

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Dependable Virtualised Systems

Jörg THALHEIM
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Adviser: Prof. Pramod BHATOTIA

Thesis committee chair: Prof. Björn FRANKE

Reviewers: Prof. Eduard BUGNION, Prof. Boris GROT

Institute of Computing Systems Architecture

School of Informatics

The University of Edinburgh

2022

Abstract

Virtual machines and containers are widely used in data centres and in the cloud for

software deployment and management. Their popularity is based on higher capacity

utilisation, lower maintenance costs, and better scalability by creating an abstraction

layer on top of physical hardware. The economics and scalability of virtualised

applications require that the workloads of multiple customers can run on the same

hardware with low overhead without compromising security. To address this need,

in this work we introduce a new set of IO middleware that allows users to run

smaller containers and virtual machines and deploy them in a more secure manner.

The presented contributions can be summarised as follows:

• CNTR provides a way to extend application containers at runtime with tools

deployed in a different container. In this way, you can create "slim" images that

contain only the actual application, while all the tools needed for monitoring,

testing, and debugging reside in a "fat" image that only needs to be deployed

when needed. CNTR achieves this by creating a nested namespace in the

application container that proxies files from a remote container using a FUSE

filesystem.

• VMSH allows users to attach services to running virtual machines independent

of the guest userspace and without any pre-installed agents. Similar to CNTR

this allows developers to build more light-weight virtual machines by deploying

additional services in a separate user-provided file system image on-demand.

VMSH achieves this by side-loading kernel code into the guest and mounting

a filesystem based on its own block device in a light-weight container without

affecting the applications in the VM.

• RKT-IO leverages trusted execution environments to run workloads in

containers and virtual machines to protect them from other tenants and the

cloud provider on the same host, but without sacrificing on I/O performance

that is usually degraded by this protection. It does so by providing a userspace

network and storage I/O stack in the form of a library OS based on Linux that

directly accesses the hardware from within the TEE by-passing the host kernel.

iii

Lay summary

This thesis is about making virtualisation technologies in computing more

maintainable and secure. Virtualisation logically divides physical computers into

smaller virtual compartments. For computing there exists two type of compartments:

containers or virtual machines. Containers and virtual machines can run users

programs and operating systems safely and securely isolated from other users on the

same computer. Their popularity is based on higher capacity utilisation, lower

maintenance costs, and better scalability by creating an abstraction layer on top of

physical hardware. The economics and scalability of virtualised applications require

that the workloads of multiple customers can run on the same hardware with low

overhead without compromising security. To address this need, in this work we

introduce three new systems that allows users to run smaller containers and virtual

machines and deploy them in a more secure manner.

The presented contributions can be summarised as follows:

CNTR provides a way to reduce the size of container images. Containers run

applications in an environment that is separate from the rest of the operating system.

Container images include all the files available to the applications running in the

container. To allow developers and administrators to manage the applications in

these environments, containers also have additional tools installed. With CNTR, users

can run tools within the application container that are stored in another container.

This additional container only needs to be deployed when required, keeping the

original application container lean.

VMSH provides similar functionality to CNTR, but for virtual machines instead

of containers. Virtual machines allow multiple operating systems to run on the same

physical computer by emulating virtual hardware with a program called a hypervisor.

With VMSH, virtual machines can be expanded at runtime with new programs. This

allows virtual machines to be kept lightweight by only having files available to the

application, while additional tools are only deployed when needed.VMSH achieves

this extension in a universal way without relying on specific programs in the virtual

machine, and is portable across hypervisors.

RKT-IO uses modern processor features to run applications in a trusted execution

environment (called TEE) in such a way that no other applications running on the

same computer can read or modify their data. This makes it possible to establish

trust in hardware that has been rented from a third party (cloud computing). While

previous approaches could establish similar trust, RKT-IO greatly improves

performance when using network and storage hardware by accessing the hardware

directly rather than relying on the operating system.

iv

Publications

This thesis is based on the following conference papers.

1. CNTR : Lightweight OS Containers by Jörg Thalheim, Pramod Bhatotia, Pedro

Fonseca, and Baris Kasikci, In the proceedings of USENIX ATC 2018 [251]

2. VMSH : Hypervisor-agnostic Guest Overlays for VMs by Jörg Thalheim, Peter

Okelmann, Harshavardhan Unnibhavi, Redha Gouicem, Pramod Bhatotia, In

the proceedings of ACM EuroSys 2022 [129]

3. RKT-IO : A Direct I/O Stack for Shielded Execution by Jörg Thalheim,

Harshavardhan Unnibhavi, Christian Priebe, Pramod Bhatotia, and Peter

Pietzuch, In the proceedings of ACM EuroSys 2021 [252]

Other conference papers during my PhD

4. Sieve : Actionable insights from monitored metrics in distributed systems by Jörg

Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia, Ruichuan

Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer, In the proceedings of

Middleware 2017:

https://dl.acm.org/doi/10.1145/3135974.3135977

5. Speicher : Securing LSM-based Key-Value Stores using Shielded Execution by Maurice

Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda, and

Kapil Vaswani, In the proceedings of Usenix FAST 2018:

https://www.usenix.org/conference/fast19/presentation/bailleu

v

https://dl.acm.org/doi/10.1145/3135974.3135977
https://www.usenix.org/conference/fast19/presentation/bailleu

Table of Contents

1 Introduction 3

1.1 Trends . 3

1.2 Challenges . 5

1.3 Contributions . 5

1.4 Outline . 7

2 Background 9

2.1 Containers . 9

2.1.1 Namespaces . 9

2.1.2 Cgroups . 10

2.1.3 Container runtimes . 11

2.1.4 Orchestration manager . 11

2.2 Fuse . 12

2.3 Hardware virtualisation . 12

2.3.1 Kernel-based virtual machine (KVM) 13

2.3.2 VirtIO . 14

2.4 Trusted execution environments . 15

2.4.1 SGX . 16

2.5 Direct I/O frameworks . 16

2.5.1 DPDK . 18

2.5.2 SPDK . 18

2.6 Library OS . 18

2.6.1 SGX-LKL . 19

3 CNTR : Lightweight OS Containers 21

3.1 Introduction . 22

3.2 Motivation . 24

3.2.1 Container-based virtualisation . 24

3.2.2 Traditional approaches to minimize containers 24

vii

3.2.3 Background: container internals 25

3.2.4 Use-cases of CNTR . 25

3.3 Design . 26

3.3.1 System overview . 26

3.3.2 Design details . 28

3.3.3 Optimizations . 31

3.4 Implementation . 33

3.5 Evaluation . 33

3.5.1 Completeness and correctness . 34

3.5.2 Performance overheads and optimizations 35

3.5.3 Effectiveness of CNTR . 43

3.6 Related Work . 44

3.7 Limitations and future work . 46

3.8 Summary . 46

4 VMSH : Hypervisor-agnostic Guest Overlays for VMs 49

4.1 Introduction . 49

4.2 Motivation . 52

4.2.1 Example use-cases enabled by VMSH 52

4.3 Overview . 53

4.3.1 System overview . 53

4.3.2 Threat model . 55

4.3.3 Design challenges . 55

4.4 Design . 57

4.4.1 Hypervisor-agnostic side-loading for VMs 58

4.4.2 Kernel-agnostic library . 59

4.4.3 Hypervisor-independent VirtIO devices 60

4.4.4 Container-based system overlay 61

4.4.5 Security . 62

4.5 Implementation . 62

4.6 Evaluation . 65

4.6.1 Robustness . 65

4.6.2 Generality . 66

4.6.3 Performance . 67

4.6.4 Use-cases . 73

4.7 Related work . 74

4.8 Limitations and future work . 75

4.9 Summary . 75

viii

5 RKT-IO : A Direct I/O Stack for Shielded Execution 77

5.1 Introduction . 78

5.2 Motivation . 81

5.2.1 Threat model . 81

5.2.2 Analysis of existing I/O mechanisms 82

5.2.3 Problem statement and our approach 84

5.3 Overview . 85

5.4 Design . 88

5.4.1 Host-independent I/O interface 88

5.4.2 I/O event handling . 90

5.4.3 I/O stack partitioning for TEEs . 94

5.4.4 Transparent encryption . 95

5.5 Implementation . 96

5.5.1 Runtime environment for the I/O stack 96

5.5.2 Network stack . 97

5.5.3 Storage stack . 97

5.6 Evaluation . 98

5.6.1 Nginx web server . 98

5.6.2 Redis key-value store . 100

5.6.3 SQLite database . 101

5.6.4 MySQL database server . 101

5.7 Related work . 102

5.8 Limitations and future work . 103

5.9 Summary . 104

6 Conclusion 105

ix

List of Figures

1.1 Trends in Service Architectures: In recent years we have seen a

transition from Monolithic and Microservice architectures to Serverless

architectures (also known as Function-as-a-Service). In this model, the

developer provides application images for functions and the provider

handles the provisioning of those functions. 4

1.2 Shift to new data centre architectures: To reduce network latencies

between the application and the end customer (i.e. for real-time data

processing), providers are now offering edge cloud data centres that

are closer to their customers. 4

2.1 Container virtualisation allows applications to run in separate domain

and filesystem. The isolation is implemented in the operating system,

which is then set up by a container engine in userspace. 10

2.2 Docker builds layered filesystem images based on a Dockerfile. Each

line in the Dockerfile becomes a new layer. When a container is started,

Docker merges the immutable image layers and mounts a new writable

layer on top. 11

2.3 FUSE request flow: When an application access a FUSE filesystem, the

kernel will forward the request to the responsible FUSE filesystem

server running in userspace . 12

2.4 Hypervisors separate applications by emulating hardware for each

virtual machine. Each virtual machine has its own guest operating

system. 13

2.5 Virtio devices are implemented in the hypervisor and are advertised to

the guest OS through discovery mechanism such as PCI or MMIO. The

guest OS driver can communicate with the hypervisor devices by

writing/reading request and response messages in a shared ring buffer

queue (also called virtqueues). The shared ring buffer contains

descriptors that reference data in the guest’s memory. 14

xi

2.6 SGX enclaves can significantly reduce the attack surface of applications

running inside virtual machines. The cloud provider, operating system

and hypervisor no longer need to be trusted. 15

2.7 Direct I/O frameworks like DPDK/SPDK provide direct access to the

underlying networking and storage hardware from within the

application. This allows high-performance applications to exchange

data with the devices faster by reducing the need for context switches,

data copies, and allocations. 17

2.8 Library operating systems come in many forms. Some run directly on

hardware, some run only in virtual machines, and others may run as

processes in userspace. What they have in common is that the operating

system functionality is linked against the application as a library. 19

2.9 Architectural overview over SGX-LKL. 20

3.1 Basic design . 27

3.2 Example of nested namespace . 29

3.3 Relative performance overheads of CNTR compared to native file

access for the Phoronix suite. The absolute values for each benchmark

is available online on the openbenchmark platform [218]. 34

3.4 Effectiveness of optimizations . 37

3.5 Phoronix benchmark with individual optimizations in CNTR disabled

compared to all optimizations enabled, i.e. a ratio of 1.5 means that

disabling this optimization slows down the benchmark by 0.5. 42

3.6 Reduction of container size after applying docker-slim on Top-50

Docker Hub images. 44

4.1 A user attaches a custom file system image to a VM and starts a shell

from the image using VMSH. (Orange refers to VMSH components running

on the host and blue to the ones in the guest.) 54

4.2 VMSH sets up its devices in the guest by side-loading a kernel library.

The virtual block device backs the overlay’s root. The virtual console

handles console inputs/outputs of the spawned process. 56

4.3 Address space mappings between hypervisor virtual memory and

guest physical/virtual memory. 58

4.4 VMSH communication infrastructure based on the VirtIO protocol.

Guest and host components share data through virtqueues (1, 2).

Notification is performed through MMIO regions (3) and KVM (4). . . . 60

xii

4.5 Relative performance overhead of VMSH-BLK for the Phoronix Test

Suite compared to qemu-blk. 68

4.6 IO bandwidth/throughput. Best-case scenario. 69

4.7 IO operations per second (IOPS). Worst case scenario. 70

4.8 fio with different configurations featuring qemu-blk and VMSH-BLK

with direct IO, and file IO with qemu-9p. 70

4.9 VMSH-console responsiveness compared to SSH. 72

5.1 System call latency with sendto() . 79

5.2 Micro-benchmarks to showcase the performance storage and network

stacks across different systems . 81

5.3 Two possible shielded execution architectures for I/O support in TEEs:

(left) application A uses a pure host OS based approach, and (right)

application B uses a library OS inside the TEE to process the I/O

operations. (Regions in green are trusted, whereas red regions are

untrusted.) . 83

5.4 Architecture overview of RKT-IO (network stack on left; storage stack

on right) . 86

5.5 RKT-IO SMP architecture . 89

5.6 Micro-benchmarks to showcase the effectiveness of design choices in

RKT-IO . 91

5.7 Generic segmentation offload and generic-receive offload 93

5.8 The above rkt-io/plots compare the performance of four real-world

applications (Nginx, Redis, SQlite, and MySQL) while running atop

native linux (no security) and three secure systems: SCONE, SGX-LKL

and RKT-IO . 99

xiii

Signed declaration

I declare that the thesis has been composed by myself and that the work has not been

submitted for any other degree or professional qualification. I confirm that the work

submitted is my own, except where work which has formed part of jointly-authored

publications has been included. My contribution and those of the other authors to

this work have been explicitly indicated below. I confirm that appropriate credit has

been given within this thesis where reference has been made to the work of others.

The work presented in § 3 was previously published in USENIX ATC 2018 as “CNTR:

Lightweight OS Containers” by Jörg Thalheim, Pramod Bhatotia (phd supervisor),

Pedro Fonseca, Baris Kasikci. § 4 was submitted to ACM EuroSys 2022 with the title

“VMSH: Hypervisor-agnostic Guest Overlays for VMs” by the authors Jörg Thalheim,

Peter Okelmann, Harshavardhan Unnibhavi, Redha Gouicem and Pramod Bhatotia.

Lastly § 5 was published in under the title “RKT-IO: A Direct I/O Stack for Shielded

Execution” in ACM EuroSys 2021 by Jörg Thalheim, Harshavardhan Unnibhavi,

Christian Priebe, Pramod Bhatotia (phd supervisor) and Peter Pietzuch.

Jörg Thalheim

1

Chapter 1

Introduction

This thesis is about making virtualisation technologies in computing more reliable,

maintainable and secure. Virtualisation logically divides physical resources into

smaller virtual compartments. Virtualisation is a critical component in all areas of

modern data centres and clouds such as storage (object stores [178], distributed block

storage [7]), networking (SDN [38], SD-WAN [18]) and computing (containers,

virtual machines). Virtualisation improves efficiency and utilisation by allowing

service providers to overprovision physical resources by sharing them with multiple

clients. Because virtualisation abstracts away from different types and generations of

hardware, it allows providers to develop unified APIs for provisioning and scaling

resources, which is the foundation of what we know as cloud computing. Users of

cloud infrastructure can scale resources both vertically (i.e., by increasing the size of a

virtual block device or selecting a larger compute instance) and horizontally (by

creating more instances of the same type) as needed. This provides users and

infrastructure providers with more flexibility. Users do not have to order hardware

on-premise and thus do not need to commit financial capital, while infrastructure

providers can migrate users between different physical hardware without degrading

availability and upgrade hardware generations without breaking compatibility.

1.1 Trends

Virtualisation of computing resources is moving away from developers managing

virtual machines and containers to providers automatically scaling applications

on-demand and closer to the end-user [12, 195, 107, 117, 98, 29].

In this model developers provide immutable application images and the

infrastructure automatically and reproducibly scales application instances on

demand (i.e., based on the request rate in the load balancer) [66]. Instead of a

3

4 Chapter 1. Introduction

Monolith

Function

Function

Function

Function

Micro-
service

Micro-
service

Figure 1.1: Trends in Service Architectures: In recent years we have seen a transition

from Monolithic and Microservice architectures to Serverless architectures (also

known as Function-as-a-Service). In this model, the developer provides application

images for functions and the provider handles the provisioning of those functions.

Central
DC

Edge Edge

Central
DC

Client Client ClientClient Client Client

Figure 1.2: Shift to new data centre architectures: To reduce network latencies between

the application and the end customer (i.e. for real-time data processing), providers are

now offering edge cloud data centres that are closer to their customers.

monolithic or microservice architecture, parts or all of the functionality are shifted to

serverless architectures (see also Figure 1.1). Since unused instances are shut down

and the customer is only charged for the CPU seconds (instead of minutes) that the

application was online, this leads to better utilisation of the infrastructure, less usage

cost for the customer [27] and lower operational cost for managing the

infrastructure [233].

As providers gain more information about application metrics and more control

over the application life cycle, they can overprovision more customers on the same

hardware and redeploy them to new machines [2] faster. Moreover, the latency

caused by the distance between the data centre and the base station is becoming the

new bottleneck due to new low-latency mobile networks [247] (see Figure 1.2).

Therefore, to enable new applications that can benefit from these latency gains,

telecom and CDN providers are offering computing resources in smaller data centres

that are closer to the customer, i.e., near 5G base stations or in CDN edge nodes [55].

Again it is important that the provider can automatically provision the application

depending on the proximity to the customer.

1.2. Challenges 5

1.2 Challenges

These new environments bring new challenges for providers, developers and

administrators. Application images must be kept small so that they can be

distributed across the network and booted quickly[105, 189]. For this reason,

management, debugging and administration services and tools are no longer

included in these images. While these tools are not required for the application to run

(since the provider handles deployment), in the event of errors developers and

administrators still need a way to efficiently determine the root cause. Ideally

developers and administrators would have the ability to attach development and

management tools to different application contexts running in different virtualisation

environments and debug interactively via a remote session without having to

redeploy the running applications. This is becoming increasingly important as

multiple layers of virtualisation become more common and it becomes difficult to

track down configuration errors due to increasing complexity (e.g., containers within

containers running in virtual machines connected via virtual overlay networks).

At the same time, virtualisation increases the risk of security breaches when

applications run in untrusted third-party cloud environments shared with other

tenants. Attackers (or even malicious cloud administrators) can compromise the

application’s security. Emerging edge data centres also tend to have fewer physical

security measures (dedicated security personnel, multiple access-gated security

doors), making them more vulnerable than traditional data centres[40]. In fact, many

studies show that software bugs, configuration errors, and security vulnerabilities

pose a serious threat to cloud systems, and software security is cited as a barrier to

the adoption of cloud solutions [229].

1.3 Contributions

To address these challenges we are developing a new set of IO abstractions to

improve the dependability (reliability, maintainability and security) of virtualised

environments.

To improve reliability and maintainability, we enable developers and administrators

to inspect, debug, and monitor their applications deployed in containers (CNTR in

Chapter 3) or virtual machines (VMSH in Chapter 4) using tools and services from

special optimised containers or filesystem images by bridging the isolation boundaries

imposed by virtualisation. In terms of security, we provide transparent encryption and

confidentiality of computations executed in containers or virtual machines by using a

trusted execution environment (RKT-IO in Chapter 5).

6 Chapter 1. Introduction

Specifically, in this thesis we will present the design and implementation of the

following three systems:

CNTR provides a way to extend application containers at runtime with tools that

are deployed in another container. The observation here is that containers often

contain a wide range of tools for developers and administrators that are not required

for the application but are occasionally used for debugging. With CNTR, users can

create “slim” images that contain only the actual application, while all the tools

needed for monitoring, testing and debugging are placed in a “fat” image that only

needs to be deployed when needed. CNTR achieves this by creating a nested

namespace in the application container that forwards files from a remote container

via a FUSE filesystem. In our extensive evaluation we show that CNTR introduces a

reasonable performance overhead while reducing the image size of all official top 50

images on Docker Hub by 66.6%.

VMSH allows services to be attached to running virtual machines independently of

the guest userspace and without any pre-installed agents. In other words, VMSH

provides out-of-band management for virtual machines, similar to Baseboard

Management Controller (BMC) for physical hardware [124, 220, 16]. Similar to CNTR,

it allows developers to create lightweight virtual machines by deploying additional

services on demand in a separate user-supplied filesystem image. VMSH

accomplishes this by side-loading kernel code into the guest and mounting a

filesystem based on its own block device in a lightweight container without affecting

the applications in the VM. VMSH targets KVM directly and is therefore not tied to

any particular Type-2 hypervisor. In our evaluation, we show that VMSH does not

add any overhead to the application in the VM and demonstrate its usefulness

through a number of implemented use cases.

RKT-IO uses trusted execution environments (i.e., SGX) to run workloads in

containers and virtual machines to protect them from other tenants and the cloud

provider on the same host, but without sacrificing I/O performance that is normally

degraded by this protection. This is done by providing a userspace network and

storage I/O stack in the form of a Linux-based library OS. RKT-IO accesses the

hardware directly accesses the hardware within the TEE bypassing the host kernel by

using the DPDK and SPDK frameworks. Rather than relying on interrupts, which

would involve costly context switches, RKT-IO directly polls for IO events and avoids

data copies by mapping device memory into userspace. To ensure data

confidentiality, all I/O leaving the TEE is encrypted. The evaluation shows that this

1.4. Outline 7

approach is 9× faster for network operations and 7× faster for storage access when

compared to other frameworks (SCONE, SGX-LKL).

When designing these systems, we focused on practical integration with existing

systems without requiring developers to adapt to new APIs. The resulting code is

publicly available including steps to reproduce the evaluation. By providing fully

functional research prototypes we hope to have a long-term impact on the community

and influence similar systems and standards, even outside of academia.

1.4 Outline

The rest of this thesis is divided into five parts. In chapter 2, we provide background

knowledge for this dissertation. Then we introduce CNTR in Chapter 3, followed by

VMSH in Chapter 4 and RKT-IO in Chapter 5 and finally a conclusion in Chapter 6.

Chapter 2

Background

In our work, we target containers and virtual machines, which we will outline in this

chapter along with other relevant used technologies.

2.1 Containers

In CNTR, we provide a new approach to build slim container images. This section

provides the technical background on containers that is required for Chapter 3.

Containers (see Figure 2.1) are a form of process-level virtualisation enforced in the

operating system, and are an important building block in the deployment of modern

applications. In fact, all major cloud computing providers (e.g., Amazon [13],

Google [99] and Microsoft [28]) offer Containers as a Service (CaaS) and some

organisations exclusively deploy their services using containers [101]

Crucially, the kernel allows system resources to be partitioned for a particular

process with very little performance overhead. The children of this process will

inherit these isolation properties. Container-based virtualisation often relies on three

key components: (1) the OS mechanism that enforces process-level isolation (e.g., the

Linux cgroups (see 2.1.2) and namespaces (see 2.1.1)), (2) the application packaging

system and runtime (2.1.3), and (3) the orchestration manager that deploys,

distributes and manages containers across machines (e.g., Docker Swarm [72],

Kubernetes [143]). Together, these components enable users to quickly deploy

services across machines, with strong performance and security isolation guarantees,

and with low-overheads.

2.1.1 Namespaces

Namespaces [163] are a feature of the Linux kernel that gives processes a separate view

of what resources are available and accessible in a system. To this point there are eight

9

10 Chapter 2. Background

Binaries Binaries

App 2App 1

Binaries

App 3

Operating system

Container engine

Infrastructure

Figure 2.1: Container virtualisation allows applications to run in separate domain and

filesystem. The isolation is implemented in the operating system, which is then set up

by a container engine in userspace.

different types of namespaces for different types of resources (e.g., mount namespaces

for filesystem mountpoints, network namespaces for network interfaces and routes

or PID namespaces for process IDs). In particular, mount namespaces are used in

containers to restrict access to files and mounts. They allow users to build a new

filesystem hierarchy that is different from that of the host. In Chapter 3, we describe

how CNTR uses a nested mount namespace to extend a “slim” container with a “fat”

container at runtime. VMSH (Chapter 4) also uses mount namespaces to mount its own

filesystem in a new chroot that is hidden from the guest so as not to interfere with the

guest userland. In addition, both CNTR and VMSH also apply the other namespace

types (i.e., network, pid or user namespaces) of the target process when they start

their own processes so that they can attach to containers.

2.1.2 Cgroups

Control groups [162] (abbreviated as cgroups) allow for resource constraints , e.g.,

CPU time, memory usage, or I/O bandwidth limits. Most importantly, these

constraints apply to a group of processes rather than a process. The latter feature is

also important for process tracking: a pid cgroup allows supervisors track to all

processes belonging to a container when implementing a container runtime (2.1.3).

Both VMSH and CNTR recognise the cgroups used by a process and register their own

process when they attach themselves.

2.1. Containers 11

Dockerfile

FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

$ docker build

Thin writable layer Container layer

App image based on Ubuntu

Container based on app image

4969a8f0

7dc96640

cae6aa63

79b5b2c3

201MB

1.588KB

30.1MB

0B

Image layer (R/O)

Figure 2.2: Docker builds layered filesystem images based on a Dockerfile. Each line

in the Dockerfile becomes a new layer. When a container is started, Docker merges the

immutable image layers and mounts a new writable layer on top.

2.1.3 Container runtimes

Users typically do not interact directly with namespaces or cgroups but instead use a

userspace container runtime. The runtime sets up the container environment (i.e.,

storage, network, namespaces, and cgroups). Applications in different containers are

isolated and have all their resources included in their own filesystem tree. Popular

container runtimes include Docker [69], systemd-nspawn [173] and LXC [271].

Depending on the implementation, container runtimes also take care of packaging

applications and services, uploading them to a central registry and then deploying

them to the target system. To share storage space between different applications,

some container engines also use overlay- or snapshot-capable filesystems (see

Figure 2.2) to share common files and base images between different containers on

the same host. We discuss this approach in more detail in § 3.2.2 and evaluate its

effectiveness in § 3.5.3.

2.1.4 Orchestration manager

Another important factor for the popularity of containers is their orchestration

managers such as Kubernetes [143] or Nomad [190]. Orchestration managers

distribute containers to different hosts according to their resource needs. They

provide overlay networks and load balancers to automate the scaling of applications

12 Chapter 2. Background

Kernelspace

VFS
Posix

filesystem
api

FUSE

Userspace

Application
process

FUSE
server
process

SystemcallRequest

Figure 2.3: FUSE request flow: When an application access a FUSE filesystem, the

kernel will forward the request to the responsible FUSE filesystem server running in

userspace

in a distributed environment. They can also ensure that workload is scheduled on

other nodes when hosts are unavailable.

2.2 Fuse

In addition to namespaces, CNTR (Chapter 3) also implements a FUSE filesystem.

FUSE[90] is a cross-platform protocol for userspace filesystems. FUSE consists of a

generic FUSE kernel driver that acts as a client and a user-level FUSE server that

implements the filesystem. The kernel driver is a proxy between processes accessing

the filesystem via Linux VFS and the FUSE server running in userspace (see

Figure 2.3). The FUSE server communicates with kernel space using a

request/response protocol. CNTR uses FUSE to implement a filesystem proxy that

can make files from a “fat container” available in a “slim container”.

2.3 Hardware virtualisation

In contrast to CNTR, VMSH aims at hardware-assisted virtualisation instead of

process-level virtualisation. In this model, a hypervisor (see Figure 2.4) sets up a

virtual machine (VM) and emulates devices for an operating system running inside

the VM, called a guest. Hypervisors can run directly on the physical hardware (also

called Type 1 hypervisors) or on top of an operating system (Type 2).

Hardware-assisted virtualisation leverages the capabilities of host processors to

enable efficient full virtualisation. In full virtualisation, the entire hardware

environment is emulated to enable the execution of an unmodified guest OS that uses

2.3. Hardware virtualisation 13

Hypervisor

Guest OS Guest OS

Binaries Binaries

App 2App 1

Guest OS

Binaries

App 3

Infrastructure

Figure 2.4: Hypervisors separate applications by emulating hardware for each virtual

machine. Each virtual machine has its own guest operating system.

the same instruction set as the host machine [33]. Even though container

virtualisation imposes less overhead than virtual machines [235], most cloud

providers still prefer virtual machines for security reasons [2].

The reason is that the trusted computing base (the part of the system that must be

trusted to be correct) of a hypervisor is smaller in terms of code size and easier to

verify. For virtual machines, the interface is mainly devices, whereas for container

virtualisation the more complex syscall API of the operating system and connected

subsystems must be trusted. In summary, containers are useful for lightweight

performance isolation and co-locating applications with incompatible dependencies

in the same OS, but providers still use virtual machines to securely separate

workloads from different tenants on the same physical hardware.

In the following sections, we provide background on our targeted hypervisor

interface KVM and the virtual device emulation standard VirtIO both of which we

use for the VMSH project in Chapter 4.

2.3.1 Kernel-based virtual machine (KVM)

Kernel-based Virtual Machine (KVM [136]) is a kernel API for Linux (also FreeBSD and

Illumos) that provides an abstraction layer on top of the hardware-based virtualisation

capabilities of various CPU architectures. KVM belongs to the Type-1 hypervisor class

(since it runs on bare-metal hardware) and is a widely used virtualisation API used by

major cloud providers [239, 97, 115, 196].

14 Chapter 2. Background

Descriptor

Shared ringbuffer

Hypervisor Guest OS

Device Driver

Guest
memory

Figure 2.5: Virtio devices are implemented in the hypervisor and are advertised to

the guest OS through discovery mechanism such as PCI or MMIO. The guest OS

driver can communicate with the hypervisor devices by writing/reading request and

response messages in a shared ring buffer queue (also called virtqueues). The shared

ring buffer contains descriptors that reference data in the guest’s memory.

KVM requires a Type-2 hypervisor running in userspace to run the guest OS

using the KVM API. KVM hypervisors include QEMU [212], Firecracker [2], Cloud

Hypervisor [54] and crosvm [95]. The hypervisor sets up the initial CPU and memory

and emulates the devices (e.g., block, console, NICs). VMSH attaches to VMs based on

KVM.

2.3.2 VirtIO

Emulating physical hardware is slow and causes significant overheads compared to

the native execution on real hardware.

Therefore, most hypervisors rely on paravirtualisation for devices where the

software interface is similar but not identical to its hardware equivalent to improve

performance and simplify the interface between the hypervisor and the guest. A

widely used standard for paravirtualisation is called VirtIO.

VirtIO defines a common interface for VM-optimised device emulation (network

devices, block devices, etc.) [261, 225]. Most hypervisors implement VirtIO devices

and their guest drivers exist for all major OSes. Depending on the device type, VirtIO

specifies a set of consumer/producer virtqueues in shared memory (see Figure 2.5).

Virtqueues are used by the device in the hypervisor and the driver in the guest to

exchange data. VirtIO has two main transport mechanisms based on either memory

mapped IO (MMIO) or on the PCI standard. In VMSH, we implement the MMIO

2.4. Trusted execution environments 15

App App App

Guest operating system

Hypervisor

Hardware

App App App

Guest operating system

Hypervisor

Hardware

Attack surface without enclaves Attack surface with enclaves

Attack surface

Figure 2.6: SGX enclaves can significantly reduce the attack surface of applications

running inside virtual machines. The cloud provider, operating system and

hypervisor no longer need to be trusted.

variant, which is widely used, especially in microVMs [214, 2, 84, 132].

