamlessly integrated in existing workflows and deployments,
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providing complete control of the memory safety-critical code parts.

3.2.2.1 System Model

Fault model. SPP protects against spatial memory safety bugs on PM. It detects PM

buffer overflows in PMDK-based applications while preserving crash consistency for

both application data and metadata. SPP correctly reconstructs tagged pointers across

crashes and provides complete code coverage, including the application’s recovery code

paths.

Usage model. SPP aims to be integrated into production deployments of PMDK-based

systems. It can be tuned to fit multiple use cases. SPP also provides complete control

to the developers to define the memory safety-critical code files to further reduce the

instrumentation and run-time overheads.

Programming model. SPP supports the native PM programming model and the PMDK

APIs. It provides spatial memory safety against PM buffer overflows for PMDK applica-

tions.

3.2.2.2 Design Goals and Key Ideas

#1: Transparency. For practical memory safety, SPP should transparently provide

memory safety using the native PMDK API, similarly to prior approaches [30, 198,

240]. This is essential to ease the integration into existing toolchains and promote

applicability.

Approach: SPP adapts the PMDK functions for PM object management and transac-

tional logging to consider the additional size field of the PM pointer representation

without altering the APIs (§3.2.4). It further adapts PMDK to construct PM pointers

with the SPP’s encoding transparently.

#2 Performance and compatibility. SPP aims to be deployed in performance critical

environments. To this end, SPP must (i) keep runtime and storage overheads at the

bare minimum levels while offering high code coverage, and (ii) be compatible with

existing, uninstrumented, external libraries.

Approach: To minimize the performance and storage overheads, SPP includes opti-

mizations (e.g., pointer tracking) and limits its metadata to the size field (8 B), added

to the PMEMoid. Further, to preserve compatibility, SPP identifies the external library

calls and removes the tag from their pointer arguments. Thus, linking against shared li-

braries is supported without recompilation. Note that SPP cannot provide any memory

safety for the code paths of the external functions.
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#3: Heterogeneous memory systems. Modern applications are designed to operate

on heterogeneous systems that combine PM and volatile memory [117, 193, 253, 256].

A program accesses both PM and volatile memory via native 64-bit pointers. Therefore,

SPP should distinguish between the instrumented PM pointers and the uninstrumented

volatile memory pointers.

Approach: To identify pointers to PM, SPP sets their most significant bit. In that way,

SPP tags and instruments exclusively the PM pointers. Additionally, SPP preserves

the volatile memory management of an application intact, since in current systems,

pointers utilize only 48-57 bits [245].

#4: Crash consistency. PM applications are designed to recover from crashes and

maintain the PM data consistent. This process requires designated recovery code paths,

which inevitably include PM accesses. Therefore, SPP should be able to reconstruct

tagged PM pointers correctly to provide memory safety across restarts and cover the

recovery paths.

Approach: SPP enhances the PM pointer representation with a field holding the size

of the PM object. This representation is updated in the adapted PM management op-

erations using atomic operations or PMDK software transactions. Thus, SPP is able to

recreate the PM pointer tags across reboots/crashes since the PM object size informa-

tion is durable and valid.

3.2.3 Design

SPP enforces a tagged pointer (§ 3.2.3.1) approach to detect PM buffer overflows in

PMDK applications. SPP consists of (i) an adapted PMDK version (§ 3.2.3.2), (ii) static

analysis compiler passes (§ 3.2.3.3), and (iii) a runtime library (§ 3.2.3.4).

3.2.3.1 SPP Pointer Representation

SPP introduces the first tagged pointer scheme for PM. SPP encodes memory safety

metadata in the upper bits of each PM pointer [245], as performed in prior tagged

pointer approaches [170, 172, 216, 326]. More specifically, a native 64-bit PM pointer

is split into four distinct parts (Figure 3.8). Its most significant bit (MSB) is set to 1

to indicate that it points to a PM address. The following bits contain an overflow bit

and the tag, which has a configurable size. The lower bits maintain the actual virtual

address of the pointer in the mapped PM file. SPP’s pointer tag specifies the current

distance from the upper bound of the PM object. SPP initializes it as the negated allo-

cated object size, similarly to Delta pointers [170], and updates it on pointer arithmetic

operations.
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Figure 3.10: SPP pointer management: On each pointer arithmetic operation, the

respective action is applied to the tag of the pointer (b). When a pointer surpasses the

object’s upper bound, the overflow bit gets implicitly set (c).

Figure 3.10 presents an example of an SPP pointer with 24 tag bits for a 42 B object.

Initially, the pmemobj direct function receives the enhanced PMEMoid of the object

and returns the tagged pointer (Figure 3a). On every pointer arithmetic operation, the

virtual address modification is also applied to the tag (Figure 3b). Once the pointer

surpasses its upper bound, the overflow bit gets set as shown in Figure 3c. Thus, on

an out-of-bounds access, an error is triggered since the pointer is implicitly invalidated

due to the overflow bit. This means that SPP requires no explicit, actively-performed

runtime bound checks. However, if subsequent pointer arithmetic operations bring the

pointer back within its assigned boundaries, the overflow bit gets unset, and the pointer

becomes valid again.

SPP’s tag encoding is designed to detect PM buffer overflows while aiming to re-

duce the performance and space overheads. To incorporate protection against addi-

tional memory safety bug types, different encoding schemes that maintain the loca-

tion of memory safety metadata (e.g., lower bound) [172, 326] or fat-pointer ap-

proaches [322] can be adapted for PM. In every case, the system needs to consider

the crash consistency of the additional metadata.

Further, if the usable pointer bits were not limited, SPP could include a second part

in the tag for the lower bound. However, this approach would significantly limit the

buffer size, making the approach non-practical. It would also require further manipu-

lation of the tag on pointer operations, which would introduce additional overheads.

3.2.3.2 PMDK Modifications

SPP adapts PMDK to correctly construct the pointer tags even across restarts or crashes.

SPP enhances the PM pointer representation (PMEMoid) with an additional field main-

taining the size of the PM object, incurring minimal space overheads. This choice also
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improves the access locality and reduces cache pollution, as SPP does not need to

search in disjoint memory areas to fetch the metadata.

1 struct PMEMoid {

2 uint64_t pool_uuid_lo; // pool id of the pool

3 uint64_t off; // offset of the PM object

4 uint64_t size; // size of the PM object

5 };

To ensure fault tolerance, PMDK performs the PM object allocation and management

either with atomic operations or software transactions. A PMEMoid is considered valid

only after its offset field is set. Therefore, SPP adapts the PM management functions

(e.g., alloc, realloc) to set the size field, given as an argument to each PM management

function call, right before the offset field, thus preserving the semantics of PMDK. In

a similar fashion, when a PMEMoid is modified inside a PMDK transaction using the

dedicated PMDK API, SPP’s size field is logged to preserve crash consistency.

PMDK uses PMEMoids to locate objects across the runs of an application. It exposes

the pmemobj direct function that converts a PMEMoid to a 64-bit pointer to the PM

object. SPP modifies this function to consider the size field of PMEMoid and return a

tagged pointer (§ 3.2.3.1). The additional operations to construct the PM pointer are

presented below:

1 #define ADDRESS_BITS (PTR_SIZE - TAG - OVERFLOW - PM_BIT)

2 #define PM_PTR_BIT ((uint64_t)1 << (PTR_SIZE - 1))

3 #define OVERFLOW_BIT (∼((uint64_t)1 << (PTR_SIZE - 2)))

4 ...

5 void* pmemobj_direct(PMEMoid oid) {

6 //calculate untagged PM pointer

7 ...

8 //Take the two’s complement of the size

9 uint64_t tag = (∼oid.size + 1) << ADDRESS_BITS;

10 return (void*)(pm_ptr | tag & OVERFLOW_BIT | PM_PTR_BIT);

11 }

Despite these changes, SPP does not alter the semantics of the PM programming model.

It leaves both the atomic and the transactional APIs [242] intact, supports the type-

safety macros [298], and provides multi-threading support with the same thread-safety

guarantees with PMDK. Note that SPP’s approach is not bound to PMDK but can be

adapted for PM programming frameworks following similar principles.

C++ support. PMDK exposes a C API. However, the imposed limitations by the C

semantics led Intel to develop C++ bindings in libpmemobj-cpp [129]. This library

enriches libpmemobj with C++ features such as containers and smart pointers. To
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1 PMEMoid obj_id;

2 pmemobj_alloc(pool, &obj_oid, size, ...);//alloc a PM Object

3 void* pm_ptr = pmemobj_direct(obj_id);//get tagged ptr

4 pm_ptr += 42;//apply ptr arithmetics

5 __spp_updatetag(pm_ptr, /*off*/ 42);//update the tag

6 ...

7 __spp_checkbound(pm_ptr, sizeof(int));//impl. bounds check

8 int x = (int)*pm_ptr;

9 ...

10 clean_pm_ptr = __spp_cleantag(pm_ptr);//tag masking

11 uint64_t ptrtoint = (uintptr_t)clean_pm_ptr;

12 ...

13 internal_foo(pm_ptr);//internal function call

14 clean_pm_ptr = __spp_cleantag(pm_ptr);//tag masking

15 external_foo(clean_pm_ptr);//external function call

16 ...

17 __wrap_memcpy(src_pm_ptr, dst_pm_ptr, 42);//memcpy call

18 __wrap_strcpy(src_pm_str, dst_pm_str);//strcpy call

Listing 3.2: SPP code transformation: modifications are highlighted in blue.

provide complete support for applications developed in C++, SPP adapts the base

class for PM pointers to transparently use the modified pmemobj direct function and

consider the additional size field of the PMEMoid.

3.2.3.3 Compiler Passes

In this subsection, we explain the design and purpose of SPP’s compiler passes that are

presented in Figure 3.9.

Transformation pass. The transformation pass of SPP instruments the target applica-

tion by injecting the appropriate function calls to update the PM pointer tag, propagate

its value and perform its masking. It is placed before the LLVM optimizer [283] in the

compiler pipeline (see Figure 3.9) and identifies the instructions that involve pointer

arithmetic operations and updates the tag accordingly (Listing 3.2 Line 5). It further

cleans up the tag prior to ld/st instructions to perform the bound check implicitly on

the upcoming PM access (Listing 3.2 Lines 7-8).

However, in LLVM intermediate representation (IR) there is no distinction between

the pointers to volatile memory and those to PM. SPP addresses this by performing

static analysis on the produced IR: it tracks the pointer origins and skips inserting run-

time checks to operations for pointers that are statically identified to point to volatile

memory. Thus, SPP can remove the instrumentation for pointers to volatile memory.
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Similarly, for pointers that are guaranteed to point to PM, SPP can directly perform the

tag cleaning without checking the PM bit. For pointers whose type cannot be deduced

by SPP on the compilation, SPP preserves their instrumentation, and the runtime op-

erations are performed based on their PM bit.

Additionally, pointers can be converted to integers and be used as operands in math-

ematical or comparison operations. The insertion of the tag can affect the correctness

of these calculations. Therefore, SPP masks the tag of the pointer prior to the pointer-

to-integer conversion (Listing 3.2 Line 10).

LTO pass. SPP’s link-time-optimization (LTO) pass ensures compatibility with non-

instrumented shared libraries [216]. It precedes almost all LTO passes [282] in the

LTO optimization pipeline (see Figure 3.9). It scans through the application code and

locates the external function calls with pointer arguments. Right before these calls,

the LTO pass masks the pointer tag and passes the untagged pointers to the external

function (Listing 3.2 Lines 14-15).

Further, SPP interposes the memory management and string functions (e.g., mem-

cpy, strcpy) with wrapper functions (Listing 3.2 Lines 17-18). The wrappers verify the

validity of the accessed address ranges based on the function parameters and perform

the respective operation if no violation occurs.

3.2.3.4 Runtime Library

SPP’s runtime library contains the implementation of the functions that are injected

through the compiler instrumentation. These functions operate on SPP pointers to

clean and update the tag after they verify that the pointer points to PM.

Precisely, the spp cleantag function returns the PM pointer after masking out its

tag and PM bit as shown below:

1 /* PTR_BITS denote the bits for the virtual address */

2 #define PTR_MASK (1ULL << 62) | ((1ULL << PTR_BITS) - 1)

3 ...

4 void* __spp_cleantag(void *ptr) {

5 /* check if ptr points to PM */

6 if (!__spp_is_pm_ptr(ptr))

7 return ptr;

8 /* keep the overflow and the virtual address bits */

9 return ptr & (PTR_MASK);

10 }

Thus, the application gets the actual virtual address, which can be normally accessed

through ld/st instructions. The overflow bit is preserved so that any subsequent mem-

ory access through an overflown pointer is detected.
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Further, the spp updatetag function is invoked when a tag needs to be updated

due to a pointer arithmetic operation. The provided offset to this function is determined

via the static analysis compiler pass. The tag of the given pointer is extracted and

incremented by the offset value. If a PM pointer overflows, this operation implicitly

sets the overflow bit. After the tag update, the new value is merged into the PM pointer,

which is returned back to the application, as presented here:

1 void* __spp_updatetag(void *ptr, int64_t off) {

2 /* check if ptr points to PM */

3 if (!__spp_is_pm_ptr(ptr))

4 return ptr;

5 /* extract and update the tag */

6 int64_t tag = (int64_t)__spp_extract_tag(ptr);

7 tag = tag + off;

8 /* return the updated tagged pointer */

9 return (void*)__spp_insert_tag(ptr, tag);

10 }

Additionally, the runtime library implements the spp checkbound function, shown

below. It is called prior to every PM access. It updates the tag based on the size

of the dereferenced pointer type since this indicates the upper bound of the memory

access. After the update, the PM pointer gets masked and is returned to the application

to perform the intended access. If the overflow bit is set, this access will trigger a

segmentation fault or a bus error.

1 void* __spp_checkbound(void *ptr, size_t deref_size) {

2 /* check if ptr points to PM */

3 if (!__spp_is_pm_ptr(ptr))

4 return ptr;

5 void* upd_ptr = __spp_updatetag(ptr, deref_size - 1);

6 return __spp_cleantag(upd_ptr);

7 }

Lastly, the SPP runtime library includes the wrapper functions for memory intrinsic

(e.g., memcpy, memmove) and string management functions (e.g., strcpy, strcmp).

These functions perform memory accesses to specified address ranges. Therefore, SPP

calculates the maximum addresses they intend to access for each PM pointer argument

and updates the tag(s) before the actual function call. If any of the addresses lies

outside the defined PM objects’ boundaries, the respective pointer’s overflow bit is set.

Then, SPP masks out the tags and the PM bit and executes the built-in function. This

execution will raise an error if any masked pointer is invalid due to the overflow bit,

preserving SPP’s memory safety properties.
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3.2.3.5 Optimizations

SPP aims to provide spatial memory safety for PM with low overheads. To this end,

the instrumentation includes optimizations to reduce the SPP function calls (e.g., for

pointers to volatile memory) and merge or omit instrumentation steps whenever pos-

sible (e.g., constant pointer increments in a loop).

Pointer tracking. SPP’s compiler passes perform pointer origin tracking and divide

the pointers into three categories based on the memory type they point to, namely,

volatile, persistent, and unknown. The category of each pointer is decided based on

the API that generates it. More specifically, in SPP, we refer to the pointers returned

by the traditional volatile memory management APIs (e.g., malloc, realloc, new) as

volatile. Pointers referring to C++ Vtables and error handling are also known to be

volatile. Equivalently, pointers that were constructed by specific PMDK functions (e.g.,

pmemobj direct) are characterized as persistent. The remaining pointers (e.g., pointers

loaded from memory) are considered unknown. SPP also tracks the derived pointers

(e.g., via pointer arithmetics) and adds them in the category of their predecessor, if

specified.

SPP’s LTO pass proceeds one step further and analyzes the function pointer argu-

ments. It scans the calling sites of each function and records the type of the pointer

arguments passed by the caller. With this method, SPP can determine the category of

a function pointer argument, provided that all the callers use pointers falling into a

single category.