2.4 Trusted execution environments

A trusted execution environment (TEE) is a protected area in the CPU which

guarantees untempered execution of code and keeps data confidential. Most popular

CPU vendors have some form of TEEs (e.g., Intel: SGX [122], AMD: Secure Memory

Encryption (SME [65]), RISC-V: Keystone [222] or ARM’s Realm [24]). In the context

of virtualisation, TEEs are interesting because they allow protecting data and

computation from other tenants on the same machine and, in some cases, even from

the cloud provider itself. To be of practical use in a cloud environment, TEEs must

also support remote attestation so that it can remotely measure the hardware to

determine if it is a genuine and secure device and is not emulated by a malicious

actor. Early TEEs, such as ARM trustzones, required the physical provisioning of

keys to establish remote attestation. While this works well for embedded devices

where the device manufacturer manages the firmware and updates for the device, in

cloud computing it is unlikely that the user deploying their application will ever see

the hardware running their code. This trust bootstrapping problem was solved when

Intel introduced SGX, which we discuss in more detail in the next section.

16 Chapter 2. Background

2.4.1 SGX

We use SGX [122] in RKT-IO (Chapter 5) to protect applications running in

containers/virtual machines in the cloud. However, the concept we use should be

transferable to similar TEE implementations on other architectures, e.g., RISC-V’s

Keystone [222], ARM’s Realm [24] or AMD’s SME [65]. SGX is a feature in modern

Intel CPUs (starting with the Skylake generation in 2015) that allows computation to

be performed securely and confidentially on hardware owned by an untrusted

third-party [62].

SGX-enabled Intel processors come with a key provisioned securely in the chip. A

user can use an Intel-powered remote attestation service to ensure that their

application runs unmodified in a protected environment called Enclave [246].

Although previous technologies such as TPMs [257] (Trusted Platform Module) and

Intel TXT [118] already offered this feature for the entire operating system and virtual

machines, respectively, SGX allows enclaves to be run for single processes [62]. This

significantly reduces the size of the TCB compared to previous approaches (see

Figure 2.6). Other processes or the operating system cannot access the Enclave data

because the hardware transparently encrypts all memory for the application in a

special area called EPC (Enclave Page Cache). In older SGX generations the EPC was

limited to 128 MB (later increased to 256 MB) of memory and required expensive

swapping involving the operating system for memory pages that exceeded this limit.

In the third generation of Intel SGX, released in 2021, this limit was increased to 1

TB [273], which imposes significantly less overhead for real-world applications.

To perform I/O, the application still relies on the untrusted operating system by

executing system calls. For I/O-heavy applications, this can become a bottleneck

since system calls also involve expensive context switches between the SGX enclave

and the OS. To reduce the overhead, previous SGX frameworks [25, 197, 208] have

introduced switchless designs that offload system calls to unprotected I/O threads

outside and communicate with these threads via shared memory queues. However,

RKT-IO communicates directly with hardware using userspace direct I/O

frameworks to bypass the kernel, which we describe in more detail in the next

section.

2.5 Direct I/O frameworks

Direct I/O frameworks bypass parts of the operating system or the entire operating

system to gain faster access to the underlying hardware (see Figure 2.7). They are

particularly popular in networking applications (e.g., netmap [223], PF_RING [110],

2.5. Direct I/O frameworks 17

Application

Network card
or

NVME SSD

Network cards

or

NVME SSD

Kernel

Driver

Kernel

Driver

DPDK/SPDK library

Application

Kernel space

Hardware

Userspace

Application without DPDK/SPDK Application with DPDK/SPDK

Figure 2.7: Direct I/O frameworks like DPDK/SPDK provide direct access to the

underlying networking and storage hardware from within the application. This

allows high-performance applications to exchange data with the devices faster by

reducing the need for context switches, data copies, and allocations.

DPDK [77]), where a large amount of data packets must be processed in software

(e.g., 100Gbit/s network cards), but are also on the rise for storage-oriented

application with the introduction of fast NVME devices. Commonly, devices use

interrupts to notify the CPU of data availability. Interrupts cause a context switch to

the operating system and a jump to the registered interrupt handler. This is efficient

for CPU-bound applications because the OS is invoked only when needed. However,

for I/O-intensive applications, this can be costly and lead to a problem known as

Interrupt storm, where the software becomes unable to make progress due to the high

number of interrupts. Although, this problem has been addressed with the

introduction of hybrid-polling mode drivers [79] and interrupt rate limiting in

hardware, data copies between buffers in userspace and hardware buffers and

dynamic memory allocations in the kernel [223] required for the POSIX API remain

an issue. Frameworks such as Intel’s DPDK and SPDK or Solarflare’s Onload bypass

the kernel by mapping device memory buffers and registers into the application’s

address space. Instead of relying on interrupts that can only be received by an

operating system in privileged mode, they poll device registers for updates. The

observation here is that for I/O-heavy applications, new data is always available and

therefore interrupts are not needed as hardware queues need to be processed

frequently. By accessing I/O memory directly, the application does not need to copy

18 Chapter 2. Background

data and memory management can be optimised, e.g., by pre-allocating all required

buffers.

In RKT-IO we use DPDK and SPDK, which we will explain in the next section.

2.5.1 DPDK

The Data Plan Development Kit (DPDK [77]) is a cross-platform library for Linux,

Windows and FreeBSD that also abstracts from different network hardware and

provides a userspace interface for writing network applications. DPDK is mainly

optimised for processing data packets and does not provide a high-level TCP/IP

stack or socket abstraction.

2.5.2 SPDK

The Storage Performance Development Kit (SPDK [121]) builds on top of DPDK, but

instead provides access to NVME devices. NVME is a standardised interface for non-

volatile memory over PCIe or the network. SPDK provides a low-level block device

interface to NVME as well as a block allocator called Blobstore [43] that can allocate

objects on a device. SPDK also provides a very simple, non-POSIX filesystem called

Blobfs [44], which is based on Blobstore.

Both DPDK and SPDK require developers to port their applications to their

respective APIs, as they do not provide a common POSIX API. Therefore, to simplify

the porting of legacy applications we ported a library OS in RKT-IO to DPDK/SPDK

to provide applications with a network and filesystem stack, which we explain in the

next section.

2.6 Library OS

Unlike monolithic kernels or microkernels, library operating systems (libOSes, also

known as unikernels [21]) reside in the same CPU protection ring and address space

as the application. Due to the lack of memory protection, libOSes can often host only

a single process or program. On the upside, system calls are cheaper compared to

general-purpose OSes because system calls do not require a CPU context switch.

Instead of the context switch, the application makes a function call to the linked

library operating system code. Since the I/O abstraction (i.e., filesystem or network

stack) is in the same address space as the application, the hardware can be accessed

more directly and with fewer additional data copies.

2.6. Library OS 19

Library OS

App

Infrastructure

Operating system

Container engine

Library OS

App

Hypervisor

Library OS

App

Figure 2.8: Library operating systems come in many forms. Some run directly on

hardware, some run only in virtual machines, and others may run as processes in

userspace. What they have in common is that the operating system functionality is

linked against the application as a library.

2.6.1 SGX-LKL

RKT-IO takes advantage of this to improve I/O performance in trusted execution

environments by bypassing the host kernel and using the filesystem and network

stack from SGX-LKL [208] (see Figure 2.9). The Linux Kernel Library (LKL) [192] is

an architectural no-MMU port of the Linux kernel that brings kernel functionality to

userspace in the form of a libOS. Since LKL is based on Linux, it provides high

compatibility with POSIX APIs and relies on well-tested code. To run LKL within the

trusted execution environment, SGX-LKL provides a small memory and threading

abstraction. This abstraction allocates memory in the encrypted enclave memory

regions. LKL’s kernel threads and application threads are scheduled by the userland

scheduler to allow faster context switching without leaving the enclave. By including

a port of the Musl libc [185], SGX-LKL provides a fully binary-compatible interface

for applications. Instead of interacting with the untrusted host OS, its libc invokes

LKL for system calls. SGX-LKL performs I/O by using virtio-based block and

network devices. These devices are emulated by untrusted threads running outside

the protected enclave. The filesystem and network stack of SGX-LKL interacts with

these devices and transparently encrypt application data leaving the enclave (i.e.,

with full disk encryption and VPN encryption). Device operations are then mapped

to a TAP interface for the network device and a file for the block device in the host

OS. This separation greatly improves the security of applications that are not

designed to run on an untrusted host OS, since they do not directly use the host’s

syscall API.

20 Chapter 2. Background

Enclave

Application

Libc (musl)

Libc ABI

LKL syscall ABI

LKL

Untrusted I/O threads

Host OS

TAP device File

virt-net virt-blk

Thread/memory abstraction Network/filesystem stack

Trusted Untrusted

Legend
Host syscall ABI

Virtio interface

Figure 2.9: Architectural overview over SGX-LKL.

Having provided the necessary background information, we would like to present

our three contributions to improving the dependability of virtualised systems.

Chapter 3

CNTR : Lightweight OS

Containers

Container-based virtualisation has become the de-facto standard for deploying

applications in data centres. However, deployed containers frequently include a

wide-range of tools (e.g., debuggers) that are not required for applications in the

common use-case, but they are included for rare occasions such as in-production

debugging. As a consequence, containers are significantly larger than necessary for

the common case, thus increasing the build and deployment time.

CNTR1 provides the performance benefits of lightweight containers and the

functionality of large containers by splitting the traditional container image into two

parts: the “fat” image — containing the tools, and the “slim” image — containing the

main application. At run-time, CNTR allows the user to efficiently deploy the “slim”

image and then expand it with additional tools, when and if necessary, by

dynamically attaching the “fat” image.

To achieve this, CNTR transparently combines the two container images using a

new nested namespace, without any modification to the application, the container

manager, or the operating system. We have implemented CNTR in Rust, using FUSE,

and incorporated a range of optimizations. CNTR supports the full Linux filesystem

API, and it is compatible with all container implementations (i.e., Docker, rkt, LXC,

systemd-nspawn). Through extensive evaluation, we show that CNTR incurs

reasonable performance overhead while reducing, on average, by 66.6% the image

size of the Top-50 images available on Docker Hub.

1Read it as “center".

21

22 Chapter 3. CNTR : Lightweight OS Containers

3.1 Introduction

Containers offer an appealing, lightweight alternative to VM-based virtualisation

(e.g., KVM, VMware, Xen) that relies on process-based virtualisation. Linux, for

instance, provides the cgroups and namespaces mechanisms that enable strong

performance and security isolation between containers [153]. Lightweight

virtualisation is fundamental to achieve high efficiency in virtualised datacenters and

enables important use-cases, namely just-in-time deployment of applications.

Moreover, containers significantly reduce operational costs through higher

consolidation density and power minimization, especially in multi-tenant

environments. Because of all these advantages, it is no surprise that containers have

seen wide-spread adoption by industry, in many cases replacing altogether

traditional virtualisation solutions [101].

Despite being lightweight, deployed containers often include a wide-range of

tools such as shells, editors, coreutils, and package managers. These additional tools

are usually not required for the application’s core function — the common

operational use-case — but they are included for management, manual inspection,

profiling, and debugging purposes [253]. In practice, this significantly increases

container size and, in turn, translates into slower container deployment and inefficient

datacenter resource usage (network bandwidth, CPU, RAM and disk). Furthermore,

larger images degrade container deployment time [78, 22]. For instance, previous

work reported that downloading container images account for 92% of the

deployment time [78]. Moreover, a larger code base directly affects the reliability of

applications in datacenters [41].

Given the impact of using large containers, users are discouraged from including

additional tools that would otherwise simplify the process of debugging, deploying,

and managing containers. To mitigate this problem, Docker has recently adopted

smaller run-times but, unfortunately, these efforts come at the expense of

compatibility problems and have limited benefits [73].

To quantify the practical impact of additional tools on the container image size, we

employed Docker Slim [71] on the 50 most popular container images available on the

Docker Hub repository [70]. Docker Slim uses a combination of static and dynamic

analyses to generate smaller-sized container images, in which, only files needed by

the core application are included in the final image. The results of this experiment

(see Figure 3.6) are encouraging: we observe that by excluding unnecessary files from

typical containers it is possible to reduce the container size, on average, by 66.6%.

Similarly, others have found that a only small subset (6.4%) of the container images is

read in the common case [105].

3.1. Introduction 23

CNTR addresses this problem2 by building lightweight containers that still remain

fully functional, even in uncommon use-cases (e.g., debugging and profiling). CNTR

enables users to deploy the application and its dependencies, while the additional

tools required for other use-cases are supported by expanding the container

“on-demand”, during runtime (Figure 3.1 (a)). More specifically, CNTR splits the

traditional container image into two parts: the “fat" image containing the rarely used

tools and the “slim" image containing the core application and its dependencies.

During runtime, CNTR allows the user of a container to efficiently deploy the

“slim” image and then expand it with additional tools, when and if necessary, by

dynamically attaching the “fat” image. As an alternative to using a “fat” image,

CNTR allows tools from the host to run inside the container. The design of CNTR

simultaneously preserves the performance benefits of lightweight containers and

provides support for additional functionality required by different application

workflows.

The key idea behind our approach is to create a new nested namespace inside the

application container (i.e., “slim container”), which provides access to the resources

in the “fat" container, or the host, through a FUSE filesystem interface. CNTR uses the

FUSE system to combine the filesystems of two images without any modification to

the application, the container implementation, or the operating system. CNTR

selectively redirects the filesystem requests between the mount namespace of the

container (i.e., what applications within the container observe and access) and the

“fat” container image or the host, based on the filesystem request path. Importantly,

CNTR supports the full Linux filesystem API and all container implementations (i.e.,

Docker, rkt, LXC, systemd-nspawn).

We evaluat CNTR across three key dimensions: (1) functional completeness – CNTR

passes 90 out of 94 (95.74%) xfstests filesystem regression tests [82] supporting

applications such as SQLite, Postgres, and Apache; (2) performance – CNTR incurs

reasonable overheads for the Phoronix filesystem benchmark suite [203], and the

proposed optimizations significantly improve the overall performance; and lastly, (3)

effectiveness – CNTR’s approach on average results in a 66.6% reduction of image size

for the Top-50 images available on Docker hub [70]. We make the CNTR

implementation along with the experimental setup [56] publicly available.

2Note that Docker Slim [71] does not solve the problem; it simply identifies the files not required by
the application, and excludes them from the container, but it does not allow users to access those files at
run-time.

24 Chapter 3. CNTR : Lightweight OS Containers

3.2 Motivation

3.2.1 Container-based virtualisation

Containers as introduced in Section 2.1 consist of a lightweight, process-level form of

virtualisation that is widely used and has become a cornerstone technology for

datacenters and cloud computing providers. Unlike VM-based virtualisation,

containers do not include a guest kernel and thus have often smaller memory

footprint than traditional VMs. Containers have important advantages over VMs for

both users and data centres:

1. Faster deployment. Containers are transferred and deployed faster from the

registry [22].

2. Lower resource usage. Containers consume fewer resources and incur less

performance overhead [236].

3. Lower build times. Containers with fewer binaries and data can be rebuilt

faster [253].

Unfortunately, containers in practice are still unnecessarily large because users

are forced to decide which auxiliary tools (e.g. debugging, profiling, etc.) should be

included in containers at packaging-time. In essence, users are currently forced to

strike a balance between lightweight containers and functional containers, and end

up with containers that are neither as light nor as functional as desirable.

3.2.2 Traditional approaches to minimize containers

The container-size problem has been a significant source of concern to users and

developers. Unfortunately, existing solutions are neither practical nor efficient.

An approach that has gained traction, and has been adopted by Docker, consists

of packing containers using smaller base distributions when building the container

runtime. For instance, most of Docker’s containers are now based on the Alpine

Linux distribution [73], resulting in smaller containers than traditional distributions.

Alpine Linux uses the musl library, instead of libc, and includes busybox, instead of

coreutils — these differences enable a smaller container runtime but at the expense

of compatibility problems caused by runtime differences. Further, the set of tools

included is still restricted and fundamentally does not help users when less common

auxiliary tools are required (e.g., custom debugging tools).

The second approach to reduce the size of containers relies on union filesystems

(e.g., UnionFS [215]). Docker, for instance, enables users to create their containers on

3.2. Motivation 25

top of commonly-used base images. Because such base images are expected to be

shared across different containers (and already deployed in the machines), deploying

the container only requires sending the diff between the base image and the final

image. However, in practice, users still end up with multiple base images due to the

use of different base image distributions across different containers.

Another approach that has been proposed relies on the use of unikernels [157, 155],

a single-address-space image constructed from a library OS [230, 36, 259]. By

removing layers of abstraction (e.g., processes) from the OS, the unikernel approach

can be leveraged to build very small virtual machines—this technique has been

considered as containerization because of its low overhead, even though it relies on

VM-based virtualisation. However, unikernels require additional auxiliary tools to be

statically linked into the application image; thus, it leads to the same problem.

3.2.3 Background: container internals

The Linux operating system achieves isolation through an abstraction called

namespaces (see 2.1.1). During the container startup, by default, namespaces of the

host are unshared. Hence, processes inside the container only see files from their

filesystem image (see Figure 3.1 (a)) or additional volumes, that have been statically

added during setup. New mounts on the host are not propagated to the container

since by default, the container runtime will mount all mount points as private.

3.2.4 Use-cases of CNTR

We envision three major use cases for CNTR that cover three different

debugging/management scenarios:

Container to container debugging in production CNTR enables the isolation of

debugging and administration tools in debugging containers and allows application

containers to use debugging containers on-demand. Consequently, application

containers become leaner, and the isolation of debugging/administration tools from

applications allows users to have a more consistent debugging experience. Rather

than relying on disparate tools in different containers, CNTR allows using a single

debugging container to serve many application containers. Containers are usually

built and deployed to provide a single service. Ideally, they should only contain files

that are needed to run the service to minimize the complexity and the need for

(security) updates as well as to save disk space. However, oftentimes, developers will

require debugging and adminsitration tools to be included in containers for

troubleshooting and management purposes (e.g., gdb, strace, tcpdump, curl, . . .).

26 Chapter 3. CNTR : Lightweight OS Containers

These tools are not necessarily required for the actual service, but they are heavily

used in practice.

Host to container debugging CNTR allows developers to use the debugging

environments (e.g., IDEs) in their host machines to debug containers that do not have

these environments installed. These IDEs can sometimes take several gigabytes of

disk space and might be not even compatible with the distribution of the container

image is based on. Another benefit of using CNTR in this context is that development

environments and settings can be also efficiently shared across different containers.

Container to host administration and debugging Container-oriented Linux

distributions such as CoreOS [61] or RancherOS [217] do not provide a package

manager and users need to extend these systems by installing containers even for

basic system services. CNTR allows a user of a privileged container to access the root

filesystem of the host operating system. Consequently, administrators can keep tools

installed in a debug container while keeping the host operating system’s filesystem

lean.

3.3 Design

In this section, we present the detailed design of CNTR.

3.3.1 System overview

Design goals CNTR has the following design goals:

• Generality: CNTR should support a wide-range of workflows for seamless

management and problem diagnosis (e.g., debugging, tracing, profiling).

• Transparency: CNTR should support these workflows without modifying the

application, the container manager, or the operating system. Further, we want

to be compatible with all container implementations.

• Efficiency: Lastly, CNTR should incur low performance overheads with the split-

container approach.

Basic design CNTR is composed of two main components (see Figure 3.1 (a)): a

nested namespace, and the CNTRFS filesystem. In particular, CNTR combines slim

and fat containers by creating a new nested namespace to merge the namespaces of two

containers (see Figure 3.1 (b)). The nested namespace allows CNTR to selectively

3.3. Design 27

Access the

application

Fat image

Nested
namespace

Slim container

App

(e.g., MySQL)

Slim image

Fat container (or host)

CntrFS

server

User
#A

Access tool

(e.g., GDB)

#B

Resolve path in
the namespace

#C

Access the tool via FUSE

#D

Serve the tool

"slim" container

"fat" container

Figure 3.1: Basic design

break the isolation between the two containers by transparently redirecting the

requests based on the accessed path. CNTR achieves this redirection using the

CNTRFS filesystem. CNTRFS is mounted as the root filesystem (/), and the

application filesystem is remounted to another path (/var/lib/cntr) in the nested

namespace. CNTRFS implements a filesystem in userspace (FUSE), where the

CNTRFS server handles the requests for auxiliary tools installed on the fat container

(or on the host).

At a high-level, CNTR connects with the CNTRFS server via the generic FUSE

kernel driver. The kernel driver simply acts as a proxy between processes accessing

CNTRFS, through Linux VFS, and the CNTRFS server running in userspace. The

CNTRFS server can be in a different mount namespace than the nested namespace,

therefore, CNTR establishes a proxy between two mount namespaces through a

request/response protocol. This allows a process that has all its files stored in the fat

container (or the host) to run within the mount namespace of the slim container.

Cntr workflow CNTR is easy to use. The user simply needs to specify the name of

the “slim” container and, in case the tools are in another container, the name of the

“fat” container. CNTR exposes a shell to the user that has access to the resources of the

application container as well as the resources forwarded from the fat container.

Figure 3.1 (a) explains the workflow of CNTR when a user requests to access a

tool from the slim container (#A): CNTR transparently resolves the requested path for

the tool in the nested namespace (#B). Figure 3.1 (b) shows an example of CNTR’s

nested namespace, where the requested tool (e.g., gdb) is residing in the fat container.

After resolving the path, CNTR redirects the request via FUSE to the fat container

(#C). Lastly, CNTRFS serves the requested tool via the FUSE interface (#D). Behind the

28 Chapter 3. CNTR : Lightweight OS Containers

scenes, CNTR executes the following steps:

1. Resolve container name to process ID and get container context. CNTR resolves the

name of the underlying container process IDs and then queries the kernel to get

the complete execution context of the container (container namespaces,

environment variables, capabilities, . . .).

2. Launch the CNTRFS server. CNTR launches the CNTRFS server. CNTR launches

the server either directly on the host or inside the specified “fat” container

containing the tools image, depending on the settings that the user specified.

3. Initialize the tools’ namespace. Subsequently, CNTR attaches itself to the

application container by setting up a nested mount namespace within the

namespace of the application container. CNTR then assigns a forked process to

the new namespace. Inside the new namespace, the CNTR process proceeds to

mount CNTRFS, providing access to files that are normally out of the scope of

the application container.

4. Initiate an interactive shell. Based on the configuration files within the debug

container or on the host, CNTR executes an interactive shell, within the nested

namespace, that the user can interact with. CNTR forwards its input/output to

the user terminal (on the host). From the shell, or through the tools it launches,

the user can then access the application filesystem under /var/lib/cntr and

the tools’ filesystem in /. Importantly, tools have the same view on system

resources as the application (e.g., /proc, ptrace). Furthermore, to enable the

use of graphical applications, CNTR forwards Unix sockets from the

host/debug container.

3.3.2 Design details

This section explains the design details of CNTR.

3.3.2.1 Step #1: Resolve container name and obtain container context

Because the kernel has no concept of a container name or ID, CNTR starts by

resolving the container name, as defined by the used container manager, to the

process IDs running inside the container. CNTR leverages wrappers based on the

container management command line tools to achieve this translation and currently,

it supports Docker, LXC, rkt, LXD, Podman, Containerd, and systemd-nspawn.

After identifying the process IDs of the container, CNTR gathers OS-level

information about the container namespace. CNTR reads this information by

3.3. Design 29

inspecting the /proc filesystem of the main process within the container. This

information enables CNTR to create processes inside the container in a transparent

and portable way.

In particular, CNTR gathers information about the container namespaces, cgroups

(resource usage limits), mandatory access control (e.g., AppArmor [174] and

SELinux [111] options), user ID mapping, group ID mapping, capabilities

(fine-grained control over super-user permissions), and process environment options.

Additionally, CNTR could also read the seccomp options, but this would require

non-standard kernel compile-time options and generally has limited value because

seccomp options have significant overlap with the capability options. CNTR reads the

environment variables because they are heavily used in containers for configuration

and service discovery [262].

Before attaching to the container, in addition, to gather the information about the

container context, the CNTR process opens the FUSE control socket (/dev/fuse). This

file descriptor is required to mount the CNTRFS filesystem, after attaching to the

container.

3.3.2.2 Step #2: Launch the CNTRFS server

Paths forwarded

 via FUSE to the

fat container

/

usr

bin

gdb

var

libcntr

usr

bin

mysql

Bind mount

from the

"slim" container

Tools in the

fat container

Application in the

slim container

...

Figure 3.2: Example of nested namespace

The CNTRFS is executed either directly on the host or inside the “fat” container,

depending on the option specified by the user (i.e., the location of the tools). In the

host case the CNTRFS server simply runs like a normal host process.

In case the user wants to use tools from the “fat” container, the CNTRFS process

forks and attaches itself to the “fat” container. Attaching to the “fat” container is

implemented by calling the setns() system call, thereby assigning the child process

to the container namespace that was collected in the previous step.

30 Chapter 3. CNTR : Lightweight OS Containers

After initialization, the CNTRFS server waits for a signal from the nested

namespace (Step #3) before it starts reading and serving the FUSE requests (reading

before an unmounted FUSE filesystem would otherwise return an error). The FUSE

requests then will be read from the /dev/fuse file descriptor and redirected to the

filesystem of the server namespace (i.e., host or fat container).

3.3.2.3 Step #3: Initialize the tools namespace

CNTR initializes the tool namespace by first attaching to the container specified by

the user—the CNTR process forks and the child process assigns itself to the cgroup,

by appropriately setting the /sys/ option, and namespace of the container, using the

setns() system call.

After attaching itself to the container, CNTR creates a new nested namespace, and

marks all mountpoints as private so that further mount events (regarding the nested

namespace) are not propagated back to the container namespace. Subsequently, CNTR

creates a new filesystem hierarchy for the nested namespace, mounting the CNTRFS

in a temporary mountpoint (TMP/).

Within the nested namespace, the child process mounts CNTRFS, at TMP/, and

signals the parent process (running outside of the container) to start serving requests.

Signalling between the parent and child CNTR processes is implemented through a

shared Unix socket.

Within the nested namespace, the child process remounts all pre-existing

mountpoints, from the application container, by moving them from / to

TMP/var/lib/cntr. Note that the application container is not affected by this since all

mountpoints are marked as private.

In addition, CNTR also mounts special container-specific files from the application

over files from the tools or host (using bind mount [184]). The special files include

the pseudo filesystems procfs (/proc), ensuring the tools can access the container

application, and devtmpfs (/dev), containing block and character devices that have

been made visible to our container. Furthermore, we bind mount a set of configuration

files from the application container into the temporary directory (e.g., /etc/passwd,

and /etc/hostname).

Once the new filesystem hierarchy has been created in the temporary directory,

CNTR atomically executes a chroot turning the temporary directory (TMP/) into the

new root directory (/).

To conclude the container attachment and preserve the container isolation

guarantees, CNTR updates the remaining properties of the nested namespace: (1)

CNTR drops the capabilities by applying the AppArmor/SELinuxprofile and (2)

3.3. Design 31

CNTR applies all the environment variables that were read from the container

process; with the exception of PATH – the PATH is instead inherited from the debug

container since it is often required by the tools.

3.3.2.4 Step #4: Start interactive shell

Lastly, CNTR launches an interactive shell within the nested namespace, enabling

users to execute the tools. CNTR forwards the shell I/O using a pseudo-TTY, and

supports graphical interface using Unix sockets forwarding.

Shell I/O Interactive shells perform I/O through standard file descriptors (i.e.,

stdin, stdout, and stderr file descriptors) that generally refer to terminal devices. For

isolation and security reasons, CNTR prevents leaking the terminal file descriptors of

the host to a container by leveraging pseudo-TTYs – the pseudo-TTY acts as a proxy

between the interactive shell and the user terminal device.

Unix socket forwarding CNTR forwards connections to Unix sockets, e.g., the X11

server socket and the D-Bus daemon running on the host. Unix sockets are also

visible as files in our FUSE. However, since our FUSE has inode numbers that are

different from the underlying filesystem, the kernel does not associate them with

open sockets in the system. Therefore, we implemented a socket proxy that runs an

efficient event loop based on epoll. It uses the splice syscall to move data between

clients in the application container and servers listening on Unix sockets in the debug

container/host.

3.3.3 Optimizations

We experienced performance slowdown in CNTRFS when we measured the

performance using the Phoronix benchmark suite [203] (§3.5.2). Therefore, we

incorporate the following performance optimizations in CNTR.

Caching: Read and writeback caches A major performance improvement comes

from allowing the FUSE kernel module to cache data returned from the read requests

as well as setting up a writeback buffer for the writes. CNTR avoids automatic cache

invalidation when a file is opened by setting the FOPEN_KEEP_CACHE flag. Without this

flag the cache cannot be effectively shared across different processes. To allow the

FUSE kernel module to batch smaller write requests, we also enable the writeback

cache by specifying the FUSE_WRITEBACK_CACHE flag at the mount setup time. This

optimization sacrifices write consistency for performance by delaying the sync

32 Chapter 3. CNTR : Lightweight OS Containers

operation. However, we show that it still performs correctly according to the POSIX

semantics in our regression experiments (see § 3.5.1).

Multithreading Since the I/O operations can block, we optimize the CNTRFS

implementation by using multiple threads. In particular, CNTR spawns independent

threads to read from the CNTRFS file descriptor independently to avoid contentions

while processing the I/O requests.

Batching In addition to caching, we also batch operations to reduce the number of

context switches. In particular, we apply the batching optimization in three places: (a)

pending inode lookups, (b) forget requests, and (c) concurrent read requests.

Firstly, we allow concurrent inode lookups by applying FUSE_PARALLEL_DIROPS

option on mount. Secondly, the operating system sends forget requests, when inodes

can be freed up by CNTRFS. The kernel can batch a forget intent for multiple inodes

into a single request. In CNTR we have also implemented this request type. Lastly, we

set FUSE_ASYNC_READ to allow the kernel to batch multiple concurrent read requests at

once to improve the responsiveness of read operations.

Splicing: Read and write Previous work suggested the use of splice reads and

writes to improve the performance of FUSE [266]. The idea behind splice operation is

to avoid copying data from and to userspace. CNTR uses splice for read operations.

Therefore, the FUSE userspace process moves data from the source file descriptor

into a kernel pipe buffer and then to the destination file descriptor with the help of

the splice syscall. Since splice does not actually copy the data but instead remaps

references in the kernel, it reduces the overhead.

We also implement a splice write optimization. In particular, we use a pipe as a

temporary storage, where the data is part of the request, and the data is not read from

a file descriptor. However, FUSE does not allow to read the request header into

userspace without reading the attached data. Therefore, CNTR has to move the whole

request to a kernel pipe first in order to be able to read the request header separately.

After parsing the header it can move the remaining data to its designated file

descriptor using the splice operation. However, this introduces an additional context

switch, and slowdowns all FUSE operations since it is not possible to know in

advance if the next request will be a write request. Therefore, we do not to enable this

optimization by default.

3.4. Implementation 33

3.4 Implementation

To ensure portability and maintainability, we decided not to rely on container-specific

APIs, since they change quite often. Instead, we build our system to be as generic as

possible by leveraging more stable operating system interfaces. Our system

implementation supports all major container types: Docker, LXC, rkt, LXD, Podman,

Containerd, and systemd-nspawn. CNTR’s implementation resolves container names

to process IDs. Process IDs are handled in an implementation-specific way. On

average, we add only 70 LoCs for each container implementation to support a new

container engine.

At a high-level, our system implementation consists of the following four

components:

• Container engine (1549 LoC) analyzes the container that a user wants to attach to.

The container engine also creates a nested mount namespace, where it starts the

interactive shell.

• CNTRFS (1481 LoC) to serve the files from the fat container. We implement

CNTRFS based on Rust-FUSE [226]. We extend Rust-FUSE to be able to mount

across mount namespaces and without a dedicated FUSE mount executable.

• A pseudo TTY (221 LoC) to connect the shell input/output with the user terminal.

• A socket proxy (400 LoC) to forward the Unix socket connection between the fat

(or the host) and slim containers for supporting X11 applications.