The benefit from the pointer classification is twofold. First, SPP can omit the in-

strumentation for the volatile pointers. avoiding multiple redundant function calls in-

jection. Second, SPP can skip the PM bit check in its hook functions when operating

on known persistent pointers. For pointers whose category cannot be determined (un-

known), SPP keeps the instrumentation, including the runtime pointer type checks.

Currently, the pointer tracking is designed for PMDK APIs. However, it can be

adapted and incorporated into different PM frameworks that can benefit from or re-

quire the characterization of whether a pointer points to PM or volatile memory.

Bound checks preemption. SPP leverages the static analysis to identify basic code

blocks and simple loops that include consecutive updates on the same pointer with

constant offsets or following a known pattern during compile time. An example of

the bound check preemption is shown below. In this case, SPP’s transformation pass

calculates the maximum pointer offset and performs a single tag update followed by a

dummy memory access on the updated pointer (blue highlight). This memory access

acts as a bound check. It silently verifies the validity of the upcoming memory accesses

related to this pointer, and, thus, SPP can omit the associated tag updates and bound
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checks in the specified code block (red highlight).

1 void* pm_ptr = pmemobj_direct(obj_id); // get tagged ptr

2 __spp_updatetag(pm_ptr, /*total_off*/ 16);

3 __spp_checkbound(pm_ptr, sizeof(int));

4 pm_ptr += 8;

5 __spp_updatetag(pm_ptr, /*current_off*/ 8);

6 __spp_checkbound(pm_ptr, sizeof(int));

7 int x = (int)*pm_ptr;

8 pm_ptr += 8;

9 __spp_updatetag(pm_ptr, /*current_off*/ 8);

10 __spp_checkbound(pm_ptr, sizeof(int));

11 int y = (int)*pm_ptr;

3.2.3.6 Additional Design Details

Crash consistency. SPP preserves the crash consistency property for the PM data.

SPP adapts PMDK internally so that the added PMEMoid field is set and updated in a

fail-safe manner when the application uses the dedicated PMDK APIs.

Precisely, in PM allocations, SPP atomically sets the size field of the PMEMoid before

PMDK validates the object allocation by assigning it with its offset. This is achieved

through writing the size object in the redo log, which ensures that the setting of this

field precedes the setting of the offset.

For the case of reallocation of a PM object, the entire PMEMoid structure is captured

in a log. Since the amount of logged bytes is determined by the size of PMEMoid object,

SPP does not have to interfere with this operation, further than simply setting the new

size of the reallocated object.

Lastly, for the general case that a PM object containing a PMEMoid needs to be snap-

shotted in a transaction, the additional 8 B, that SPP introduces, are implicitly added

in the transactional undo log. This is achieved with the help of the type system that

accounts for these bytes when calculating the PMEMoid size, e.g., with the sizeof()

function.

However, if a PMEMoid is updated manually, it must be wrapped in a transaction

and be snapshotted in the undo log by the developer. Thus, in case of an unexpected

crash, the recovery process of PMDK will restore the logged value.

Address space layout. Reserving a part of the pointer for the PM bit and the tag

reduces the number of available bits leading to virtual address space limitation. This

limitation only affects the regions where a PM pool is mapped. Therefore, we configure

our PMDK version to map the PM pools in the lower part of the virtual address space.

The exact address space limit depends on the configurable tag size so that every PM
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object can be addressed using (64− tag bits− 2) bits. Volatile memory management

can utilize 63 out of the 64 bits (excluding the PM bit), which are sufficient for current

systems [245]. In this case, the address space layout randomization (ASLR) is disabled

for PM mappings. While ASLR has a broader memory safety spectrum than SPP (e.g.,

use-after-free), its guarantees are probabilistic. Instead, SPP offers deterministic PM

buffer overflow protection. Overall, a more sustainable future solution would be to use

fat-pointers (e.g., 128 bits) where the first 64 bits contain the safety metadata. This

approach comes with higher performance overheads as it requires additional memory

accesses for metadata fetching.

3.2.3.7 Limitations

SPP detects PM buffer overflows in PMDK applications, provided that PM is managed

with the PMDK APIs. SPP comes with inherent limitations due to (i) limited pointer

bits, (ii) potential arbitrary pointer operations and (iii) the requirement for compatibil-

ity with pre-compiled shared libraries.

PM object & PM pool size. In SPP design, we face the limitations imposed by the

64-bit native pointers. The PM and overflow bits decrease the number of available bits

to 62, which should enclose both the tag and the virtual address of the PM objects. The

number of tag bits limits the PM object size, while the virtual address space bits limit

the maximum size of a PM pool. To deal with this limitation, a redesign to store the

memory safety metadata in disjoint memory locations during runtime can be consid-

ered, but this inevitably would increase the performance costs due to frequent lookups,

additional memory loads, and cache pollution.

Targeting for minimal overheads, in our approach, we configure our PMDK version

to set the maximum PM object size to 1<<tag bits bits and the maximum PM pool size

to 1<<62-tag bits bits. However, SPP allows for a configurable amount of tag bits,

which can be tuned by the developers. Notably, regarding the PM space overheads,

SPP’s tag-based approach is immune to the object size and only depends on the amount

of PM pointers that an application is using. Importantly, many PM applications often

deal with small to medium-sized objects. To highlight this, we apply SPP on sample

applications shipped with PMDK and on a key-value store [117]. We observe that SPP

provides complete coverage for these applications with minimal PM space overheads

on average.

In summary, the use of tag bits in SPP presents certain tradeoffs. SPP is designed

for scenarios where the benefits of fast runtime bounds checking outweigh the minimal

PM overhead and the PM object size limitations introduced by the number of tag bits.

It is particularly effective for applications dealing with sensitive data or those requir-



3.2. SPP: Safe Persistent Pointers for Memory Safety 67

ing high reliability, where the cost of potential memory safety violations far exceeds

the PM space and object allocation size limitations. However, for extremely memory-

constrained environments or applications requiring more flexibility in the PM pool and

PM object size, SPP’s approach may not be ideal.

Pointer operations. Typically, the pointer subtraction is performed after converting the

pointers to integers based on the LLVM standard. Such operations on tagged pointers

can lead to incorrect results. Therefore, SPP masks the pointer before the subtraction

to provide the expected operation outcome.

Similarly, in cases of pointer comparisons, SPP also masks the pointers to ensure

correctness. This process does not affect SPP’s guarantees since the converted values

are only used for the comparison and are never dereferenced.

Additionally, when an application performs a pointer to integer operation, SPP pre-

serves only the virtual address bits. Thus, the application receives the expected value.

However, when an integer is converted to a pointer, SPP cannot provide its memory

safety guarantees since the integer does not contain a tag, even if it was derived from

a previously tagged pointer. The latter case could be addressed by tracking the origin

and type of such pointers (e.g., with the use-def chain of LLVM [300]) and maintaining

the tag in a data structure to restore it in an upcoming integer-to-pointer conversion.

In general, arbitrary pointer operations can result in an out-of-bounds pointer by

an offset that resets the overflow bit, hindering SPP from reporting the memory safety

violation. A typical example is when the offset of a pointer exceeds the representation

range of the address bits. Currently, this case is not handled explicitly, but SPP can be

enhanced to either emit an error or manually set the overflow bit. The former would

be a better approach to prevent any further pointer misuse since such actions mostly

originate from malicious activities.

Lastly, SPP does not protect against arbitrarily generated pointers that might end up

landing on PM, as it can be neither predicted nor prevented. Similar limitations apply

in most memory safety approaches.

Shared libraries. SPP masks the pointers passed to shared libraries to preserve correct

functionality. For the pointers returned from shared libraries, SPP cannot provide any

memory safety guarantees as they are not guaranteed to be tagged, and the way they

originated within the shared library is unknown. Therefore, SPP cannot assign them

with a tag. SPP provides memory safety guarantees for PM pointers generated and

preserved in the compilation units it has access to.

Additionally, SPP is not currently able to identify whether a shared library is instru-

mented because SPP treats each compile module on its own. Therefore, the functions

of shared libraries that an instrumented application is linked against are seen as ex-
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ternal. SPP precedes calls to these functions with a tag-cleaning operation for their

pointer arguments. Thus, despite the libraries being potentially instrumented, the tag

is not propagated to them by the application, and memory safety guarantees cannot be

ensured in such cases.

3.2.4 Implementation

SPP is built based on PMDK v.1.9 and LLVM v.12.0. It consists of (i) a static analysis

transformation pass, (ii) a link-time-optimization pass, and (iii) a runtime library.

3.2.4.1 Compiler Support

Transformation pass. The SPP static analysis transformation pass scans the applica-

tion and inserts the appropriate SPP runtime function calls. The pass operates on the

LLVM Intermediate Representation (IR) of every translation unit and is placed before

the LLVM optimizer in the compiler toolchain [283].

Initially, the SPP transformation pass tracks the pointer variables of the IR. Global

pointers and pointers to volatile heap-allocated objects are volatile, while pointers de-

rived through the pmemobj direct function are persistent. The rest are classified as

unknown. Following, each instruction of the module is examined. Based on the in-

struction type, the SPP’s transformation determines where to insert the appropriate

callsites to SPP’s functions in the target module’s IR.

More precisely, when the pass locates a pointer arithmetic operation, or a

GetElementPtrInst (GEP) in LLVM terminology, it calculates the offset of the operation

and inserts a call to the spp updatetag to update the tag after the GEP, as shown in

Figure 3.10. Similarly, on ld/st instructions, SPP updates the pointer tag based on the

pointer type size and masks the pointer for the actual dereference by inserting a call to

spp checkbound, as described in § 3.2.3.4. Further, calls to spp cleantag are in-

jected before the pointer-to-integer conversions (PtrToIntInst) to preserve correct code

behavior. Lastly, SPP’s transformation pass masks the pointer for function arguments

passed by value (Attr::ByVal) since they implicitly perform an object copy.

LTO pass. The link-time-optimization (LTO) pass of SPP performs an analysis and in-

strumentation of the whole program during the linking phase for further optimizations.

In our implementation, we use the gold linker [79, 188].

We place our pass before the LLVM inliner in the pipeline [282]. SPP compiles its

runtime functions into object files. These files are linked against the target application’s

IR. In this way, SPP allows LLVM to apply its effective optimizations and perform the in-

lining of SPP’s functions whenever possible. SPP hints the compiler to always inline
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its functions and prevents them being optimized out with the used attribute.

Further, the LTO pass performs a more exhaustive pointer tracking since it iterates

over all the compile units of the application. Thus, SPP classifies further volatile and

persistent pointer arguments by examining each function’s calling sites. Using this infor-

mation, it omits the pointer type check in the hook functions for the identified persistent

pointers. Apart from that, this tracking allows SPP to prune injected calls when they

have a volatile pointer as an argument whose category could not be determined via the

transformation pass.

3.2.4.2 Runtime Library

PMDK wrappers. SPP includes wrappers for the core PMDK operations (i.e., PM heap

management). The exposed PMDK API remains intact. The only deviation is that the

environment variable PMEM MMAP HINT is set to 0 so that the PM pool is mapped to the

lower part of the virtual address space.

SPP’s wrappers are responsible for setting and updating the introduced 64-bit size

field of a PMEMoid without violating the crash consistency property. Both the atomic

and the transactional operations that affect the object’s size (e.g., alloc, realloc) are

considered, covering all the PM heap allocations. Precisely, for the persistence of the

pointers, SPP provides the same atomicity guarantees with PMDK. In case of an object

(re)allocation outside a PMDK transaction, SPP leverages the PMDK redo logging and

performs an atomic operation that validates the (re)allocation after setting the size

field in the PMEMoid. When the object management is performed within a PMDK

transaction, SPP intercepts the functions that perform the snapshotting to ensure that

the additional size field is included in the undo log so that it can be restored in case of a

crash during the transaction. SPP also performs bounds checks to prevent overflows on

the snapshotted objects that could lead to information leakage through the transaction

logs.

Lastly, SPP adapts the pmemobj direct() function to construct a tagged pointer

from a PMEMoid (§ 3.2.3.2). It leverages the size field of the PMEMoid to create the tag

and returns the tagged pointer to the caller.

Hook functions. SPP’s runtime library contains a set of hook functions that are injected

in the LLVM IR of the instrumented code. These functions update and mask the tag

of PM pointers, as explained in § 3.2.3.4. Apart from the described hook functions,

SPP implements equivalent functions with a direct suffix that omits the pointer type

check. They are only used when a pointer is determined to point to PM.

SPP handles separately the memory management functions, e.g., memcpy, memset

and memmove. For each pointer operand, SPP injects a call to its spp memintr check
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function. This function updates the tag based on the maximum address that the func-

tion operates on and masks the pointer. Then, the masked pointer is passed to the

original memory management function. If the tag update sets the overflow bit, a fault

will be triggered due to the invalid pointer during the function execution, showcasing

the overflow.

Similarly, SPP interposes the common string manipulation functions (e.g., strcpy,

strcat) at link time. The runtime library includes wrapper functions that perform the

tag update and tag masking based on the arguments of each string function and then

call the original function.

Lastly, SPP ensures compatibility between instrumented code and pre-compiled,

uninstrumented libraries via its spp cleantag external function. It is injected be-

fore the calls to external functions and removes the tag and the PM bit from the pointer

arguments promoting interoperability. However, SPP has a caveat; a tagged PM

pointer can be mistakenly passed to an external function as part of a struct since SPP

currently does not perform any intra-object analysis.

3.2.4.3 Optimizations

Pointer tracking. SPP compiler passes perform pointer tracking to differentiate be-

tween volatile and persistent pointers. This is to avoid redundant attempts to perform

bounds checking and tag cleaning on tag-free volatile pointers.They iterate over each

translation unit in the LLVM IR and categorize each pointer based on how it is de-

rived. More specifically, if a pointer is obtained via the pmemobj direct of PMDK (or

its equivalent get() function in C++), it is considered persistent. Similarly, pointers

created via volatile allocation functions (e.g., malloc), pointers to C++ VTables (e.g.,

vfn or vtable prefixed), or pointers used by common functions that are known to point

to the volatile heap (e.g., pthread create) are classified as volatile. Further, pointers

returned by external functions are accounted as volatile to avoid the instrumentation

since they are not tagged. These pointer categories are also propagated via the GEP

and BitCast LLVM instructions. The remaining pointers are characterized as unknown.

This classification enables SPP to remove useless function calls that are injected for

volatile pointers and, equivalently, to omit the pointer type check for the persistent ones

by using the direct suffixed version of the hook functions. For the pointers with un-

known type, SPP preserves the instrumentation and checks the PM bit to determine

their type and perform the appropriate action.

Bound checks preemption. During development, we observed that many pointers

are consecutively updated and dereferenced in a single LLVM BasicBlock. Therefore,

instead of performing a costly tag update and masking for each GEP and ld/st, SPP
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calculates the maximum offset that is added to the pointer and updates the tag only

once before the first GEP. Then, it places a dummy ld to implicitly perform the bound

check and replaces the uses of the pointer with the masked one, which gets exempt

from further instrumentation. The injected ld is tagged volatile to avoid being opti-

mized out by the compiler.

To further reduce the SPP’s overheads, SPP hoists bound checks out of loops when-

ever possible. SPP checks every monotonic loop for existing loop-invariant expressions

referring to pointers using LLVM’s scalar evolution. If a pointer can be hoisted, SPP

calculates its max offset that is used for dereference in the loop and places a tag up-

date and a dummy ld in the loop pre-header. In this optimization, the ld is also tagged

volatile. Thus, SPP performs the pointer instrumentation only once rather than at every

loop iteration.

However, due to the bound check preemption, SPP might indicate a false code lo-

cation for an overflow, pointing to the injected dummy ld. To address this issue, bound

check preemption optimizations can be optional, and the programmer can choose to

enable them depending on the target environment.

3.2.5 Evaluation

We evaluate SPP on the following three aspects:

• Performance & space overheads: We measure the performance (§ 3.2.5.2) and

space (§ 3.2.5.3) overheads of SPP using PMDK’s microbenchmarks, a persistent

key-value (KV) store, designed and optimized for PM, namely pmemkv [117] and

a port of Phoenix 2.0 [251] benchmark suite to PM.