All core system components of CNTR are implemented in Rust (total 3651 LoC). To

simplify deployment, we do not depend on any non-Rust libraries. In this way, we can

compile CNTR as a ∼ 1.2 MB single self-contained static executable by linking against

musl-libc [185]. This design is imperative to ensure that CNTR can run on container-

optimized Linux distributions, such as CoreOS [61] or RancherOS [217], that do not

have a package manager to install additional libraries.

Since CNTR makes heavy use of low-level filesystem system calls, we have also

extended the Rust ecosystem with additional 46 system calls to support the complete

Linux filesystem API. In particular, we extend the nix Rust library [227], a library

wrapper around the Linux/POSIX API. The changes are available in our fork [199].

3.5 Evaluation

In this section, we present the experimental evaluation of CNTR. Our evaluation

answers the following questions.

34 Chapter 3. CNTR : Lightweight OS Containers

AIO
-St

res
s

Ap
ac

he
be

nc
h

Co
mpil

eb
.: C

om
p.

Co
mpil

eb
.: C

rea
te

Co
mpil

eb
.: R

ea
d

Dbe
nc

h:
1 C

lie
nts

Dbe
nc

h:
12

 Cl
ien

ts

Dbe
nc

h:
12

8 C
lie

nts

Dbe
nc

h:
48

 Cl
ien

ts
FS

-M
ark FIO Gzip

IOzo
ne

: R
ea

d
IOzo

ne
: W

rite
Po

stM
ark

Pg
be

nc
h

SQ
lite

Th
rea

de
d I

/O
: R

ea
d

Th
rea

de
d I

/O
: W

rite
Un

pa
ck

 ta
rba

ll

0
1

10
Re

la
tiv

e
ov

er
he

ad
2.6x

1.5x
2.3x

7.3x
13.3x

1.4x
0.9x 1.0x 1.0x 1.0x

0.2x
1.0x

2.1x
1.2x

7.1x

0.4x

1.9x
1.1x

0.3x
1.2x

Figure 3.3: Relative performance overheads of CNTR compared to native file access

for the Phoronix suite. The absolute values for each benchmark is available online on

the openbenchmark platform [218].

1. Is the implementation complete and correct? (§3.5.1)

2. What are the performance overheads and how effective are the proposed

optimizations? (§3.5.2)

3. How effective is the approach to reducing container image sizes? (§3.5.3)

3.5.1 Completeness and correctness

We first evaluate the completeness and correctness claim of the CNTR

implementation. The primary goal is to evaluate whether CNTR implements the

same features (completeness) as required by the underlying filesystem, and it follows

the same POSIX semantics (correctness).

Benchmark: xfstests regression test suite For this experiment, we use the

xfstests [82] filesystem regression test suite. The xfstests suite was originally

designed for the XFS filesystem, but it is now widely used for testing all of Linux’s

major filesystems. It is regularly used for quality assurance before applying changes

to the filesystem code in the Linux kernel. xfstests contains tests suites to ensure

correct behavior of all filesystem related system calls and their edge cases. It also

includes crash scenarios and stress tests to verify if the filesystem correctly behaves

under load. Further, it contains many tests for bugs reported in the past.

Methodology We extend xfstests to support mounting CNTRFS. For running tests,

we mount CNTRFS on top of tmpfs, an in-memory filesystem. We run all tests in the

generic group once.

3.5. Evaluation 35

Experimental results xfstests consists of 94 unit tests that can be grouped into the

following major categories: auto, quick, aio, prealloc, ioctl, and dangerous.

Overall, CNTR passed 90 out of 94 (95.74%) unit tests in xfstests. Four tests fail

due minor implementation details that we currently do not support. Specifically,

these four unit tests are automatically skipped by xfstests because they expect our

filesystem to be backed by a block device or expected some missing features in the

underlying tmpfs filesystem, e.g. copy-on-write ioctl. We next explain the reasons for

the failed four test cases:

1. Test #375 fails since SETGID bits are not cleared in chmod when the owner is not

in the owning group of the access control list. This would require manual

parsing and interpreting ACLs in CNTR. In our implementation, we delegate

POSIX ACLs to the underlying filesystem by using setfsuid/setfsguid on

inode creation.

2. Test #228 fails since we do not enforce the per-process file size limits

(RLIMIT_FSIZE). As replay file operations and RLIMIT_FSIZE of the caller is not

set or enforced in CNTRFS, this has no effect.

3. Test #391 fails since we currently do not support the direct I/O flag in open

calls. The support for direct I/O and mmap in FUSE is mutually exclusive. We

chose mmap here, since we need it to execute processes. In practice, this is not a

problem because not all docker drivers support this feature, including the

popular filesystems such as overlayfs and zfs.

4. Test #426 fails since our inodes are not exportable. In Linux, a process can get

inode references from filesystems by the name_to_handle_at system call.

However, our inodes are not persisted and are dynamically requested and

destroyed by the operating system. If the operating system no longer uses

them, they become invalid. Many container implementations block this system

call as it has security implications.

To summarize, the aforementioned failed test cases are specific to our current state

of the implementation, and they should not affect most real-world applications. As

such, these features are not required according to the POSIX standard, but, they are

Linux-specific implementation details.

3.5.2 Performance overheads and optimizations

We next report the performance overheads for CNTR’s split-containers approach

(§3.5.2.1), detailed experimental results (§3.5.2.2), and effectiveness of the proposed

36 Chapter 3. CNTR : Lightweight OS Containers

optimizations (§3.5.2.3).

Experimental testbed To evaluate a realistic environment for container

deployments [14], we evaluate the performance benchmarks using m4.xlarge virtual

machine instances on Amazon EC2. The machine type has two cores of Intel Xeon

E5-2686 CPU (4 hardware threads) assigned and 16GB RAM. The Linux kernel

version was 4.14.13. For storage, we use a 100GB EBS volume of type GP2 formatted

with ext4 filesystem mounted with default options. GP2 is an SSD-backed storage

and attached via a dedicated network to the VM. Amazon recommends this storage

for most workloads and low-latency application [14].

Benchmark: Phoronix suite For the performance measurement, we use the disk

benchmarks [210] from the Phoronix suite [203]. Phoronix is a meta benchmark that

has a wide range of common filesystem benchmarks, applications, and realistic

workloads. We compile the benchmarks with GCC 6.4 and CNTR with Rust 1.23.0.

Methodology For the performance comparison, we run the benchmark suite once on

the native filesystem (the baseline measurement) and compare the performance when

we access the same filesystem through CNTRFS. The Phoronix benchmark suite runs

each benchmark at least three times and automatically adds additional trials if the

variance is too high. To compute the relative overheads with respect to the baseline,

we compute the ratio between the native filesystem access and CNTRFS (native/cntr)

for benchmarks where higher values are better (e.g. throughput), and the inverse

ratio (cntr/native), where lower values are better (e.g. time required to complete the

benchmark).

3.5.2.1 Performance overheads

We first present the summarized results for the entire benchmark suite. Thereafter, we

present a detailed analysis of each benchmark individually (§3.5.2.2).

Summary of the results Figure 3.3 shows the relative performance overheads for all

benchmarks in the Phoronix test suite. We have made the absolute numbers available

for each benchmark on the openbenchmark platform [218].

Our experiment shows that 13 out of 20 (65%) benchmarks incur moderate

overheads below 1.5× compared to the native case. In particular, three benchmarks

showed significantly higher overheads, including compilebench-create (7.3×) and

compilebench-read (13.3×) and the postmark benchmark (7.1×). Lastly, we also had

3.5. Evaluation 37

Before After
0

10000

20000

30000

40000

50000

60000

Th
re

ad
ed

 re
ad

 [M
B/

s]

Threaded I/O bench - Read

(a) Read cache

Before After
0

100

200

300

400

Se
qu

en
tia

l w
rit

e
[M

B/
s]

IOZone - Sequential write 4GB

(b) Writeback cache

Before After
0

200

400

600

800

Re
ad

 c
om

pi
le

d
tre

e
[M

B/
s]

Compilebench - Read

(c) Batching

Before After
0

1000

2000

3000

4000

Se
qu

en
tia

l r
ea

d
[M

B/
s]

IOZone - Sequential read 4GB

(d) Splicing

Figure 3.4: Effectiveness of optimizations

three benchmarks, where CNTRFS was faster than the native baseline execution: FIO

(0.2×), PostgreSQL Bench (0.4×) and the write workload of Threaded I/O (0.3×).

To summarize, the results show the strengths and weaknesses of CNTRFS for

different applications and under different workloads. At a high-level, we found that

the performance of inode lookups and the double buffering in the page cache are the

main performance bottlenecks in our design (much like they are for FUSE). Overall,

the performance overhead of CNTR is reasonable. Importantly, note that while

reporting performance numbers, we resort to the worst-case scenario for CNTR,

where the “slim" application container aggressively uses the “fat" container to run an

I/O-intensive benchmark suite. However, we must emphasize the primary goal of

CNTR: to support auxiliary tools in uncommon operational use-cases, such as

debugging or manual inspection, which are not dominated by high I/O-intensive

workloads.

3.5.2.2 Detailed experimental results

We next detail the results for each benchmark.

AIO-Stress AIO-Stress submits 2GB of asynchronous write requests. In theory,

CNTRFS supports asynchronous requests, but only when the filesystem operates in

the direct I/O mode. However, the direct I/O mode in CNTRFS restricts the mmap

system call, which is required by executables. Therefore, all requests are, in fact,

processed synchronously resulting in 2.6× slowdown.

Apache Web server The Apache Web server benchmark issues 100K http requests

for test files (average size of 3KB), where we notice a slowdown of up to 1.5×.

However, the bottleneck is not due to serving the actual content, but due to writing

of the webserver access log, which triggers small writes (< 100 bytes) for each

38 Chapter 3. CNTR : Lightweight OS Containers

request. These small requests trigger lookups in CNTRFS of the extended attributes

security.capabilities, since the kernel currently neither caches such attributes nor

it provides an option for caching them.

Compilebench Compilebench simulates different stages in the compilation process

of the Linux kernel. There are three variants of the benchmark: (a) the compile stage

compiles a kernel module, (b) the read tree stage reads a source tree recursively,

and lastly, (c) the initial creation stage simulates a tarball unpack. In our

experiments, Compilebench has the highest overhead of all benchmarks with the read

tree stage being the slowest (13.4×). This is due to the fact that inode lookups in

CNTRFS are slower compared to the native filesystem: for every lookup, we need one

open() system call to get a file handle to the inode, followed by a stat() system call

to check if we already have lookup-ed this inode in a different path due hardlinks.

Usually, after the first lookup, this information is cached in the kernel, but in this

benchmark for every run, a different source tree with many files are read. The

slowdown of lookups for the other two variants, namely the compile stage (2.3×)

and initial create (7.3×) is lower, since they are shadowed by write operations.

Dbench Dbench simulates a file server workload, and it also simulates clients

reading files and directories with increasing concurrency. In this benchmark, we

notice that with increasing number of clients, CNTRFS is able to cache directories and

file contents in the kernel. Therefore, CNTRFS does not incur performance overhead

over the native baseline.

FS-Mark FS-Mark sequentially creates 1000 1MB files. Since the write requests are

reasonably large (16 KB per write call) and the workload is mostly disk bound.

Therefore, there is no difference between CNTRFS and ext4.

FIO benchmark The FIO benchmark profiles a fileserver and measures the

read/write bandwidth, where it issues 80% random reads and 20% random writes

for 4GB data with an average blocksize of 140KB. For this benchmark, CNTRFS

outperforms the native filesystem by a factor of 4× since the writeback cache leads to

fewer and larger writes to the disk compared to the underlying filesystem.

Gzip benchmark The Gzip benchmark reads a 2GB file containing only zeros and

writes the compressed version of it back to the disk. Even though the file is highly

compressible, gzip compresses the file slower than the data access in CNTRFS or ext4.

3.5. Evaluation 39

Therefore, there is no significant performance difference between CNTR and the native

version.

IOZone benchmark IOZone performs sequential writes followed by sequential

reads of a blocksize of 4KB. For the write requests, as in the apache benchmark, CNTR

incurs low overhead (1.2×) due to extended attribute lookup overheads. Whereas,

for the sequential read request, both filesystems (underlying native filesystem and

CNTRFS) can mostly serve the request from the page cache. For smaller read sizes

(4GB) the read throughput is comparable for both CNTRFS and ext4 filesystems

because the data fits in the page cache. However, a larger workload (8GB) no longer

fits into the page cache of CNTRFS and degrades the throughput significantly.

Postmark mailserver benchmark Postmark simulates a mail server that randomly

reads, appends, creates or deletes small files. In this benchmark, we observe higher

overhead (7.1×) for CNTR. In this case, inode lookups in CNTRFS dominates over the

actual I/O because the files are deleted even before they were sync-ed to the disk.

PGBench – PostgreSQL Database Server PGBench is based on the PostgreSQL

database server. It simulates both read and writes under normal database load. Like

FIO, CNTRFS is faster in this benchmark also, since PGBench flushes the writeback

buffer less often.

SQLite benchmark The SQlite benchmark measures the time needed to insert 1000

rows in a SQL table. We observe a reasonable overhead (1.9×) for CNTR, since each

insertion is followed by a filesystem sync, which means that we cannot make efficient

use of our disk cache.

Threaded I/O benchmark The Threaded I/O benchmark separately measures the

throughput of multiple concurrent readers and writers to a 64MB file. We observe

good performance for reads (1.1×) and even better performance for writes (0.3×). This

is due to the fact that the reads can be mostly served from the page cache, and for the

writes, our writeback buffer in the kernel holds the data longer than the underlying

filesystem.

Linux Tarball workload The Linux tarball workload unpacks the kernel source

code tree from a compressed tarball. This workload is similar to the create stage of

the compilebench benchmark. However, since the source is read from a single tarball

instead of copying an already unpacked directory, there are fewer lookups performed

40 Chapter 3. CNTR : Lightweight OS Containers

in CNTRFS. Therefore, we incur relatively lower overhead (1.2×) even though many

small files are created in the unpacking process.

3.5.2.3 Effectiveness of optimizations

We next evaluate the effectiveness of the proposed optimizations in CNTR (as

described in §3.3.3).

Read cache The goal of this optimization is to allow the kernel to cache pages

across multiple processes. Figure 3.4a (a) shows the effectiveness of the proposed

optimization for FOPEN_KEEP_CACHE: we observe 10× higher throughput with

FOPEN_KEEP_CACHE for concurrent reads with 4 threads for the Threaded I/O

benchmark.

Writeback cache The writeback optimization is designed to reduce the amount of

write requests by maintaining a kernel-based write cache. Figure 3.4b (b) shows the

effectiveness of the optimization: CNTR can achieve 65% more write throughput with

the writeback cache enabled compared to the native I/O performance for sequential

writes for the IOZone benchmark.

Batching To improve the directory and inode lookups, CNTRFS batches requests to

kernel by specifying the PARALLEL_DIROPS flag. We observe a speedup of 2.5× in the

compilebench read benchmark with this optimization (Figure 3.4c (c)).

Splice read Instead of copying memory into userspace, we move the file content

with the splice() syscall in the kernel to achieve zero-copy I/O. Unfortunately, we

do not notice any significant performance improvement with the splice read

optimization. For instance, the sequential read throughput in IOZone improved

slightly by just 5% as shown in Figure 3.4c (d).

3.5.2.4 Extended effectiveness evaluation of optimizations

While the original evaluation of various optimisations that were part of the original

publication of cntr only covered selected benchmarks, we extend this below by

running the entire Phoronix suite for various optimisations.

Experimental testbed Since the original testbed (the m4.xlarge EC2 instance) is no

longer available, we instead run the experiment on a machine with a AMD EPYC

7713P CPU with 64 cores (128 hyper-threads, 256 MB), 503.25 GiB DDR4 memory. All

3.5. Evaluation 41

disc benchmarks are run on a dedicated Dell EMC PowerEdge AGN MU AIC Gen4

NVMe 1.6TB drive. The host OS is Linux version 5.10.89. The used phoronix version

version is newer than in the previous run (v10.8.1), which has a list of benchmarks

compared to the old version in Section 3.5.2.

Methodology To make the experiment more comparable to the old run, we use

cgroups and CPU tasksets to limit the resources available for the experiment to 16

GiB RAM and 4 cpus. For each run of the phoronix test suite, we discard all data on

the NVMe disc with the SSD TRIM command.

As a baseline, we run Phoronix once with all optimisations and then 4 runs each

with one optimisation disabled (Read cache, Batching, Splice Read and Writeback

cache). Each configuration is run several times (the exact number of trials is chosen

by phoronix itself based on the deviation) and a median is calculated from the result.

Summary of the results Figure 3.5 shows impact of different optimisations for all

benchmarks in the Phoronix test suite. On average, the slowdown we see from

disabled individual optimisations is 10%. The most effective optimisation is splice

read, especially for read heave benchmarks, as it reduces data copies. This is

followed by read and writeback caches. Batching, on the other hand, actually seems

to lead to lower performance in some benchmarks. By allowing concurrent inode

requests, it seems to lead to more expensive locking in other parts of the system.

42 Chapter 3. CNTR : Lightweight OS Containers

0.0 0.5 1.0 1.5

Compile Bench: Compile
Compile Bench: Create

Compile Bench: Read tree
Dbench: 1 Client

Dbench: 12 Clients
FS-Mark: 1000 Files, 1MB

FS-Mark: 1k Files, No Sync
FS-Mark: 4k Files, 32 Dirs

FS-Mark: 5k Files, 1MB, 4 Threads
Fio: Rand read, 4KB
Fio: Rand read, 2MB
Fio: Rand write, 4KB
Fio: Rand write, 2MB

Fio: Sequential read, 4KB
Fio: Sequential read, 2MB
Fio: Sequential write, 2KB
Fio: Sequential write, 2MB

IOR: 2MB
IOR: 4MB
IOR: 8MB

IOR: 16MB
IOR: 32MB
IOR: 64MB

IOR: 256MB
IOR: 512MB

IOR: 1025MB
PostMark: Disk transactions

Sqlite: 1 Threads
Sqlite: 8 Threads

Sqlite: 32 Threads
Sqlite: 64 Threads

Sqlite: 128 Threads

Lower is better

baseline

Optimization disabled
Read cache
Batching
Splice read
Writeback cache

Figure 3.5: Phoronix benchmark with individual optimizations in CNTR disabled

compared to all optimizations enabled, i.e. a ratio of 1.5 means that disabling this

optimization slows down the benchmark by 0.5.

3.5. Evaluation 43

3.5.3 Effectiveness of CNTR

To evaluate the effectiveness of CNTR’s approach to reducing the image sizes, we use

a tool called Docker Slim [71].

Docker Slim applies static and dynamic analyses to build a smaller-sized container

image that only contains the files that are actually required by the application. Under

the hood, Docker Slim records all files that have been accessed during a container run

efficiently using the fanotify kernel module.

For our analysis, we extend Docker Slim to support container links, which are

extensively used for service discovery, and it is available as a fork [198].

Dataset: Docker Hub container images For our analysis, we choose the Top-50

popular official container images hosted on Docker Hub [70]. These images are

maintained by Docker and contain commonly used applications such as web servers,

databases and web applications. For each image, Docker provides different variants

of Linux distributions as the base image. We use the default variant as specified by

the developer.

Note that Docker Hub also hosts container images that are not meant to be used

directly for deploying applications, but they are meant to be used as base images to

build applications (such as language SDKs or Linux distributions). Since CNTR

targets concrete containerized applications, we do not include such base images in

our evaluation.

Methodology For our analysis, we instrument the Docker container with Docker

Slim and manually run the application so it would load all the required files.

Thereafter, we build new smaller containers using Docker Slim. These new smaller

images are equivalent to containers that developers could have created when having

access to CNTR. We envision the developers will be using a combination of CNTR and

tools such as Docker Slim to create smaller container images. Lastly, we tested to

validate that the smaller containers still provide the same functionality.

44 Chapter 3. CNTR : Lightweight OS Containers

0 25 50 75 100
Reduction [%]

0
2
4
6
8

Co

nt
ai

ne
r

Figure 3.6: Reduction of container size after applying docker-slim on Top-50 Docker

Hub images.

Experimental results On average, we could reduce the size by 66.6% for the Top-50

Docker images. Figure 3.6 depicts the histogram plot showcasing percentage of

container size that could be removed in this process. For over 75% of all containers,

the reduction in size was between 60% and 97%. Beside the applications, these

containers are packaged with common used command line auxiliary tools, such as

coreutils, shells, and package managers. For only 6 out of 50 (12%) containers, the

reduction was below 10%. We inspect these 6 images and find out they contain only

single executables written in Go and a few configuration files.

3.6 Related Work

In this section, we survey the related work in the space of lightweight virtualisation.

Lambda functions Since the introduction of AWS Lambda [12], all major cloud

computing providers offer serverless computing, including Google Cloud

Functions [98], Microsoft Azure Functions [29], IBM OpenWhisk [117]. Moreover,

there exists a research implementation called Open Lambda [107]. In particular,

serverless computing offers a small language runtime rather than the full-blown

container image. Unfortunately, lambdas offer limited or no support for interactive

debugging or profiling purposes [249] because the clients have no access to the

lambda’s container or container-management system. In contrast, the goal of the

CNTR is to aim for lightweight containers, in the same spirit of lambda functions, but

to also provide an on-demand mechanism for auxiliary tools for debugging,

profiling, etc. As a future work, we plan to support auxiliary tools for lambda

functions [4] using CNTR.

3.6. Related Work 45

Microkernels The microkernel architecture [106, 26, 137] shares a lot of

commonalities with the CNTR architecture, where the applications/services are

horizontally partitioned, and the communication happens via the inter-process

communication (IPC) mechanism. In CNTR, the application container obtains

additional service by communicating with the “fat" container via IPC using CNTRFS.

Containers Recently, there has been a lot of interest in reducing the size of

containers, but still allowing access to the rich set of auxiliary tools. For instance,

Toolbox [255] in CoreOS [57] allows to bind the mount of the host filesystem in a

container to administrate or debug the host system with installing the tools inside the

container. In contrast to Toolbox, CNTR allows bidirectional access with the debug

container. Likewise, nsenter [191] allows entering into existing container

namespaces, and spawning a process into a new set of namespaces. However,

nsenter only covers namespaces, and it does not provide the rich set of filesystem

APIs as provided by CNTR. Lastly, Slacker [105] proposed an opportunistic model to

pull images from registries to reduce the startup times. In particular, Slacker can skip

downloading files that are never requested by the filesystem. Interestingly, one could

also use Slacker to add auxiliary tools such as gdb to the container in an

“on-demand" fashion. However, Slacker could support additional auxiliary tools to a

container, but these tools would be only downloaded to the container host, if the

container is started by the user. Furthermore, Slacker also has a longer build time and

greater storage requirements in the registry. In contrast, CNTR offers a generic

lightweight model for the additional auxiliary tools.

Virtual machines Virtual machines [154, 32, 63] provide stronger isolation

compared to containers by running applications and the OS as a single unit. On the

downside, full-fledged VMs are not scalable and resource-efficient [236]. To strike a

balance between the advantages of containers and virtual machines, Intel Clear

Containers (or Kata Containers) [119] and SCONE [25] offer stronger security

properties for containers by leveraging Intel VT and Intel SGX, respectively.

Likewise, LightVM [172] uses unikernel and optimized Xen to offer lightweight VMs.

In a similar vein, CNTR allows creating lightweight containers, which are extensively

used in the data centre environment.

Unikernels and Library OSes Unikernels [157, 155] leverage library OSes [230, 36,

259, 35] to selectively include only those OS components required to make an

application work in a single address space. Unikernels use a fraction of the resources

required compared to full, multipurpose operating systems. However, Unikernels

46 Chapter 3. CNTR : Lightweight OS Containers

also face a similar challenge as containers — If Unikernels need additional auxiliary

tools, they must be statically linked in the final image as part of the library OS.

Moreover, unikernel approach is orthogonal since it targets the kernel overhead,

whereas CNTR targets the tools overhead.

3.7 Limitations and future work

While CNTR can attach to container workloads it cannot attach to virtual machines,

since it relies on the host os to spawn processes. In chapter 4 we also address virtual

machine support, which enables a range of interesting use cases (see § 4.6.4).

CNTR needs to run on the same host that runs the container. It does not integrate

itself into cluster container orchestrators like Kubernetes [143] or Nomad [190] that

provision containers on multiple hosts. Cluster container orchestrators are widely in

use in production. Hence, it would be interesting to extend CNTR to interact with their

API to locate the host where the application container has been deployed to and attach

a debug container on the same host.

Another interesting target would be Function-as-a-Service (FaaS) platforms. In

FaaS platforms, applications are also distributed over multiple hosts and scaled up

on demand based on external events (i.e. an incoming HTTP request). Many of the

open-source implementations are also based on kubernetes [139, 195, 142]. To debug

the application in case of errors the current practice is to re-deploy the application.

Running the application in a local environment is often not possible because the

application might rely on a provider-specific API. CNTR would be useful here to

extend the minimal FaaS application environments with an interactive shell with

debug tools available. For a virtual-machine based Function-as-a-Service platform

we build a similar tool in § 4.6.4.

3.8 Summary

In this chapter we presented CNTR, a system for building and deploying lightweight

OS containers. CNTR partitions existing containers into two parts: “slim"

(application) and “fat" (additional tools). CNTR efficiently enables the application

container to dynamically expand with additional tools in an on-demand fashion at

runtime. Further, CNTR enables a set of new development workflows with containers

for improved productivity:

• When testing the configuration changes, instead of rebuilding containers from

scratch, the developers can use their favorite editor to edit files in place and

3.8. Summary 47

reload the service.

• Debugging tools no longer have to be manually installed in the application

container, but can be placed in separate debug images for debugging or

profiling in production.

• To securely run an application inside a container, one can enforce stricter security

policies (AppArmor/SELinux), and run CNTR with relaxed security rules.

To the best of our knowledge, CNTR is the first generic and complete system that

allows attaching to containers and inheriting all their sandbox properties. We use

CNTR to debug existing container engines [224]. In our evaluation, we test extensively

the completeness, performance, and effectiveness properties of CNTR.

Source code availability We make CNTR with the complete experimental setup

publicly available for the research community [56].

While CNTR makes containers more maintainable with its functionality, it does not

improve their security, which is what we address in the next chapter with RKT-IO.

Chapter 4

VMSH : Hypervisor-agnostic

Guest Overlays for VMs

Lightweight virtual machines (VMs) are prominently adopted for improved

performance and dependability in cloud environments. To reduce boot-up times and

resource utilisation, they are usually “pre-baked" with only the minimal kernel and

userland strictly required to run an application. This introduces a fundamental

trade-off between the advantages of lightweight VMs and available services within a

VM, usually leaning towards the former. We propose VMSH, a hypervisor-agnostic

abstraction that enables on-demand attachment of services to a running

VM—allowing developers to provide minimal, lightweight images without

compromising their functionality. The additional applications are made available to

the guest via a file system image. To ensure that the newly added services do not

affect the original applications in the VM, VMSH uses lightweight isolation

mechanisms based on containers. We evaluate VMSH on multiple KVM-based

hypervisors and Linux LTS kernels and show that: (i) VMSH adds no overhead for

the applications running in the VM, (ii) de-bloating images from the Docker registry

can save up to 60% of their size on average, and (iii) VMSH enables cloud providers to

offer services to customers, such as recovery shells, without interfering with their

VM’s execution.

4.1 Introduction

Virtualisation is the cornerstone of cloud computing. Cloud providers predominately

use virtual machines (VMs) to consolidate and isolate multiple tenants on a single

physical host [279, 2]. To enable virtualisation, the Linux kernel-based virtual machine

(KVM) [160] is the de facto mechanism in the cloud since it uses hardware acceleration

49

50 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

to enforce compartmentalisation [115, 239, 97, 196].

With an increased demand to support performance-critical workloads, there is a

significant thrust towards designing lightweight VM solutions to minimise the

virtualisation overheads [2, 172, 211, 54]. These solutions provide reduced memory

footprints and fast boot up times [182], which makes them suitable for increasingly

popular deployment models, such as serverless [264, 31]. Furthermore, lightweight

VMs improve dependability properties since they strive to minimise the trusted and

reliable computing base [172].

The key to build lightweight VMs is to minimise their root image size. This

entails removing additional services, such as monitoring and inspection tools, which

are not used in normal application deployments. Therefore, the VM images strive for

reduced software dependencies; thus, enabling agile development. While

lightweight VMs provide a promising approach for modern cloud workloads, they

are limiting in other crucial scenarios at the same time. In particular, the deployed file

system images are typically pre-built and must be re-deployed for every

change—even during testing. This limitation is especially amplified when the users

need additional tools or services on-demand that are initially not a part of the lighter

VMs. Re-building images can be particularly bothersome when development tools

are missing for debugging, monitoring or repairing VMs. The following

re-deployment requires complex interplay between many cloud components and

configurations. And finally, it always means that the virtualised system is restarted

and all measurable or debuggable state is lost.

This fundamental trade-off between the advantages of lightweight VMs and

available services within a VM manifests in the form of restricted functionalities

provided by VMs. On the one hand, the users want pre-baked lightweight VMs for

performance. However, adding more software in a non-disruptive way is difficult

because of the variety of lightweight VM stacks. To work around these limitations,

the cloud providers offer a plethora of purpose-built and highly specialised

management agents [11, 94, 93, 180] and tracing libraries [8] which again counteract

advantages of lightweight VMs such as their dependability properties (§ 4.7).

To this end, we ask the following research question: Can lightweight VMs be extended

with external functionality on-demand and non-disruptively? To address this problem,

we propose VMSH, which provides an abstraction for accessing KVM based VMs for

tasks such as inspection, debugging, or modification. VMSH enables users to add

functionality to VMs non-disruptively and connect to newly attached programs via

a console. Software packages added to lightweight VMs with VMSH do not require

modifications. Moreover, the original guest userspace is protected from accidental

4.1. Introduction 51

harm. To maintain generality, VMSH provides an abstraction over the hardware and

APIs of different hypervisor implementations, to offer a uniform hardware interface.

VMSH achieves this by side-loading kernel code from the hypervisor into the guest.

This code registers hypervisor-independent block and console devices. It then spawns

a container-based system overlay that mounts the file system from the block device,

which contains the service to be started in the container. The user can interact with the

injected service over the console device and work with the original guest outside of

the guest overlay. To protect the guest from accidental harm, VMSH is container aware

and mounts namespaces selectively.

Our implementation currently targets KVM-based hypervisors with Linux kernels

both in the host and the guest. To side-load external code in the VM, VMSH operates

directly on the hypervisor’s KVM and conducts a binary analysis on the VM’s memory

to load a kernel library into the guest. For VMSH to serve a file system image to start

programs from, we implement a block device following the VirtIO standard.

We evaluate VMSH across four dimensions: robustness, generality and

performance. Lastly, we evaluate three use-cases. For robustness, we run the

xfstests [278] suite and show that VMSH’s block device does not have any

regressions compared to the QEMU implementation (§ 4.6.1). We show VMSH’s

generality by successfully testing 4 industry leading KVM based hypervisors and all

current long-term support versions of the Linux kernel (§ 4.6.2). We measure

performance with the Phoronix Test Suite [203] and fio [126], and find no slowdown

of the guest while VMSH is attached (§ 4.6.3). Finally, we implement three real-world

use-cases that make VMSH a key element in cloud infrastructures (§ 4.6.4).

Our contributions can be summarised as follows:

• We propose an abstraction which allows extending lightweight VMs at run time

independently of the guest and hypervisor (§ 4.2). This enables lighter VMs by

removing tools from VM images while still being able to attach them back to the

VM on-demand (§ 4.2.1).

• We design a system for hypervisor-independent side-loading into a VM of a

generic guest-overlay that does not impose limitations on both the original

guest application or the spawned service, and a device that can be attached to

hypervisors non-cooperatively (§ 4.4).

• We implement (§ 4.5) and evaluate (§ 4.6) VMSH. We show that it is compatible

across many hypervisors and Linux versions, that it does not slow down the

original VM guest, and that its use-cases have the potential to reduce image

sizes of lightweight VMs.

52 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

4.2 Motivation

Attaching programs or services at run time to today’s VMs is a complex task since

accessibility is provided by services like SSH, requiring key management and

configuration. New applications have to be integrated into the file system, which

typically requires compatibility with a given package manager. On serverless

platforms, that often means redeploying the whole application, which is disruptive

and might mask the error’s origin due to the loss of the VM state. Moreover, the lack

of a consistent hypervisor management API is a hindrance for adding virtual devices

at run time.

We therefore need an abstraction that reduces this complexity down to a universal

and simple interface that is used to execute arbitrary applications on-demand inside

VMs. Container runtimes offer a similar user experience with container-exec tools like

docker exec. VMSH aims to satisfy this requirement for VMs too, and aims to work with

many state-of-the-art hypervisors and Linux kernel versions.

Using our new abstractions, we show multiple use cases that target different

application scenarios, that we hope can empower cloud providers and application

developers alike. In the long run, we also hope that we can motivate new

virtualisation standards which improve performance and long-term stability

compared to VMSH. We envision a vm-exec device that allows one to start binaries,

while not depending on vendor-specific guest agents.

4.2.1 Example use-cases enabled by VMSH

Given the vm-exec device abstraction, we can enable a range of new services that help

administrators and developers to operate or run VM workloads (also see § 4.6.4)

Dependability services Cloud customers tend to have a wide range of distributions

and versions installed [17]. Therefore, integrating provider tools into guests can be

challenging. VMSH makes it possible to decouple these services from the guest

userland. For example, one could implement the following services using VMSH:

• Rescue systems in case of misconfiguration, including network misconfiguration

or forgotten passwords. Existing implementations of such services require

rebooting into a recovery system [109, 67].

• Monitoring tools are currently used to gather coarse-grained information about

the resource usage of the entire guest [161]. VMSH provides a more fine-grained

view as it gives access to the guest OS metadata, such as the process list, resource

usage, etc.

4.3. Overview 53

• Security scanner tools that track out-of-date or insecure packages. This is already

done in the container space [92, 9, 116]. VMSH enables similar techniques to

track and update packages in the VM space.

De-bloat VM images VMSH allows building lightweight VMs [32, 216, 269, 267] by

omitting debugging and administration tools from main applications deployed in a

VM. Such an approach reduces the size of deployed images, providing multiple

advantages. First, the cost of storage is reduced. Second, smaller image sizes lead to

faster scale-up times as the amount of data transferred over the network is low.

Finally, the build time required to generate the images is also reduced. Moreover,

on-demand debugging environments can be packed with more tools compared to the

current installations that only contain tools that are required by the administrators or

developers to log into the VM. This improves the security of running the VM, as

services such as SSH are no longer required.

Serverless frameworks Serverless offerings usually run in lightweight VMs to

improve isolation between instances. Developers usually do not have access to the

environment running the instances. Additionally, these images often contain only a

minimal management layer from the service provider, and the main application that

the developer wants to deploy. For error and performance debugging, the user has

access to minimal resource metrics exposed by the provider [10] and logging

information from the application itself [6]. With VMSH, users could gain access to

these serverless instances, e.g. by integrating VMSH into a Web-IDE and perform

interactive debugging. This would allow for more time-efficient debug cycles

compared to having to re-deploy the application on every modification.

4.3 Overview

4.3.1 System overview

To realise the vm-exec abstraction for VMs (Section 4.2), we design VMSH, a system

that allows users to extend VMs at run time. A dedicated file system image provides

the additional tools and services that execute transparently, without any help from a

guest agent, the hypervisor or the guest OS.

As shown in Figure 4.1, VMSH runs natively on the host, in parallel to the

hypervisor process. VMSH attaches to the hypervisor, and spawns a container-based

overlay running on top of the guest kernel. From the supplied file system image, this

overlay can start applications, connecting them to VMSH’s console. These

54 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

Host

VM

Guest kernel

Guest
process ...

Overlay

Shell

VMSH

attaches

FS image

Console

accesses

Figure 4.1: A user attaches a custom file system image to a VM and starts a shell from

the image using VMSH. (Orange refers to VMSH components running on the host and blue

to the ones in the guest.)

applications, e.g., a shell, run in guest userspace. To this end, VMSH strives for the

following design goals:

• Non-cooperativeness: VMSH must not rely on agents in guest userspace.

• Generality: VMSH shall be agnostic to the underlying hypervisors and should

not depend on hypervisor-specific APIs. Also, it shall support a wide range of

different guest kernel versions.

• Performance: We aim to have no degradation in performance of applications

running in a guest where VMSH is attached. Performance of the attached tools

and services is secondary, but they need to be usable.

Figure 4.2 shows how VMSH attaches to a VM and spawns tools and services to

interact with the applications and kernel inside the VM. In step 1⃝, VMSH attaches

its console and block device to the hypervisor to serve the user supplied file system

image. In step 2⃝, a library is side-loaded into the guest kernel. The library starts the

guest drivers to make VMSH’s console and the file system image available to the guest

kernel. In step 3⃝, the library spawns a process that creates the guest overlay container.

The file system image is mounted as the overlay’s root file system and existing guest

mountpoints are made available under the directory /var/lib/VMSH. In step 4⃝, the

spawned process starts tools or services, from the mounted file system image and

redirects its input/output to the VMSH’s console device.

4.3. Overview 55

4.3.2 Threat model

In a typical cloud deployment scenario we consider for VMSH, VMs are used to

multiplex hardware resources on a single physical machine among multiple

untrusted tenants. Through hardware-assisted virtualisation, the VMs are isolated

from each other; thereby protecting their confidentiality, integrity and availability.

Hence, we assume that the hardware, host OS and the hypervisor is included in

VMSH’s trusted computation base (TCB). While attacks on this TCB have been

successful [209], they are out of scope for VMSH.

Attackers may compromise a VM in multiple ways. To escape a VM, they can

attempt to exploit vulnerabilities in the hypervisor [219], as they contain complex

device implementations that contribute to a relatively large attack surface. In

Section 4.4.5, we describe the design choices we take as countermeasures to reduce

the risk of such an attack. Previous work on hardening the security of KVM [20] and

of the hypervisor [150] is orthogonal to our contributions with VMSH.

Exploiting VMSH to gain access to a VM is an another attack vector and requires

another successful exploit. VMSH drops all privileges beyond the ones of the

hypervisor after the setup phase for security hardening (see § 4.4.5).

Other attack vectors to gain access to the VM are possible, e.g., due to

misconfiguration errors, but are not under our control. It is the responsibility of the

host provider to ensure that there are no configuration/provisioning errors. For

example, in VMSH’s scenario, the host providers are the ones making VMSH available

to their customer, i.e., the VM owner. Therefore, they must enforce policies to allow

the attachment of VMSH only by a set of authorised customers.

Related research, motivated by active IT security inspection of VMs, focuses on

the stealthiness and integrity of injected code execution [270, 47]. In our scenario, the

VMSH user and the VM owner are the same entity and trust the guest. This

assumption makes intrusion detection with VMSH unreliable, but enables other

hardware intensive workloads as shown in our evaluation (see § 4.6).

4.3.3 Design challenges

Next, we present the three challenges that we address when designing the vm-exec

abstraction.

#1 Side-loading code into guest VMs As described in § 4.3.1, VMSH works by side-

loading a library into the guest kernel, which then mounts the file system image with

the required applications. Side-loading code into the guest VM would traditionally

56 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

VM

Guest kernel

VMSH

Console device

Guest overlay

Block device

side-loaded
library

root: /
...
/var/lib/vmsh

Shell

spawned
process

Block
driver

Console
driver

VM root
1 2

3

4

Figure 4.2: VMSH sets up its devices in the guest by side-loading a kernel library.

The virtual block device backs the overlay’s root. The virtual console handles console

inputs/outputs of the spawned process.

require a cooperative guest agent running inside the VM or hypervisor-specific APIs

that enables one to do so.

The increasing variety of new, lightweight hypervisors lack common APIs.

QEMU provides a debugger interface that can be used for code side-loading, while

also allowing one to attach disks at run time. Crosvm [95] only has the former

whereas Firecracker [2] and kvmtool [275] lack both. In other cases, such features,

even when supported by hypervisors, are obscured by orchestration frameworks,

such as OpenStack [87] or Containerd [86].

APIs for interacting with hypervisors are therefore sparse, heterogeneous and

incomplete. Consequently, side-loading code into the guest is challenging for VMSH

since it aims to be hypervisor agnostic and not require guest agents. To overcome

this, we design VMSH to access the underlying KVM API (see § 2.3.1) without any

help from the hypervisor (see § 4.4.1).

#2 Building a side-loadable library VMSH aims to ensure that the side-loaded

kernel library integrates with a wide range of kernel versions and without a guest

agent. Therefore, VMSH has to find kernel function addresses which the library needs

4.4. Design 57

and calls at run time. Finding those functions through binary analysis is difficult,

especially with the Linux kernel as the internal kernel API and data structures are not

considered stable. Hence, it is not trivial to build a side-loadable library that would

work for all kernel versions. We need to strike a balance between the number of

kernel features needed by VMSH and the functions it interacts with that could

possibly change across kernel versions.

To address this issue, we build a minimal kernel library by offloading as much

functionality as possible to existing kernel drivers (see § 4.4.2).

#3 Communication over VirtIO devices From an end-user perspective, one should

be able to run any application, by attaching to the VM, and access application’s input

and output. However, there is currently no easy and transparent way in which we can

make additional application files available to the guest at run time and redirect their

IO to the host.

Therefore, we build a block and a console device that enable us to overcome these

issues. Hypervisors such as QEMU and Firecracker emulate devices within the

hypervisor itself. Since we aim to be hypervisor agnostic, the devices have to run

outside the hypervisor process, without its cooperation. This requires us to overcome

two challenges:

1. VMSH needs to handle MMIO-triggered VMEXITs in the hypervisor which are

caused by the guest accessing MMIO addresses of the devices.

2. Data to be exchanged between the guest driver and the VMSH device needs to

be written to queues located in virtual guest memory and shared with VMSH.

To (1.) intercept MMIO accesses, VMSH uses one of two methods: a slower

debugger-based approach and a novel KVM feature called ioregionfd [244]. The (2.)

queues themselves are read from the hypervisor memory via system calls. We

describe the design of our hypervisor-independent VirtIO devices in § 4.4.3.

4.4 Design

To address the design challenges, we next describe how we load kernel code into the

guest VM (§ 4.4.1) and techniques to analyse the guest memory to enable VMSH to load

the kernel library (§ 4.4.2). We describe mechanisms to serve VirtIO devices (§ 4.4.3).

Then, we explain the layout of our container-based system overlay (§ 4.4.4), and finally

discuss the security implications (§ 4.4.5).

58 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

Hypervisor
virtual

memory

Userspace

Kernel KASLR
range
VMSH

Kernel
modules

Guest
physical
memory

Guest
virtual

memory

Device
space

Figure 4.3: Address space mappings between hypervisor virtual memory and guest

physical/virtual memory.

4.4.1 Hypervisor-agnostic side-loading for VMs

As described in § 4.3, it is the responsibility of the side-loaded kernel library to mount

devices and spawn the userspace process that creates the guest overlay container.

However, this has to occur without any help from a guest agent or the hypervisor.

Hence, to address challenge #1, we present the design of VMSH’s framework that

enables side-loading code into a guest VM in a hypervisor agnostic manner.

To side-load arbitrary applications into the guest, VMSH first side-loads a kernel

library into the guest to mount devices and spawn userspace guest processes. This

can be done by loading the library into guest physical memory. The hypervisor has

the guest physical memory mapped into its own address space (see Figure 4.3). VMSH

can use this fact to find the location of the guest physical memory and side-load code.

However, we cannot rely on hypervisor-specific APIs to perform this operation in a

hypervisor-agnostic way. VMSH circumvents this limitation by injecting system calls

into the hypervisor process. This is required as the OS only allows to manipulate the

guest from the hypervisor process.

To be able to run system calls in the hypervisor process, we rely on debugging

APIs provided by process tracers such as ptrace. This allows VMSH to control and

inspect the state of the hypervisor process, and consequently the guest VM. It does

so by interacting directly with the low-level kernel API, KVM in our case. Using this,

VMSH first interrupts the hypervisor process. Next, VMSH prepares the system call

arguments by updating the CPU registers according to the CPU-specific system call

4.4. Design 59

ABI. When system calls require pointers to memory, VMSH allocates and maps the

allocated memory into the hypervisor address space, and performs reads and writes

to that memory region via inter-process memory access system calls. We describe this

in § 4.5, specifically for the KVM API.

Using the low-level hypervisor API, i.e. KVM, VMSH queries the vCPUs of VM.

It then dumps the register state of a vCPU to reveal the location of the page table, i.e.

CR3 register on x86 and TTBR0 on arm64, which provides information about virtual

memory mappings of the guest VM.

Using this information, VMSH side-loads the kernel library into the guest VM. It

then uses the low-level hypervisor API to update the guest instruction pointer

register to run from the library’s code. However, modern operating systems employ

hardening techniques such as Kernel Address Space Layout Randomisation

(KASLR), that maps the kernel into random locations in virtual memory on every

boot. In the next section, we describe the binary analysis techniques used by VMSH to

recover random location of the kernel and its functions in memory.

4.4.2 Kernel-agnostic library

As previously stated, VMSH side-loads a kernel library into the guest that enables

mounting devices and spawning a guest userspace process. This library is not a Linux

kernel module as we do not use Linux’s load mechanism (also see § 4.5). Because of

KASLR, mapping the kernel library into the correct location is challenging. Hence,

to address challenge #2, we present the design of VMSH’s binary analysis framework

that provides VMSH with information about the location of the kernel and relevant

kernel function addresses that are used within the side-loaded kernel library.

Although KASLR randomizes the kernel location, the kernel itself is placed into a

fixed number of slots in memory, located in a fixed address range [125]. VMSH can

therefore locate the kernel by iterating over the guest VM’s page table entries.

VMSH also searches for the location of the function name section in the guest OS,

e.g. located at .ksymtab_strings in Linux (other OSes provide similar

mechanisms [141]). The actual function addresses are stored in a different data

structure (.ksymtab), whose size is unknown. Since this data structure contains

references to the function name section, VMSH checks for valid references to estimate

its size. VMSH then uses the data structure to figure out the addresses of all exported

kernel functions in memory. These addresses are used by VMSH to fix up kernel

function references in the library being side-loaded into the guest via VMSH’s custom

binary loader.

With the kernel function references resolved, VMSH uses the discovered kernel

60 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

Guest Memory

consume
VMSH block

device
serve reads/writes

notify guest driver
irqfd
 interrupt4. KVM

3. Virtio MMIO region

Guest driver
notify device/

write to register

write1. Driver virtqueueconsume

write 2. VMSH virtqueue

Figure 4.4: VMSH communication infrastructure based on the VirtIO protocol. Guest

and host components share data through virtqueues (1, 2). Notification is performed

through MMIO regions (3) and KVM (4).

address range to side-load the kernel library into the guest, by writing it into

hypervisor memory. To load it in such a manner that there are no collisions with

existing guest physical allocations set up by the hypervisor, VMSH allocates new

guest physical memory at the upper end of the guest address space. Hypervisors

often advertise the same CPU model across different physical machines to allow VM

migration, which results in physical address sizes in the guest being larger than on

the actual hardware. Since guests do not crash despite this, we conclude that the

upper end of memory is not used in practice.

With the kernel library side-loaded into guest physical memory, it needs to be

mapped into guest virtual memory, so that it can be run from within the guest VM.

The library is mapped into the guest virtual memory by updating the guest’s page

tables. Once again, we take advantage of the fact that the KASLR range is known, as

described previously. Moreover, once the kernel is loaded at boot time into a random

location in memory, no more changes are made afterwards. Hence, it is safe to map

the side-loaded library in virtual memory right after the kernel, as shown in

Figure 4.3.

Once the library is loaded into the guest VM and can be executed, VMSH modifies

the instruction pointer of the guest VM’s vCPU, via the low-level hypervisor API, to

run the library’s code. To synchronise events between VMSH running on the host and

the side-loaded library running in the guest, we use a shared memory region that the

guest polls for updates from VMSH and vice versa.

4.4.3 Hypervisor-independent VirtIO devices

The side-loaded kernel library is used to register VMSH’s VirtIO devices. These

devices need to be run in a hypervisor agnostic manner, and must therefore run in a

process external to the hypervisor. Hence, to address challenge #3, we design VirtIO

4.4. Design 61

block and console devices that run inside the VMSH process. VMSH uses the block

device to serve the file system image containing applications and the console device

to redirect the application’s input and output outside the guest VM.

VMSH uses the VirtIO protocol to serve both types of devices. In the following, we

explain the general flow for the block device driver. The guest driver enqueues block

IO requests into its virtqueue for the VMSH block device to consume (Fig. 4.4/1.).

VMSH’s block device processes the request and enqueues the response into the other

virtqueue (Fig. 4.4/2.). To indicate new requests in the queue, the guest driver also

notifies the block device by writing to an MMIO register (Fig. 4.4/3.). As the

corresponding MMIO addresses are not backed by physical memory, writing to them

causes a VMEXIT. Since VMSH’s devices run in a process external to the hypervisor, we

need to trap such accesses and handle them in VMSH’s respective device. In § 4.5, we

describe the two ways in which we can trap and handle MMIO accesses to VMSH’s

devices from the guest. To notify the guest driver about new items in VMSH’s

virtqueue, we trigger an interrupt through KVM using an irqfd (Fig. 4.4/4.).

4.4.4 Container-based system overlay

After setting up the devices, the kernel library spawns a userspace process in the

guest (see Figure 4.2). However, the spawned process and additional devices may

require an environment that would conflict with the guest VM’s root file system, e.g.

configuration files in /etc. Such conflicts can be avoided by using containerisation

techniques.

These conflicts arise when applications rely on absolute paths to files existing on

both file systems. To resolve possible conflicts, VMSH employs mount namespaces.

The file system on the block device provided by VMSH is mounted as the root file

system in a newly created mount namespace. All old mount points of the guest are

moved under the directory (/var/lib/VMSH). Using a mount namespace ensures that

these mount points are not propagated to existing guest processes except the ones

started by VMSH.

Additionally, VMSH can attach to containers running inside VMs, which is

becoming the standard method to run container workloads due to improved security

benefits. VMSH is not tied to a specific container engine, e.g., Docker, lxc, containerd.

Instead, it uses the process ID of a containerised process running inside the VM to get

information about the process (UID, GID, Apparmor/Selinux profiles, namespaces,

cgroups, capabilities) and applies the context to the newly established interactive

shell.

62 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

4.4.5 Security

In this section, we discuss the design decisions to minimise VMSH’s impact on security,

as it increases the attack surface by adding more functionality to the hypervisor. As

explained in § 4.3.2, our main threat is from an attacker who controls the VM, and

could exploit VMSH to escape from the VM and get access to the host.

Firstly, the side-loaded library in the guest kernel and the application runs in the

same privilege domain as the guest. Hence, it does not impact the attacker’s capability

because they could run similar code without VMSH.

Secondly, the largest part of the attack surface is contributed by VMSH’s devices

which run on the host. VMSH is written in Rust to further improve memory safety by

the use of safe abstractions. VMSH relies on production-tested libraries that are also

used by Firecracker, crosvm and Cloud Hypervisor. We expect that a bug in these

libraries would also affect those hypervisors.

Thirdly, to find the physical memory inside the hypervisor address space, we use

an eBPF program. Therefore, VMSH currently needs privileges beyond those of an

unprivileged user. In our prototype, those capabilities are dropped before interacting

with the guest/hypervisor to not increase the privileges exposed to a potential

attacker. In the future, we plan to move this part into a dedicated setuid binary to

improve security.

In comparison to guest agents installed by some VM providers, VMSH shifts the

responsibility of secure authentication and authorisation from the customer to the

provider. But we believe that, comparatively, VMSH does not increase the TCB

(Trusted Computing Base), because we do not require network access from the guest

network, which mitigates remote code execution bugs [179].

4.5 Implementation

VMSH is written in Rust (13k LoC), except for a small trampoline code written in

assembly, used in our kernel library entrypoint. VMSH consists of three programs:

the host executable with VirtIO devices, a guest kernel library and a guest userspace

program. The host executable contains both the sideloader that uploads the code into

the guest kernel as well as the VirtIO device implementation. For ease of

deployment, we build VMSH as a single binary, with the guest kernel library and

guest userspace program embedded in its data section.

Sideloader The sideloader is responsible for uploading our guest kernel code into

the guest. In our implementation, we target the KVM API instead of relying on a

4.5. Implementation 63

particular KVM userland hypervisor. To figure out the number of vCPUs, we use

Linux’s /proc file system to iterate over the hypervisor’s file descriptors and identify

those that belong to KVM by resolving symbolic links in /proc. The sideloader then

uses the ptrace system call to interrupt the hypervisor process with

PTRACE_INTERRUPT to perform the system call injection described in § 4.4.1. VMSH

uses the process_vm_readv() and process_vm_writev() system calls to read from

and write to the hypervisor memory, respectively. Some system calls, e.g. the KVM

irqfd system call, return a file descriptor that the sideloader sends back to its

respective host process using an injected UNIX socket.

Prior to uploading, the sideloader needs to locate the guest memory in the

hypervisor memory. Since there exists no KVM API to figure out the physical

memory layout of the VM and its corresponding mappings in the hypervisor virtual

address space, we extract this information from the host kernel data structures using

a small eBPF program we attach to the KVM function kvm_vm_ioctl(). This function

is called by the host kernel when a KVM system call is injected. Our eBPF program

parses the data structure containing all guest allocations and their offsets in the

hypervisor memory from the function’s arguments.

VirtIO devices VirtIO devices run as background threads in VMSH. We implement

the devices by using existing Rust libraries from the rust-vmm [169] project. These

libraries are also used in Firecracker, crosvm and Cloud Hypervisor. We extend their

backend to read from and write to another process’ memory as described in § 4.4.3. We

optimise the performance by mapping the block device as a file into memory and use

the process_vm_readv()/process_vm_writev() system calls to copy data between the

hypervisor process and the block device file, directly in the host kernel. This doubles

the performance in Phoronix benchmarks as shown in § 4.6.3.

As outlined in § 4.4.3, VMSH traps accesses to MMIO addresses for device

initialisation and driver updates (also see Figure 4.4/3.). In VMSH, we either rely on a

ptrace-based solution or KVM’s ioregionfd as described next.

Ptrace To start executing a vCPU, the hypervisor uses the ioctl(KVM_RUN) system

call and blocks, waiting to be woken up by returning from the system call. Inside the

guest, when an MMIO access occurs, a VMEXIT is triggered, unblocking the

hypervisor process. We use ptrace to hook into this system call’s entry and exit,

effectively allowing us to create a wrapper around it. The hypervisor thread running

the respective vCPU will be interrupted each time, until we resume it. During this

period, we use the memory mapped vCPU file descriptor of KVM to parse the MMIO

64 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

request and handle it.

Ioregionfd Using ptrace adds an overhead to all VMEXITs, as we add context

switches to the VMSH process. This can hurt the performance of the guest

application. Therefore, we offer support for KVM ioregionfd, a feature currently

under review for inclusion into the Linux kernel [244], as an alternative to

wrap_syscall. This feature allows an MMIO region to be associated with a file

descriptor, that can in turn be used to notify the VMSH process. It uses sockets to

send MMIO accesses to the device that handles them.

Guest kernel library We build this component as a shared ELF library. The entry

point to the library uses a trampoline that saves and restores registers. This allows

VMSH to ensure the guest jumps to the library rather than having to call it. Most

common OSes do not provide a stable ABI. Hence, the kernel interface that our library

uses should be minimal to avoid possible breaking changes between different kernel

versions and maximise code reuse. In our prototype, we target the Linux kernel and

also test portability across different kernel versions in § 4.6.2. In total, we use twelve

kernel functions (two for driver registration, four related to file IO, five related to

process/threads).

Guest userspace program To keep the kernel library small, we offload as much

functionality as possible to the guest userspace. The guest program is a statically

linked executable that is copied into the guest VM by the kernel library into a

writable path, i.e. /dev. We choose the devtmpfs file system as the default option

because it is writable even on systems that have a read-only root file system (a

common practice for serverless VM images). Once started, the guest program will

then set up the container-based system overlay that is described in § 4.4.4.

Implementation status VMSH currently targets the Linux kernel. The VirtIO devices

are standardised and portable to other OS guests. However, the side-loaded kernel

driver and userland code need to be adapted to other operating systems. We do not

see this as a major limitation given that Linux dominates the public cloud market

share [59]. Due to the low-level nature of the project, we only support the x86_64

architecture. We have plans to port our system to arm64. An architecture port would

require to extend the system call injection, as well as register and page table handling.

4.6. Evaluation 65

4.6 Evaluation

We evaluate VMSH across the following dimensions: robustness (§ 4.6.1), generality

(§ 4.6.2) and performance (§ 4.6.3), Lastly, we evaluate three use-cases (§ 4.6.4).

Experiment setup We perform our experiments on a machine with an Intel Core i9-

9900K CPU with 8 cores (16 hyper-threads, 16 MiB L3 cache), 64 GiB of DDR4 memory.

All disk benchmarks are run on a dedicated Intel P4600 NVMe 2TB drive. The host

OS is Linux version 5.12.14. For performance related benchmarks, we use QEMU with

KVM as the hypervisor and start the VM with 8 GiB of RAM and 4 vCPUs. For better

reproducibility, we pin the hypervisor vCPUs and disable Intel Turbo boost. Before

each IO related benchmark, we discard all data with the SSD TRIM command.

4.6.1 Robustness

We evaluate the robustness of VMSH, and more precisely the VMSH block device,

VMSH-BLK, to ensure completeness and correctness according to the POSIX standard.

Benchmark We use xfstests, a test suite widely adopted by the kernel community

for fuzzing and regression testing of file systems [278] and block devices [135].

xfstests contains tests suites to ensure correctness and completeness of all file system

related system calls and their edge cases, including crashes and reported bugs.

Methodology We select the “quick" test group which contains the majority of tests.

We run those tests by provisioning a physical block device with two XFS partitions

to be supplied as test and scratch partitions. We aim at being as robust as the native

and the QEMU block device (short: qemu-blk), and define failure of this benchmark

as VMSH-BLK failing any test that succeeds on native or qemu-blk. Since the "quick"

xfstests mostly produce small block device accesses, we create a long-running test,

the sustained load test, that calculates the sha256 checksum of a large OS image.

Results Out of the 619 tests, all succeed natively. For both qemu-blk and VMSH-

BLK, three tests (0.5%) fail. The three failed test cases are related to quota reporting, i.e.

reporting file system statistics. Additionally, some tests do not apply to our setup, i.e.

tests for a different file system or wrong XFS version, and are automatically skipped by

xfstests. To summarise, since VMSH-BLK passes all tests that are passed by known-

good devices, we conclude that the VMSH-BLK device has no regressions w.r.t. qemu-

blk.

66 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

Supported Hypervisor QEMU, kvmtool, Firecracker, crosvm

Unsupp. Hypervisor Cloud Hypervisor

Tested LTS kernels v5.10, v5.4, v4.19, v4.14, v4.9, v4.4

Table 4.1: Hypervisor and kernel support.

4.6.2 Generality

To showcase the generality of our approach, we evaluate the portability of VMSH

across different hypervisors and stable Linux kernel versions (see Table 4.1).

Hypervisors We develop VMSH using QEMU as the primary target. However, we

expand our scope to the following KVM-based hypervisors: QEMU [212],

kvmtool [275], Firecracker [2], crosvm [95], and Cloud Hypervisor [54].

VMSH is able to support 4 out of the 5 hypervisors. Cloud Hypervisor is the

exception as it uses PCIe’s MSI-X messages for its interrupt handling. Therefore, it is

incompatible with MMIO as a VirtIO transport channel. We plan to extend VMSH to

support VirtIO over PCI for Cloud Hypervisor.

The second challenge we face is Firecracker’s restrictions on what system calls are

allowed to be executed by each thread individually, using seccomp [74]. For now, we

disable the seccomp filter for Firecracker as it interferes with our system call

injection. In the future, we will either provide a VMSH compatible seccomp profile

for Firecracker or implement a heuristic that only runs system calls on threads that

are allowed by seccomp.

Kernel versions Side-loading code into the Linux kernel can be quite challenging as

there is no stable internal kernel API or ABI. To keep a project like VMSH maintainable,

it is necessary to ensure that only a minimal kernel API is used. We develop VMSH

against the latest version of the kernel, 5.12 at the time of development. To estimate

how much maintenance will be required to support future versions, we backport to

older kernel versions. We focus mainly on long-term support (LTS) versions, as those

versions are guaranteed to receive security and build fixes for a long period. The

analysed kernel versions are listed in Table 4.1. We run VMs using QEMU with the

guests running each of the kernel versions. We then try to attach to them with VMSH

and analyse the changes needed for that kernel version to work.

The most impactful change across versions is that the memory layout of kernel

symbols, which we need to parse before uploading our own binary to the guest,

changed twice. However, by using consistency checks, i.e. checking whether a kernel

symbol name points to a valid string, we are able to check all variants in parallel. For

4.6. Evaluation 67

2 out of the 10 required kernel functions (kernel_read and kernel_write), we have to

support different variants to maintain compatibility.

Structure definitions that we pass to kernel functions when registering devices are

more brittle: 2 out of 4 kernel structures have to be conditioned depending on the

kernel version. It took one person a week’s worth of time to cover 5 years of kernel

development. From this, we conclude that we can also support newer kernel versions

in the future with a reasonable amount of effort.

4.6.3 Performance

We evaluate VMSH’s performance using a range of workloads: (A) the Phoronix test

suite [203], (B) impact of attaching VMSH on the guest application’s performance, (C)

fio [126], and (D) the responsiveness of the console device.

A: Phoronix test suite We start with evaluating how VMSH affects performance of

real-world applications based on the Disk test suite [210] of the Phoronix Test

Suite [203]. The version of Phoronix Test suite is newer (v10.6.0) than the version

used in CNTR evaluation (v7.8.0), hence the set of tested applications is different.

This suite consists of Compile bench [1], DBENCH [19], fs_mark [274], Flexible I/O

Tester [126], IOR [263], PostMark [133] and Sqlite [243]. We use the default

parameters defined by the Phoronix Test Suite. In this benchmark, we compare

QEMU’s block device, qemu-blk, with VMSH-BLK, our block device in VMSH.

The results are shown in Figure 4.5. On average, VMSH is 1.5 ×±0.6 slower than

qemu-blk. The fio tests accessing large chunks of data (2 MB) are the slowest

benchmarks, being up to 3.7× slower than qemu-blk. fio is the only benchmark of the

suite that uses direct IO. This bypasses the guest page cache and hits the block device

with every request, which explains the slow down. Other applications

(CompileBench: IO workload of a Linux kernel build process, Postmark: mailserver

workload with small files, FS-Mark: file creation, DBENCH: file server workload) are

more read and file system metadata (inode) heavy. These types of workloads benefit

more from a fast page cache and fast in-kernel processing, and therefore have less or

no overhead. Unexpectedly, Sqlite insertion turns out to be not very write-heavy, but

it spends significant time creating and unlinking its journal (inode heavy operation).