• Effectiveness: We evaluate the capability of SPP in detecting PM buffer over-

flows (§ 3.2.5.4). We use the RIPE framework [320], where we focus on buffer

overflow exploits. We also detect memory safety bugs in the PMDK examples.

• Crash consistency: We verify the crash-consistency property (§ 3.2.5.5) with

Valgrind’s pmemcheck tool [240].

3.2.5.1 Experimental Setup

Testbed. We conduct our experiments on a two-socket server machine equipped with

Intel(R) Xeon(R) Gold 6326 CPU (16 cores), 64 GB (4 channels × 16 GB/DIMM)

DRAM and 1 TB (4 channels × 256 GB/DIMM) Intel Optane DC DIMMs per socket.

PM is configured in App-Direct mode [127]. The machine is running NixOS 22.05 with

kernel version 5.15.49.
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Variant Description

PMDK [239] PM application using unmodified PMDK

SAFEPM [30] PM application instrumented with SAFEPM

SPP PM application instrumented with SPP

Table 3.6: Benchmarking variants
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Figure 3.11: Performance overheads (throughput) of persistent indices for SPP and

SAFEPM w.r.t. the native PMDK execution.

Variants. We perform our experiments with the variants of Table 3.6. As our baselines,

we consider the application compiled with (i) native PMDK, and (ii) SAFEPM sanitizer

enabled. We set the optimization level to O2 and use 26 tag bits. The results present

the average of 3 runs unless otherwise specified.

3.2.5.2 Performance Overheads

Persistent indices. To measure the performance overhead, we use pmembench [126].

For each variant of Table 3.6, we execute experiments on the PM indices of PMDK,

namely ctree, rbtree, rtree and hashmap, with a single query type (insert, get, remove)

per run. Each workload consists of one million queries. The keys are 8 B and follow a

uniform distribution.

Figure 3.11 reports the normalized performance overhead for SAFEPM and SPP

having the native PMDK as a baseline. Overall, SPP achieves 9.25%, 13.75%, and

10.5% lower average throughput compared to PMDK for each query type. The respec-

tive values for SAFEPM are 101%, 37.75%, and 101.75%. The large overhead differ-

ence comes from SPP’s compiler optimizations and tagged pointer utilization – SPP’s

LLVM pass removes redundant runtime checks on volatile pointers and unlike SAFEPM,

SPP does not access remote memory regions for bounds information at every ld/st.

Further, pmembench has limited external function calls. This allows SPP to perform

better pointer tracing and reduce the tag-cleaning operations for external functions.

Additionally, compared to DRAM memory safety approaches, SPP introduces lower rel-



3.2. SPP: Safe Persistent Pointers for Memory Safety 73

1 2 4 8 16 320.0

0.5

1.0

1.5

2.0

2.5
Random reads/writes (50%-50%)

1 2 4 8 16 320.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Random reads

1 2 4 8 16 320.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Random reads/writes (95%-5%)

SafePM SPP

1 2 4 8 16 320.0
0.5
1.0
1.5
2.0
2.5

Sequential reads

Sl
ow

do
wn

 w
.r.

t. 
na

tiv
e 

PM
DK

Sl
ow

do
wn

 w
.r.

t. 
na

tiv
e 

PM
DK

Threads Threads

Figure 3.12: Performance overheads (throughput) of SPP and SAFEPM w.r.t. the

native PMDK execution for pmemkv.

ative overheads since the performance impact of tag updating and cleaning operations

in SPP is proportionally lower due to the slower PM access. For certain experiments,

SPP approaches the native PMDK performance having an overhead of around 6%. This

indicates the practicality of SPP.

Persistent KV store. We measure the performance impact of SPP on pmemkv [117] us-

ing its non-experimental, concurrent, persistent engine [241]. For our benchmarking,

we use pmemkv-bench [111], which is based on the db bench. We consider four work-

load types: (i) update intensive (50%R-50%W), (ii) read intensive (95% R-5%W),

(iii) random reads and (iv) sequential reads. We perform 10M operations for each

workload. The key size is set to 16 B and the value size to 1024 B. Prior to each run, we

insert 1M keys into the KV store.

Figure 3.12 illustrates the performance overhead of SPP and SAFEPM normalized

to the PMDK. SPP causes an average 18.3% throughput decrease across the workloads

while the respective value for SAFEPM is 84.4%. The overhead of SPP mostly stems

from redundant checks for volatile pointers that SPP cannot identify at compile time.

Regarding the scalability, we observe that SPP follows a similar pattern to the PMDK,

indicating the minimal effect of SPP on the parallel execution.

Phoenix benchmark suite. We evaluate the performance impact of SPP in CPU inten-

sive scenarios. We port all 7 applications of the Phoenix benchmark [251] to use PM

objects via the PMDK API. For each application, we use 8 threads and the largest pro-

vided dataset as input. To accommodate larger allocation sizes (e.g., the input files),
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Figure 3.13: Performance overheads of SPP and SAFEPM w.r.t. the native PMDK

execution for the Phoenix benchmark suite.
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Figure 3.14: Performance overhead of SPP for PM management operations.

we set the tag bits to 31 for SPP. The presented results are the average of 20 runs.

Figure 3.13 presents the slowdown of SPP and SAFEPM having PMDK as the base-

line. SPP causes a slowdown of 2-23% for Phoenix benchmark applications, except for

the kmeans where it incurs 180%. The respective values for SAFEPM range from 83%

to 750%. The significantly reduced overheads of SPP can be reasoned by the effective

pointer tracking since SPP has all the source code of the applications available for its

analysis. The unique case of the kmeans benchmark can be justified as this application

iterates constantly over its working set, leading to a higher performance impact of the

SPP’s instrumentation in its execution. Note that the Phoenix port is not optimized for

PM. It uses plain memory intrinsic functions (e.g., memcpy), which do not allow SPP to

avoid some pointer type checks. This implies that in a more sophisticated, PM-oriented

port, the overheads of SPP can be further diminished.

Atomic and transactional PM operations. We evaluate the effect of SPP on PMDK’s

atomic and transactional PM management functions. We use pmembench [126], where

we configure each experiment to perform 100K operations while varying the object

size. We present the average of 10 runs.

Figure 3.14 reports the normalized slowdown of SPP for each PM management op-

eration. For almost all the operations, the performance of SPP is close to the PMDK for
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Snapshotted PMEMoids

Variant 100 1000 10K 100K 1M

PMDK 17.62 17.78 18.82 28.52 119.77

SPP 17.77 17.86 18.87 28.66 120.00

Table 3.7: Recovery time in milliseconds (ms).

Data Insert Get

structure (MB) (%) (MB) (%)

ctree 0 0% 0 0%

rtree 2127 39.7% 2127 39.7%

rbtree 0 0% 0 0%

hashmap tx 5 0.43% 5 0.43%

Table 3.8: SPP space overhead

the various object sizes (1-8% slowdown). It can be justified, as this microbenchmark

only allocates PM objects and performs no PM access after the respective operation.

Therefore, the overhead comes from redundant checks for the pointer type that SPP’s

static analysis cannot optimize away. The only operation with high overheads(7-17%)

is the atomic free. This is due to SPP’s required runtime checks, compared to a single

atomic operation that PMDK requires to free the PM object.

Recovery time. We measure the recovery time of an application and compare SPP with

PMDK. We develop a microbenchmark that allocates PM objects in a pool. We present

a worst-case scenario for SPP where an application snapshot exclusively PMEMoids in

a transaction, resulting in larger logs for SPP. The number of objects per experiment

is shown in Table 3.7. After the snapshotting, we inject a crash and trigger a recovery.

Our results indicate an average of 100 runs.

The slightly increased recovery time is caused mainly by the need for restoration

of the additional size field of the PMEMoid. Note that SPP does not interfere with the

internal recovery process of PMDK. However, user-defined recovery functions could

pose higher overhead since they are also subject to SPP’s instrumentation as part of

the application, where SPP must provide its spatial memory safety guarantees.

3.2.5.3 Space Overhead

We measure the space overhead introduced by SPP compared to the native PMDK.

SPP’s space overhead is caused by the size field, added to the PMEMoid of PMDK. We

reuse the four PM indices with the insert and get workloads and 1M keys, as explained

in § 3.2.5.2. The reported values indicate the space overhead after the execution of the
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RIPE variant Successful Prevented

Volatile heap 83 140

PM pool heap 83 140

SafePM 6 217

SPP 4 219

memcheck 20 203

Table 3.9: RIPE attacks using different protection mechanisms.

application.

The PM space overheads of SPP are presented in Table 3.8. We conclude that

SPP wastes minimal PM space to store its memory safety metadata (0-0.43%) for all

persistent indices except the rtree. In the extreme case of rtree, SPP consumes 39.7%

more PM space compared to PMDK. It occurs as each rtree node contains 256 PMEMoids

and SPP’s space overhead is proportional to the number of PMEMoids an application

stores in PM. Note that this is not a common pattern in PM applications based on our

observations. A future design can completely eliminate the PM space overhead if the

object size gets encoded along with the object offset in the PMEMoid structure, thus

requiring no extra PM space. This feature is not included in the current SPP version

due to time constraints.

3.2.5.4 Effectiveness

In this experiment, we examine the effectiveness of SPP. We use the RIPE benchmark

framework [320]. It contains a set of different memory vulnerability exploits. We focus

on buffer overflows. We use the 64-bit version of RIPE [255] that allocates objects on

PM via PMDK [30]. We consider the following variants: (i) Volatile heap, where RIPE

uses volatile memory, (ii) PM pool heap, where it uses the PM heap, (iii) SafePM, where

it uses the PM heap with SAFEPM sanitizer enabled, (iv) SPP, where the application

uses the PM heap and is instrumented with SPP and (v) memcheck [238], a Valgrind

tool for memory bugs in PM. Each memory exploit is executed 3 times in each run. We

perform the RIPE experiments several times to ascertain the stability of our reported

results.

Table 3.9 shows the exploits that are successful or prevented throughout our runs.

We observe that porting RIPE to use PM preserves the number of potential buffer over-

flow exploits (83). Out of these attacks, SPP is able to prevent 79 while SAFEPM

detected 77. The memcheck [238] identified 63 attacks. We further examine the

non-detected attacks by SPP and realize that the constructed PM buffer is only di-

rectly accessed in bounds. Overall, SPP is capable of detecting almost every PM buffer
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overflow with a notably lower performance overhead compared to its state-of-the-art

counterparts.

Reproducing bugs. To further verify the effectiveness of SPP, we reproduce and detect

a reported PM buffer overflow bug in PMDK’s btree index [236]. More specifically, on

line 378 of btree map.c file, the memmove call leads to a buffer overflow on a PM data

object, which SPP is able to identify and report.

Additionally, we test various examples shipped with PMDK [131]. We apply SPP

on implementations of an array, a queue, a FIFO list, a solution of Buffon’s Needle

problem, a program for the π calculation, and a slab allocator. Using SPP, we identify

three PM buffer overflows in the array example. Precisely, when an array realloc is

requested, its return value is not checked. In case of a failed reallocation to a larger

size, the application attempts to fill the newly supposedly allocated array, which results

in an overflow, as the original array is not resized. This bug occurs in lines 215, 235,

and 257 of the array example [130]. The remaining examples do not report any error

throughout their execution with arbitrary inputs.

Further, we identify an off-by-one buffer overflow in the string match benchmark

of Phoenix, when the read function is used for the input file. This bug is detected when

we execute the ported version with SPP. It occurs when trying to access a character

beyond the input buffer [169]. We verify our finding using ASan [264] on the volatile

memory version. We report the bug [233] and its respective fix [234].

On top of that, we develop sample examples with various kinds of PM buffer over-

flows (e.g., overflows during snapshotting, built-in memory functions overflows, etc.)

for testing. SPP identifies and reports all of the above cases.

3.2.5.5 Crash Consistency

We verify that SPP preserves the crash consistency for the PM data despite the addi-

tion of the size field in the PM pointer. We use pmemcheck [240] and memcheck [220].

pmemcheck is a Valgrind plugin that allows for exploring and verifying the data consis-

tency in PM applications [30, 128, 144, 185]. Its output is passed to pmreorder [244]

to explore the state space. We perform the same experiments as in § 3.2.5.2. Due to

Valgrind’s overheads, we set the number of operations to 10000 to shorten the execution

time.

pmemcheck and pmreorder do not report any error. memcheck also has an empty

error log for the persistent indices. For the PM operations, memcheck provides the same

error output with the case of unmodified PMDK which does not indicate any crash

consistency violation.



78 Chapter 3. Memory Safety for Persistent Memory

3.2.6 Related work

Persistent memory systems. There exists a large body of work on PM filesystems that

aims to reap the performance benefits of persistent memory as a storage medium [46,

157, 312, 325, 341]. Further, persistent memory has already been incorporated in the

design of many high-performant data management systems [117, 165, 199, 253, 256].

On top of that, several proposed distributed systems leverage the capability of accessing

PM remotely via RDMA to improve their efficiency [133, 152, 189, 273, 329, 338].

Unlike these systems that focus on high performance and correctness, SPP efficiently

tackles the problem of memory safety on PM.

Further, recent works [29, 193, 317] leverage accelerators (e.g., FPGAs) where they

offload PM operations (e.g., cache line flushes, logging). Such systems can improve the

PMDK performance. We expect that the performance boost will be similar for SPP, as

it uses PMDK underneath for these operations, does not hamper the cache locality, and

has a minimal contribution to the amount of logged data.

SW memory safety approaches. Various software-based approaches have been pro-

posed to deal with the memory safety bugs for volatile memory [3, 170, 172, 181, 182,

212, 216, 264, 331]. The main target of these approaches is to preserve compatibil-

ity and high efficiency while incurring low performance and memory overheads. They

apply different techniques such as pointer tagging [170] or the shadow-memory con-

cept [264] and are often accompanied by compiler instrumentation [212, 331] and

runtime libraries. Differently from such approaches, SPP focuses on memory safety for

PM and achieves low runtime overheads for PM applications due to its conservative,

yet effective, distinction of pointer types through the introduced PM bit as well as its

selective instrumentation of PM pointers that eliminates redundant runtime function

calls for volatile memory pointers. However, for complete memory safety, SPP can be

combined with other SW-based memory safety approaches targeting volatile memory

since it practically only affects the PM pointer representation. Note that at the cost of

additional performance overhead, SPP could be generalized and include instrumenta-

tion and checks for volatile memory pointers, similarly to prior work [170].

Targeting memory safety for PM, our SAFEPM [30] and the valgrind-based

memcheck [238] tool have been proposed. As a reminder, SAFEPM is built on Google’s

AddressSanitizer [264] while memcheck leverages Valgrind and PMDK’s internal code

annotations to provide memory safety. Both these approaches incur considerable per-

formance and space overheads and are destined for debugging purposes. On the con-

trary, SPP intends to be an efficient, low-overhead memory safety solution.

Lastly, Corundum [99] is a PM management library in Rust that enforces language-

based memory safety. In contrast, SPP can be deployed in existing PMDK applications
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without any source code modifications and does not require re-developing applications

with certain libraries or languages.

HW memory safety approaches. Striving for lower performance overheads, sev-

eral works introduce HW extensions to provide memory safety for volatile mem-

ory [14, 59, 69, 77, 209, 210, 223, 224, 299, 322, 334]. Cheri [322] employs hardware

capabilities while lowfat pointers [69] offer spatial memory safety using compact fat

pointers that contain the encoded object bounds. They propose a hardware-level imple-

mentation for faster decoding and pointer validation. Intel MPX [223, 224] and Arm

MTE [14] provide ISA extensions to prevent memory safety bugs for Intel x86-64 and

Arm architecture respectively. Hardbound [59], SafeProc [77] and WatchdogLite [210]

propose further ISA extensions that work collaboratively with a compiler instrumenta-

tion aiming towards better performance. In contrast to these approaches that rely

on specialized HW or require ISA modifications and are dedicated to volatile memory

safety, SPP can be used in commodity HW and detect memory safety bugs on PM.