The IOR benchmark writes a file with increasing block size. In contrast to fio, it uses

the page cache with a hit rate of approximately 20%. Therefore, there is less overhead

when run in VMSH compared to the baseline.

To summarise, we see acceptable overheads w.r.t. to the real-world applications,

with an average 1.5× slowdown compared to qemu-blk. In practice, the guest

68 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

0 1 2 3

Compile Bench: Compile
Compile Bench: Create

Compile Bench: Read tree
Dbench: 1 Client

Dbench: 12 Clients
FS-Mark: 1000 Files, 1MB

FS-Mark: 1k Files, No Sync
FS-Mark: 4k Files, 32 Dirs

FS-Mark: 5k Files, 1MB, 4 Threads
Fio: Rand read, 4KB
Fio: Rand read, 2MB
Fio: Rand write, 4KB
Fio: Rand write, 2MB

Fio: Sequential read, 4KB
Fio: Sequential read, 2MB
Fio: Sequential write, 2KB
Fio: Sequential write, 2MB

IOR: 2MB
IOR: 4MB
IOR: 8MB

IOR: 16MB
IOR: 32MB
IOR: 64MB

IOR: 256MB
IOR: 512MB

IOR: 1025MB
PostMark: Disk transactions

Sqlite: 1 Threads
Sqlite: 8 Threads

Sqlite: 32 Threads
Sqlite: 64 Threads

Sqlite: 128 Threads

Lower is better

baseline

Figure 4.5: Relative performance overhead of VMSH-BLK for the Phoronix Test Suite

compared to qemu-blk.

workload applications will continue to use the QEMU block device, and not

VMSH-BLK. They will therefore not suffer from these slowdowns. The only

applications affected by this slowdown are the ones using the device mounted

through VMSH-BLK, which should not impact developers’ productivity significantly.

B: Guest device performance under VMSH We now evaluate the performance

impact of VMSH on the other devices attached to the guest, unrelated to VMSH. We

do so by running comparative benchmarks with fio [126] and measure two metrics,

throughput and the number of operations per second (IOPS), on qemu-blk devices

while a VMSH-BLK device is attached to the VM. Using fio’s libaio backend, we

measure the maximal throughput by using the most favourable conditions, i.e. large

block sizes (256 KiB) and sequential accesses. We measure the IOPS by choosing

4.6. Evaluation 69

native

∗† qemu-blk

† wrap_syscall qemu-blk

∗ wrap_syscall vmsh-blk

† ioregionfd qemu-blk

∗ ioregionfd vmsh-blk

iotype = Direct/Block IO

0 0.5 1 1.5 2 2.5 3
Throughput [GB/s]

‡ qemu-blk

‡ qemu-9p

wrap_syscall vmsh-blk

ioregionfd vmsh-blk

Higher is better

iotype = File IO

Direction
read
write

Figure 4.6: IO bandwidth/throughput. Best-case scenario.

70 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

native

∗† qemu-blk

† wrap_syscall qemu-blk

∗ wrap_syscall vmsh-blk

† ioregionfd qemu-blk

∗ ioregionfd vmsh-blk

iotype = Direct/Block IO

0 100 200 300 400
IOPS [k]

‡ qemu-blk

‡ qemu-9p

wrap_syscall vmsh-blk

ioregionfd vmsh-blk

Higher is better

iotype = File IO

Direction
read
write

Figure 4.7: IO operations per second (IOPS). Worst case scenario.

Figure 4.8: fio with different configurations featuring qemu-blk and VMSH-BLK with

direct IO, and file IO with qemu-9p.

4.6. Evaluation 71

small block sizes (4 KiB), thereby maximising per-access software overheads, and

sequential accesses, to avoid hardware bottlenecks.

Figure 4.6 shows the throughput results of these experiments while Figure 4.7

shows IOPS. Qemu-blk shows the performance of the vanilla QEMU block device,

with no VMSH-BLK device attached. The other setups with qemu-blk show the

performance of the device while a VMSH-BLK device is attached, using different

implementations of the device (ptrace or ioregionfd, see § 4.5). The interesting values

for guest device performance under VMSH are tagged by a † symbol.

Our measurements show that when VMSH is attached to a VM, the throughput

and IOPS of qemu-blk devices on the VM are the same as without VMSH when using

the ioregionfd implementation. However, with the wrap_syscall implementation,

both throughput and IOPS on the qemu-blk device are negatively impacted. Read

throughput is reduced by 1.5× and IOPS by 6×. This performance degradation is

due to the overhead added to every system call performed by QEMU and its devices.

For every VMEXIT triggered by an MMIO access, VMSH has to check if it is related to a

VMSH-BLK device. This is not a problem with the ioregionfd implementation since

KVM already filters MMIO accesses for the VMSH MMIO region in the kernel.

The overheads of the ptrace implementation violate the goal of non-invasiveness.

Since this is the most important performance metric for VMSH, ioregionfd is the best

implementation of VMSH-BLK.

C: VMSH-BLK performance with fio Using the same fio benchmarks, we now

evaluate the intrinsic performance of VMSH-BLK. We first compare it to qemu-blk

using direct/block IO. We then compare our block device-based approach to the host

file system sharing using file based IO with the 9p protocol (virtio-9p [213]). Results

are also shown in Figure 4.8. native shows the performance of the benchmarks

running directly on the host, with no virtualisation involved, and showcases the best

performance achievable on the machine. The setups with VMSH-BLK show the IO

performance of the device attached through VMSH with both implementations.

First, we observe that the native throughput can be achieved through virtualisation

with direct IO. However, in terms of operations per second, native is at least 2×
faster than any virtualised solution. This is due to additional data copies and context

switches between the hypervisor and the host kernel.

As for VMSH-BLK, throughput and IOPS are halved compared to qemu-blk,

indifferent to the used implementation (see results tagged with ∗). This degradation

is expected since VMSH triggers more context switches than qemu-blk. IO operations

are cooperatively handled by the guest driver running in the VM process and the

72 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

0 0.2 0.4 0.6 0.8 1
latency [ms]

native
ssh

vmsh-console

Lower is better

Figure 4.9: VMSH-console responsiveness compared to SSH.

VMSH virtual device running on the host (see Figure 4.4). In this benchmark, the time

spent copying data between the guest and the host page cache is identical for

qemu-blk and VMSH-BLK, thus leaving the number of context switches as the main

reason for the performance hit. Over the same sampling period, we measure twice as

many context switches for VMSH-BLK compared to qemu-blk.

With file-based IO, the read throughput significantly drops, due to the use of the

page cache (see ‡). Fio sequentially accesses new blocks and never reuses previously

read blocks, therefore suffering the cache’s overhead while never actually using it.

Qemu-9p has poor IOPS compared to qemu-blk (7.8× lower) because of the use of

two stacked file systems. Every operation goes through the guest file system and page

cache, as well as through the host’s file system and page cache, therefore crippling

qemu-9p’s IOPS.

Finally, VMSH-BLK suffers a 94% write and 7% read overhead in throughput

compared to qemu-blk (40% write/2.3% read overhead compared to qemu-9p), but

still has good IOPS (14% degradation compared to qemu-blk and is 7× better than

qemu-9p). The latter is the most important metric for VMSH because attached devices

would be more prone to small sized IOs than large ones (see § 4.6.4 for use cases).

D: VMSH-console responsiveness For interactive scenarios, e.g. a console,

throughput is less relevant than latency. We evaluate this by comparing the latency of

the VMSH console to SSH and to "the minimum viewing time needed [by a human] for

visual comprehension" [206].

We measure the round-trip of a shell input by connecting one end of a

pseudo-terminal seat (pts) [164] to a shell. We then use the other end to submit an

echo command to the shell and measure the time elapsed until the echo response

arrives. Our measurements show that, with around 0.9ms, the latency of the VMSH

console is very similar to the one of SSH (see Figure 4.9). The latency of the VMSH

console is an order of magnitude faster than the capabilities of the human eye [206],

making it sufficient for real life use cases.

4.6. Evaluation 73

4.6.4 Use-cases

To show the applicability of VMSH in real-world scenarios, we implement and publish

three use cases.

Use-case #1: Serverless debug shell First, we demonstrate that VMSH fits well into

serverless stacks, and improves their dependability properties [194]. In general,

Function-as-a-Service (FaaS) systems are hard to debug because when requests cause

errors, it is difficult to pinpoint the source of the error [228]. To help developers

debug FaaS deployments, we provide them with an interactive shell in

lambda-function instances. In particular, we integrate VMSH into vHive [264], a

knative-compliant stack running serverless workloads in slim Firecracker-containerd

VMs [2, 83]. Thereafter, we parse logs from vHive’s lambda functions for errors, and

then locate the Firecracker process that hosts the faulty lambda in order to attach to

its hosting VM with VMSH and provide an interactive shell to it. While the user

interacts with this shell provided by VMSH, our integration prevents shutdown of the

lambda-function’s VM by scale-down events. Overall, VMSH can thus be integrated

into existing virtualised lambda environments, e.g. vHive, in a non-invasive manner

without changing the environment’s fundamental design.

Use-case #2: VM rescue system In cloud environments, when users lock themselves

out of their VMs, they need rescue assistance from their hosting provider. Therefore,

the providers offer a range of rescue systems, e.g., password recovery services to their

customers [109, 67]. However, this usually requires a user-installed agent in the VM

image, a reboot to access the file system directly, or booting a recovery virtual machine

that has access to the file system. With VMSH, we build a simple, agent-less recovery

image containing the chpasswd [159] command, that can be attached while the VM is

still running. In general, VMSH can be used to build different kinds of rescue systems

without interrupting the VM.

Use-case #3: Package security scanner With the increasing popularity of

containers, cloud providers offer services to scan containers automatically for

security vulnerabilities [92, 9, 116]. With VMSH, this service can be expanded to VMs

without the need for additional agents inside the VMs. In particular, we write a

scanner that checks the installed packages in Alpine Linux-based virtual machines

against an online database [5] of known security vulnerabilities and report them.

74 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

4.7 Related work

We discuss the related work that solves similar use-cases.

Guest agents The trivial solution to many of VMSH’s use-cases is to install agents

connected to a network into the VM guest. For instance, SSH [165] is typically used

for interactive debugging. For tasks like automated management of updates, user

accounts or configurations, cloud providers offer a multitude of agents [11, 93, 94, 180,

167, 96]. Agents are also used for distributed tracing in serverless environments [130,

238, 85, 50, 254]. According to Sambasivan et al., this variety is justified, as one size

does not fit all use-cases [228]. VMSH on the other hand is agent-less, attaches on-

demand and does not interfere with the guest’s userspace by default. Its maintenance,

configuration and policy enforcement can be done independently of the guests.

Virtualisation Chen and Noble describe the problem of recovering high-level OS

state from guest memory [51]. This ‘semantic gap’ has since been approached [91] and

formalised [202]. Executing code inside a guest has been done by reusing userspace

execution contexts [103, 75] or by injecting kernel modules [200, 234, 270], akin to

VMSH’s sideloader. Introspection usually aims at stealthiness and erases proofs of

tampering the guest’s execution [47, 89, 270].

To keep the host isolated from the guest, additional VMs are proposed to contain

the inspection tool [200, 88]. VMSH has the same guarantees towards the host by only

exposing a dedicated block device and console. However, our guest overlay is more

tightly coupled to the guest, which enables an easier tooling workflow for the user.

Container Contrary to VM introspection as done by VMSH, there is no semantic

gap to bridge with containers. CNTR [251] creates a nested namespace in a container.

The host file system is then made available via fuse and mounted into the root. This

way, a user can bring all their tools with them into the container. In the context of

Kubernetes, ephemeral containers [144] can be used to deploy software, e.g. an

interactive debugging environment, into another pod. This approach is locked in to

Kubernetes. Systemd-sysext [171] overlays file systems with extension images using

overlayfs [166]. It can be used to install packages without modifying the underlying

file system. VMSH’s guest overlay, on the other hand, avoids all dependencies on the

guest userspace to maximise generality.

VM miniaturisation Library OSes [230, 36, 260, 35] reduce VM size by merging the

kernel and user application into a single binary.

4.8. Limitations and future work 75

Unikraft [145] combines the aspects of micro-library OSes and unikernels [158,

155, 156] to reduce the kernel’s CPU and RAM overheads. VMSH is orthogonal since

it targets the overhead due to userspace tools not vital to the application.

Micro-kernels instead split up their functionality horizontally, which is beneficial for

verification and security [106, 26, 137]. VMSH follows similar principles by offering

essential functionality in a separate host process and guest overlay, acting upon IPC.

New hypervisors are built [211, 2, 95, 54], smaller and less complex, to reduce

overheads [172, 214, 182] and attack surface. Many of them are written in

memory-safe languages [2, 95, 54, 170], while others are formally verified [151]. Their

miniaturisation is also advanced, as virtual devices are extracted into separate

processes with vhost-user [168, 248, 281]. While vhost still requires modifications on

the hypervisor side, VMSH does not and operates non-cooperatively.

4.8 Limitations and future work

The current implementation of VMSH is limited to Linux operating system on x86_64

cpu architecture. In future, we want to port VMSH to more architectures like ARM64

and RISC-V and also support different operating systems. We discuss these steps

needed for a port in § 4.5.

Another aspect to improve could be the integration into VM orchestration

frameworks such as Vmware Vcloud [276] or OpenStack [87] to allow VMSH to work

in a distributed setting.

Finally, to make loading code into the guest operating system more robust, a new

virtio device would be useful. Such device could allow to launch a static binary with

specified arguments in the guest os to allow running new programs independent of

the guest userspace. This would simplify maintenance a lot, since the custom kernel

component of VMSH is expected to require the most adaption with future OS versions.

4.9 Summary

In this chapter, we presented VMSH, a hypervisor-agnostic system to build

lightweight VMs. VMSH provides an abstraction of guest overlays to extend

lightweight VMs at run time independently of the guest and hypervisor. Using this

abstraction, VMSH enables lightweight VMs to extend their VM images with

additional tools and services on-demand at run time. We design VMSH as a system

for hypervisor-independent side-loading into a VM, a generic guest-overlay that

does not impose limitations on both the original guest application or the spawned

76 Chapter 4. VMSH : Hypervisor-agnostic Guest Overlays for VMs

service, and a device that can be attached to hypervisors non-cooperatively. Our

evaluation shows that VMSH is compatible across many hypervisors and Linux

versions, that it does not slow down the original VM guest, and that its use-cases

have the potential to reduce image sizes of lightweight VMs.

Source code availability VMSH is publicly available as an open-source project along

with the complete evaluation setup [128].

Chapter 5

RKT-IO : A Direct I/O Stack for

Shielded Execution

The shielding of applications using trusted execution environments (TEEs) can

provide strong security guarantees in untrusted cloud environments. When

executing I/O operations, today’s shielded execution frameworks, however, exhibit

performance and security limitations: they assign resources to the I/O path

inefficiently, perform redundant data copies, use untrusted host I/O stacks with

security risks and performance overheads, and fail to encrypt I/O data universally.

This prevents TEEs from running modern I/O-intensive applications that require

high-performance networking and storage.

We describe RKT-IO,1 a direct userspace network and storage I/O stack

specifically designed for TEEs that combines high-performance, POSIX compatibility

and security. RKT-IO achieves high I/O performance by employing direct userspace

I/O libraries (DPDK and SPDK) inside the TEE for kernel-bypass I/O. For efficiency,

RKT-IO polls for I/O events directly interacting with the hardware instead of relying

on interrupts, and it avoids data copies by mapping DMA regions in the untrusted

host memory. To maintain full Linux ABI compatibility, the userspace I/O libraries

are integrated with userspace versions of the Linux VFS and network stacks inside

the TEE. Since the I/O stack runs entirely within the TEE, thus omitting the host OS

from the I/O path, RKT-IO can transparently encrypt all I/O data and does not suffer

from host interface/Iago attacks. Our evaluation with Intel SGX TEEs shows that

RKT-IO is 9× faster for networking and 7× for storage compared to host- (SCONE)

and libOS-based (SGX-LKL) I/O approaches (see Figure 5.6).

1Pronounced “rocket I/O”

77

78 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

5.1 Introduction

Cloud computing offers economies of scale for computational resources combined

with ease of management, elasticity, and fault tolerance. At the same time, it

increases the risk of security violations when applications run in untrusted

third-party cloud environments. Attackers (or even malicious cloud administrators)

can compromise the security of applications. In fact, many studies show that

software bugs, configuration errors, and security vulnerabilities pose serious threats

to cloud systems, and software security is cited as a barrier to the adoption of cloud

solutions [229].

Hardware-assisted trusted execution environments (TEEs), such as Intel SGX [122],

ARM Trustzone [23], RISC-V Keystone [222, 148], and AMD-SEV [15], offer an

appealing way to make cloud services more resilient against security attacks. TEEs

provide a secure memory region that protects application code and data from other

privileged layers in the system stack, including the OS kernel/hypervisor. TEEs are

now commercially offered by major cloud computer providers, including

Azure [181], Google [100], and Alibaba [53].

TEEs, however, introduce new challenges to meet the performance requirements

of modern I/O-intensive applications that rely on high-performance networking

hardware (e.g. >20 Gbps NICs) and storage (e.g. SSDs). Since TEEs are primarily

designed to protect in-memory state, they only offer relatively expensive I/O

support to interact with the untrusted host environment [62]. Early designs relied on

expensive world switches between the trusted and untrusted domains for I/O calls. A

thread executing an I/O operation must exit the TEE before issuing a host I/O

system call, which incurs overhead due to the security sanitisation of the CPU state

including registers, TLBs, etc.

More recent designs used by shielded execution frameworks (e.g., SCONE [25],

Eleos [197], and SGX-LKL [208]) employ a switchless I/O model in which dedicated

host I/O threads process I/O calls from TEE threads using shared memory queues. To

avoid blocking TEE threads when waiting for I/O results, these frameworks employ

user-level threading libraries inside the TEE to execute I/O calls asynchronously [241].

While such switchless asynchronous designs improve I/O performance over the

strawman synchronous world switching design, current frameworks still exhibit

significant performance and security limitations: (1) they manage resources

inefficiently by requiring dedicated I/O threads outside the TEE, which incurs extra

CPU cycles when busy polling syscalls queues. These additional I/O threads also

require fine-grained performance tuning to determine their optimal number based on

the application threads and I/O workload; (2) they perform additional data copies

5.1. Introduction 79

between the trusted and untrusted domains, and the indirection via shared memory

queues significantly increases I/O latency; (3) the untrusted host interface on the I/O

path has security and performance issues: the host interface is fundamentally

insecure [49, 183], and requires context switches, which are expensive for

high-performance network and storage devices; and (4) they lack a universal and

transparent mechanism to encrypt data on the I/O path. Instead, they rely on

application-level encryption, which is inefficient, potentially not comprehensive, and

incompatible with full VM encryption models.

native sync async direct
0

20

40

60

80

100
Ti

m
e

[μ
s]

Figure 5.1: System call latency with sendto()

To overcome these limitations, we argue for a fundamentally different design

point where we re-design the I/O stack based on direct userspace I/O in the context of

TEEs. To exemplify our design choice, we compare the direct I/O approach within

TEEs with three alternative I/O approaches, measuring the performance of the

sendto() syscall with 32-byte UDP packets over a 40GbE link for (i) native (not

secured), (ii) synchronous and (iii) asynchronous syscalls within TEEs (secured). As

Figure 5.1 shows, native system calls (16.4 µs) and the direct I/O based approach

(17.9 µs) take approximately the same time, while we see higher per-packet

processing time for the synchronous (91.7 µs) and asynchronous (96.7 µs) system

calls. By bypassing the host I/O support, TEE I/O stacks can avoid both

performance overheads and security limitations.

Our design for a TEE I/O stack therefore has the following goals: (a) performance:

we aim to provide near-native performance by accessing the I/O devices (NICs or

SSDs) directly within the TEEs; (b) security: we aim to ensure strong security

guarantees, mitigating against OS-based Iago [49] and host interface attacks [183];

80 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

and (c) compatibility: we aim to offer a complete POSIX/Linux ABI for applications

without having to rewrite their I/O interface.

To achieve these design goals, we describe RKT-IO, an I/O stack for shielded

execution using Intel SGX TEEs. The key idea behind the RKT-IO design is to

combine (a) I/O userspace libraries (DPDK [77] and SPDK [121]) for direct hardware

I/O access with (b) the POSIX abstractions provided by a Linux-based library OS

(LKL [192]) inside the TEEs. This combination results in a high-performance I/O

path, while preserving compatibility with off-the-shelf, well-tested Linux filesystems

and network protocol implementations inside the TEE. Since the I/O stack runs in

the protected domain of the TEE, RKT-IO provides improved security, as it does not

rely on information from the untrusted host OS.

The design of RKT-IO embodies four principles to address the aforementioned

limitations of current frameworks:

• RKT-IO adopts a host-independent I/O interface to improve performance and

security. This interface leverages a direct I/O mechanism in the context of

TEEs, where it bypasses the host OS when accessing external hardware devices.

At the same time, it leverages a Linux-based libOS (LKL [192]) to provide full

Linux compatibility.

• RKT-IO favors a polling-based approach for I/O event handling since TEEs do not

provide an efficient way to receive interrupts on I/O events.

• RKT-IO proposes a judicious I/O stack partitioning strategy to efficiently utilize

resources and eliminate spurious data copies. It partitions the I/O stack by

directly mapping the (encrypted) hardware DMA regions into untrusted

memory outside the TEE, and runs the I/O stack within the TEE.

• RKT-IO provides universal and transparent encryption in the I/O stack to ensure

the confidentiality and integrity of data entering and leaving the TEE. It

supports Layer 3 network packet encryption (based on Linux’ in-kernel

Wireguard VPN [76]) for networking, and full disk encryption (based on Linux’

dm-crypt disk mapper [68]) for storage.

Our evaluation with a range of micro-benchmarks and real-world applications

shows that RKT-IO provides better performance compared to SCONE (a host-OS

based approach) and SGX-LKL (a libOS-based approach). For example, the

throughput of RKT-IO’s network stack (measured by iPerf [123]) is up to 9× higher

(see Figure 5.2b), and the read/write bandwidth of RKT-IO’s storage stack (measured

by fio [126]) is up to 7× higher (see Figure 5.2a).

5.2. Motivation 81

native sgx-lkl scone rkt-io
0

200

400

600

800

Th
ro

ug
hp

ut
 [M

iB
/s

]

read
write

(a) Storage stack performance with fio

native sgx-lkl scone rkt-io
0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 [G

bp
s]

(b) Network stack performance with iPerf

Figure 5.2: Micro-benchmarks to showcase the performance storage and network

stacks across different systems

5.2 Motivation

TEEs provide the ability to create hardware-assisted protected domains in a process

address space, as shown in Figure 5.3. TEEs protect the confidentiality and integrity of

the application’s code and data inside the TEE. It is also possible to verify the integrity

of the code running inside the TEE via remote attestation. This enables users to run

security-sensitive workloads in an otherwise untrusted execution environment.

5.2.1 Threat model

Our threat model extends the standard threat model for TEEs [34, 25]. As in the prior

work, we assume a powerful adversary who has control of the entire system software

stack, including the host OS and the hypervisor. In line with previous work, we do

not address the physical tampering of the CPU package, denial of service attacks, and

side channel attacks [45, 102, 265, 104, 280].

For I/O operations, applications running inside the TEE rely on the untrusted

host OS for access to I/O devices, such as NICs and SSDs. On the I/O path, an

adversary may tamper with the data being exchanged through the untrusted host

interface, and compromise the confidentiality and integrity of the application

running inside the TEE [49, 48, 272, 42, 149]. More specifically, the host interface may

leak sensitive data, also known as interface attacks [183], which can expose the

application state to the untrusted host. In addition, the host interface implementation

82 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

can be malicious itself, and therefore compromise the security of the application

running inside the TEEs e.g., by manipulating the return values of syscalls, also

known as Iago attacks [49]. Lastly, an attacker may use software/hardware probing

to intercept data on the host’s I/O path by DRAM interface snooping, installing

malicious hardware with DMA access [177], or performing cold boot attacks [240].

Only universal end-to-end encryption of data on the I/O path can mitigate these

types of attacks.

5.2.2 Analysis of existing I/O mechanisms

A protected application within the TEE communicates with the outside environment

by performing I/O operations for accessing the filesystem or network stack. To

support the I/O operations with the untrusted environment, TEEs require a world

switch, where a thread executing the I/O operation switches between the trusted and

untrusted domains, and then issues the syscall to the host OS. I/O operations, when

invoked through the synchronous syscall mechanism adds a constant world switch

overhead, incurred due to the necessary micro-architectural security-associated

sanitizations, such as additional cache/ TLB flushes, page permission checks,

etc. [62]. For example, a world switch costs ≈10,170 cycles, which is roughly 5×
expensive than a syscall (≈1800 cycles).

To avoid the costly world switches between the trusted and untrusted domains,

current shielded execution frameworks [25, 197, 208, 258, 34, 120] have adopted

alternative switchless designs, which can be broadly categorized as (Figure 5.3):

(i) host-based; and (ii) library OS-based. We compare these approaches across three

dimensions: performance, security, and compatibility.

(1) Host-based frameworks (e.g., SCONE [25], Eleos [197], Intel SGX SDK [120]) rely on

the host OS for the I/O operations. Among these frameworks, we focus on SCONE

as the state-of-the-art system for our baseline. SCONE improves the I/O performance

by leveraging the concept of asynchronous system calls [241]. In the async model, a

set of dedicated I/O threads run (busy polling) outside the TEE to process the syscall

requests issued by a thread from inside the TEE via shared memory queues.

(2) LibOS-based frameworks (e.g., Haven [34], Graphene-SGX [258], SGX-LKL [208]) rely

on customized library OSes inside the TEE for handling I/O operations. Note that

these library OSes still use the underlying host OS in the backend (via the untrusted

host-based syscall interface) to access the hardware devices. As far as the I/O path is

concerned, Haven and Graphene-SGX rely on synchronous mode for I/O operations,

where the I/O threads block for the request completion. In this regard, SGX-LKL

supports improved performance based on asynchronous I/O mechanism [241], similar

5.2. Motivation 83

Application A

Asynchronous I/O interface

scall4

scall5
Sy

st
em

 c
al

l r
eq

ue
st

 System
 call response

Shared

memory

queues

TEE

OS

NIC SSD

Application B

Library OS

TEE

OS

NIC SSD

Untrusted runtime

Untrusted interface

OS
calls

OS
response

System call interface

resp3

resp2

resp1

Figure 5.3: Two possible shielded execution architectures for I/O support in TEEs:

(left) application A uses a pure host OS based approach, and (right) application B uses a

library OS inside the TEE to process the I/O operations. (Regions in green are trusted,

whereas red regions are untrusted.)

to SCONE. Therefore, we focus on SGX-LKL as the state-of-the-art system for our

LibOS baseline.

Performance. Both approaches use the resources on the I/O path inefficiently:

(1) they rely on dedicated I/O threads for issuing the I/O calls. This incurs extra CPUs

cycles due to the busy polling of the syscalls queues; (2) they require fine-grained

tuning to set the optimal number of I/O threads due to the tight coupling with the

application threads and I/O workload; (3) they require additional data copies—data

needs to be copied from the TEE to the untrusted host memory for the asynchronous

I/O threads, before it is processed by the underlying host OS, requiring another

copy; and (4) both approaches incur latency penalties due to the indirection involved

on the asynchronous I/O path.

Security. Both approaches depend on the untrusted host OS, which make them

vulnerable to Iago attacks [49] and host-interface attacks [183], but they differ with

respect to the degree of dependence on the host OS: the host-based approach expose

a wider interface with the untrusted host OS by allowing protected applications to

directly issue a large set of syscalls. Although syscalls return values are sanitized by

network and file systems shielding layers, they are susceptible to more attacks due to

the increased interactions with the untrusted host OS. On the other hand, the

84 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

libOS-based approaches provide better security since they expose only a limited set

of syscalls to the untrusted host OS. Furthermore, since the libOS-based approaches

are flexible to adopt, a custom library OS to fit the application requirements can be

developed, using which a protected application can further improve its security by

adopting a libOS with lower TCB.

Compatibility. Host-based approaches can provide POSIX or Linux ABI

compatibility, allowing them to support unmodified legacy applications. For

instance, SCONE can support off-the-shelves filesystems and network stacks based on

Linux. However, libOS-based approaches offer the possibility of specialization at the

cost of limited or no support for the existing filesystem and network stacks. In

general, this makes them less amenable for supporting unmodified legacy

applications, with a notable exception of SGX-LKL that offers full POSIX/Linux ABI

compatibility by using a library version of the complete Linux kernel (LKL [192]).

5.2.3 Problem statement and our approach

In this work, we aim to build a high-performance, secure, and compatible I/O stack

for shielded execution. For performance, we aim to improve latency and throughput

of I/O operations compared to a switchless asynchronous I/O approach. We also

want to minimize reliance on the untrusted host for improved security. Lastly, we aim

for full compatibility for existing applications by supporting the Linux ABI/POSIX

standard. To achieve these goals, we next summarize our high-level approach and

associated four design principles.

#1: Host-independent I/O interface. Current host OS- and libOS-based shielded

execution frameworks rely on the underlying host OS for I/O operations. Instead, we

argue for a fundamentally different design point in which we favor a

host-independent I/O interface that uses direct I/O in with TEEs. A direct I/O

approach improves performance and security: compared to a switchless

asynchronous syscall mechanism, it reduces the latency and increases the throughput

of I/O operations by directly accessing the hardware (NICs and SSDs) and

minimizing the number of data copies. Since direct I/O minimizes the host OS

interactions as much as possible by accessing the I/O hardware directly from the TEE

(i.e., there are no I/O-related syscalls after the initialization phase), it also leads to

improved security. We combine this approach with a Linux Library OS (LKL) inside

the TEE to provide full Linux ABI compatibility.

#2: I/O event handling. In the context of SGX, we cannot rely on the interrupt-driven

I/O execution because there is no efficient way to receive interrupts or timer events

5.3. Overview 85

within TEEs. Instead of interrupt-based I/O, RKT-IO uses a polling-based approach

for handling I/O events in TEEs in which RKT-IO explicitly polls I/O response queues

for completed requests or new data. Such an approach for I/O event handling is a

natural fit with direct I/O libraries (DPDK/SPDK) that combine polling with the run-

to-completion model for fast I/O devices, which avoids the performance bottlenecks

of interrupt-based execution [37, 201, 131].

#3: I/O stack partitioning. While direct I/O libraries fit better with I/O event

handling, their adoption in the context of TEEs presents an interesting challenge:

DMA regions for untrusted I/O devices cannot be mapped directly into the TEE as

DMA access is prohibited for security reasons. We therefore need a way to efficiently

write to and read from a DMA region. RKT-IO achieves this by judiciously

partitioning the direct I/O stack into two parts: the driver code for I/O stacks runs

inside the TEE, and DMA memory regions for I/O devices are outside, as part of the

untrusted host memory.

#4: Transparent encryption. Since we cannot trust the host, network or storage

hardware, all data leaving the TEE must be encrypted to ensure confidentiality,

which is typically handled at the application layer in today’s frameworks.

Unfortunately, such an approach is error-prone, as application may not universally

encrypted all of its I/O paths, e.g., exposing data through unencrypted legacy

network protocols or file systems. Instead, RKT-IO supports a transparent and

universal mechanism to provide full disk (block layer) and network encryption

(Layer-3) by relying on the library OS.

5.3 Overview

Figure 5.4 shows the high-level architecture of RKT-IO. It consists of: (a) a network

stack that is derived from the Linux kernel exposing a socket API and is backed by

the Data Plane Development Kit (DPDK) [77]. Using DPDK, RKT-IO gets direct

access to the NIC from within the TEE; (b) a storage stack that provides a complete

filesystem abstraction (e.g., the Linux ext4 filesystem). It uses the Linux VFS layer to

interact with the block device layer, which is implemented by the Storage

Performance Development Kit (SPDK) [121] over the NVMe protocol to

communicate with the SSD; and (c) a runtime environment that integrates the storage

and network stacks based on the Linux kernel library (LKL), a userspace library OS

port of the Linux kernel [192]. LKL provides Linux system calls as userspace function

calls inside the TEE. A modified version of the musl standard C library (libc) [185]

exposes a POSIX interface to the application on top of the LKL system call interface.

86 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

kthread

Block device driver

VFS

NVMe
queues

Sq Cq

Application

read()/write()

request()

poll()

queue()

TEE

Host memory

Filesystem(ext4)

dm-crypt

SPDK

lthread

Netdev driver

Socket API LKL

NIC

queues

send()

poll()

receive()

Tx Rx

TCP/IP and UDP

Wireguard

DPDK

send()/recv()

Linux ABI (libc)

Hardware devices

NIC
 SSD

Figure 5.4: Architecture overview of RKT-IO (network stack on left; storage stack on

right)

An application can be built with common toolchains/package managers and put

into a Linux ext4 filesystem image. At runtime, a loader sets up the TEE, the I/O

stacks, the LKL library OS, and then mounts the filesystem image as the root file

system. After that, the application and its linked libraries are loaded into memory

from the root file system, and the application can now use RKT-IO’s modified musl

libc library.

A typical I/O request issued by the application begins with a system call, via the

libc API. The system call request is processed by the library OS within the TEE.

Depending on whether the request is made to a network or storage device, the

library OS issues calls to the userspace driver via the network and storage stacks,

respectively. The userspace drivers add requests to the appropriate request queues

(transmission queue (Tx) for NIC; submission queue (Sq) for NVMe), which are

mapped into the untrusted DMA memory region. Likewise on the receiving path, the

drivers continuously poll the completion queues (receive queue (Rx) for NIC;

completion queue (Cq) for NVMe), which are also mapped into the untrusted region.

5.3. Overview 87

The userspace drivers notify the library OS on response completion and can return

the data if requested.

Next we explain the two building blocks of RKT-IO: (a) the direct userspace I/O

mechanism; and (b) the POSIX abstractions from the Linux-based library OS.

Direct I/O libraries. Our I/O stack incorporates direct I/O libraries in the TEE to

avoid system calls and directly access the I/O devices. Our work builds on two

popular userspace direct I/O libraries, DPDK [77] and SPDK [121], which support

network and storage devices, respectively.

A direct I/O approach in the context of TEEs has both advantageous and

disadvantageous. On one hand, its polling-based approach is well-suited for TEEs

because interrupts are not permitted within TEEs. Furthermore, polling for

completion reduces the total latency, and has been shown to lead to a better design

for high-performance I/O devices (NICs and SSDs) [37, 201, 131]; on the other hand,

a direct I/O (zero-copy) philosophy is fundamentally incompatible with TEEs,

because a DMA memory region cannot be mapped directly inside the TEE due to

security restrictions.

To overcome this limitation, RKT-IO adopts a split architecture in which driver

code for DPDK and SPDK runs inside the TEE, but it maps the DMA memory

regions for the NIC/NVMe queues outside the TEE in untrusted host memory. More

specifically, the DPDK driver polls the NIC for received packets, which are then

explicitly copied into the TEE from the DMA regions. Likewise, the NVMe driver

uses its highly parallel asynchronous, lockless and poll-for-completion design to

access the underlying SSD. The drivers map hardware queues and PCIe registers into

the DMA region, and add requests and poll responses to distinct queues. Thereby,

our design follows a “one-copy” approach that copies the data between the untrusted

DMA region and the TEE.

Although DPDK and SPDK help improve the performance and security of

applications inside TEEs, it is challenging for developers to use them due to their

low-level I/O interfaces. DPDK provides high-speed packet processing capabilities

at Layer 2 in the network stack; SPDK offers only a block layer interface (and a

rudimentary file system called BlobFS [44]). These low-level interfaces are not

sufficient for most applications, which rather need a full network stack (e.g., TCP/IP)

and full filesystem (e.g., ext4) support.

Library OS with Linux ABI. RKT-IO uses the Linux Kernel Library (LKL) [192] to

provide a mature POSIX implementation with a virtual file system (VFS) layer and a

TCP/IP stack. LKL is a complete architecture port of Linux to userspace, which

provides components such as the kernel page cache, work queues, filesystem and

88 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

network stacks, and crypto libraries.

In our design, the application and the LKL library OS run in a single virtual

address space within the TEE. RKT-IO thus avoids user/kernel context switches, as

system calls are invoked through functions calls, and it also eliminates data copies

between the user/kernel space. By combining LKL with DPDK/SPDK, applications

do not need to be modified to use low-level I/O APIs and instead can use POSIX

APIs, while taking advantage of the performance and security guarantees offered by

RKT-IO.

In addition, RKT-IO leverages LKL to provide universal and transparent

encryption to ensure the confidentiality of data entering and leaving the TEE. RKT-IO

supports Layer-3 network packet encryption based on Linux’ in-kernel Wireguard

VPN [76], and full disk encryption based on Linux’ dm-crypt disk mapper [68].

5.4 Design

We next present the detailed architecture of RKT-IO around the four design principles

from §5.2.3.

5.4.1 Host-independent I/O interface

RKT-IO’s design aims to provide support for I/O operations while reducing

dependencies on the host OS. After boot up of the TEE environment, RKT-IO loads

the user-provided application and its dependencies into the encrypted memory. It

provides its own ABI-compatible variant of the musl libc implementation, which

makes system calls against the integrated LKL library OS – a non-MMU Linux

architecture port.

Multi-threading and scheduling is implemented in RKT-IO’s libc: it implements

cooperative userland threads that are scheduled on a fixed number of host OS threads.

The userland threads yield control and allow other threads to be scheduled on the

same host OS thread when they are blocked, e.g., when locks are taken; when a thread

sleeps; or when a blocking system call against the library OS kernel is issued. To

build the host-independent I/O interface, we next discuss three main design issues

that RKT-IO addresses to adapt LKL for high-performance networking and storage.

Symmetric multiprocessing (SMP). To allow high-performance I/O operations, the

I/O stack must be parallel to take advantage of SMP architecture. By default, LKL

does not support multi-threading, as shown in Figure 5.5 (original design on the left).

When multiple threads attempt to enter the kernel context, they need to obtain a single

lock. This lock protects the data structures associated with a virtual CPU. This make

5.4. Design 89

Libc

LKL

Host

Task#1

Lthread #2Lthread #1

OS threadOS thread

Task#2 Task#1 Task#2

CPU#1CPU#1 CPU#2

Original design New design

Figure 5.5: RKT-IO SMP architecture

the LKL kernel a bottleneck, because the backend I/O drivers and most applications

are parallel.

To make the kernel scalable, we modify LKL to add SMP support. With that, LKL

can provide multiple virtual CPUs as shown in Figure 5.5 (new design on the right).

The threading primitives required by the kernel for SMP are adapted from the native

architecture (i.e. x86 in our prototype). This change also introduces additional kernel

threads that are needed to handle inter-process interrupts and timer events that are

broadcast to multiple virtual CPUs.

To evaluate the effectiveness of our SMP design, we use fio [126] with random

read/write requests on a 1 GB file while increasing concurrency. Figure 5.6a shows

that the throughput for the storage stack increases linearly with more threads (from 1

to 8 threads) for both read and write requests.

Threads stack management. With an SMP architecture, the number of threads in LKL

also increases. To implement threads, LKL uses its OS-specific host interface. In its

default implementation for a POSIX-compatible OS, LKL creates a POSIX thread with

the architecture’s default stack size (8 MB on x86-64). In an environment in which the

OS has MMU support, the stack is only backed by physical memory as it grows in

size.

RKT-IO, however, has no MMU support and must therefore pre-allocate stack

memory. This results in a significant memory overhead when implementing SMP, as

more threads consume proportionately higher physical memory. This is an issue

given that TEE technologies such as SGX have limited physical memory (≈94 MB in

x86 SGX enclaves) that are usable without costly paging operations.

To solve this problem, we reduce the kernel thread stack size to 8 KB, which is the

same stack size that the Linux kernel uses for x86_64. The SPDK/DPDK framework

makes heavy use of inline functions, resulting in stack depths larger than 8 KB. In

90 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

RKT-IO, we therefore remove function inlining in parts of the SPDK/DPDK code base.

This approach for thread stack management turns out to be extremely effective:

we observe 155 kernel threads for a single-threaded application with 8 virtual LKL

cores. By switching from 8 MB to 8 KB stacks, we save 1.2 GB of memory.

Event scheduling timer. An I/O stack relies on timer event for several periodic tasks,

e.g., to flush out dirty pages, to schedule TCP re-transmissions, etc. In our

experiments, the original timer support in LKL is too slow for our design because it

would only schedule 1–3 events per second. The slow timer is not an issue for the

native LKL storage and network drivers, because they only delegate I/O requests to

threads that execute host system calls, making it less reliant on periodically

scheduled tasks. In RKT-IO, however, timer events are used to periodically poll I/O

devices, which makes them a bottleneck for scheduling tasks. Therefore, we need to

design a new timer implementation to meet the scheduling requirements on the

direct I/O path.

Originally, LKL implements a one-shot timer interface in which the kernel

registers functions to be called after a certain time by creating a thread per event. The

thread sleeps for a given time interval before invoking the kernel callback. RKT-IO

implements a periodic timer instead. With a frequency of 50 Hz, it calls a generic

interrupt function, and the kernel checks which tasks must be executed within this

tick. To do so, a single thread is created once, which performs a sleep system call in a

loop before notifying the kernel. With this new design, the polling mode I/O stack

becomes able to handle I/O events at a high rate.

5.4.2 I/O event handling

We design our I/O stack based on polling, and therefore we must re-design the library

OS’s network and filesystem interfaces to support this. We achieve this by mapping

registers and DMA memory regions into RKT-IO’s virtual address space.

While polling can consume more CPU cycles than interrupt handling, especially in

I/O-intensive applications, interrupts become a bottleneck. There is a recent trend in

OS design to switch to hybrid polling/interrupt approaches to meet the performance

requirements of network and storage hardware [283, 79]. We next explain our polling-

base design, which we find most suitable for both block (SSDs) and network (NICs)

devices.

Block device polling. Figure 5.4 (right) shows the data path when applications

access the filesystem. System calls issued by the application are first dispatched by

the virtual filesystem and then delegated to the actual filesystem (in our experiments,

ext4). When the filesystem reads/writes data from the underlying block device, the

5.4. Design 91

1 2 4 6 8
0

20

40

60

80

100

Th
ro

ug
hp

ut
 [M

iB
/s]

read
write

(a) Effectiveness of the SMP design w/ fio with

increasing number of threads

offloads+
zerocopy

no offloads no zerocopy
0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 [G

bp
s]

(b) iPerf throughput w/ different optimizations

aes-ni no aes-ni
0

100

200

300

400

500

Th
ro

ug
hp

ut
 [M

iB
/s

]

(c) Effectiveness of hardware-accelerated crypto routines

Figure 5.6: Micro-benchmarks to showcase the effectiveness of design choices in RKT-

IO

92 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

data is cached in the page cache.

The SPDK driver puts incoming requests in the NVMe queue. When queuing

requests, the driver also polls for completed requests in the corresponding

completion queue. If there are outstanding requests, it schedules a polling task. The

polling task periodically polls the completion queue until all outstanding requests

are acknowledged and notifies the kernel about each completed item.

In an SMP environment, single hardware queue pairs can easily become a

bottleneck due to lock contention, which is caused by multiple threads trying to issue

requests concurrently. To overcome this problem, the NVMe standard allows the

creation of multiple request/response queue pairs. This allows I/O requests to be

issued in parallel, while improving data locality in NUMA systems. We assign one

queue pair per virtual LKL CPU and bind one polling thread to each.

As described in §5.4.1, LKL has the concept of virtual CPUs, which are protected

by locks, so that only one thread can access them at a time. Due to this, RKT-IO does

not need additional locks around its own queues, as they are already protected by the

CPU locks. One challenge when introducing multiple queues is to not increase the

CPU overhead due to polling: too much polling on a particular queue steals CPU

cycles from the application or other queues; while not enough polling increases

latency and decreases throughput. RKT-IO puts the polling threads to sleep if no

outstanding requests are due.

An advantage of RKT-IO’s design with one queue-pair per CPU is that it can also

safely poll without locks in the request function, because the actual poll thread cannot

be run at the same time on the same CPU. This reduces context switches, as the request

function is often called from the application thread during a system call.

Network device polling. Similar to the storage stack, the network stack also relies on

polling. Figure 5.4 (left) shows the data path for networking. An application can use

the full POSIX socket API with all extensions, as supported by Linux. New data sent

by the application is stored in a kernel-side socket buffer, and the socket buffer is

placed in a software queue. On a software interrupt, buffers from this queue are

passed to the DPDK-based network driver, which puts the data into the NIC’s

transmission queue. Packets are received by a dedicated polling thread.

While implementing the network stack, we experimented with different setups

on how to manage polling. Our first design used multiple queues for sending and

receiving. This approach, however, makes network throughput worse: each receiving

queue must be polled by a dedicated polling thread, which takes too many CPU cycles

away from the application and increases latency. Likewise, for sending queues, RKT-

IO needs to poll the completion status, as the Linux kernel uses this information to

5.4. Design 93

Frame Frame

Frame >> MTU

Linux network stack

Frame Frame

Frame >> MTU

GROGSO

send() recv()

Figure 5.7: Generic segmentation offload and generic-receive offload

adjust its TCP window size.

Ultimately, we decide on having a single thread dedicated to polling a single

queue, which is faster, because the cost of context switches exceeds the cost of

polling. To reduce the overhead of scheduling the polling thread, we move it out of

the kernel scheduler into the underlying userland scheduler. Before it starts polling,

it acquires an LKL CPU lock to get ownership, so it can safely access Linux kernel

data structures. After it has processed every received packet, it releases the

ownership of the CPU lock.

Bufferbloat mitigation through eager queue cleanup. To counter bufferbloat [46],

network congestion avoidance for the TCP stack in Linux measures how many packets

are still queued by the NIC. In the original DPDK driver design, however, old packets

are not freed as soon as packets are sent, but when new packet buffers override the old

entries in the send ring buffer. This is too late for Linux, where the critical threshold

is around 0.5 MB while a send queue in a NIC is significantly larger (i.e. 8 MB for our

NIC). As a result, connections are throttled to a rate below 1 Gbps on a 40 Gbps NIC.

To counter that, we redesign the queue cleanup algorithm to free old send buffers

when new packets are queued for sending or when the Linux network stack’s

threshold for a TCP connection is exceeded. In our experiments, this boosts

iPerfthroughput from 300 Mbps to 25 Gbps without encryption and 15 Gbps with

encryption.

NIC offloading support. To achieve high throughput when processing packets, the

offloading mechanism available in modern NICs must be used by a

high-performance network stack. When network streams are sent, they need to be

divided into smaller Ethernet frames with a maximum transfer unit (MTU) of

commonly 1500 bytes. The smaller Layer-3 packets (i.e. TCP/IP) need new updated

headers to reflect the changed size, sequence number and checksum. On the receiver

side, it is also typically too expensive to traverse the whole network stack for each

packet. Optimizations in either software or hardware are required to re-assemble the

94 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

payload from smaller TCP packets into larger buffers. In addition, the payload and

network headers are often not stored continuously in memory. This needs to be

communicated to the NIC to avoid having to copy parts to a new continuous buffer.

To address the problem of assembling and disassembling network streams, we use

generic segmentation offloading (GSO) and generic receive offloading (GRO). GSO, as

shown in Figure 5.7 (left), requires implementation changes in DPDK to allow for the

segmentation of large network streams into smaller Ethernet frames in the hardware.

For GRO, as shown in Figure 5.7 (right), we rely on a software solution, as described

in §5.5.2, to avoid entering the network stack for each small packet by aggregating

them in larger buffers. Furthermore, RKT-IO configures the NIC to offoad checksum

computation for network headers. We also make use of DPDK’s segmentation support

to make the NIC read headers and payload chunks from different memory locations,

thus avoiding copying them to a new buffer.

To evaluate the effectiveness of these offloading techniques, we run iPerf with

and without them, as shown in Figure 5.6b, with a single TCP stream. As for all

network benchmarks, TLS is enabled in iPerf. With offloading, we obtain a 3× higher

throughput, making DPDK’s performance comparable to NIC-enabled offloading in

the Linux kernel.

5.4.3 I/O stack partitioning for TEEs

Since storage and network devices cannot directly access TEE memory, their DMA

memory regions need to mapped outside of the TEE. Conversely, the POSIX API forces

the kernel to make a copy of the data passed in a system call because applications

expect the memory to be re-usable. A naive implementation would therefore do two

copies: one from the application buffer to the kernel and one from the kernel to the

NIC DMA region.

RKT-IO reduces the number of copies to one, by copying data for sending directly

from the application buffer to the hardware’s DMA region. In systems that have

access to an MMU, usually from a privileged ring, this can be achieved by

re-mapping pages in virtual memory. RKT-IO, however, runs in unprivileged

userspace and instead extends the Linux kernel memory allocator to support

memory allocations in both encrypted TEE memory and unencrypted DMA

memory (see §5.5.1).

One-copy for networking. This support in the Linux kernel memory allocator allows

RKT-IO to allocate the data part of a socket buffer (short skb) in the NIC DMA

memory. In turn, RKT-IO makes use of DPDK’s external buffer support [64] (see

§5.5.2) to transfer packets to the NIC without an extra copy.

5.4. Design 95

To evaluate the performance improvements of a one-copy data path, we use the

same iPerf benchmark as in §5.4.2 with the result shown in Figure 5.6b. When

comparing all optimizations enabled with disabling the copy optimization in the

receive/send path, we see a 21% improvement (11.6 Gbps vs. 15 Gbps).

One-copy for storage. Similarly, the NVMe device needs data to be written to a

special DMA memory region in which NVMe queues are allocated. To avoid extra

copies of the encrypted pages from the disk encryption layer, RKT-IO allocates those

pages in the DMA memory outside of the TEE. When transferring pages from or to

the NVMe device, RKT-IO uses the gather-scatter API of SPDK. This API allows to

pass I/O vectors instead of continuous buffers, which is needed to pass multiple

scattered kernel pages directly to the hardware. This optimization results in a

throughput improvement of 7% for the block device.

5.4.4 Transparent encryption

Since all data that leaves the TEEs must be protected to avoid information leakage to

the host, RKT-IO implements both transparent encryption of network traffic using a

Layer 3 virtual private network (VPN) and full disk encryption.

For network protection, we find that many network-facing applications already

support transport encryption using TLS. This is the preferred way, as it provides high-

throughput and low protocol overhead thanks to highly optimized TLS stacks, such

as OpenSSL [268]. If an application does not support TLS, RKT-IO also supports the

Wireguard VPN [76] to encrypt network packets on Layer 3. It is integrated into the

library OS as a tunnel, and it encapsulates encrypted IP packets into the UDP protocol

using the ChaCha20 [147] stream cipher before forwarding them to the NIC.

For storage protection, we use the Linux disk-mapper crypto target that gives full

disk encryption. It is set up to use AES 256-bit in XTS cipher mode before passing

encrypted pages to the underlying block device.

Hardware acceleration. The LKL architecture by default only provides slow generic

routines for AES encryption or cryptographic hashing, which makes full disk

encryption slow. Optimized routines must be loaded from kernel modules,

depending on which CPU extensions are available (i.e. AES-NI on Intel x86). RKT-IO

ports the crypto modules from the respective native CPU architecture (i.e. x86) to

speed-up block disk encryption. Therefore, we implement kernel module loading

support (see §5.5.3).

Figure 5.6c shows the throughput before and after enabling hardware-accelerated

crypto routines for sequential writes to a 10 GB file. Enabling acceleration increases

throughput by 2.8×.

96 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

5.5 Implementation

RKT-IO builds based on SGX-LKL [208]. SGX-LKL provides the musl libc abstraction,

userland threading and integration into LKL. RKT-IO extends SGX-LKL to the support

the direct I/O network and storage stacks. In addition, RKT-IO re-designs several

components to suite the direct I/O performance requirements, which were described

previously in Section 5.4 and are explained in further detail in this section.

5.5.1 Runtime environment for the I/O stack

Driver setup. DPDK/SPDK configure the system to map the hardware queues into

the RKT-IO virtual memory space. This is a privileged action requiring root

permissions. RKT-IO delegates this task to a dedicated setuid binary, so that the

actual SGX enclave can run with user privileges. For this to work we use DPDK’s

multiprocess feature, where the privileged process acts as a primary process and

communicates over shared memory with our enclave, which runs as a secondary

process. Additionally, we find that DPDK/SPDK needs root access to resolve its own

virtual addresses to physical addresses in order to communicate with the hardware.

We delegate this task to another setuid binary, that provides this service over a pipe.

Hugetables. DPDK/SPDK allocate the memory they use to communicate with the

hardware using huge pages (either 4MB or 1GB large instead of 4KB on x86). RKT-IO

uses this huge memory region as a page cache, which is why we want to allocate as

many huge pages as possible. We find that with the default 1GB page size

recommendation from DPDK this is not possible. The host operating system’s page

allocator causes memory fragmentation and it cannot find many unused continuous

1GB physical pages (only 4-5 GB pages on the system with 32GB RAM in our tests).

Instead, we modify DPDK to allocate 4MB pages and align them continuously in

memory by moving DPDK’s metadata structure to a different offset. This way the

page allocator that runs in our library OS can treat this memory as a one continuous

chunk.

Page allocator. We extend the Linux page allocator to use DPDK/SPDK memory.

The Linux kernel expects page data structures and cannot work with external buffers.

We therefore re-use page flags used in the NUMA architecture to differentiate

between memory allocated in the TEE and memory allocated in the DMA memory

region. On top of that, we can also identify pages based on its address for additional

security checks, whether the memory comes from the protected TEE memory or the

unencrypted DMA memory region. We extended LKL to register DPDK/SPDK

memory in their own “NUMA” zone on bootup. By default, the kernel never

5.5. Implementation 97

allocates any memory in these zones except when a special flag (GFP_SPDK_DMA)

is passed to the page allocator function. Additionally, we also add DMA memory

support for kmalloc, which is the kernel’s malloc equivalent. It builds on top of the

page allocator by adding additional caches for different size classes. We add new

cache data structures for the DMA memory region and make kmalloc select them if

the GFP_SPDK_DMA flag is set.

5.5.2 Network stack

RKT-IO implements a new network device driver to integrate DPDK into Linux

network stack. Furthermore, we make several modifications to DPDK itself to

improve performance in context of the kernel network stack. To improve the TCP

send performance and make DPDK competitive with the native Linux kernel driver,

we implemented Generic Segmentation Offload (GSO) for the Intel 40-Gigabit

Ethernet NIC family (called i40e in DPDK/Linux). On the receiving side we

implement GRO (Generic Receiving Offload) using the kernel napi_gro_receive()

function. This shortcuts parts of the network stack as packets get summarized to

larger streams, without traversing the full stack for each packet. By default, DPDK

comes with its own allocator for packet buffers. To avoid copying when transferring

packets from Linux’s socket buffer to the NIC, we make use of DPDK’s external

buffer support using the rte_pktmbuf_attach_extbuf function. For receiving packets

DPDK does not offer support for external buffers, so we modify DPDK to allocate

Linux socket buffers rather its own packet buffers.

5.5.3 Storage stack

RKT-IO implements a multi-queue block device driver using the blk-mq [60] interface

to integrate SPDK as a block device into LKL. RKT-IO assigns one queue pair per

CPU that is used when doing requests in our drivers queue_rq implementation to

avoid locks between different CPUs. In the same function it also poll for outstanding

requests. If there are outstanding requests, a dedicated polling kernel thread for this

queue is woken up.

An important performance optimization we apply to this layer is speeding up

disk encryption by loading native x86 kernel modules with hardware-accelerated

optimized crypto routines. As the modules contain assembly instruction that are not

position-independent code, we needed kernel module loading support in LKL to

allow relocations at runtime. RKT-IO builds the kernel crypto modules from the

normal x86 port with a small patch (56 LOCs) to align the kernel module initializer

struct between the two architectures. At setup time it loads the kernel modules via

98 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

syscall. The kernel modules their-self are linked into the RKT-IO binary. The modules

itself rely on x86 CPU feature checks based on CPUID to figure out which CPU

extensions are available, we modify LKL to load this information during bootup

based on CPUID information from outside of the enclave (CPUID itself is an illegal

instruction inside the SGX enclave).

5.6 Evaluation

Our experimental evaluation is based on four real-world applications (see Figure 5.8):

SQLite, Nginx, Redis and MySQL.

Testbed We perform our experiments using two machines with SGX as our TEE:

Intel(R) Core(TM) i9-9900K each with 8 cores (16 HT), memory: 64 GiB, caches: 32 KiB

(L1), 256 KiB (L2) and 16 MiB (L3), NIC: Intel Corporation Ethernet Controller XL710

for 40GbE QSFP+ (rev 02). NVMe drive: 2TB P4600. The host OS is running Linux

5.7.12.

Baselines We compare our performance against the overall performance of these

applications across three systems: native Linux (unsecured version), SCONE (a host

OS-based approach), and SGX-LKL (a library OS-based approach). The applications

are compiled against musl libc. For the native benchmarks, we use ext4 as a

filesystem using disk-mapper for encryption with the aes-xts-256 cipher. We use the

same configuration inside the TEE for SGX-LKL and RKT-IO. SGX-LKL accesses the

block device as a file through the host interface, while RKT-IO accesses it via SPDK.

For SCONE we enable fileshield [232] and store the data on ext4 without encryption.

All network benchmarks have TLS enabled (Redis, MySQL and Nginx). Both native

and SCONE-based benchmarks access the network through the host socket interface,

while RKT-IO uses DPDK. To connect SGX-LKL to the native network adapter, we

use a TAP interface that is bridged with the native NIC. For SCONE, we use tuning

parameters recommended by the SCONE developers for our I/O-heavy workloads:

two threads running inside the TEE with a system call queue assigned to each thread.

Each system call queue has 7 I/O threads running outside the TEE.

5.6.1 Nginx web server

Methodology We evaluate Nginx [188] in a client-server configuration using two

machines. We use the wrk HTTP benchmarking tool [277] to request a 3 MB file

(average page size is according to [113]) via HTTPS. The benchmarking tool is setup

5.6. Evaluation 99

native sgx-lkl scone rkt-io
0

200

400

600

800

1000

1200

La
te

nc
y [

m
s]

(a) Nginx latency w/ wrk [277]

native sgx-lkl scone rkt-io
0

100

200

300

400

Re
qu

es
ts
/se

c

(b) Nginx throughput w/ wrk [277]

native sgx-lkl scone rkt-io
0

5k

10k

15k

20k

25k

Th
ro

ug
hp

ut
 [o

ps
/se

c]

(c) Redis throughput w/ YCSB (A) [58]

native sgx-lkl scone rkt-io
0

500

1000

1500

2000

2500

3000

La
te

nc
y [

μs
]

Read Update

(d) Redis latency w/ YCSB (A) [58]

native sgx-lkl scone rkt-io
0

2000

4000

6000

8000

Tr
an

sa
ct

ion
s p

er
 se

co
nd

Insert
Update
Delete

(e) SQLite throughput w/ Speedtest [242]

native sgx-lkl scone rkt-io
0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 [e

ve
nt

s/s
ec

]

(f) MySQL OLTP throughput w/ sysbench [245]

Figure 5.8: The above rkt-io/plots compare the performance of four real-world

applications (Nginx, Redis, SQlite, and MySQL) while running atop native linux (no

security) and three secure systems: SCONE, SGX-LKL and RKT-IO

100 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

as a client process running on another server machine, for 30 seconds using 16

threads and 100 concurrent HTTPS connections. We then report the throughput and

latency of the server on this workload as requests per second and milliseconds,

respectively. We compare the results across the four system configurations as shown

in Figure 5.8a and Figure 5.8b.

Results RKT-IO incurs a lower average per request latency than SGX-LKL (2.7×)

and SCONE (2.3×) as well as a higher throughput than SGX-LKL (3.4×) and SCONE

(2.3×). There is still a performance gap compared to the native non-secure run, which

has 2.5× higher throughput and 2.4× lower latency.

Our profiling of the web server shows that while serving the requests, Nginx

spends 92% of the time in the kernel to process the network packets, while the rest of

the time is being spent mostly in the userspace for encryption. This benchmark

therefore shows the differences in the network stacks. In SGX-LKL, the network

packets have to traverse the network stacks in the host and LKL. The host then has

two additional network devices that the network packets have to pass (the tap

interface and the bridge), and their respective firewalls.

SCONE can transfer network packets to the native host interface directly, however

it still spends more time copying data from the TEE to its system call queue and from

the system call queue to the host than RKT-IO, which can interact with the NIC directly.

5.6.2 Redis key-value store

Methodology We evaluate Redis [221] with the YCSB benchmarking

framework [58], which is set up on another client machine. The key-value store is

loaded with 100K key-value pairs. Thereafter, workload A of YCSB is used for a total

of 10k operations using 16 threads. We then report the throughput and latency for the

read and update operations on the key-value store in terms of operations per second

and milliseconds, respectively. We compare the results across the four system

configurations as shown in Figure 5.8c and Figure 5.8d.

Results RKT-IO’s throughput is better compared to SCONE (2.9×) and SGX-LKL

(2.1×); however it is slower than in the native execution (2.0×). The average latency

per operation follows a similar trend, with the Redis server running on RKT-IO

2.8 − 2.9× lower latency than native execution. However, RKT-IO is faster than

SCONE (3.6×) and SGX-LKL(2.5×).

Our profiling of the experiments shows that the workload of this benchmark is

also network bound, like Nginx, however we measure that only 50% of the time is

5.6. Evaluation 101

spent in the network stack, and remaining of the majority of the time is spent in TLS

encryption. This alone would suggest that the SGX-based solutions should be closer

to the native execution performance since they require less interaction with their I/O

stacks; however, this is not the case. We see an increase in the activity of the enclave

paging kernel thread (i.e. from 3× increase in CPU usage for RKT-IO when

comparing the Nginx benchmark with Redis). Therefore, the run-time runtime

difference is caused by increased EPC paging when Redis’ in-memory data structures

are accessed.

5.6.3 SQLite database

Methodology We evaluate SQLite [243] using its default configuration with journal

mode set to delete and full synchronization. We use the Speedtest benchmark [243]

shipped with SQLite to perform 15k transactions. We then configure the benchmark

to perform 5k transactions each for the insert, update and delete operations. We report

the throughput as transactions per second for each operation. We compare the results

across the four system configurations as shown in Figure 5.8e.

Results RKT-IO performs 2.0− 2.8× better than SGX-LKL and 2.4− 3.4× better than

SCONE. However, the performance of RKT-IO is lower for the native run (outside

TEE) by 1.7×, 2.3× and 1.8× for insert, update and delete operations, respectively.