PM allocators and libraries. PM allocation and management is an active area of re-

search [34, 45, 57, 120, 227, 313]. Mnemosyne [313], NVHeaps [45] and PMDK [120]

provide APIs for PM management and implement transactions to guarantee crash

consistency. They distinguish between pointers to volatile memory and PM to avoid

ephemeral or stale references being reused across restarts if the developer uses their

APIs correctly. Notably, NVHeaps [45] and Mnemosyne [313] are evaluated using sim-

ulated PM while PMDK is optimized to leverage the HW features of actual PM devices.

These approaches, unlike SPP, do not provide any memory safety but only ways to

manage PM in a correct manner, which SPP also performs as it is based on PMDK by

design.

Poseidon [57] is a PM allocator that prevents metadata corruption using Intel

MPK [228]. GPM [227] exposes an API to access PM directly from the GPU with

respect to crash consistency and persistence. However, ensuring crash consistency is

a non-trivial task. Therefore, multiple frameworks have been proposed to verify, or po-

tentially ensure, this property for PM applications [29, 62, 75, 83, 151, 185–187, 217].

3.2.7 Summary

In this section, we present SPP, the first tagged pointer-based mechanism designed to

provide practical memory safety for PM applications. The PM pointer tag indicates the

pointer distance from the end of the PM object and gets implicitly invalidated when it

surpasses this boundary. SPP consists of a compiler instrumentation based on LLVM,

a runtime library, and an adapted PMDK version. It enhances the persistent pointer

representation of PMDK with memory safety metadata, which is set and updated in a
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crash-consistent manner. Its runtime functions ensure the correct tagged pointer man-

agement and provide compatibility with pre-compiled external libraries. SPP main-

tains the PMDK API intact. Consequently, SPP requires no source code modifications

and can be seamlessly integrated into existing PM software. Our thorough evaluation

shows that SPP effectively detects PM buffer overflows with low-performance costs and

negligible space overheads.

Software artifact. SPP is publicly available along with its experimental setup.

https://github.com/dimstav23/SPP


Chapter 4

Security for Persistent Memory

4.1 ANCHOR: A Library for Building Secure Persistent Mem-

ory Systems

This section highlights the design of ANCHOR, a library for building secure PM systems.

ANCHOR provides strong hardware-assisted security properties while ensuring crash

consistency. ANCHOR exposes APIs for secure data management within the realms of

the established PM programming model, targeting byte-addressable storage devices.

ANCHOR leverages trusted execution environments (TEE) and extends their security

properties on PM. While TEE’s protected memory region provides a strong foundation

for building secure systems, the key challenge is that TEEs are fundamentally incompat-

ible with PM and kernel-bypass networking approaches—in particular, TEEs are neither

designed to protect untrusted non-volatile PM, nor the protected region can be accessed via

an untrusted DMA connection.

To overcome this challenge, we design a PM engine that ensures strong security

properties for the PM data, using confidential and authenticated PM data structures

while preserving crash consistency through a secure logging protocol. We further ex-

tend the PM engine to provide remote PM data operations via a secure network stack

and a formally verified remote attestation protocol to form an end-to-end system. Our

evaluation shows that ANCHOR incurs tolerable overheads while providing strong secu-

rity properties.

4.1.1 Motivation

Cloud storage and networking infrastructure is going through a dramatic shift to favor

the design of modern disaggregated data management systems [67, 98, 152, 156, 323],

especially with the recent introduction of the Compute Express Link (CXL) technol-

81
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ogy [47]. On the storage front, byte-addressable Persistent Memory (PM) aims to

bridge the gap between volatile main memory and SSDs [106, 176, 201], providing

opportunities for high-volume pools of low-latency non-volatile memory. Similarly, on

the networking front, kernel-bypass I/O based on RDMA [86, 155] or DPDK [66] of-

fers superior throughput and low latency [36, 145, 153], and is necessary to efficiently

use byte-addressable storage in disaggregated system setups [152, 258, 338], such as

for high-performance databases [270, 315], and real-time analytics systems [278]. To

leverage these hardware advancements, the research community is actively working

on combining PM with kernel-bypass networking to build high-performance storage

systems [37, 189, 268, 273].

While the current research is primarily focusing on performance and crash consis-

tency aspects, it is also imperative to address the security threats of these systems when

hosted in untrusted cloud environments. In the virtualized cloud infrastructure, where

the underlying storage, network, and computing stacks are owned and operated by an

untrusted third-party provider, an adversary, such as a malicious system administrator

or co-located tenants, can potentially compromise the security properties of both per-

sistent data and storage operations [261, 262]. Prior work has shown that software

bugs, configuration errors, and security vulnerabilities pose a real threat to storage

systems [52, 72, 80, 171, 262].

In the context of PM-based systems, attackers can tamper with the persistent state

and data operations, violating the confidentiality and integrity properties. They can

arbitrarily rollback the PM data into a stale but valid state violating the freshness prop-

erty. Further, PM crash consistency mechanisms constitute an added vulnerability vec-

tor, where the logs are also susceptible to these security violations. Moreover, they

can manipulate the untrusted network, thus being able to remotely compromise data

management operations.

To target these threats, our work focuses on: How can we design a secure PM sys-

tem for untrusted cloud environments while preserving performance and crash consistency

within the realms of the established programming model for byte-addressable storage?

A plausible direction would be to use Trusted Execution Environments (TEEs) to

base a secure PM library. Indeed, it seems promising because TEEs provide a secure

memory area where the enclosed code and data are protected by the CPU against all

system layers, including the OS/hypervisor [202]. Based on this promise, TEEs are

now available in all major commodity CPUs [5, 12, 15, 132, 138, 177], and are offered

by major cloud providers [44, 82, 103, 203].

Unfortunately, in our context, TEEs are fundamentally incompatible with both PM

and RDMA, as the direct mapping of PM files and RDMA buffers to protected memory
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is not allowed. In particular, TEEs are primarily designed to protect stateless (volatile)

memory regions, and their security properties are not extended on the untrusted PM

device, where data remains durable across system reboots/shutdowns. Moreover, TEEs

prohibit access to the protected memory region via an untrusted DMA connection. Con-

sequently, TEEs cannot be used out-of-the-box for designing an end-to-end secure PM

system.

More specifically, we address the following challenges.

Firstly, the security properties of TEEs do not extend to the untrusted PM storage

as TEEs are not designed to protect data at rest. To extend the trust of the TEE to the

untrusted PM and preserve the security properties across system reboots/crashes, we

design secure data structures that ensure confidentiality, integrity, and freshness of the

data residing in PM and their associated operations.

Secondly, while crash consistency is already a major issue for PM systems due to

the non-atomic and out-of-order architectural interface between the CPU cache and

PM, it is exacerbated in our setting as we need to ensure the consistency of both the

data and the security metadata. To this end, we design a “secure crash consistency”

mechanism based on secure logging that provides the desired atomicity guarantees.

Thirdly, conventional approaches for network I/O (e.g., kernel-sockets) incur great

overheads [51, 145]—especially in the context of TEEs due to switches between the

trusted and untrusted world [23, 295]. While direct I/O vastly optimizes network

operations, it is incompatible with TEEs as untrusted DMA operations are prohibited

in the protected memory [23]. On top of that, ensuring security and crash consistency

when accessing PM via RDMA is another major challenge [152]. To address these

issues, we design a secure network stack by adapting direct I/O to the contexts of TEEs

and PM.

To overcome these challenges, we present ANCHOR, a library for building PM-

based applications that provides strong security properties — confidentiality, integrity,

authenticity, and freshness. Further, it ensures crash consistency and performance

within the realms of the established PM programming model [114]. ANCHOR achieves

these design properties by co-designing an end-to-end system leveraging three hard-

ware technologies: high-performance PM storage, hardware-assisted TEEs, and kernel-

bypass networking. ANCHOR is designed to target generic PM applications developed

with PMDK, requiring minimal adjustments to the APIs used to interact with PM and

the network.

Overall, ANCHOR makes the following contributions:

• Secure data management APIs (§ 4.1.3): We expose generic APIs for secure data

management within the realms of the established PM programming model [114], ap-
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plicable on byte-addressable storage mediums with similar architectural properties.

Our APIs extend the Persistent Memory Development Kit (PMDK) to support secure

PM management, transactions, remote attestation, and networking for remote oper-

ations. These APIs can be used to develop trusted applications in a single-node setup

or even distributed systems.

• System architecture (§ 4.1.4): We propose a system architecture where we provide

a secure PM management engine that encapsulates confidentiality-preserving and

authenticated data structures. It further ensures data integrity at an object level to

be able to detect PM data tampering. Our engine extends the trust of TEEs to the

data on untrusted PM, where we judiciously partition our data structures between

the trusted enclave, the untrusted host memory, and the untrusted PM. Further,

ANCHOR’s design includes an asynchronous trusted counter interface to guarantee

freshness while preserving crash consistency. Lastly, we extend the scope of our PM

engine to enable remote operations by designing a TEE-compatible network stack for

PM based on kernel-bypass networking, whose authenticity can be verified through

our formally proven remote attestation protocol (§ 4.1.6.2).

• System operations (§ 4.1.5): We present ANCHOR’s operations for building secure

PM applications. We highlight the workflow of read and write operations and de-

scribe our secure bootstrap and recovery process, based on our formally proven se-

cure logging protocol (§ 4.1.6.2), for ensuring crash consistency and data freshness.

Based on these contributions, we implement a prototype leveraging Intel SGX [138]

and integrate with our PM engine based on PMDK [114] and secure network stack

based on eRPC [153], a direct I/O networking library. We evaluate ANCHOR with

the YCSB benchmark suite [48, 330]. Our evaluation, primarily based on KV stores,

which are fundamental building blocks for many cloud-based applications, shows that

ANCHOR incurs acceptable overheads considering its strong security properties.

4.1.2 System Model

Threat model. ANCHOR extends the standard SGX threat model [27], as we need

to protect the untrusted storage (PM) and network. We aim to protect against an

active adversary [64] that can gain full control of the entire system software stack

(including the OS/hypervisor) and perform physical attacks (e.g., memory probes).

For PM, we strive to guarantee rollback and forking attack resilience where adversaries

can arbitrarily restart the system from a stale state or fork system instances. Moreover,

we assume that adversaries can control the network stack and tamper with network

traffic. However, we do not consider side-channel attacks, denial of service attacks, or
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memory access pattern attacks [87, 168, 183, 207, 307, 309, 310, 327].

Fault model. ANCHOR mandates crash consistency [49, 174, 269], which implies that

data and metadata stored in PM can be recovered to a consistent state after a crash.

ANCHOR also requires a protection mechanism against rollback attacks to guarantee

data freshness. Additionally, ANCHOR needs to extend these properties to the associ-

ated security metadata and the required logs for the case of recovery. Likewise, crash

consistency needs to be ensured for untrusted remote PM network operations, where

partial writes on PM can lead to an inconsistent state [100, 108, 152].

Programming model. ANCHOR offers a transactional programming model based on

PMDK [114]. To maintain consistent object references across reboots, PMDK relies on

persistent pointers. They are based on a 16 B fat-pointer structure, called PMEMoid,

storing the pool id and an offset relative to the start of the pool. PMDK provides a

function to convert this structure to a native pointer. Additionally, PMDK offers trans-

actional APIs [115] with strict durability, consistency, and atomicity semantics in the

libpmemobj library. Transactions are realized with the use of redo and undo logs.

Despite Intel announcing the discontinuation of Intel Optane DC Persistent Mem-

ory [279], byte-addressable storage devices are expected to follow a similar program-

ming model, though they may differ in characteristics. Especially the current emer-

gence of the Compute Express Link (CXL) technology [47] enables the development

of an ecosystem with non-volatile byte-addressable storage solutions [53, 73, 167],

e.g., CXL-capable SSDs [260, 271] or SSDs exposing memory semantics [91]. On top

of that, CXL will be combined with Confidential Computing [54, 107, 148] to build

end-to-end secure systems. In such setups, ANCHOR can be used to securely manage

byte-addressable storage devices due to their compatibility with the existing PM con-

cepts and libraries [53].

4.1.3 Overview

4.1.3.1 System Overview

ANCHOR offers a PM library with the following properties:

• Security: ANCHOR ensures the confidentiality, integrity, authenticity, and freshness of

the data and storage operations.

• Crash consistency: ANCHOR offers a secure crash consistency mechanism for local

and remote operations, where it maintains a consistent and secure state in case of

failures.

• Programmability: ANCHOR offers a transactional programming model and associ-

ated secure data management APIs, similar to the established PM programming
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Figure 4.1: System overview (green regions are trusted and red regions are untrusted)

model [276], as implemented by PMDK [114].

The key insight of ANCHOR is to maintain confidential and authenticated data struc-

tures on PM that are manipulated inside the enclave to extend the TEEs’ security prop-

erties to PM and networking. Figure 4.1 shows the architecture of ANCHOR. ANCHOR’s

design adopts the principle of a small trusted computing base (TCB), where it partitions

the system into the trusted enclave and the untrusted host memory & PM. In particular,

the core control logic of ANCHOR (green regions) resides in the protected enclave, but

the actual user data (red regions) resides in the untrusted PM.

The details of ANCHOR’s core component, the PM management engine (§ 4.1.4.2)

are shown in Figure 4.2. It primarily interfaces with the untrusted PM via DAX and pro-

vides a secure memory allocation mechanism and transactional programming model.

The PM engine ensures crash consistency and security for the untrusted PM. It fur-

ther provides freshness guarantees for the PM objects with ANCHOR’s trusted counters

(§ 4.1.4.5). We also design in-memory data structures (§ 4.1.4.3) consisting of an index

and an object cache optimizing the read path. ANCHOR also exposes remote access to

PM through a secure network stack (§ 4.1.4.4). Lastly, we offer a remote attestation and

key management (AKM) service for clients to ensure trustworthiness and authenticity

(§ 4.1.4.6).

At a high level, for read operations, ANCHOR checks the integrity of the object and

decrypts it before returning. For write operations, ANCHOR fetches and decrypts the

object inside the enclave, updates its content in the protected buffer, and recalculates

its integrity signature. For remote accesses, clients communicate through a TLS chan-

nel with the ANCHOR controller, which contains an AKM service. AKM instructs the
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enclave to generate a signed measure of its identity, whose authenticity is verified by

a trusted third-party entity [102]. After a successful attestation, the client provides its

encryption keys and can then access the ANCHOR library and execute queries via the

secure network stack.

During bootstrap, ANCHOR scans the manifest to fetch all the object metadata and

signatures into the enclave. We use the signatures to prove the integrity of the PM

objects. Afterward, the recovery mechanism restores the most recent consistent and

secure state of PM based on valid logs. ANCHOR ensures the freshness of all logs by

checking the counter values of the entries along with the latest secure trusted counter

value (§ 4.1.5.2).

4.1.3.2 ANCHOR System APIs

ANCHOR exposes secure data management APIs (shown in Table 4.1) by adopting and

extending the well-established APIs of PMDK [114]. ANCHOR is an embedded library

that can also be used to build secure server-side and distributed system applications.

Any existing PMDK-based application can be adapted to use the secure ANCHOR API.

The shielded execution framework further eases the deployment, as no source code

modifications are required.

Pool management APIs. ANCHOR’s API provides, similar to the native API, three func-

tions (create, open, close) to create, open, and close a secure PM pool. These functions

take the paths of the PM-resident log files as extra arguments and perform the setup of

the provided storage encryption key.
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Pool management APIs

secure pool create() Creates a secure pool in PM.

secure pool open() Opens a secure pool (if exists).

secure pool close() Closes a secure pool (if exists).

Transactions APIs

secure obj tx alloc() Allocates an object (as part of a transaction).

secure obj tx free() Frees an object (as part of a transaction).

secure obj tx add range() Takes a snapshot of an object.