Our profiling of the experiments shows that the writes in a transaction are

cheaper compared to creating/opening/flushing/unlinking the journal/WAL files.

For such an I/O pattern, RKT-IO and SGX-LKL have an advantage over SCONE, since

they can directly access inodes from the libOS inode cache because they implement

the filesystem themselves, while SCONE has to perform host system calls.

Even though the writes performed by SQLite itself are comparably small (4KiB)

to other operations completed around it, but the writes still needs to be synced to the

disk to provide crash consistency. This is where the polling-based approach of RKT-IO

falls behind the native execution, as RKT-IO has to spend more CPU cycles on polling

to wait for the I/O completion.

5.6.4 MySQL database server

Methodology We evaluate MySQL [186] with the SysBench benchmarking

tool [245]. The benchmarking tool is setup on another machine as a client to generate

the OLTP workloads. We then compare the throughput of the server serving OLTP

requests, in transactions per second. We compare the results across the four system

configurations as shown in Figure 5.8f.

102 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

Results RKT-IO’s throughput is better than native, SGX-LKL and SCONE, by 12.2×,

5.7× and 13.5× respectively. After doing an off-cpu analysis [193] we found mysql

would spend a significant time doing table locks with futex. Since they both for SGX-

LKL and RKT-IO do scheduling in userspace they were faster in switching between

different threads. Combined with the fast userspace I/O stack of RKT-IO this speed

up the overall execution.

5.7 Related work

I/O support for shielded execution. With the adoption of TEEs in cloud

environments, shielded execution frameworks, such as Haven [34], SCONE [25],

Graphene-SGX [258], Panoply [237], and SGX-LKL [208], are used to deploy

applications with strong security properties. These frameworks provide OS

functionality and associated run-time libraries to support unmodified legacy

applications in TEEs. They promote portability, programmability and performance

for shielded execution, and have been used to implement a wide-range of secure

systems for storage [140, 30], data analytics [231, 285], data management [207], file

storage [3], network functions [256, 204], decentralized ledgers [152], content delivery

networks [108], machine learning [146], etc.

Current shielded execution frameworks primarily rely on existing OS

functionality (i.e., syscalls to host OS or a libOS inside the TEE) for I/O operations,

which differs from RKT-IO’s design of providing a separate direct I/O stack within

the TEE for storage and networking. SCONE [25], SGX-LKL [208], and Eleos [197] use

switchless asynchronous I/O calls to mitigate I/O bottlenecks in the TEEs. This

avoids expensive TEE world switches, and the use of I/O threads outside the TEEs

improves I/O performance through asynchronous syscalls [241]. Since this approach

relies on the host OS to handle I/O operations via dedicated I/O threads outside the

TEE, it suffers from performance and security limitations: in terms of performance, it

reduces the number of available threads for application execution, requires extra

copies of the data and syscall arguments, and significantly increases I/O latency;

since the host OS is responsible for performing I/O operations, it is also susceptible

to Iago [49] and host interface attacks [183].

To overcome the limitations of switchless asynchronous I/O mechanisms,

ShieldBox [256] uses Intel DPDK [77] as a user mode driver to support secure

middleboxes based on the Click modular router. Likewise in the storage domain,

Speicher [30] accesses persistent storage (SSDs) through Intel SPDK [121] within the

TEE to provide a secure persistent KV store. Since these systems try to address I/O

5.8. Limitations and future work 103

bottlenecks, the corresponding I/O stacks are designed to operate at the lowest layer,

and thus are incompatible with legacy applications that require POSIX network and

file support. More specifically, Shieldbox only targets Layer-2 networking without

TCP/IP support; in contrast, RKT-IO provides secure network (IP) and transport

protocols. Similarly, Speicher operates at the block layer without filesystem support,

but RKT-IO’s I/O stack supports off-the-shelf filesystems (e.g., ext4, xfs, etc.)

available in the Linux kernel. Finally, RKT-IO adopts a holistic design to provide both

network and storage support in an integrated I/O stack.

High-performance I/O stacks. To meet the performance needs of I/O-intensive

applications and leverage high-performance hardware, a range of I/O stacks have

been proposed for networking (e.g., mTCP [127], netmap [223], StackMap [282],

Sandstorm [175], and TAS [134]) as well as storage (e.g., Decibel [187], i10 [114],

DiskMap [176], ReFlex [138], and PASTE [112]).

Our work builds on the designs of high-performance I/O stacks, especially stacks

bypassing the OS kernel. RKT-IO supports secure I/O operations directly within

TEEs, whereas these I/O stacks would require non-trivial changes for retro-fitting

their architecture in the context of TEEs.

Efficient library OS design. Library OSs can improve application performance,

while ensuring portability [81, 205, 39, 52]. Advances in high-performance

networking and storage in data centres has led to a resurgence of library OSs support

latency-sensitive applications: Arrakis [201], Demikernel [284] and IX [37] adapt a

kernel-bypass design that splits functionality across control and data paths in order

to support I/O-intensive applications that use high-performance NICs and SSDs. In

the same spirit, RKT-IO favors a host-independent I/O interface based on LKL to

avoid the OS on the critical I/O path for improved performance (and also for

security). In contrast to these systems, we need to address additional fundamental

challenges to make the direct I/O compatible in the context of TEEs. Since the DMA

region cannot be directly mapped in the TEEs, our design requires additional

“one-copy" instead of "zero-copy" to read/write data in the TEE. On the downside,

these systems do not support POSIX compliant APIs.

5.8 Limitations and future work

In this section we discuss potential areas where we can improve RKT-IO in future.

While RKT-IO achieves a significant speed-up for IO operation in the SGX enclave,

it is limited to Intel x86 hardware. In future the same approach could be ported to

similar TEE implementations in other CPU architectures i.e. AMD’s Secure Memory

104 Chapter 5. RKT-IO : A Direct I/O Stack for Shielded Execution

Encryption (SME [65]), RISC-V’s keystone [222] or ARM’s Realm [24].

Secondly at the time of evaluation SGX still had a memory limitation of 128 MB

protected memory per enclave. Intel in the meanwhile released the 3rd generation of

Intel Xeon’s, which increases the memory to up to 1 TB per enclave [273]. It would be

interesting to redo the evaluation on those CPUs to be more competitive in comparison

to native performance.

Lastly, the SPDK/DPDK framework is not hardened/optimized for use in TEEs.

A re-implementation with focus on a smaller TCB, an untrusted host in mind and the

use an of memory-safe language for the driver [80] would greatly improve security of

RKT-IO.

5.9 Summary

In this chapter, we presented the design and implementation of RKT-IO, a direct I/O

stack for shielded execution targeting high-performance networking and storage.

Our I/O stack strives to overcome the performance and security limitations of

switchless asynchronous I/O designs adopted in the host OS- and libOS-based

shielded execution frameworks. This design goal is achieved by our judicious

co-design of the userspace direct I/O libraries with the library OS (LKL) running in

the trusted domain of TEEs. Thereby, our I/O stack facilitates switchless direct I/O

with improved performance and security, while preserving the rich POSIX

environment to support off-the-shelve filesystems and network stacks. We have

implemented RKT-IO, as an end-to-end I/O stack, and extensively evaluated it using

a wide-range of micro-benchmarks and unmodified real-world applications. Our

evaluation shows the effectiveness of the individual system design components and

overall approach; for instance, our network and storage stacks are 7 − 9× compared

to SCONE (host-based) and SGX-LKL (libOS-based) based on iPerf and Fio

benchmarks, respectively.

Source code availability Our project is publicly available for the research

community [250].

While with RKT-IO we address the security of applications in containers and

virtual machines and with CNTR we improve the dependability of containers, there

was no equivalent of CNTR for virtual machines. For this reason we built VMSH, that

we present in the next chapter.

Chapter 6

Conclusion

Given the increasing complexity of virtualisation in data centres, how can we ensure

that installed applications remain maintainable and secure? In this dissertation, we

present three systems that address this aspect for virtual machines and containers by

introducing new I/O abstractions. In our approaches, we focus on practical,

deployable solutions that developers can adapt to their applications with minimal or

no changes.

CNTR provides a way to extend application containers with tools from debug

containers. At runtime, CNTR allows users to efficiently deploy the “slim” image and

then extend it with additional tools as needed, by dynamically attaching the “fat”

image. To accomplish this, CNTR transparently combines the two container images

using a nested namespace, without making any changes to the application, container

manager, or operating system.

VMSH allows services to be attached to running virtual machines as needed, so

developers can deploy minimal, lightweight images without compromising their

functionality. In this way, VMSH provides a zero-configuration out-of-band

management for virtual management that does not depend on code in the guest

userspace or additional network interfaces. It achieves this by locating the guest

kernel and using this information to load and execute additional kernel code by

injecting system calls into the KVM hypervisor via the debugging API. The kernel

code bootstraps a lightweight container based on a file-system provided by a block

device emulated by VMSH.

RKT-IO improves the I/O performance of applications running in cloud

environments protected by trusted execution environments with a fast direct

userspace network and storage I/O stack. RKT-IO achieves high I/O performance by

using direct userspace I/O libraries (DPDK and SPDK) within the TEE for

kernel-bypass I/O. To be efficient, RKT-IO polls for I/O events by interacting directly

105

106 Chapter 6. Conclusion

with the hardware rathern than relying on interrupts, and it avoids data copies by

mapping DMA regions in the untrusted host memory.

Bibliography

[1] Chris Mason <chris.mason@oracle.com>. Homepage of Compilebench. https://

oss.oracle.com/~mason/compilebench/. 2021.

[2] Alexandru Agache et al. “Firecracker: Lightweight virtualization for

serverless applications”. In: 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 20). Santa Clara, CA: USENIX Association,

2020, pp. 419–434.

[3] Adil Ahmad et al. “OBLIVIATE: A Data Oblivious Filesystem for Intel SGX”.

In: 25th Annual Network and Distributed System Security Symposium (NDSS).

2018.

[4] Istemi Ekin Akkus et al. “SAND: Towards High-Performance Serverless

Computing”. In: Proceedings of the USENIX Annual Technical Conference

(USENIX ATC). 2018.

[5] Alpine maintainers. Alpine Linux security database.

https://secdb.alpinelinux.org/. 2021.

[6] Amazon. Accessing Amazon CloudWatch logs for AWS Lambda. https://docs.

aws.amazon.com/lambda/latest/dg/monitoring- cloudwatchlogs.html.

2021.

[7] Amazon. “Amazon Elastic Block Store (EBS)”. In: (2021).

[8] Amazon. AWS X-Ray. https://aws.amazon.com/xray/. 2021.

[9] Amazon. Image scanning on Amazon ECR. https://docs.aws.amazon.com/

AmazonECR/latest/userguide/image-scanning.html. 2021.

[10] Amazon. Working with AWS Lambda function metrics. https :

//docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html.

2021.

[11] Amazon. Working with AWS Systems Manager (SSM) Agent. https://docs.aws.

amazon.com/systems-manager/latest/userguide/ssm-agent.html. 2021.

[12] Amazon AWS Lambdas. https://aws.amazon.com/lambda/.

107

https://oss.oracle.com/~mason/compilebench/
https://oss.oracle.com/~mason/compilebench/
https://secdb.alpinelinux.org/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://aws.amazon.com/xray/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://aws.amazon.com/lambda/

108 BIBLIOGRAPHY

[13] Amazon Elastic Container Service (ECS). https://aws.amazon.com/ecs/.

[14] Amazon’s documentation on EBS volume types. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/EBSVolumeTypes.html.

[15] AMD. AMD Secure Encrypted Virtualization (SEV). https://developer.amd.

com/sev/. Last accessed: Oct, 2020. URL: https://developer.amd.com/sev/.

[16] Intel Active Management Technology. Last accessed: Dec, 2021. URL:

%5Curl%7Bhttps://www.intel.com/content/www/us/en/architecture-and-

technology/intel-active-management-technology.html%7D.

[17] Andreas Lundqvist. Linux distribution timeline. https://de.wikipedia.org/

wiki/Datei:Linux_Distribution_Timeline.svg. 2016.

[18] Andrew Lerner. “Predicting SD-WAN Adoption”. In: (2015).

[19] Ronnie Sahlberg Andrew Tridgell. Homepage of DBENCH. https://dbench.

samba.org/. 2021.

[20] Andy Honig and Nelly Porter. 7 ways we harden our KVM hypervisor at Google

Cloud: security in plaintext. https://cloud.google.com/blog/products/gcp/

7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-

plaintext. 2021.

[21] Anil Madhavapeddy and David J. Scott. “Unikernels: Rise of the Virtual

Library Operating System”. In: (2014).

[22] Ali Anwar et al. “Improving Docker Registry Design based on Production

Workload Analysis”. In: 16th USENIX Conference on File and Storage

Technologies (FAST). 2018.

[23] ARM. Building a Secure System using TrustZone Technology. http://infocenter.

arm.com/help/topic/com.arm.doc.prd29- genc- 009492c/PRD29- GENC-

009492C_trustzone_security_whitepaper.pdf. Last accessed: Oct, 2020. URL:

http://infocenter.arm.com/help/topic/com.arm.doc.prd29- genc-

009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[24] Arm Confidential Compute Architecture.

https://www.arm.com/why-arm/architecture/security-features/arm-

confidential-compute-architecture.

[25] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”. In:

Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI). 2016.

https://aws.amazon.com/ecs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
%5Curl%7Bhttps://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html%7D
%5Curl%7Bhttps://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html%7D
https://de.wikipedia.org/wiki/Datei:Linux_Distribution_Timeline.svg
https://de.wikipedia.org/wiki/Datei:Linux_Distribution_Timeline.svg
https://dbench.samba.org/
https://dbench.samba.org/
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture

BIBLIOGRAPHY 109

[26] Nils Asmussen et al. “M3: A hardware/operating-system co-design to tame

heterogeneous manycores”. In: Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages and Operating

Systems. Vol. 51. New York, NY, USA: Association for Computing Machinery,

2016, pp. 189–203.

[27] AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing.

[28] Azure Container Service (AKS).

https://azure.microsoft.com/en-gb/services/container-service/.

[29] Azure Functions.

https://azure.microsoft.com/en-gb/services/functions/.

[30] Maurice Bailleu et al. “SPEICHER: Securing LSM-based Key-Value Stores

using Shielded Execution”. In: 17th USENIX Conference on File and Storage

Technologies (FAST). 2019.

[31] Ioana Baldini et al. “Serverless computing: Current trends and open problems”.

In: Research advances in cloud computing. Springer, 2017, pp. 1–20.

[32] Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles (SOSP). New York,

NY, USA: Association for Computing Machinery, 2003, pp. 164–177.

[33] Diane Barrett and Greg Kipper. Virtualization and Forensics: A Digital Forensic

Investigator’s Guide to Virtual Environments. 1st. Syngress Publishing, 2010. ISBN:

1597495573.

[34] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications

from an Untrusted Cloud with Haven”. In: Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI). 2014.

[35] Andrew Baumann et al. “Composing OS extensions safely and efficiently with

Bascule”. In: Proceedings of the 8th ACM European Conference on Computer

Systems. New York, NY, USA: Association for Computing Machinery, 2013,

pp. 239–252.

[36] Adam Belay et al. “Dune: Safe user-level access to privileged CPU features”. In:

10th USENIX Symposium on Operating Systems Design and Implementation (OSDI

12). Hollywood, CA: USENIX Association, 2012, pp. 335–348.

[37] Adam Belay et al. “IX: A Protected Dataplane Operating System for High

Throughput and Low Latency”. In: 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). 2014.

https://aws.amazon.com/lambda/pricing
https://azure.microsoft.com/en-gb/services/container-service/
https://azure.microsoft.com/en-gb/services/functions/

110 BIBLIOGRAPHY

[38] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.

“Software-defined networking (SDN): a survey”. In: Security and

Communication Networks 9 (2016).

[39] B. N. Bershad et al. “Extensibility Safety and Performance in the SPIN

Operating System”. In: Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles (SOSP). 1995.

[40] Ketan Bhardwaj et al. “Fast, Scalable and Secure Onloading of Edge Functions

Using AirBox”. In: 2016 IEEE/ACM Symposium on Edge Computing (SEC). 2016,

pp. 14–27. DOI: 10.1109/SEC.2016.15.

[41] Pramod Bhatotia et al. “Reliable Data-center Scale Computations”. In:

Proceedings of the 4th International Workshop on Large Scale Distributed Systems

and Middleware (LADIS). 2010.

[42] Andrea Biondo et al. “The Guard’s Dilemma: Efficient Code-Reuse Attacks

Against Intel SGX”. In: 27th USENIX Security Symposium (USENIX Security

18). 2018.

[43] Blobstore Programmer’s Guide. Last accessed: Nov, 2021. URL: %5Curl%7Bhttps:

//spdk.io/doc/blob.html%7D.

[44] BlobFS: Blobstore Filesystem. Last accessed: Oct, 2020. URL: %5Curl%7Bhttps:

//spdk.io/doc/blobfs.html%7D.

[45] Ferdinand Brasser et al. “Software Grand Exposure: SGX Cache Attacks Are

Practical”. In: 11th USENIX Workshop on Offensive Technologies (WOOT 17). 2017.

[46] Bufferbloat project. Last accessed: Oct, 2020. URL: https://www.bufferbloat.

net/.

[47] Martim Carbone et al. “Secure and robust monitoring of virtual machines

through guest-assisted introspection”. In: International workshop on recent

advances in intrusion detection. Springer. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 22–41.

[48] David Cash et al. “Leakage-Abuse Attacks Against Searchable Encryption”.

In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. 2015.

[49] Stephen Checkoway and Hovav Shacham. “Iago Attacks: Why the System

Call API is a Bad Untrusted RPC Interface”. In: Proceedings of the 18th

International Conference on Architectural Support for Programming Languages and

Operating Systems. 2013.

https://doi.org/10.1109/SEC.2016.15
%5Curl%7Bhttps://spdk.io/doc/blob.html%7D
%5Curl%7Bhttps://spdk.io/doc/blob.html%7D
%5Curl%7Bhttps://spdk.io/doc/blobfs.html%7D
%5Curl%7Bhttps://spdk.io/doc/blobfs.html%7D
https://www.bufferbloat.net/
https://www.bufferbloat.net/

BIBLIOGRAPHY 111

[50] Mike Y Chen et al. “Pinpoint: Problem determination in large, dynamic

internet services”. In: Proceedings International Conference on Dependable Systems

and Networks. 2002.

[51] Peter M Chen and Brian D Noble. “When virtual is better than real [operating

system relocation to virtual machines]”. In: Proceedings eighth workshop on hot

topics in operating systems. Elmau, Germany: IEEE, 2001, pp. 133–138.

[52] David R. Cheriton and Kenneth J. Duda. “A Caching Model of Operating

System Kernel Functionality”. In: Proceedings of the 6th Workshop on ACM

SIGOPS European Workshop. 1994.

[53] Alibaba Cloud. Alibaba Cloud’s Next-Generation Security Makes Gartner’s Report.

https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-

security-makes-gartners-report_595367. Last accessed: Oct, 2020.

[54] Cloud-hypervisor maintainers. Project page of cloud-hypervisor.

https://github.com/cloud-hypervisor/cloud-hypervisor. 2021.

[55] Cloudflare. Cloudflware workers. https://workers.cloudflare.com/. 2022.

[56] Cntr homepage. https://github.com/Mic92/cntr.

[57] Container optimized Linux distribution. https://coreos.com/.

[58] Brian F. Cooper et al. “Benchmarking cloud serving systems with YCSB”. In:

Proceedings of the 1st ACM Symposium on Cloud computing (SoCC). 2010.

[59] Jonathan Corbet. Linux Kernel Development Report. Tech. rep. Linux foundation,

2017.

[60] Jonathan Corbet. The multiqueue block layer.

https://lwn.net/Articles/552904/. Last accessed: Oct, 2020. 2013.

[61] CoreOS. https://coreos.com/.

[62] Victor Costan and Srinivas Devadas. Intel SGX Explained. 2016.

[63] R. J. Creasy. “The Origin of the VM/370 Time-sharing System”. In: IBM J. Res.

Dev. (1981).

[64] Raslan Darawsheh. “mbuf External Buffer and Usage Examples”. In:

Proceedings of the DPDK Userspace, Dublin. 2018.

[65] Tom Woller David Kaplan Jeremy Powell. AMD memory encryption. Tech. rep.

AMD, 2016.

[66] Deploy Python Lambda functions with .zip file archives.

https://docs.aws.amazon.com/lambda/latest/dg/python-package.html.

https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://github.com/cloud-hypervisor/cloud-hypervisor
https://workers.cloudflare.com/
https://github.com/Mic92/cntr
https://coreos.com/
https://lwn.net/Articles/552904/
https://coreos.com/
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html

112 BIBLIOGRAPHY

[67] Digitalocean. How to Regain Access to Droplets using the Recovery Console.

https :

/ / docs . digitalocean . com / products / droplets / resources / recovery -

console/. 2021.

[68] dm-crypt/device encryption. Last accessed: Oct, 2020. URL: %5Curl%7Bhttps://

wiki.archlinux.org/index.php/dm-crypt%7D.

[69] Docker. https://www.docker.com/.

[70] Docker Repositories. https://hub.docker.com/explore/.

[71] Docker Slim. https://github.com/docker-slim/docker-slim.

[72] Docker Swarm. https://www.docker.com/products/docker-swarm.

[73] Docker switch to Alpine Linux. https://news.ycombinator.com/item?id=

11000827. 2016.

[74] Linux kernel documentation. Seccomp BPF (SECure COMPuting with filters).

https : / / www . kernel . org / doc / html / latest / userspace -

api/seccomp_filter.html. 2021.

[75] Brendan Dolan-Gavitt et al. “Virtuoso: Narrowing the semantic gap in virtual

machine introspection”. In: 2011 IEEE symposium on security and privacy. 2011.

[76] Jason A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. https:

//www.wireguard.com/papers/wireguard.pdf. Last accessed: Oct, 2020.

[77] Data Plane Development Kit (DPDK). Last accessed: Oct, 2020. URL: http://www.

dpdk.org.

[78] Lian Du, Renyu Yang Tianyu Wo, and Chunming Hu. “Cider: A Rapid Docker

Container Deployment System through Sharing Network Storage”. In:

Proceedings of the 19th International Conference on High Performance Computing

and Communications (HPCC). 2017.

[79] Eric Dumazet. “Busy Polling: Past, Present, Future”. In: netdev 2.1 Montreal.

2017.

[80] Paul Emmerich et al. “The Case for Writing Network Drivers in High-Level

Programming Languages”. In: ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS 2019). Sept. 2019.

[81] D. R. Engler, M. F. Kaashoek, and J. O’Toole. “Exokernel: An Operating System

Architecture for Application-Level Resource Management”. In: Proceedings of

the Fifteenth ACM Symposium on Operating Systems Principles (SOSP). 1995.

https://docs.digitalocean.com/products/droplets/resources/recovery-console/
https://docs.digitalocean.com/products/droplets/resources/recovery-console/
https://docs.digitalocean.com/products/droplets/resources/recovery-console/
%5Curl%7Bhttps://wiki.archlinux.org/index.php/dm-crypt%7D
%5Curl%7Bhttps://wiki.archlinux.org/index.php/dm-crypt%7D
https://www.docker.com/
https://hub.docker.com/explore/
https://github.com/docker-slim/docker-slim
https://www.docker.com/products/docker-swarm
https://news.ycombinator.com/item?id=11000827
https://news.ycombinator.com/item?id=11000827
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
http://www.dpdk.org
http://www.dpdk.org

BIBLIOGRAPHY 113

[82] File system regression test on linux implemented for all major filesystems. https:

//kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/

Documentation/what-is-xfstests.md.

[83] Firecracker contributors. firecracker-containerd.

https://github.com/firecracker-microvm/firecracker-containerd. 2021.

[84] Firecracker contributors. Firecracker kernel configuration.

https : / / github . com / firecracker -

microvm / firecracker / blob / main / resources / microvm - kernel -

x86_64.config. 2021.

[85] Rodrigo Fonseca et al. “X-trace: A pervasive network tracing framework”. In:

4th USENIX Symposium on Networked Systems Design & Implementation (NSDI

07). USA: USENIX Association, 2007, p. 20.

[86] Cloud Native computing foundation. Containerd – An industry-standard

container runtime with an emphasis on simplicity, robustness and portability.

https://containerd.io/. 2021.

[87] Openstack Foundation. Openstack: Open source cloud computing infrastructure.

https://www.openstack.org/. 2021.

[88] Yangchun Fu and Zhiqiang Lin. “Exterior: Using a dual-vm based external

shell for guest-os introspection, configuration, and recovery”. In: Acm Sigplan

Notices 48.7 (2013), pp. 97–110.

[89] Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. “HYPERSHELL: A Practical

Hypervisor Layer Guest OS Shell for Automated In-VM Management”. In:

USENIX Annual Technical Conference (USENIX ATC). 2014.

[90] fuse(7) Linux User’s Manual. Sept. 2017.

[91] Tal Garfinkel, Mendel Rosenblum, et al. “A virtual machine introspection

based architecture for intrusion detection.” In: Ndss. Vol. 3. San Diego,

California, USA: Citeseer, 2003, pp. 191–206.

[92] Google. Container analysis and vulnerability scanning. https://cloud.google.

com/container-registry/docs/container-analysis. 2021.

[93] Google. Google OS Config Agent. https://github.com/GoogleCloudPlatform/

osconfig. 2021.

[94] Google. Guest Agent for Google Compute Engine.

https://github.com/GoogleCloudPlatform/guest-agent. 2021.

[95] Google. Homepage of crosvm.

https://chromium.googlesource.com/chromiumos/platform/crosvm/. 2021.

https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker/blob/main/resources/microvm-kernel-x86_64.config
https://github.com/firecracker-microvm/firecracker/blob/main/resources/microvm-kernel-x86_64.config
https://github.com/firecracker-microvm/firecracker/blob/main/resources/microvm-kernel-x86_64.config
https://containerd.io/
https://www.openstack.org/
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://github.com/GoogleCloudPlatform/osconfig
https://github.com/GoogleCloudPlatform/osconfig
https://github.com/GoogleCloudPlatform/guest-agent
https://chromium.googlesource.com/chromiumos/platform/crosvm/

114 BIBLIOGRAPHY

[96] Google. Installing the guest environment.

https://github.com/GoogleCloudPlatform/osconfig. 2021.

[97] Google. Nested virtualization overview. https://cloud.google.com/compute/

docs/instances/nested-virtualization/overview. 2021.

[98] Google Cloud Functions. https://cloud.google.com/functions/.

[99] Google Compute Cloud Containers. https://cloud.google.com/compute/docs/

containers/.

[100] Introducing Google Cloud Confidential Computing with Confidential VMs. https:

//cloud.google.com/blog/products/identity-security/introducing-

google - cloud - confidential - computing - with - confidential - vms. Last

accessed: Oct, 2020. URL: https :

//cloud.google.com/blog/products/identity-security/introducing-

google-cloud-confidential-computing-with-confidential-vms.

[101] Google: ’EVERYTHING at Google runs in a container’. https : / / www .

theregister.co.uk/2014/05/23/google_containerization_two_billion/.

[102] Johannes Götzfried et al. “Cache Attacks on Intel SGX”. In: Proceedings of the

10th European Workshop on Systems Security. 2017.

[103] Zhongshu Gu et al. “Process implanting: A new active introspection

framework for virtualization”. In: 2011 IEEE 30th International Symposium on

Reliable Distributed Systems. Madrid, Spain: IEEE, 2011, pp. 147–156.

[104] Marcus Hähnel, Weidong Cui, and Marcus Peinado. “High-Resolution Side

Channels for Untrusted Operating Systems”. In: Proceedings of the USENIX

Annual Technical Conference (ATC). 2017.

[105] Tyler Harter et al. “Slacker: Fast Distribution with Lazy Docker Containers”.

In: 14th USENIX Conference on File and Storage Technologies (FAST). 2016.

[106] Gernot Heiser and Kevin Elphinstone. “L4 microkernels: The lessons from 20

years of research and deployment”. In: ACM Transactions on Computer Systems

(TOCS) 34.1 (2016), pp. 1–29.

[107] Scott Hendrickson et al. “Serverless Computation with OpenLambda”. In: 8th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud). 2016.

[108] Stephen Herwig, Christina Garman, and Dave Levin. “Achieving Keyless

CDNs with Conclaves”. In: 29th USENIX Security Symposium (USENIX

Security). 2020.

[109] Hetzner AG. Hetzner Rescue System. https : / / docs . hetzner . com / robot /

dedicated-server/troubleshooting/hetzner-rescue-system/. 2021.

https://github.com/GoogleCloudPlatform/osconfig
https://cloud.google.com/compute/docs/instances/nested-virtualization/overview
https://cloud.google.com/compute/docs/instances/nested-virtualization/overview
https://cloud.google.com/functions/
https://cloud.google.com/compute/docs/containers/
https://cloud.google.com/compute/docs/containers/
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://docs.hetzner.com/robot/dedicated-server/troubleshooting/hetzner-rescue-system/
https://docs.hetzner.com/robot/dedicated-server/troubleshooting/hetzner-rescue-system/

BIBLIOGRAPHY 115

[110] High-speed packet processing framework. https://github.com/ntop/PF_RING.

[111] Homepage of SELinux. https://selinuxproject.org/page/Main_Page.

[112] Michio Honda et al. “PASTE: A Network Programming Interface for

Non-Volatile Main Memory”. In: 15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI). 2018.

[113] Tracking Page Weight Over Time. https :

//discuss.httparchive.org/t/tracking-page-weight-over-time/1049.

Last accessed: Oct, 2020.

[114] Jaehyun Hwang et al. “TCP = RDMA: CPU-efficient Remote Storage Access

with i10”. In: 17th USENIX Symposium on Networked Systems Design and

Implementation (NSDI). 2020.

[115] IBM. Getting started with KVM. https://www.ibm.com/docs/en/cic/1.1.3?

topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_

tutorial.html. 2021.

[116] IBM. IBM’s Vulnerability Advisor. https://www.ibm.com/docs/en/cloud-

private/3.2.0?topic=guide-vulnerability-advisor. 2021.

[117] IBM OpenWhisk. https://www.ibm.com/cloud/functions.

[118] Intel. Intel Trusted Execution Technology (Intel TXT). https://www.intel.com/

content/dam/www/public/us/en/documents/guides/intel-txt-software-

development-guide.pdf. 2017. URL: https://www.intel.com/content/dam/

www/public/us/en/documents/guides/intel-txt-software-development-

guide.pdf.

[119] Intel Clear Containers. https://clearlinux.org/containers.

[120] Intel SGX SDK. Last accessed: Oct, 2020. URL: %5Curl%7Bhttps://github.com/

intel/linux-sgx%7D.

[121] Intel Storage Performance Development Kit. http://www.spdk.io. Last accessed:

Oct, 2020. URL: %5Curl%7Bhttp://www.spdk.io%7D.

[122] Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-

us/sgx. Last accessed: Oct, 2020.

[123] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.

Last accessed: Oct, 2020. URL: %5Curl%7Bhttps://iperf.fr/%7D.

https://github.com/ntop/PF_RING
https://selinuxproject.org/page/Main_Page
https://discuss.httparchive.org/t/tracking-page-weight-over-time/1049
https://discuss.httparchive.org/t/tracking-page-weight-over-time/1049
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_tutorial.html
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_tutorial.html
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_tutorial.html
https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=guide-vulnerability-advisor
https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=guide-vulnerability-advisor
https://www.ibm.com/cloud/functions
https://www.intel.com/content/dam/www/public/us/en/ documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/ documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/ documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://clearlinux.org/containers
%5Curl%7Bhttps://github.com/intel/linux-sgx%7D
%5Curl%7Bhttps://github.com/intel/linux-sgx%7D
http://www.spdk.io
%5Curl%7Bhttp://www.spdk.io%7D
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://iperf.fr/
%5Curl%7Bhttps://iperf.fr/%7D

116 BIBLIOGRAPHY

[124] Intelligent Platform Management Interface Specification v2.0 rev. 1.1. Last accessed:

Dec, 2021. URL: %5Curl%7Bhttps://www.intel.de/content/www/de/de/

products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-

1.html%7D.