Object management APIs

secure obj root() Gets or creates the root object.

secure obj direct() Gets a PM object in an enclave buffer.

Secure network APIs

prepare req() Prepares a request to be sent.

enqueue req() Submits a message for transmission.

enqueue resp() Submits a response to a request.

send() Sends enqueued messages.

recv() Receives incoming messages.

register req handler() Registers a request handler.

Attestation API

attest(measurement) Attests based on the measurement.

Table 4.1: ANCHOR’s secure data management APIs

Transactions API. ANCHOR implements a secure API for transactions that allows ar-

bitrary data sizes to be written to PM with strict security, durability, consistency, and

atomicity semantics. Both PMDK and ANCHOR do not provide thread safety for con-

current accesses to PM objects. Developers must employ their own locking mecha-

nisms. For the (de)allocation and objects’ snapshots, ANCHOR provides three functions,

secure obj tx alloc, secure obj tx free and secure obj tx add range, that realize transac-

tions through a redo log which stores the metadata updates and an undo log keeping

the initial state of the transaction’s write set for the case of a crash.

The allocation function secure obj tx alloc returns an object id (PMEMoid). Upon

updates, similarly to PMDK, users have to explicitly snapshot the modified PM objects

in the undo log. Snapshots ensure that the modified object is also added to the ongoing

transaction write set (with secure obj tx add range). Afterward, the application can

manipulate the object’s buffer inside a transaction, and the changes will be persisted

during the commit phase.

Object management APIs. ANCHOR’s API for PM-object management offers security

while preserving similar semantics with PMDK. PMDK, and consequently ANCHOR, im-
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poses one requirement to avoid PM leakage: all objects are reachable through some

path from a root object. ANCHOR exports the secure obj root function that creates/gets

the root object. secure obj direct function accepts a PMEMoid as an argument and re-

turns a pointer to a secure volatile buffer with the decrypted data.

Secure network APIs. To form an end-to-end setup, ANCHOR integrates userspace

networking technologies (e.g., RDMA) with PM and SGX that enable secure remote

access to PM via an established RPC API [153]. Our library offers asynchronous net-

work operations—we provide three core functions, prepare req, enqueue req, and en-

queue resp, for requests and responses. These functions do not send the message over

the network, but users need to execute the send and recv functions to burst and drain

messages from the transmission and reception network queues. For each request, the

remote application executes a request handler that is registered on initialization (regis-

ter req handler). ANCHOR further encrypts the network messages, whose integrity can

be verified, and incorporates counter values in the message headers to ensure freshness.

Attestation API. ANCHOR provides an attestation API that allows applications to verify

their trustworthiness to remote clients. Particularly, we provide the attest function

that takes as arguments the IP of a trusted third-party service, Intel Attestation Service

(IAS) [102] IP for ANCHOR, and a generated enclave measurement of the code. Then,

this service verifies that both the enclave signer and measurement are in the expected

state and replies accordingly.

4.1.3.3 Design Challenges and Key Ideas

#1 Untrusted persistent memory.

Problem: TEEs are designed to protect only the volatile enclave memory — PM regions,

that are directly mapped to into the application’s address space, are not subject to the

memory verification procedures that TEEs provide. Thus, the security properties do not

naturally extend to the untrusted PM, where we need to ensure the security for stateful

operations across system reboots or crashes. Additionally, while applications in TEEs

can read and write data to and from conventional block devices, they often employ pro-

hibitively expensive, in the context of TEEs, I/O mechanisms (e.g., read/write syscalls)

and provide crash-consistency and data persistence in larger granularities (e.g., 4K

blocks) compared to PM.

Approach: ANCHOR offers security beyond the protected enclave and extends the trust

of TEEs to the untrusted PM. We design data structures that ensure confidentiality, in-

tegrity and freshness. ANCHOR achieves this by (i) encrypting and persisting data and

metadata on PM on an arbitrarily-sized object-level granularity, and (ii) extending the
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PMDK’s metadata structure’s layout with an append-only log, the manifest, for security

metadata. ANCHOR’s manifest maintains the hash values of all PM objects. Further, it

ensures rollback protection across restarts by assigning a deterministic unique counter

value to each entry. In particular, if the PM data (e.g., objects, manifest) has been tam-

pered with, it will either be detected at runtime, during the integrity checks, or at the

upcoming boot phase if any manifest entry integrity check fails or the counter does not

reach the expected latest trusted value. Thus, ANCHOR effectively extends TEE prop-

erties to PM. Moreover, ANCHOR realizes all operations as transactions. Uncommitted

updates are buffered in memory; they are persisted during the commit phase. Our ap-

proach combines security with performance by the following key insight: any update

should be made persistent as long as ANCHOR can ensure its confidentiality, integrity,

and freshness. Therefore, ANCHOR defers writes to PM until their freshness property is

secured.

#2 Secure crash consistency.

Problem: PM guarantees atomicity only for aligned 8-byte stores. While libmem-

obj [115] implements software transactions for atomic writes of arbitrary data sizes,

ANCHOR needs to keep its security metadata crash consistent. In particular, we need

to ensure crash consistency and security for all data and metadata. We refer to this

property as secure crash consistency: any non-trusted PM content will be discarded in

favor of the latest trusted and correct content.

Approach: ANCHOR offers secure crash consistency by extending the transaction logic

and providing a secure logging protocol. Firstly, a transaction needs to snapshot the

latest secure state of a modified object to be able to revert it if needed. Secondly, AN-

CHOR needs to ensure the freshness, integrity, and confidentiality of the logs that reside

in the untrusted PM. This is achieved by encrypting the payload of the log entries and

enhancing them with security metadata (i.e., trusted counters, integrity signatures).

We design our secure crash consistency mechanism with respect to freshness based

on asynchronous counters, originally proposed in Speicher [25]. To prohibit attackers

from arbitrarily deleting redo/undo logs or replacing them with obsolete yet correct

logs, our transactions log their start, commit, and end to the manifest. Lastly, since

we only commit stable transactions, viz. transactions that own rollback-protected logs,

ANCHOR can replay the secure logs and bring the PM to the correct trusted state across

reboots/restarts. At recovery, ANCHOR will roll back any aborted transaction or redo

any marked-as-committed transaction that got interrupted.

#3 Fast network I/O.

Problem: PM’s low access latency shifts the bottleneck from storage to network I/O.

Traditional enclave I/O issues such as enclave transitions and asynchronous syscalls
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execution [16] further increase the latency compared to conventional approaches (e.g.,

sockets) that are already the bottleneck in networking systems [51, 89, 145]. While di-

rect I/O networking solutions such as RDMA are prominently deployed in data centers

to overcome the I/O bottlenecks [152], they are not directly applicable to ANCHOR due

to two core challenges: (i) RDMA buffers cannot be allocated inside the enclave mem-

ory, as this would violate the security guarantees of SGX [23] and (ii) RDMA operations

might lead to inconsistent PM state.

Approach: ANCHOR overcomes these limitations by integrating userspace network-

ing [153], PM, and TEEs to optimize the throughput and provide remote access to

PM. In particular, ANCHOR designs a secure network stack that preserves the crash con-

sistency property for remote PM operations, overcomes the I/O bottlenecks of TEEs,

and is compatible with deployments of RDMA technology in the cloud. Additionally,

it introduces a secure message format to ensure the security properties of the network

traffic. ANCHOR further tackles the challenge that untrusted resources/memory cannot

be mapped into the enclave. Our network stack is placed inside the enclave but maps

the DMA and message buffers into the untrusted host memory, which is accessible by

the enclave. This design optimizes the limited EPC memory usage. ANCHOR overcomes

the second challenge by executing remote queries as transactions. We rely on ANCHOR’s

crash consistency mechanism to ensure crash-consistent remote operations. Note that

ANCHOR currently supports transactional PM updates on a single server node.

4.1.4 Design and Implementation

4.1.4.1 Persistent Data Structures

ANCHOR stores data on the untrusted PM using three persistent structures, which we

explain first.
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Secure PM pool. The secure PM pool is where the actual data resides. Identically to

PMDK’s pool structure, it is composed of: (i) a pool header, (ii) an area for transactional

logs, (iii) heap metadata, and (iv) the persistent heap, where the objects are stored.

The header contains metadata of the pool (e.g., size) and heap metadata that is used

for managing (de)allocation in the persistent heap.

Manifest. Manifest is an append-only persistent secure log that keeps the security

metadata of all objects in a pool. For each object update, a new entry is appended

to the manifest. Each entry contains an encrypted payload, a trusted counter, and a

cryptographic hash over both (Figure 4.3). With this format, ANCHOR is able to argue

about Manifest’s confidentiality, integrity, and freshness on every startup. The payload

consists of the object’s hash, its PMEMoid, and its size. Manifest entries allow ANCHOR

to ensure the integrity (with the signature) and the freshness (with the counter) of all

objects.

Secure undo/redo logs. Undo/redo logs ensure crash consistency and atomicity of

data operations. An undo log entry stores an object snapshot before it is modified,

while redo logs track pool/heap metadata modifications. ANCHOR secures its logs in a

similar fashion as the manifest. For each log, we create a unique trusted counter. Each

undo log entry consists of the encrypted payload, a trusted counter value, and a hash

over both (Figure 4.3), similarly to the Manifest. The redo log entries do not require

a hash as they are stored in bulk, and a hash over the whole redo log is placed in its

header along with the total log size.

4.1.4.2 PM Management Engine

The PM management engine consists of the PM allocator and the transactions man-

agement engine. It ensures the crash consistency and the security properties of the

persistent data structures. The PM management engine stores the PM data encrypted,

guaranteeing confidentiality. Additionally, for PM data encryption, it uses the AES-

GCM-128 algorithm of OpenSSL [225] that directly provides cryptographic signatures,

which can be used for integrity checks. The encryption library is entirely placed inside

the enclave.

PM allocator. ANCHOR’s PM allocator offers secure, transparent, and dynamic PM

memory management. The allocator manages the secure pool’s heap to (de)allocate

PM objects. It relies on redo logs to avoid metadata corruption. ANCHOR logs heap

metadata modifications that reflect the status change of a block (occupied/free). The

allocator frequently accesses the heap metadata. Therefore, we maintain their core

part (e.g., PM block headers) in the enclave memory during runtime. Additionally,
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the allocator’s volatile data structures (e.g., buckets) remain intact and reside in the

protected memory.

TX management engine. The TX management engine implements transactions that,

in turn, ensure security, data atomicity, and crash consistency for the modified objects.

Particularly, we offer ACD (Atomicity, Crash Consistency, and Durability) semantics for

transactions; however, similar to PMDK, we do not offer any isolation guarantees. AN-

CHOR ensures these properties by tracking the modifications on the pool/heap metadata

and snapshotting the modified objects in its PM logs using a secure logging protocol. In

contrast to the native PMDK, ANCHOR needs to further consider rollback protection as

part of the crash consistency mechanism. Towards this direction, we keep the modified

objects of an uncommitted transaction in the enclave buffers which are only flushed

to PM at the commit phase. This practice is mandatory, as ANCHOR has to ensure that

the log entries of the snapshotted objects are persisted and rollback-protected through

their counter so that, in case of a crash, the previous state of the objects can be securely

restored. These objects are tracked with the use of a transaction-local list holding their

offsets (§ 4.1.5.1). In this way, if the logs are detected to be unstable during recovery,

we are sure that the interrupted transaction never performed actual PM updates, as

they are only applied after the stabilization of the respective logs. To support concur-

rent transactions, similarly to PMDK, ANCHOR reserves a space in the secure PM pool

that is split into lanes. Each lane is assigned to a distinct thread to store its respective

transaction logs.

4.1.4.3 In-memory Data Structures

To accelerate the operations of ANCHOR, we maintain security metadata and an object

cache in the enclave memory.

Metadata index. ANCHOR logs the objects’ integrity signatures along with the trusted

counter in the manifest. Consequently, an object’s access would require (i) to prove

the manifest’s freshness and integrity and (ii) iterate the entire manifest to locate the

most recent entry for that object. We opt for optimizing the data path by introducing

an in-memory hashmap index, that maintains only the necessary metadata, aiming for

better EPC utilization. Precisely, the index stores all integrity signatures (16B) and

the object sizes (8B) having as a key the object’s PMEMoid (16B). As a result, object

reads bypass the manifest (§ 4.1.5.1). The index is trusted at run-time since it resides

in the enclave; we populate the metadata index entries during a successfully attested

bootstrap (§ 4.1.5.2).

Object cache. To further accelerate the read path, we expand the scope of the meta-

data index to an object cache that buffers recently accessed objects in the enclave. This
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eliminates the decryption calls and access to the PM. A reference of each buffered ob-

ject is stored in its respective entry in the metadata index. Additionally, to eliminate

repeated volatile object buffer allocations and control the EPC usage, ANCHOR enforces

an epoch-based data caching mechanism [179]. Each metadata index entry is assigned

an incremental value (epoch) when it is accessed. We define a configurable memory

limit that the object cache can occupy. When it is reached, a background thread re-

claims the memory of cached objects after making sure, based on their epoch, that they

do not belong to an ongoing transaction.

4.1.4.4 Network Stack

Since networking is an essential component of disaggregated cloud systems, AN-

CHOR includes a network stack that integrates kernel-bypass networking with TEEs

to securely access and manage PM data. Our design is optimized for performance;

rather than adopting the costly kernel-based networking, ANCHOR bypasses the ker-

nel [66, 153] and avoids performance-expensive enclave switches.

In particular, ANCHOR exposes asynchronous, secure RPCs based on two-sided

RDMA. ANCHOR RPCs involve the CPU in order to verify the integrity, authenticity, and

freshness of the network traffic. The network stack code (e.g., RPC-library, drivers)

resides in the enclave while the network data (e.g., messages’ buffers, NIC queues) is

in the untrusted host memory, as shown in Figure 4.4. ANCHOR stores the messages

encrypted in DMA-capable buffers in the untrusted host memory satisfying two require-

ments (§ 4.1.3.3, #3): (i) DMA-ed memory cannot be inside the enclave and (ii) EPC

usage is optimized. We integrate eRPC [153], with DPDK [66] as a transport layer,

along with the userspace drivers into SCONE to shield the execution of the network

operations. Our network stack reserves unprotected—accessible by the NIC—2 MiB
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hugepages for the DMA-ed memory. To achieve that, we extend the eRPC allocator to

open shared memory files in the hugetlbfs virtual filesystem and pass the file descriptors

to the mmap.

ANCHOR’s network library further extends the trust to the untrusted network

through a secure messaging layer. Precisely, we construct a secure message format

that is comprised of three parts: (i) the encrypted payload, (ii) the initialization vec-

tor (IV), and (iii) a hash value. For the encrytpion of the messages, ANCHOR uses the

AES-GCM-128 algorithm of OpenSSL [225]. In the payload, ANCHOR reserves the first

8 B for a sequence number. The sequence number is unique for each client and is de-

terministically increased for each operation, exposing at-most once execution semantics

and guaranteeing message freshness. In this way, our network stack protects against

replay attacks on the network.

On the client side, ANCHOR maintains a queue for the message transmission. The

queue size can be tuned depending on the system’s requirements to optimize the net-

work latency and throughput or maintain a balance between them. ANCHOR’s network

stack also stores the sequence number of each pending request in the queue, which is

then used to check whether the sequence number of a response matches the one from

the request.

On the server side, ANCHOR processes clients’ requests. While ANCHOR’s network

library considers lossy networks and a malicious attacker that can tamper with the

network traffic, ANCHOR provides reliability based on the message sequence numbers.

Precisely, ANCHOR’s server accepts sequence numbers in a fixed, configurable range

based on the previously received sequence numbers of the client requests. While we

do not provide ordering for the packets inside the range, ANCHOR can still detect miss-

ing packets. For total ordering, this range can be configured to be 1 at the cost of

performance. On top of that, ANCHOR’s network stack verifies the uniqueness of each

sequence number. After this verification, the server processes the request and sends a

response to the client. Note that the PM security and crash consistency properties are

ensured via the server’s PM management engine.

4.1.4.5 Asynchronous Trusted Counters

ANCHOR uses trusted counters to ensure rollback resilience for the PM logs. We design

ANCHOR based on an asynchronous monotonic counter (AMC) interface, originally pro-

posed by Speicher [25], that allows fast increments while overcoming the limitations

of SGX counters. ANCHOR creates one asynchronous counter for each log and persists

their state in a file. To protect this file from rollback attacks, the AMC uses a hardware-

trusted monotonic counter—in our case, Intel SGX monotonic counter [266]. While
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the asynchronous counter offers fast increments, the freshness can only be ensured

when the counters’ values are secured in the file along with the SGX counter. The

time when an asynchronous counter value is written to the file with the SGX counter

is called stabilization point and occurs when the SGX counter is successfully increased

after an increment request (60−250 ms). ANCHOR’s recovery mechanism only trusts

entries with stable counter values (§ 4.1.5.2).

Although ANCHOR is not bound to a specific trusted counter, we build ANCHOR using

our AMC in a single-node setting. While ANCHOR optimizes throughput by batching

operations before an SGX counter increment; unfortunately, the counter stabilization

delays incur an inevitably increased latency to provide rollback protection. System

designers might want to adapt ANCHOR to leverage lower-latency (remote) trusted

counters (e.g., ROTE [194]) that implement a trusted counter as a service in distributed

settings [78] to reduce the stabilization time and ensure longevity.

4.1.4.6 Attestation and Key Management (AKM)

Remote clients need to establish trust with ANCHOR’s applications. Further, ANCHOR

needs to securely distribute keys and configuration to clients. ANCHOR’s AKM provides

these services by extending Intel Attestation service [102] and integrates a key man-

agement system, which provisions clients with keys (e.g., for communication).

Attestation protocol. Figure 4.5 demonstrates ANCHOR’s attestation protocol. More

precisely, clients connect to the AKM service via a secure TLS channel. Following, they
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Algorithm 1: Read operation
Input : Persistent object id
Output: Persistent object data buffer
read(oid)
begin

/* object entry lookup in the metadata index */
epc entry← index lookup(oid);
if epc entry == NULL then

//object not found in EPC index

return object not found;
else if epc entry.cached obj ̸= NULL then

//object already in EPC cache

return epc entry.cached obj;
else

//fetch and decrypt the object data

obj buffer← decrypt and verify(oid, epc entry.hash);
/* update the in-memory index entry with the buffer */
epc entry.cached obj← obj buffer;
return obj buffer;

end
end
/* object entry lookup in the EPC metadata index */
index lookup(oid)
begin

key← hash func(oid);
epc entry← hashmap lookup(key);
return epc entry;

end

request to attest the ANCHOR application. If the AKM service is not trusted yet by the

client, the Intel attestation process is invoked to establish trust between the client and

the AKM service. Then, the AKM service, the verifier, attests the ANCHOR application

by requesting a quote. The enclave requests a report from SGX hardware and transmits

it to the Intel Quoting Enclave (QE), which verifies, signs, and sends back the report.

The ANCHOR application forwards it to the verifier. This quote can be verified using the

Intel verification service [140]. After a successful attestation, AKM generates ANCHOR’s

application keys and distributes them to the client for secure network communication.

Note that ANCHOR currently lacks explicit access control features but can be enhanced

to include them by incorporating key separation mechanisms.

4.1.5 System operations

4.1.5.1 Transactions

Read path. Read requests involve two steps (Algorithm 1): (i) locate the object in the

PM or the object cache and (ii) verify its security properties. ANCHOR first looks up

the object in the in-memory object cache. If the object is in the cache, ANCHOR does

not need to perform any additional step; the object cache is already secured by the
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Algorithm 2: Write operation
Input : Persistent object id & New object data
Output: Sucess/Failure & Stabilisation time
write(oid,new ob j data)
begin

//snapshot the object and add it to TX write set

snapshot(object id);
obj buffer← read(oid);
//update the object data

obj buffer← store(new obj data);
//defer PM writes on commit

return success;
end
alloc(size)
begin

mem block← find block(size); //find the appropriate memory block

obj oid← extract oid from block(mem block);
//add the redo log entry for the occupied block

add redo entry();
return obj oid; //return the new object id

end
On commit:
begin

persist redo log();
append manifest(modified object entries);
append manifest(TX COMMIT);
//stabilisation point

foreach object id ∈ write set do
update epc index(hash(obj buffer));//update the new object hash

store(encrypt(obj buffer)); //store new object data in PM

end
apply redo log();
append manifest(TX FINISH);

end

enclave. Otherwise, ANCHOR fetches the PM object inside the enclave, checks if the

object’s calculated signature matches the protected signature in the metadata index,

and decrypts it. Note that all security metadata is populated in the index during system

bootstrap (§ 4.1.5.2) and has its integrity and freshness proved.

Commit protocol. ANCHOR implements a secure commit protocol to ensure crash

consistency and rollback protection. ANCHOR first ensures that the logs are persistent

and rollback protected, and then, it updates the PM content. ANCHOR’s logging process

is demonstrated in Figure 4.3. Precisely, the object snapshots are added to the undo

log during a transaction. On commit, ANCHOR persists the heap metadata updates

to the redo log. It further appends the objects’ new signatures to the manifest and a

mark-as-committed entry for the transaction. Note that the log and manifest entries

are stored encrypted, and each of them contains a unique trusted counter value. Our

protocol defers PM updates until all logs are stable. Then, ANCHOR updates the PM as
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its recovery mechanism can ensure crash consistency based on the secure logs.

Write path. Since new object creations and existing object updates modify the secu-

rity metadata (signatures, etc.), ANCHOR realizes all write operations (Algorithm 2) as

transactions to guarantee security and crash consistency. Users, similarly to the PMDK,

need to explicitly take snapshots of a transaction’s write set which are persisted to the

secure undo log. Each undo log entry receives its own unique trusted counter value, as

shown in Figure 4.3. After the snapshot, ANCHOR searches for the object based on its

PMEMoid, equivalently to a read operation. ANCHOR updates the object in the object

cache, but it does not modify it in place in the PM. This is our core difference with

PMDK; we keep uncommitted updates in the enclave buffers that are written to PM

through ANCHOR’s secure commit protocol, after the stabilization of the log entries.

Memory operations. ANCHOR relies on the PM allocator of PMDK. PM operations re-

sult in modifications to heap metadata; consequently, ANCHOR realizes them as writes.

Memory operations should also be crash-consistent to avoid memory corruption and

leakage. In contrast to write operations, alloc/free operations do not require PM data

snapshots. However, memory operations pass through the same secure commit proto-

col. All the heap metadata updates are only applied based on the redo log entries at

the commit phase.

4.1.5.2 System Bootstrap and Recovery

System bootstrap and recovery (Algorithm 3) bring ANCHOR to a consistent state. After

the attestation via the AKM service, ANCHOR reads the logs (manifest, undo/redo logs)

and restores information about the objects’ signatures and interrupted transactions.

The goal of this process is to (i) verify the security properties of the logs, (ii) retrieve the

signatures for integrity checks, and (iii) commit/rollback any uncompleted transactions

to restore PM data consistency.

In ANCHOR, logs are scanned sequentially. Each log entry is integrity checked by

a hash, and its freshness is ensured by the log’s trusted counter. The counter is in-

cremented deterministically. ANCHOR uses its value to check if all entries are present.

Thus, in case of a rollback attack on the manifest or the transaction logs, ANCHOR is

able to detect if entries are missing. Entries with counter values higher than the stored

stable, trusted counter are ignored. On a successful log verification, ANCHOR is assured

that all the entries are valid and originated from an authentic ANCHOR instance.
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Algorithm 3: System recovery and bootstrap
Input : Persistent memory pool & Manifest
Output: Consistent PM pool & In memory metadata index
pool open(path,Mani f est)
verify log(Manifest, manifest type);
recover(pool lanes); //trigger the recovery process

//verify pool header

pool header← read(pool header oid);
//verify PM heap headers

heap headers← read(heap headers oids);
return success;

recover(pool lanes)
foreach lane ∈ lanes with unfinished tx do

redo entry list← verifyLog(redo log, redo type);
if redo in progress then

//apply verified EPC-residing redo log entries

apply(redo entry list);
else

undo entry list← verifyLog(undo log, undo type);
//apply verified EPC-residing undo log entries

apply(undo entry list);
end

end
return success

verifyLog(log, log type)
/* verify the log entries and fetch the content in EPC */
begin

counter← log.firstCounter;
// if it’s a redo/undo log keep the pending updates in a list

if log type ̸= manifest log then entry list← init entry list() ;
foreach entry ∈ log do

entry← decrypt and verify(entry);
if counter ̸= entry.counter then

return Counter does not match;
end
if counter > entry.counter then break ;
if log type ̸= manifest log then

entry list.add(entry);
else

if entry == tx commit entry then
// mark the transaction as commited but non-finished till the

tx finish entry is read

mark tx commited();
mark tx lane unfinished();

else if entry == tx finish entry then
// mark the transaction as finished

mark tx lane finished();
end

end
inc(counter);

end
if counter ̸= log.trustedCounter then return Counter does not match; ;
if log type ̸= manifest log then return entry list; ;
return success;

end
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ANCHOR first scans the manifest log and populates all objects’ signatures in the

metadata index. During this process, ANCHOR retrieves information about interrupted

transactions. Transactions that were not committed are ignored since they have not

modified PM data. However, there might be transactions that are marked as committed

in the manifest, but the commit protocol is not completed. ANCHOR examines whether

the transaction was stopped during the redo log application. In this case, ANCHOR ap-

plies the redo log since all the PM objects were successfully persisted. Otherwise, the

undo log is replayed. Lastly, after the integrity checks on the pool header, ANCHOR

opens the pool. Note that ANCHOR constructs its metadata index with the latest signa-

tures for its objects through its bootstrap process. In that way, if an object is rolled back

to a previous valid state, any upcoming operation on it will report this violation.

4.1.5.3 Manifest Compaction

When the manifest reaches a configurable threshold, ANCHOR activates a compaction

mechanism that copies the latest security metadata to a new manifest. Since ANCHOR

keeps all objects’ metadata in memory, the compaction requires copying the content

of the in-memory index to the new manifest. To this end, we design a background

compaction mechanism.

While compaction is in progress, ANCHOR needs to ensure recoverability. Therefore,

during compaction, ANCHOR keeps updating the old manifest while constructing the

new one. We use a separate trusted counter for the new manifest to preserve the

deterministic increment for both manifests. Note that the new manifest is written in the

background by a dedicated thread without implications on other system operations. If

the system crashes during a compaction, the application will recover as the old manifest

still contains all the latest entries.

4.1.5.4 Network Operations

During the initialization, the communication participants register the callback functions

for the supported operations. To send a message (Algorithm 4), ANCHOR initially gets

a pre-allocated buffer and constructs the message header (§ 4.1.4.4) and its payload.

ANCHOR encrypts the message and places it in a buffer residing in the untrusted host

memory (i.e., outside the SGX-protected memory region) with its authentication tag.

Then, the message is ready to be sent. This allows ANCHOR’s network stack to handle

fast transmission directly from the untrusted buffer. An ANCHOR server polls for new

connections and incoming requests. Upon the arrival of a request (Algorithm 5), the

receiver decrypts the message and verifies its integrity and the sequence number. The

content of the message is stored in trusted enclave buffers. The receiver then executes
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Algorithm 4: Network send operation
Input : ID of the desired operation, Callback for arrival of the response, Message content

(arguments and their length)
Output: Message with ciphertext buffer in untrusted memory
create message(operation id,callback)
begin

//Fill in sequence number and operation ID and

//add callback for arrival of the response

Message message(current seq, operation id, callback);
//Get a pre-allocated message buffer

message.buf← buffer by seq(current seq);
//The response sequence number is current seq + 1

//That is why we increment it by 2

current seq← current seq + 2;
//Current ciphertext position inside the buffer

message.ciphertext pos← message.buf;
//Add Initialization Vector for encryption

message.ciphertext pos← generate IV();
//Encrypt the header (sequence number + ID)

ciphertext pos← encrypt(message.header);
return message;

end
add arg(message,arg len,arg)
begin

//The argument and its length are encrypted (arg len + 4 B)

if arg len+4 > remaining size(message) then
return False; //buffer not big enough

message.ciphertext pos← encrypt(arg, arg len);
return True;

end
enqueue req(message)
begin

//Write the Authentication tag

message.ciphertext pos tag← write tag(arg);
//Enqueue the request in eRPC

eRPC enqueue request(message.buf);
end

the registered callback for the message type, and returns a response, with the previously

explained process, to the sender. eRPC is responsible for the UDP headers, while DPDK

constructs transport layer headers.

4.1.6 Security analysis

ANCHOR extends the standard SGX threat model, as described in § 4.1.2, i.e., TEE cor-

rectly implements the secure enclave abstraction. To ensure the security principles of

ANCHOR, we have to (i) make sure that the ANCHOR code running inside the enclave is

memory safe [289] while preserving crash consistency, and (ii) prove the security prop-

erties of ANCHOR’s protocols that are implemented beyond the SGX trust boundaries.

To this end, we leverage dynamic analysis tools for security analysis, i.e., AddressSani-
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Algorithm 5: Network receive operation
Input : Buffer with encrypted message
Output: Decrypted message object
decrypt message(bu f )
begin

//Message must contain an IV, a header and a MAC

assert(buf.len >= min msg len);
Message message(buf);
ciphertext pos← buf + iv size;
message.header← decrypt(ciphertext pos, sizeof(message.header));
while remaining size(message) > 0 do

//There must be space for the argument length

if remaining size(message) < 4 then return error ;
arg len← decrypt(message.ciphertext pos, 4);
if arg len > remaining size(message) then return error ;
arg← decrypt(message.ciphertext pos, arg len);
append(message.args, pair(arg len, arg));

end
//Check the authentication tag

if ¬ verify decryption(message.ciphertext pos) then return error ;
//Check the sequence number

if message.header.seq - expected seq < 0 then
assert(is fresh(message.header.seq));

else
assert(seq threshold > expected sec - message.header.seq);

end
return message;

end

tizer [264] and Valgrind [240], to verify the memory safety of ANCHOR’s enclave code

and ANCHOR’s crash consistency property (§ 4.1.6.1).

Importantly, we further formally prove the security principles of ANCHOR’s remote

attestation and secure logging protocol using the Tamarin prover [196] (§ 4.1.6.2). For

our proofs, we rely on SGX to ensure the integrity and confidentiality of the enclaves.

Additionally, we require that the proper software attestation of the enclaves guarantees

authenticity. In particular, this means that we assume that the SGX Quoting Enclave

works correctly. Note that the models of our protocols allowed Tamarin to efficiently

exhaust the search space and terminate without the need for oracles.

4.1.6.1 Dynamic Analysis for Security Issues

Memory safety using AddressSanitizer. Memory safety bugs and memory leaks are

common causes of security vulnerabilities. Therefore, we need to verify that ANCHOR

does not include such memory errors. To this end, we compile the native ANCHOR with

AddressSanitizer (ASan) [264], a state-of-the-art tool for detecting memory safety is-

sues. We conduct experiments to pinpoint memory safety bugs in ANCHOR. We use a

set of persistent indices shipped with PMDK. During the execution of our experiments,
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ASan reports neither spatial (e.g., buffer over-/underflows) nor temporal (e.g., use-

after-free) memory safety violations. Additionally, ASan does not detect any memory

leaks. Thus, we verify that ANCHOR’s components do not expose any security vulnera-

bilities through memory safety bugs or memory leaks.

Crash consistency using Valgrind’s pmemcheck. We use the Valgrind-based pmem-

check [240] and pmreorder [244] to verify ANCHOR’s crash consistency property. First,

we conduct experiments with the native ANCHOR using workloads of 10000 operations

with the persistent indices of PMDK, to keep the runtime reasonable due to Valgrind’s

instrumentation. Throughout our experiments, pmemcheck did not report any issues.

Additionally, we port one PMDK recovery test [222] to ANCHOR. All the test cases [252]

passed without indicating any crash consistency violation. Lastly, we adapt a pmreorder

test of PMDK [26] and the core pmreorder example of the PM book [263] to ANCHOR’s

API. Our tests did not report any reordering or consistency issue, which, along with the

object recovery test, our recovery microbenchmark, and the pmemcheck tests, highlight

that ANCHOR preserves the crash consistency property.

4.1.6.2 Formal Verification of Security Protocols

Remote attestation protocol. We model ANCHOR’s attestation protocol (Figure 4.5),

described in § 4.1.4.6, using Tamarin [196]. In our model, all messages are handled

as atomic and we consider that the cryptographic functions are perfect without side

effects. Further, we build on the formally proven TLS handshake [290] to establish

an authentic session between agents that includes a secret symmetric key for further

communication. Lastly, IAS approves only quotation engine reports running on genuine

Intel SGX hardware.

In our model, the protocol states are modeled as a multiset. The state transitions are

represented as multiset rewriting rules. Our model is checked for correctness through

a set of control lemmas. They ensure that certain valid states are reachable. Our model

is used to prove ANCHOR’s desired security properties. Precisely, an attestation lemma

holds if and only if: once a client trusts an ANCHOR application, this application is in a

valid, expected state.

Tamarin verifies the specified lemmas, by (i) finding at least one valid trace (series

of state transitions) for the required states and (ii) showing that there exists no trace

leading to invalid states. In our model, Tamarin found at least one trace for every

control lemma and proved that there is no trace to any state where our lemmas are

violated. Thus, our attestation lemmas hold for our model.

Secure logging protocol. ANCHOR’s secure logging protocol is modeled in Tamarin
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based on Figure 4.3. ANCHOR’s logs share a unified format. Each entry contains an

encrypted payload, a trusted counter value, and an integrity signature.

The confidentiality and integrity of the entries is ensured through the encryption

and the cryptographic hash that is checked on the decryption of the entries. Our

model is used to prove that if a log is successfully verified during bootstrap (§ 4.1.5.2),

(i) there is no stable entry missing, and (ii) all entries are valid and from a genuine

source. Note that the version of Tamarin that we used for the proofs does not contain

direct support for counters. We worked around this limitation by modeling our coun-

ters using temporal variables associated with the action facts. Precisely, our proof uses

the timestamp of the action facts to model the counter values since ANCHOR’s trusted

counters are unique and in a sequential, increasing order.

Tamarin identified at least one trace for our aforementioned lemmas and indicated

that there is no set of transitions leading to a violating state. In this way, it formally

proves the security principles of our secure logging protocol.

4.1.7 Evaluation

4.1.7.1 Experimental Setup

We conduct our experiments on a server machine with SGXv.1, equipped with In-

tel(R) Core(TM) i9-9900K CPU with 8 cores (16 threads), 64 GiB dual-channel mem-

ory and 32 KiB (L1D, L1I), 256 KiB (L2) and 16 MiB (L3) caches. At the time of

this research, commercially available hardware did not support simultaneous SGX and

PM [134, 135], necessitating emulation of PM with DRAM. Consistent with prior stud-

ies [150, 159, 214, 313], we inject write latency on cache line flushes. For the network

experiments, the nodes are equipped with an Intel Corporation Ethernet Controller

XL710 network card and are connected over a 40GbE QSFP+ network switch.

Although newer servers provide more compute power and larger enclave memory

capacity, the foundational characteristics of memory and network interactions remain

consistent: the latency and durability overheads of PM, enclave memory constraints

(e.g., EPC paging), and network bandwidth bottlenecks remain relevant.

For our evaluation, we use two classes of workloads: (i) 5 well-known persistent in-

dices (ctree, btree, rbtree, rtree and hashmap) to showcase how ANCHOR performs

in real-life workloads and (ii) microbenchmarks to perform a sensitivity study on dif-

ferent operations. We benchmark the indices using different YCSB workloads (Zipfian

distribution) [48, 330] with varying R/W ratios. For our client-server evaluation, we

use iPerf [141] and YCSB.
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Figure 4.6: Performance of PM indices under YCSB workloads for secure, native, w/

and w/o encryption ANCHOR versions.

4.1.7.2 Persistent Indices

We evaluate the performance of ANCHOR for five different PM indices (ctree, btree,

rbtree, rtree, and hashmap) under four YCSB workloads (10 % Get, 50 % Get, 70 % Get

and 90 % Get). We compare the performance of all five indices over five competitive

baselines: (i) ANCHOR, (ii) ANCHOR w/o Encryption, (iii) ANCHOR running outside

SCONE (Native ANCHOR) (iv) Native ANCHOR w/o Encryption, and (v) Native PMDK.

Our experiments seek to quantify two inevitable overheads: (i) the overheads to en-

sure confidentiality through the comparison between the versions with and without the

encryption layer and (ii) the overheads of the TEE (e.g., due to limited enclave mem-

ory) by comparing the versions that run natively with those running inside SCONE. We

use 10 M operations on 100 k keys grouped in transactions and fixed key-value sizes

equal to 8 B and 512 B, respectively. Note that these experiments are conducted on a

single node, with the workload directly provided to the PM indices without network

interference.

Figure 4.6 illustrates the average slowdown for the four ANCHOR’s versions nor-

malized to the native PMDK. In general, ANCHOR’s throughput is 4.33-8.40× lower for

every data structure except rtree, whose slowdown ranges from 7.54× to 25.96×. To

better understand the results and the overhead sources, we collected statistics for the

native ANCHOR, as taking precise timestamps inside SCONE does not give reliable re-

sults due to enclave exits, shown in Figure 4.7. We further observe that the application

integration into SCONE leads to a slowdown of 1.45-3.47×, depending on the workload.
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Figure 4.7: Overhead breakdown in native ANCHOR version for PM indices under

varying YCSB workloads.

The data en-/decryption also contributes significantly to the total overhead, especially

inside SCONE, leading to up to 3.54× slowdown compared with the respective version

without encryption. An exception is the rtree inside SCONE with the read-intensive

workload. The introduction of the encryption layer leads to a lower overhead due to

the slower pace of data fetching, which reduces the EPC pressure and decreases the

frequency of the cache cleanup.

Moreover, we note that the average overhead slightly increases when the read ra-

tio is increased. In the 90 % Get workload, the throughput is 5.49-25.96× lower than

PMDK, while in the case of 50 % Get the respective values are 5.28-8.75×. Figure 4.7

confirms that the read operations contribute significantly to the overhead compared to

write operations in such cases. The number of reads is much higher than the number of

writes, as even put operations require a traversal of the index to locate the update/in-

sert positions. Thus, we can account for this behavior to the faster pace that ANCHOR

fetches PM data into their volatile buffers, causing higher EPC pressure and more fre-

quent cleanups of the object cache.

Finally, the higher overhead (7.54-25.96×) of rtree stems from the size of its nodes

(4 KiB). While PMDK only requires a partial direct read/write to a node, ANCHOR needs

to fetch it entirely. This copying, compared with the PMDK’s direct read/write along

with the increased EPC usage and number of cleanups, results in significantly higher

overheads for rtree when running in SCONE. The EPC paging effect is highlighted

through Table 4.2, which shows considerably lower overheads for rtree with smaller

memory footprint.

Overall, the overheads of ANCHOR mostly stem from the expensive EPC paging.

However, upcoming trusted computing paradigms such as confidential VMs (e.g., Intel

TDX [107]) will eliminate the limited EPC issue, thus leading to reduced overheads.
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Version 50% Get 70% Get 90% Get

ANCHOR w/o Enc — 10k keys 3.4× 3.6× 4.2×
ANCHOR — 10k keys 4.8× 5.3× 7.0×

Table 4.2: rtree overhead for 10k keys
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Figure 4.8: Performance evaluation for TX memory operations for secure & native

ANCHOR versions w/ encryption.

4.1.7.3 Operation Performance

We evaluate ANCHOR using a microbenchmark based on pmembench [126] to assess

the performance of three operations supported by ANCHOR, namely alloc & init, up-

date, and free. We perform a series of transactions where each transaction consists of

multiple operations on different objects selected with uniform access pattern. We vary

the size of the objects to examine its impact. For update and free operations, we pre-

allocate the PM objects. We compare both (i) ANCHOR and (ii) Native ANCHOR against

PMDK.

Figure 4.8 shows the throughput of the memory management operations. In the

case of allocation, ANCHOR is 1.9-4.1× and 2.9-9.7× slower compared to native AN-

CHOR and PMDK, respectively. For object deallocation, the respective slowdowns are

1.7-1.9× compared to the native version and 4.7-5.3× compared to PMDK. For both

alloc and free, we observe that ANCHOR’s behavior is similar to PMDK’s with increasing

object sizes. This is expected as de-/allocations only perform metadata modifications

that are not affected by the object size. In an update operation, ANCHOR needs to per-

form an extra copy of the PM data inside the enclave in case of a cache miss. This leads

to a smaller relative overhead (9.0× down to 5.4×) with the increasing size, as objects

reside in the cache and are updated in place before the TX commit phase, avoiding

multiple costly copies.
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Figure 4.9: R/W performance evaluation of secure and native ANCHOR versions w/

encryption with varying number of threads.

4.1.7.4 Scalability

We next evaluate the scalability with increasing number of threads from 1 to 8, the

maximum number of cores in our server. Each thread maintains its own object set. We

set the object size to 256 B and perform read and write operations.

Figure 4.9 shows ANCHOR’s scalability. The lower scalability rate for ANCHOR is

mainly caused by the frequent updates and look-ups to locate each object’s metadata

in the metadata index. It inevitably increases the cost of each operation due to the

mandatory lock usage, which is expensive in SCONE.

4.1.7.5 Effectiveness of Optimizations

We evaluate the effectiveness of our caching optimization using the ctree, btree, and

rbtree indices. We use two YCSB workloads: one update- (50 % Get) and one read-

intensive (90 % Get). We use 10 M operations and key-value sizes equal to 8 B and

512 B, respectively.

Figure 4.10 reports the performance improvement of our object cache. We ob-

serve a performance boost in most scenarios for our data structures. For the update-

intensive workload (50 % Get), ANCHOR has up to 1.49× speedup compared to the non-

optimized version. The performance gain becomes more obvious in the read-dominated

workload (90 % Get) where ANCHOR’s throughput improves up to 3.94×. For the case

of btree with the write-intensive workload, we observe a small performance loss due

to EPC paging effects. Overall, our technique reduces the cost of the read operation

since it decreases the number of decryptions, as the content of an object can be directly

found in the volatile, protected object cache. Table 4.3 shows the cache hit ratio for

the PM indices averaged across the three different workloads shown in Figure 4.6. We

notice that all workloads achieve more than 80 % hit rate, confirming the usefulness of

this optimization.
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Index : ctree btree rbtree rtree hashmap

Object reads (M) 203.29 87.9 215.77 99.72 60.02

Hit ratio (%) 92.34 89.48 95.01 82.11 84.23

Table 4.3: Average cache hit ratio

PMDK ANCHOR

Operation Undo/redo log (B) Undo/redo log (B) manifest (B)

tx alloc 1.66 3.68 77.41

tx update 1049.32 1082.88 70.72

tx free 1.66 3.68 71.63

Table 4.4: Write amplification normalized per object

4.1.7.6 Persistent Memory Write Amplification

We compute the PM write amplification as the total bytes of the manifest and the extra

bytes written to the logs in three basic memory management operations, namely alloc,

update, and free. We performed a series of transactions on discrete 1024 B objects.

Table 4.4 lists the number of bytes PMDK, and ANCHOR persist on average per

object and operation to the logs. ANCHOR persists 2.2× more data on average in the

secure logs for alloc and free operations. Both alloc and free involve only the redo log,

whose entries for PMDK are 16 B, and thus, even the small additions of the trusted

counter value and size to ensure the integrity and freshness properties double their

size. Note that as allocations and frees are performed via bitmap updates, they can be

merged. Thus, multiple allocations/frees in a transaction can be recorded in a single

redo log entry. This factor is less remarkable in the update case where the object is

snapshotted. More specifically, the increase in the required bytes for the secure undo

log of ANCHOR is 3.2 % on average and roots from the required metadata in the log

entries. For each operation, ANCHOR inevitably appends manifest entries at the commit

phase to keep track of the updated integrity signatures. Along with the user objects’
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Manifest size (MiB) 96 138 224 266

Recovery time (s) 2.60 3.02 4.17 5.16

Table 4.5: Boot-up time with varying manifest size

Manifest size (MiB) 138 224

Log size (MiB) 0.98 4.88 0.98 4.88

Recovery time (s) 3.02 3.09 4.11 4.12

Table 4.6: Recovery time with varying manifest and log size

entries, metadata modifications need to be tracked in the manifest, as well as entries

indicating the transactions’ phase.

4.1.7.7 Recovery Overheads

We measure ANCHOR’s recovery time, which is affected by two factors: (i) populating

the metadata index from the manifest (500k objects) and (ii) applying undo/redo logs.

We assess the impact of the manifest and undo/redo log sizes.

Table 4.5 and Table 4.6 show the required time to open a pool, scan the manifest, re-

construct the metadata index, and perform the recovery if needed. Table 4.5 highlights

the effect of the manifest. As the manifest size grows, the same applies to the boot-up

time. It is expected since each entry must be verified, decrypted, and checked against

the expected counter value. In Table 4.6, we observe that the size of the logged objects

has a negligible impact on the recovery time. Even with a relatively large (5 MiB) log,

the recovery time is barely increasing. The reason is that the manifest scan, verification,

and metadata index restoration are dominating the boot-up.

4.1.7.8 ANCHOR’s Network Stack

Next, we evaluate the performance of ANCHOR’s Network Stack (NS). We further mea-

sure the performance of ANCHOR in a client-server model using a persistent hashmap

index. The server accepts multiple client requests before a TX commit to limit the ef-

fect of the waiting time for stabilization. We use 6 different setups: (i) iperf [141],

(ii) ANCHOR-NS outside SCONE w/o Encryption, (iii) ANCHOR-NS outside SCONE w/

Encryption, (iv) iperf in SCONE, (v) ANCHOR-NS w/o Encryption and (vi) ANCHOR-NS

varying the data size per request. To simulate the behavior of iperf in our implemen-

tation, we send requests with a payload of the given data size. At the server, we count

the number of arriving requests in a certain time span.
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Figure 4.11: Network stack throughput with iperf.
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Figure 4.13: Evaluation of ANCHOR w/ NS for KV store under YCSB workloads (50 %

Get, 90 % Get) with different value sizes.

Figure 4.11 and 4.12 show ANCHOR’s NS throughput and latency. We notice that

the encryption overhead depends on the payload size. The overhead is higher for

smaller payloads. The same applies to the slowdown caused by SCONE. It is explained

as each encryption induces a constant overhead, i.e., for the encryption of a message

header and writing of the authentication tag. In the native case, iperf outperforms

eRPC. However, the sockets approach is slower inside the enclave due to syscalls which

justifies our choice for eRPC.

Further, Figure 4.13 demonstrates ANCHOR’s performance to manage a persistent

index remotely. The index throughput is 6.96×-10.58× lower when accessed via our

ANCHOR-NS, compared with native PMDK using eRPC. The encryption layer does not
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significantly impact the performance (1.09×-1.24×) as its overhead is absorbed by the

network latency and the mandatory stabilization-point waits of the KV management

system. The higher overheads in the write-dominant workload can be explained as put

operations having a bigger latency compared to the get operations, which can lead to

higher congestion at the network queues. Remotely accessed ANCHOR shows similar

behavior regarding the get/put proportion with the one observed in ($ 4.1.7.2).

4.1.8 Related Work

Persistent memory. PM systems are actively researched across several dimensions,

such as filesytems [38, 149, 158, 325], KV-stores [37, 150, 178, 324, 339], crash

consistency & reliability [41, 217, 254, 336, 337, 340] and testing tools [30, 185–

187]. In contrast to the prior work, our focus in on building a secure PM library.

Securing durable PM against data permanence attacks has been the goal of several

works [18, 19, 40, 184, 328, 333, 342, 343]. Unlike these systems, ANCHOR ensures

data freshness, does not require an explicit distinction between volatile and PM data,

and can easily be adapted to work on existing platforms due to its intuitive program-

ming model.

Secure storage systems. Building secure databases and storage systems in the cloud

is crucial to avoid undesirable access to sensitive data. Several works pursue this

goal for single-node [2, 25, 63, 163, 164, 200, 248, 288, 319] and distributed set-

tings [23, 191, 246, 318] based on different TEEs-compatible designs. However, all

these systems target traditional storage stacks with volatile memory and block-based

persistent storage, while ANCHOR focuses on PM, which introduces its own, novel pro-

gramming model.

Secure I/O stack. There exist several solutions for data transmission from TEEs over

untrusted networks. Kernel-based approaches suffer from high overheads of world

switches due to system calls [277]. Asynchronous system calls [16, 226] alleviate

these overheads, but still require copying data to and from the trusted environments.

Further works [200, 257, 274] target security challenges of one-sided RDMA. ANCHOR

targets similar challenges for two-sided RDMA (RPCs) which has been shown to be the

most effective for the design of storage systems [153–156].

On the storage front, while the modern shielded execution frameworks have em-

ployed direct I/O in the context of TEEs [23, 25, 200, 293, 295], they are incompatible

with PM, which mandates remote crash consistency. ANCHOR builds on the direct I/O

mechanism but ensures crash consistency for data written to remote PM devices.

Remote PM access. Recent research efforts aim to expand the RDMA interfaces for
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the PM to include durability semantics; performance, and crash consistency for remote

operations [98, 100, 152, 160, 329]. ANCHOR’s secure network stack for PM is based on

these advancements, where it adopts kernel-bypass networking to achieve performance

by avoiding the prohibitive overheads of system calls and ensures crash consistency for

remote PM accesses [274, 291].

4.1.9 Summary

In this section, we present ANCHOR, a secure persistent memory library. ANCHOR al-

lows for building secure PM data management systems by offering a programming

model and APIs similar to the established PM programming model and PMDK APIs,

while preserving crash consistency through its formally verified secure logging proto-

col. To achieve this, ANCHOR combines three non-trivially compatible, recent hardware

advancements: TEEs, PM, and kernel-bypass networking. ANCHOR leverages the TEE

provided by Intel SGX and designs a PM management engine that builds on PMDK,

enhanced with confidential and authenticated data structures. It further integrates a

secure kernel-bypass network stack based on eRPC and a formally proven remote attes-

tation protocol for trust establishment. Our evaluation using the YCSB workloads over

PM indices shows that ANCHOR incurs reasonable overheads.

Software artifact. ANCHORis publicly available along with its formal proofs.

https://github.com/dimstav23/Anchor
https://github.com/dimstav23/Anchor-Proofs


Chapter 5

Conclusion and Future Work

5.1 Conclusion

The emergence of Compute Express Link (CXL) technology revolutionizes the

cloud computing infrastructures towards disaggregated architectures, where byte-

addressable storage devices (e.g., PM [73, 113, 167, 201], SSDs with memory seman-

tics [91], CXL SSDs [90, 260]) have the potential to become prominent for data storage.

However, despite its promising performance benefits, the PM also adds an additional

attack vector in the cloud. Malicious attackers can exploit potential memory safety

bugs in PM applications or perform attacks, both physical and in software, trying to

compromise the PM data, raising severe security and privacy concerns for its adoption.

As a countermeasure to this challenging problem, this thesis explores the design space

of how to build dependable — safe, reliable, and secure — persistent memory systems

for the next generation of untrusted cloud environments.

First, we design SAFEPM, a framework that ensures memory safety in PM-based

applications by detecting both spatial and temporal memory safety violations. SAFEPM

utilizes the compiler instrumentation and reporting mechanisms of the widely-used,

battle-tested AddressSanitizer (ASan), enabling developers to detect memory safety

violations without additional complexity since SAFEPM fits naturally into existing de-

velopment and deployment workflows, making it accessible and practical for cloud

users. In terms of its functionality, when a PM pool is created, SAFEPM creates a persis-

tent shadow memory region, which is mapped to the corresponding location in ASan’s

shadow memory. SAFEPM manages the persistent shadow memory alongside the per-

sistent heap transparently to the application and preserves the crash consistency for

the PM data and memory safety metadata. As a result, any PM-based application can

use SAFEPM to test for memory violations at runtime, including during the recovery

process, without needing to modify their source code. Our comprehensive evaluation

115
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demonstrates that SAFEPM provides the same level of memory safety for PM applica-

tions as ASan does for volatile memory while incurring reasonable overheads.

Secondly, we want to expand our memory safety solutions beyond debugging en-

vironments. To this end, we propose SPP, the first tagged-pointer-based solution for

PM to offer practical memory safety. SPP comprises compiler instrumentation based

on LLVM, a runtime library, and a modified version of PMDK. It augments the PM

pointer representation with memory safety metadata that is set and updated in a crash-

consistent manner. SPP leverages the spare bits in the pointers to place a tag and ren-

ders the PM pointers invalid when they exceed their assigned boundaries, thus lower-

ing the cost of bounds checking. Its runtime functions ensure the correct management

of tagged pointers and compatibility with pre-compiled external libraries. Addition-

ally, SPP preserves the PMDK API, requiring no source code modifications, and can be

seamlessly integrated into existing PM software. Our extensive evaluation highlights

that SPP effectively detects PM buffer overflows with minimal performance impact and

negligible space overhead, constituting it a good candidate for production deployments.

Lastly, to seal our vision for building an end-to-end dependable PM architecture,

we introduce ANCHOR. ANCHOR is a PM library designed for building secure PM data

management systems. To achieve this, ANCHOR integrates three recent hardware ad-

vancements that are inherently incompatible: Trusted Execution Environments (TEEs),

Persistent Memory (PM), and kernel-bypass networking. ANCHOR utilizes Intel SGX’s

TEE and builds a PM management engine based on PMDK, enhanced with confidential

and authenticated durable data structures. Additionally, ANCHOR offers a program-

ming model similar to the established PM standards and ensures crash consistency for

the PM residing data through its formally verified secure logging protocol. It also incor-

porates a secure kernel-bypass network stack using eRPC and a formally proven remote

attestation protocol for trust establishment. Our evaluation demonstrates that ANCHOR

incurs reasonable overheads, considering its strong security properties.

All these projects contribute to the design of our end goal, an end-to-end depend-

able PM architecture for untrusted cloud environments. A system designer can combine

these projects, or parts thereof, to build their system depending on their specific safety

and security requirements, as well as targeted deployment environments.

5.2 Future Work

This thesis explored the design space of dependable persistent memory architectures

destined for untrusted third-party cloud infrastructures. Despite the discontinuation of

the Intel Optane product line [58, 279], the ongoing shift towards disaggregated and
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heterogeneous system setups brings about new challenges. These systems are equipped

with various new Trusted Execution Environment (TEE) technologies and have access

to large distributed memory and storage pools, which can reside either within the same

data center or be accessed remotely through the network. Consequently, building trust-

worthy and reliable data management systems becomes increasingly complex. Inspired

by our work, we discuss new opportunities for impactful research in the domains of

memory safety and security for systems incorporating byte-addressable storage in this

section.

Memory safety. Memory safety still remains a critical issue [205], which justifies it

being a very active area of research. While memory-safe languages, such as Rust [195],

are on the rise, the existing legacy codebases consisting of billions of lines of C and

C++ necessitate the employment of memory safety mechanisms. On top of that, the

adoption of the Compute Express Link (CXL) [47] technology is anticipated to facilitate

new programming models for byte-addressable storage devices [17], which will also

mandate crash consistency. Therefore, it is important to rethink memory safety in such

heterogeneous systems, where memory access patterns deviate from the standardized

norms – (persistent) memory pools can be accessed by various devices using cache-

coherent interconnects and Direct Memory Access (DMA). Consequently, approaches

like SAFEPM and SPP can be a solid foundation but may require adaptation to the new

programming standards to ensure memory safety in CPU-less byte-addressable storage

nodes accessible through a CXL-capable networking infrastructure.

Additionally, the memory safety community is characterized by a continuous ef-

fort to minimize the overheads incurred by the proposed solutions. On the one hand,

probabilistic or sampling-based approaches (e.g., GWP-ASan [265]) offer a trade-off

between safety and performance, primarily aiming toward production environments.

Enforcing such a solution in our proposed systems (e.g., in SAFEPM) is a viable direc-

tion to be well-prepared for the widespread adoption of byte-addressable storage. On

the other hand, using hardware-assisted memory safety solutions, such as CHERI [322]

and ARM’s Memory Tagging Extension (MTE) [14], is gaining traction. Towards this

direction, porting SPP to leverage MTE or CHERI, considering their unique pointer

characteristics, could lead to a high-performance memory safety solution for durable

byte-addressable devices. Importantly, all these approaches and extensions must en-

sure the durability of data structures and preserve crash consistency property for both

data and memory safety metadata. To this end, integrating memory safety techniques

with seamless hardware-assisted persistency [29] is worth exploring in the future as it

can greatly assist towards this goal.

Secure end-to-end data management systems. Disaggregated, heterogeneous com-
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puting setups define the next generation of cloud systems, and Compute Express Link

(CXL) [47] is pitched to be their backbone. Precisely, the upcoming PCIe 6.0 specifica-

tion, the layer upon which CXL is built, introduces new security features [230, 231].

These features, among others, include the Component Measurement and Authentica-

tion (CMA) and the Integrity and Data Encryption (IDE). Together, they aim to simplify

the processes of device authentication and secure data transmission. Such protocols can

be leveraged to build secure systems that incorporate PCI-attached byte-addressable

storage devices [90, 260, 271] and enforce their principles directly on the wire level.

Further, in our context, the integration of accelerators, such as FPGAs, into het-

erogeneous cloud environments offers additional computing resources that can signif-

icantly reduce the performance overheads caused by the mandatory operations to en-

sure security or crash consistency. For instance, in ANCHOR, offloading functionalities

like transactional logging or encryption algorithms to these accelerators can result in

higher system throughput and improved resource utilization. This is particularly ben-

eficial in multi-tenant environments, where efficient resource allocation in conjunction

with the maximization of performance is a high priority.

Apart from that, TEE technologies evolve and new ones emerge [5, 13, 132], such

as the Confidential Virtual Machines (CVMs) that allow for running a full-fledged vir-

tual machine inside a hardware-based TEE. CVMs open up new ways for designing

secure data management systems, where the size of the secure memory region is no

longer a limiting factor. In this way, the system designer can focus on providing a

high-performance, secure software stack rather than minimizing the TCB. Precisely, in

ANCHOR, we could rethink the design of its in-memory data structures and re-evaluate

and optimize the workflow of its operations to optimize them for CVMs that access

byte-addressable storage. However, undoubtedly, a larger TCB increases the potential

attack surface. Therefore, it is essential for a secure system to be able to sanitize its

inputs from the untrusted world, especially from untrusted devices (e.g., PM). To this

end, protocols such as Security Protocol and Data Model (SPDM) [281] and TEE De-

vice Interface Security Protocol (TDISP) [292] can be utilized in the system design to

ensure a trusted and authenticated I/O.

On the networking frontier, the development of programmable network cards

(SmartNICs) is a promising hardware advancement [20, 33]. For instance, ANCHOR’s

network stack can offload part of its operations to the SmartNIC (e.g., packet en-

cryption), thereby enhancing performance and reducing CPU load. Additionally, in

a scenario where a SmartNIC is attested and the message verification mechanism is

offloaded to its computational unit, it can enable the use of one-sided Remote Direct

Memory Access (RDMA). Specifically for byte-addressable storage, support for atomic
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operations on encrypted data over the network would allow efficient implementation

of data structures and algorithms. On top of that, hardware-assisted crash consistency

mechanisms enforced by the NIC hardware could resolve the major challenge of crash

consistency and further reduce the software overhead for ensuring data durability in

one-sided operations. Such enhancements could allow for using one-sided RDMA to

build a secure network stack for byte-addressable storage and significantly improve

performance and security by relieving CPU stress without the danger of violating the

network security properties.

Lastly, while our proposed systems provide software-based safety and security prop-

erties, it’s crucial to acknowledge their limitations in the face of hardware attacks.

Physical access to PM modules could potentially subvert their guarantees. For instance,

cold boot attacks or direct probing of memory chips could bypass some of the protec-

tion mechanisms of SAFEPM and SPP. Additionally, techniques like bus snooping or

DMA-based attacks could expose sensitive data during transmission between the CPU

and PM. ANCHOR’s use of Intel SGX provides protection against physical attacks to some

extent, but side-channel attacks exploiting hardware vulnerabilities, such as specula-

tive execution or power analysis, could still pose a threat. To address these concerns, a

multi-layered approach is necessary. This could include physical security measures for

data centers, embedded hardware-based encryption for PM modules, and continuous

monitoring for unusual access patterns. For example, software-based protections, such

as obfuscation or intelligent padding and alignment, can partially mitigate side-channel

attacks. On top of that, hardware-based protections can also be employed (e.g., hard-

ware isolation, randomization via noise insertion) to alleviate this issue. Overall, future

work should focus on combining these hardware-level protections with our software-

based solutions to create a robust and comprehensive security framework.

CXL for byte-addressable storage systems. While the present work focuses on PM

devices directly attached to the memory bus, the CXL technology introduces a new

paradigm, enabling disaggregated architectures with byte-addressable storage over

PCIe. Byte-addressable storage over CXL differs fundamentally from PM directly at-

tached to the memory bus in its consistency, coherency, and persistency semantics.

Unlike PM, PCIe/CXL interconnects may reorder messages, necessitating new CPU in-

structions or memory barriers to guarantee write ordering and completion.

Furthermore, the architectural complexity of CXL results in challenges in crash con-

sistency. Current remote PM consistency models, like reading after writing to ensure

persistency, are insufficient under CXL due to potential reordering at the interconnect

level. Thus, existing systems would require adaptation to support CXL’s flushing and

coherence protocols.



120 Chapter 5. Conclusion and Future Work

In addressing these challenges, future work should focus on developing abstrac-

tions and programming frameworks to integrate byte-addressable storage with the CXL

protocols. There needs to be a formalization of how to ensure the persistence and crash

consistency properties. This would allow existing applications to harness the benefits of

CXL environments without major rewrites. In this way, assuming that byte-addressable

storage is meant to be accessed via a pointer interface (ld/st) from the application’s

perspective, systems like SAFEPM and SPP can be adapted to leverage the new pro-

gramming frameworks, APIs and crash consistency mechanisms (e.g., a different form

of logging) to provide their guarantees without major changes due to their simplistic

design. It is important to note that specifically for SPP, the storing of metadata in dis-

joint regions might be inevitable to accommodate larger pools and objects, leading to

increased performance overheads. Regarding ANCHOR, ensuring a correct crash con-

sistency mechanism would require adaptations to handle CXL’s message reordering.

Enhancing the secure logging protocol internal operations (including the Manifest) to

account for this factor is essential for durability, crash consistency, and rollback re-

silience. Further, providing confidentiality, integrity, and freshness guarantees for data

and operations across disaggregated nodes would demand synchronization consider-

ations and modifications in the internal primitives that ANCHOR uses to achieve data

persistence, as the currently-used cache flushing and non-temporal stores are not effec-

tive for remote byte-addressable storage.

Overall, the concept of byte-addressable storage over CXL is still immature — Sam-

sung recently proposed a battery-backed CXL device [260] to bridge gaps in persistency

guarantees. Additionally, the emerging CXL SSDs [90, 271] propose memory-mapped,

persistent storage over CXL, raising opportunities for following a similar direct mem-

ory access programming model. Extending our systems to such hardware would re-

quire re-engineering to use the proper APIs or low-level primitives to align with the

unique memory-mapping characteristics and to maintain crash consistency across the

CXL pipeline.
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