[125] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel Address Space

Layout Randomization with Intel TSX”. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. New York, NY,

USA: Association for Computing Machinery, 2016, pp. 380–392.

[126] Jens Axboe. Flexible I/O Tester. https://github.com/axboe/fio. Last accessed:

Dec, 2020. 2021.

[127] Eun Young Jeong et al. “MTCP: A Highly Scalable User-Level TCP Stack for

Multicore Systems”. In: Proceedings of the 11th USENIX Conference on Networked

Systems Design and Implementationi (NSDI). 2014.

[128] Peter Okelmann Jörg Thalheim. Project site of vmsh. https://github.com/

Mic92/vmsh. 2021.

[129] Jörg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi, Redha Gouicem,

Pramod Bhatotia. “VMSH: Hypervisor-agnostic Guest Overlays for VMs”. In:

Proceedings of the Seventeenth European Conference on Computer Systems. 2022.

[130] Jonathan Kaldor et al. “Canopy: An end-to-end performance tracing and

analysis system”. In: Proceedings of the 26th Symposium on Operating Systems

Principles. 2017.

[131] Svilen Kanev et al. “Profiling a Warehouse-Scale Computer”. In: Proceedings of

the 42nd Annual International Symposium on Computer Architecture(ISCA). 2015.

[132] Kata maintainers. Kata container kernel configuration. https://github.com/

kata-containers/kata-containers/blob/main/tools/packaging/kernel/

configs/x86_64_kata_kvm_4.14.x. 2021.

[133] Jeffrey Katcher. PostMark: A New File System Benchmark. Tech. rep. Network

Appliance Inc., Oct. 1997.

[134] Antoine Kaufmann et al. “TAS: TCP Acceleration as an OS Service”. In:

Proceedings of the Fourteenth EuroSys Conference (EuroSys). 2019.

[135] Kernel maintainers. xfstests-dev. https://git.kernel.org/pub/scm/fs/xfs/

xfstests-dev.git/. 2021.

[136] Linux maintainers. The Definitive KVM (Kernel-based Virtual Machine) API

Documentation.

https://www.kernel.org/doc/html/latest/virt/kvm/api.html. 2021.

%5Curl%7Bhttps://www.intel.de/content/www/de/de/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html%7D
%5Curl%7Bhttps://www.intel.de/content/www/de/de/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html%7D
%5Curl%7Bhttps://www.intel.de/content/www/de/de/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html%7D
https://github.com/axboe/fio
https://github.com/Mic92/vmsh
https://github.com/Mic92/vmsh
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kernel/configs/x86_64_kata_kvm_4.14.x
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kernel/configs/x86_64_kata_kvm_4.14.x
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kernel/configs/x86_64_kata_kvm_4.14.x
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/
https://www.kernel.org/doc/html/latest/virt/kvm/api.html

BIBLIOGRAPHY 117

[137] Gerwin Klein et al. “seL4: Formal verification of an OS kernel”. In: Proceedings

of the ACM SIGOPS 22nd symposium on Operating systems principles. New York,

NY, USA: Association for Computing Machinery, 2009, pp. 207–220.

[138] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. “ReFlex: Remote Flash ≡
Local Flash”. In: Proceedings of the Twenty-Second International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS). 2017.

[139] Knative. https://knative.dev/.

[140] Robert Krahn et al. “Pesos: Policy Enhanced Secure Object Store”. In:

Proceedings of the Thirteenth EuroSys Conference (EuroSys). 2018.

[141] FreeBSD maintainers. ksyms – kernel symbol table interface.

https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=4&manpath=

FreeBSD+8.0-RELEASE. 2021.

[142] Kubeless. https://kubeless.io/.

[143] Kubernetes. https://kubernetes.io/.

[144] Kubernetes. Ephemeral Containers. https://kubernetes.io/docs/concepts/

workloads/pods/ephemeral-containers/. 2021.

[145] Simon Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”. In:

Proceedings of the Sixteenth European Conference on Computer Systems. New York,

NY, USA: Association for Computing Machinery, 2021, pp. 376–394.

[146] Roland Kunkel et al. “TensorSCONE: A Secure TensorFlow Framework using

Intel SGX”. In: CoRR (2019).

[147] A. Langley. rfc7539: ChaCha20 and Poly1305 for IETF Protocols. https://tools.

ietf.org/html/rfc7539. Last accessed: Oct, 2020.

[148] Dayeol Lee et al. “Keystone: an open framework for architecting trusted

execution environments”. In: Proceedings of the Fifteenth European Conference on

Computer Systems (EuroSys). 2020.

[149] Jaehyuk Lee et al. “Hacking in Darkness: Return-oriented Programming

against Secure Enclaves”. In: 26th USENIX Security Symposium (USENIX

Security 17). 2017.

[150] Shih-Wei Li, John S. Koh, and Jason Nieh. “Protecting Cloud Virtual Machines

from Hypervisor and Host Operating System Exploits”. In: 28th USENIX

Security Symposium (USENIX Security 19). Santa Clara, CA, USA: USENIX

Association, 2019, pp. 1357–1374.

https://knative.dev/
https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=4&manpath=FreeBSD+8.0-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=4&manpath=FreeBSD+8.0-RELEASE
https://kubeless.io/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539

118 BIBLIOGRAPHY

[151] Shih-Wei Li et al. “A Secure and Formally Verified Linux KVM Hypervisor”.

In: 2021 IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA:

IEEE, 2021, pp. 1782–1799.

[152] Joshua Lind et al. “Teechain: A Secure Payment Network with Asynchronous

Blockchain Access”. In: Proceedings of the 27th ACM Symposium on Operating

Systems Principles (SOSP). 2019.

[153] Linux Containers. https://linuxcontainers.org/.

[154] Linux Kernel Virtual Machine (KVM). https://www.linux-kvm.org/page/Main_

Page.

[155] Anil Madhavapeddy and David J Scott. “Unikernels: The rise of the virtual

library operating system”. In: Communications of the ACM 57.1 (2014), pp. 61–69.

[156] Anil Madhavapeddy et al. “Jitsu: Just-in-time summoning of unikernels”. In:

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI

15). USA: USENIX Association, 2015, pp. 559–573.

[157] Anil Madhavapeddy et al. “Unikernels: Library Operating Systems for the

Cloud”. In: Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). 2013.

[158] Anil Madhavapeddy et al. “Unikernels: Library operating systems for the

cloud”. In: ACM SIGARCH Computer Architecture News 41.1 (2013),

pp. 461–472.

[159] shadow-utils maintainer. chpasswd(8) shadow-utils manual. Shadow

maintainers. 2021.

[160] Kernel maintainers. Kernel Virtual Machine (KVM). https://www.linux-kvm.

org/page/Main_Page. 2021.

[161] Libvirt maintainers. Virsh management user interface – domstats. https://www.

libvirt.org/manpages/virsh.html#domstats. 2021.

[162] Linux maintainers. cgroups(7) Linux User’s Manual. Linux foundation. Sept.

2017.

[163] Linux maintainers. namespaces(7) Linux User’s Manual. Linux foundation. June

2016.

[164] Linux maintainers. pts(4) Linux Programmer’s Manual. Linux foundation. 2021.

[165] OpenBSD maintainers. OpenSSH remote login client. OpenBSD. 2021.

[166] Overlayfs maintainers. Overlayfs FUSE implementation. CNCF. 2021.

[167] QEMU maintainers. QEMU-GA(8) QEMU Guest Agent manual. QEMU. 2021.

https://linuxcontainers.org/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.libvirt.org/manpages/virsh.html#domstats
https://www.libvirt.org/manpages/virsh.html#domstats

BIBLIOGRAPHY 119

[168] QEMU maintainers. Vhost-user protocol. https://qemu.readthedocs.io/en/

latest/interop/vhost-user.html. 2021.

[169] Rust-vmm maintainers. rust-vmm. https://github.com/rust-vmm. 2021.

[170] Rust-vmm maintainers. vmm-reference. https://github.com/rust-vmm/vmm-

reference. 2021.

[171] Systemd maintainers. Systemd-sysext: Activates System Extention Images. https:

//www.freedesktop.org/software/systemd/man/systemd- sysext.html.

2021.

[172] Filipe Manco et al. “My VM is Lighter (and Safer) Than Your Container”. In:

Proceedings of the 26th Symposium on Operating Systems Principles (SOSP). 2017.

[173] Manpage of systemd-nspawn. https :

//www.freedesktop.org/software/systemd/man/systemd-nspawn.html.

[174] Manual of AppArmor. http://manpages.ubuntu.com/manpages/xenial/en/

man7/apparmor.7.html.

[175] Ilias Marinos, Robert N.M. Watson, and Mark Handley. “Network Stack

Specialization for Performance”. In: Proceedings of the 2014 ACM Conference on

SIGCOMM. 2014.

[176] Ilias Marinos et al. “Disk|Crypt|Net: Rethinking the Stack for

High-Performance Video Streaming”. In: Proceedings of the Conference of the

ACM Special Interest Group on Data Communication (SIGCOMM). 2017.

[177] A. Markettos et al. “Thunderclap: Exploring Vulnerabilities in Operating

System IOMMU Protection via DMA from Untrustworthy Peripherals”. In:

Jan. 2019. DOI: 10.14722/ndss.2019.23194.

[178] M. Mesnier, G.R. Ganger, and E. Riedel. “Object-based storage”. In: IEEE

Communications Magazine 41.8 (2003).

[179] Microsoft. CVE-2021-38647: Open Management Infrastructure Remote Code

Execution Vulnerability. https : / / msrc . microsoft . com / update -

guide/vulnerability/CVE-2021-38647. 2021.

[180] Microsoft. Open Management Infrastructure (OMI).

https://github.com/microsoft/omi. 2021.

[181] Microsoft Azure. Azure confidential computing. https://azure.microsoft.com/

en-us/solutions/confidential-compute/. Last accessed: Oct, 2020.

https://qemu.readthedocs.io/en/latest/interop/vhost-user.html
https://qemu.readthedocs.io/en/latest/interop/vhost-user.html
https://github.com/rust-vmm
https://github.com/rust-vmm/vmm-reference
https://github.com/rust-vmm/vmm-reference
https://www.freedesktop.org/software/systemd/man/systemd-sysext.html
https://www.freedesktop.org/software/systemd/man/systemd-sysext.html
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
http://manpages.ubuntu.com/manpages/xenial/en/man7/apparmor.7.html
http://manpages.ubuntu.com/manpages/xenial/en/man7/apparmor.7.html
https://doi.org/10.14722/ndss.2019.23194
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38647
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38647
https://github.com/microsoft/omi
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/

120 BIBLIOGRAPHY

[182] Philipp Mieden and Philippe Partarrieu. Performance analysis of KVM-based

microVMs orchestrated by Firecracker and QEMU. Tech. rep. University of

Amsterdam, 2019.

[183] Richard Ta-Min, Lionel Litty, and David Lie. “Splitting Interfaces: Making

Trust between Applications and Operating Systems Configurable”. In:

Proceedings of the 7th Symposium on Operating Systems Design and

Implementation (OSDI). 2006.

[184] mount(8) Linux User’s Manual. Sept. 2017.

[185] Lightweight standard libc implementation. https://www.musl-libc.org/. Last

accessed: Oct, 2020.

[186] MySQL. https://www.mysql.com/. Last accessed: Oct, 2020. URL: %5Curl%

7Bhttps://www.mysql.com/%7D.

[187] Mihir Nanavati, Jake Wires, and Andrew Warfield. “Decibel: Isolation and

Sharing in Disaggregated Rack-Scale Storage”. In: 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI). 2017.

[188] Nginx Web Server. https://www.nginx.com/. Last accessed: Oct, 2020. URL:

%5Curl%7Bhttps://www.nginx.com/%7D.

[189] Bogdan Nicolae et al. “Going Back and Forth: Efficient Multideployment and

Multisnapshotting on Clouds”. In: Proceedings of the 20th International

Symposium on High Performance Distributed Computing. San Jose, California,

USA: Association for Computing Machinery, 2011.

[190] Nomad. https://www.nomadproject.io/.

[191] nsenter. https://github.com/jpetazzo/nsenter.

[192] O. Purdila and L. A. Grijincu and N. Tapus. “LKL: The Linux kernel library”.

In: 9th RoEduNet IEEE International Conference. 2010.

[193] Off-CPU Flame Graphs. Last accessed: Oct, 2020. URL: %5Curl%7Bhttp://www.

brendangregg.com/FlameGraphs/offcpuflamegraphs.html%7D.

[194] Peter Okelmann and Jø"rg Thalheim. lambda-pirate. https : / / github . com /

pogobanane/lambda-pirate. 2021.

[195] OpenFaaS. https://www.openfaas.com/.

[196] Oracle. Oracle Virtualization. https : / / www . oracle . com / virtualization/.

2021.

https://www.musl-libc.org/
https://www.mysql.com/
%5Curl%7Bhttps://www.mysql.com/%7D
%5Curl%7Bhttps://www.mysql.com/%7D
https://www.nginx.com/
%5Curl%7Bhttps://www.nginx.com/%7D
https://www.nomadproject.io/
https://github.com/jpetazzo/nsenter
%5Curl%7Bhttp://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html%7D
%5Curl%7Bhttp://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html%7D
https://github.com/pogobanane/lambda-pirate
https://github.com/pogobanane/lambda-pirate
https://www.openfaas.com/
https://www.oracle.com/virtualization/

BIBLIOGRAPHY 121

[197] Meni Orenbach et al. “Eleos: ExitLess OS services for SGX enclaves”. In:

Proceedings of the 12th ACM European ACM Conference in Computer Systems

(EuroSys). 2017.

[198] Our fork of Docker Slim used for evaluation. https://github.com/Mic92/docker-

slim/tree/cntr-eval.

[199] Our fork the nix rust library. https://github.com/Mic92/cntr-nix.

[200] Bryan D Payne et al. “Lares: An architecture for secure active monitoring

using virtualization”. In: 2008 IEEE Symposium on Security and Privacy (sp

2008). Oakland, CA, USA: IEEE, 2008, pp. 233–247.

[201] Simon Peter et al. “Arrakis: The Operating System is the Control Plane”. In:

11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI). 2014.

[202] Jonas Pfoh, Christian Schneider, and Claudia Eckert. “A formal model for

virtual machine introspection”. In: Proceedings of the 1st ACM workshop on

Virtual machine security. New York, NY, USA: Association for Computing

Machinery, 2009, pp. 1–10.

[203] Michael Larabel. Homepage of Phoronix test suite. https://www.phoronix-test-

suite.com/. 2021.

[204] Rishabh Poddar et al. “SafeBricks: Shielding Network Functions in the Cloud”.

In: 15th USENIX Symposium on Networked Systems Design and Implementation

(NSDI). 2018.

[205] Donald E. Porter et al. “Rethinking the Library OS from the Top Down”. In:

Proceedings of the Sixteenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS). 2011.

[206] Mary C Potter et al. “Detecting meaning in RSVP at 13 ms per picture”. In:

Attention, Perception, & Psychophysics 76.2 (2014), pp. 270–279.

[207] C. Priebe, K. Vaswani, and M. Costa. “EnclaveDB: A Secure Database using

SGX (S&P)”. In: IEEE Symposium on Security and Privacy. 2018.

[208] Christian Priebe et al. SGX-LKL: Securing the Host OS Interface for Trusted

Execution. 2019. eprint: arXiv:1908.11143.

[209] Project Zero. An EPYC escape: Case-study of a KVM breakout.

https://googleprojectzero.blogspot.com/2021/06/an- epyc- escape-

case-study-of-kvm.html. 2021.

[210] Michael Larabel. Wiki page for the Phoronix disk test suite.

https://openbenchmarking.org/suite/pts/disk. 2021.

https://github.com/Mic92/docker-slim/tree/cntr-eval
https://github.com/Mic92/docker-slim/tree/cntr-eval
https://github.com/Mic92/cntr-nix
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
arXiv:1908.11143
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://openbenchmarking.org/suite/pts/disk

122 BIBLIOGRAPHY

[211] Qemu maintainers. QEMU - ‘microvm’ virtual platform (microvm).

https://qemu.readthedocs.io/en/latest/system/i386/microvm.html.

2021.

[212] Qemu maintainers. Homepage of qemu. https://www.qemu.org/. 2021.

[213] Qemu wiki authors. Documentation 9psetup.

https://wiki.qemu.org/Documentation/9psetup. 2021.

[214] Qemu maintainers. QEMU version 4.2.0 released. https://www.qemu.org/2019/

12/13/qemu-4-2-0/. 2021.

[215] D. P. Quigley et al. “UnionFS: User- and Community-oriented Development

of a Unification Filesystem”. In: Proceedings of the 2006 Linux Symposium (OLS).

2006.

[216] Avi Qumranet et al. “KVM: The Linux virtual machine monitor”. In: Proceedings

Linux Symposium 15 (2007).

[217] RancherOS. https://rancher.com/rancher-os/.

[218] Raw benchmark report generated by phoronix test suite.

https://openbenchmarking.org/result/1802024-AL-CNTREVALU05.

[219] Red Hat Customer Portal. CVE-2015-3456. https://access.redhat.com/

security/cve/CVE-2015-3456. 2021.

[220] Redfish standard page. Last accessed: Dec, 2021. URL: %5Curl%7Bhttps://www.

dmtf.org/standards/redfish%7D.

[221] Redis. https://redis.io/. Last accessed: Oct, 2020. URL: %5Curl%7Bhttps:

//redis.io/%7D.

[222] RISC-V. Keystone Open-source Secure Hardware Enclave. https : / / keystone -

enclave.org/. Last accessed: Oct, 2020. URL: https://keystone- enclave.

org/.

[223] Luigi Rizzo. “Revisiting network I/O APIs: The Netmap Framework”. In:

Communications of the ACM (2012).

[224] Root cause analysis in unprivileged nspawn container with cntr. https://github.

com/systemd/systemd/issues/6244#issuecomment-356029742.

[225] Rusty Russell. “Virtio: Towards a de-Facto Standard for Virtual I/O Devices”.

In: SIGOPS Oper. Syst. Rev. 42.5 (July 2008), pp. 95–103. ISSN: 0163-5980. DOI:

10 . 1145 / 1400097 . 1400108. URL: https : / / doi . org / 10 . 1145 / 1400097 .

1400108.

https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
https://www.qemu.org/
https://wiki.qemu.org/Documentation/9psetup
https://www.qemu.org/2019/12/13/qemu-4-2-0/
https://www.qemu.org/2019/12/13/qemu-4-2-0/
https://rancher.com/rancher-os/
https://openbenchmarking.org/result/1802024-AL-CNTREVALU05
https://access.redhat.com/security/cve/CVE-2015-3456
https://access.redhat.com/security/cve/CVE-2015-3456
%5Curl%7Bhttps://www.dmtf.org/standards/redfish%7D
%5Curl%7Bhttps://www.dmtf.org/standards/redfish%7D
https://redis.io/
%5Curl%7Bhttps://redis.io/%7D
%5Curl%7Bhttps://redis.io/%7D
https://keystone-enclave.org/
https://keystone-enclave.org/
https://keystone-enclave.org/
https://keystone-enclave.org/
https://github.com/systemd/systemd/issues/6244#issuecomment-356029742
https://github.com/systemd/systemd/issues/6244#issuecomment-356029742
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108

BIBLIOGRAPHY 123

[226] Rust library for filesystems in userspace. https://github.com/zargony/rust-

fuse.

[227] Rust library that wraps around the Linux/Posix API. https://github.com/nix-

rust/nix.

[228] Raja R Sambasivan et al. So, you want to trace your distributed system? Key design

insights from years of practical experience. Tech. rep. Carnegie Mellon University,

2014.

[229] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. “Towards Trusted

Cloud Computing”. In: Proceedings of the 1st USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud). 2009.

[230] Dan Schatzberg et al. “EbbRT: A Framework for Building Per-Application

Library Operating Systems”. In: 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI). 2016.

[231] Felix Schuster et al. “VC3 : Trustworthy Data Analytics in the Cloud using

SGX”. In: Proceedings of the 36th IEEE Symposium on Security and Privacy

(Oakland). 2015.

[232] SCONE File Protection. https://sconedocs.github.io/SCONE_Fileshield/.

Last accessed: Oct, 2020.

[233] Serverless Architectures. https://martinfowler.com/articles/serverless.

html#ReducedOperationalCost.

[234] Monirul I Sharif et al. “Secure in-vm monitoring using hardware

virtualization”. In: Proceedings of the 16th ACM conference on Computer and

communications security. New York, NY, USA: Association for Computing

Machinery, 2009, pp. 477–487.

[235] Prateek Sharma et al. “Containers and Virtual Machines at Scale: A

Comparative Study”. In: Proceedings of the 17th International Middleware

Conference. Middleware ’16. Trento, Italy: Association for Computing

Machinery, 2016.

[236] Prateek Sharma et al. “Containers and Virtual Machines at Scale: A

Comparative Study”. In: Proceedings of the 17th International Middleware

Conference (Middleware). 2016.

[237] Shweta Shinde et al. “PANOPLY: Low-TCB Linux Applications with SGX

Enclaves”. In: Proceedings of the Network and Distributed System Security

Symposium (NDSS). 2017.

https://github.com/zargony/rust-fuse
https://github.com/zargony/rust-fuse
https://github.com/nix-rust/nix
https://github.com/nix-rust/nix
https://sconedocs.github.io/SCONE_Fileshield/
https://martinfowler.com/articles/serverless.html#ReducedOperationalCost
https://martinfowler.com/articles/serverless.html#ReducedOperationalCost

124 BIBLIOGRAPHY

[238] Benjamin H. Sigelman et al. Dapper, a Large-Scale Distributed Systems Tracing

Infrastructure. Tech. rep. Google, Inc., 2010.

[239] Simon Sharwood. AWS adopts home-brewed KVM as new hypervisor.

https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_

hypervisor_to_make_its_cloud_go_faster/. 2021.

[240] Sergei Skorobogatov. Low temperature data remanence in static RAM. Tech. rep.

UCAM-CL-TR-536. University of Cambridge, Computer Laboratory, June

2002. DOI: 10 . 48456 / tr - 536. URL:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf.

[241] Livio Soares and Michael Stumm. “FlexSC: Flexible System Call Scheduling

with Exception-less System Calls”. In: Proceedings of the 9th USENIX Symposium

on Operating Systems Design and Implementation (OSDI). 2010.

[242] speedtest. https://www.sqlite.org/speed.html. Last accessed: Oct, 2020.

[243] SQLite Consortium. SQLite. https://www.sqlite.org/. Last accessed: Oct,

2020. 2021. URL: %5Curl%7Bhttps://www.sqlite.org/%7D.

[244] Stefan Hajnoczi. Proposal for MMIO/PIO dispatch file descriptors. https://www.

spinics.net/lists/kvm/msg208139.html. 2020.

[245] sysbench. https://github.com/akopytov/sysbench. Last accessed: Oct, 2020.

[246] Taesoo Kim. “SGX 101: The very first place to study Intel SGX.” In: (2019).

[247] Tarik Taleb et al. “On Multi-Access Edge Computing: A Survey of the

Emerging 5G Network Edge Cloud Architecture and Orchestration”. In: IEEE

Communications Surveys Tutorials 19.3 (2017), pp. 1657–1681. DOI:

10.1109/COMST.2017.2705720.

[248] Jianfeng Tan et al. “VIRTIO-USER: A new versatile channel for kernel-bypass

networks”. In: Proceedings of the Workshop on Kernel-Bypass Networks. New York,

NY, USA: Association for Computing Machinery, 2017, pp. 13–18.

[249] J. Thalheim, P. Bhatotia, and C. Fetzer. “INSPECTOR: Data Provenance Using

Intel Processor Trace (PT)”. In: 2016 IEEE 36th International Conference on

Distributed Computing Systems (ICDCS). 2016.

[250] Jörg Thalheim. Project site of rkt-io. https://github.com/Mic92/rkt-io. 2021.

[251] Jörg Thalheim et al. “Cntr: Lightweight OS Containers”. In: 2022 USENIX

Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX

Association, 2022, pp. 199–212.

https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://doi.org/10.48456/tr-536
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
https://www.sqlite.org/speed.html
https://www.sqlite.org/
%5Curl%7Bhttps://www.sqlite.org/%7D
https://www.spinics.net/lists/kvm/msg208139.html
https://www.spinics.net/lists/kvm/msg208139.html
https://github.com/akopytov/sysbench
https://doi.org/10.1109/COMST.2017.2705720
https://github.com/Mic92/rkt-io

BIBLIOGRAPHY 125

[252] Jörg Thalheim et al. “Rkt-IO: A Direct I/O Stack for Shielded Execution”. In:

Proceedings of the Sixteenth European Conference on Computer Systems. 2021.

[253] Jörg Thalheim et al. “Sieve: Actionable Insights from Monitored Metrics in

Distributed Systems”. In: Proceedings of Middleware Conference (Middleware).

2017.

[254] Jörg Thalheim et al. “Sieve: Actionable insights from monitored metrics in

distributed systems”. In: Proceedings of the 18th ACM/IFIP/USENIX Middleware

Conference. New York, NY, USA: Association for Computing Machinery, 2017,

pp. 14–27.

[255] Toolbox - is a small script that launches a container to let you bring in your favorite

debugging or admin tools. https://github.com/coreos/toolbox.

[256] Bohdan Trach et al. “ShieldBox: Secure Middleboxes using Shielded

Execution”. In: Proceedings of the ACM SIGCOMM Symposium on SDN Research

(SOSR). 2018.

[257] Trusted Computing Group. TPM Main Specification.

https : / / trustedcomputinggroup . org / tpm - main - specification. Last

accessed: Oct, 2020. 2011. URL:

https://trustedcomputinggroup.org/tpm-main-specification/.

[258] Chia-Che Tsai, Donald E Porter, and Mona Vij. “Graphene-SGX: A practical

library OS for unmodified applications on SGX”. In: Proceedings of the USENIX

Annual Technical Conference (USENIX ATC). 2017.

[259] Chia-Che Tsai et al. “Cooperation and Security Isolation of Library OSes for

Multi-process Applications”. In: Proceedings of the Ninth European Conference on

Computer Systems (EuroSys). 2014.

[260] Chia-Che Tsai et al. “Cooperation and security isolation of library OSes for

multi-process applications”. In: Proceedings of the Ninth European Conference on

Computer Systems. New York, NY, USA: Association for Computing Machinery,

2014, pp. 1–14.

[261] Michael S. Tsirkin and Cornelia Huck. “Virtual I/O Device (VIRTIO) Version

1.1”. In: OASIS Committee Specification 01 1.1 (2019). Latest version: https://

docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html,

p. 1.

[262] Twelve-Factor App - Manifesto mainained by Heroku on how to build modern web-

application. https://12factor.net/config.

https://github.com/coreos/toolbox
https://trustedcomputinggroup.org/tpm-main-specification
https://trustedcomputinggroup.org/tpm-main-specification/
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://12factor.net/config

126 BIBLIOGRAPHY

[263] The Regents of the University of California. Homepage of IOR. https://ior.

readthedocs.io/en/latest/. 2021.

[264] Dmitrii Ustiugov et al. “Benchmarking, Analysis, and Optimization of

Serverless Function Snapshots”. In: Proceedings of the 26th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’21). New York, NY, USA: ACM, 2021, pp. 559–572. DOI:

10.1145/3445814.3446714.

[265] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execution”. In: Proceedings of the 27th

USENIX Security Symposium (USENIX Security). 2018.

[266] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. “To FUSE

or Not to FUSE: Performance of User-Space File Systems”. In: 15th USENIX

Conference on File and Storage Technologies (FAST 17). 2017.

[267] Arjan van de Ven. An introduction to Clear Containers.

https://lwn.net/Articles/644675/. 2015.

[268] Vlad Krasnov. How "expensive" is crypto anyway. https://blog.cloudflare.

com/how-expensive-is-crypto-anyway. Last accessed: Oct, 2020. 2017.

[269] VMware. VMware ESXi: The Purpose-Built Bare Metal Hypervisor. https://www.

vmware.com/products/esxi-and-esx.html. 2021.

[270] Sebastian Vogl et al. “X-tier: Kernel module injection”. In: International

Conference on Network and System Security. Springer. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 192–205.

[271] Website of the lxc container engine. https://linuxcontainers.org/.

[272] Weichbrodt, Nico and Kurmus, Anil and Pietzuch, Peter and Kapitza,

Rüdiger. “AsyncShock: Exploiting Synchronisation Bugs in Intel SGX

Enclaves”. In: Computer Security – ESORICS. 2016.

[273] What Technology Change Enables 1 Terabyte (TB) Enclave Page Cache (EPC) size in

3rd Generation Intel® Xeon® Scalable Processor Platforms? https://www.intel.

com/content/www/us/en/support/articles/000059614/software/intel-

security-products.html.

[274] Ric Wheeler. Homepage of fs_mark.

https://sourceforge.net/projects/fsmark/. 2021.

[275] Will Deacon. Homepage of kvmtool. https://github.com/kvmtool/kvmtool.

2021.

https://ior.readthedocs.io/en/latest/
https://ior.readthedocs.io/en/latest/
https://doi.org/10.1145/3445814.3446714
https://lwn.net/Articles/644675/
https://blog.cloudflare.com/how-expensive-is-crypto-anyway
https://blog.cloudflare.com/how-expensive-is-crypto-anyway
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://linuxcontainers.org/
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://sourceforge.net/projects/fsmark/
https://github.com/kvmtool/kvmtool

BIBLIOGRAPHY 127

[276] WMware. VMware vCloud. https://www.vmware.com/products/vrealize-

suite-vcloud-suite.html. 2021.

[277] wrk. https://github.com/wg/wrk. Last accessed: Oct, 2020.

[278] Kernel maintainers. What is xfstests? https://kernel.googlesource.com/pub/

scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md.

2021.

[279] Yuping Xing and Yongzhao Zhan. “Virtualization and cloud computing”. In:

Future Wireless Networks and Information Systems. Springer, 2012, pp. 305–312.

[280] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-channel

attacks: Deterministic side channels for untrusted operating systems”. In:

Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland). 2015.

[281] Ziye Yang et al. “Spdk vhost-nvme: Accelerating i/os in virtual machines on

nvme ssds via user space vhost target”. In: 2018 IEEE 8th International

Symposium on Cloud and Service Computing (SC2). Paris, France: IEEE, 2018,

pp. 67–76.

[282] Kenichi Yasukata et al. “StackMap: Low-Latency Networking with the OS

Stack and Dedicated NICs”. In: 2016 USENIX Annual Technical Conference

(USENIX ATC). 2016.

[283] Tom Yates. Linux kernel: Introduction of hybrid polling in the blk-mq subsystem.

https://lwn.net/Articles/735275. Last accessed: Oct, 2020. 2017.

[284] Irene Zhang et al. “I’m Not Dead Yet! The Role of the Operating System in a

Kernel-Bypass Era”. In: Proceedings of the Workshop on Hot Topics in Operating

Systems (HotOS). 2019.

[285] Wenting Zheng et al. “Opaque: An Oblivious and Encrypted Distributed

Analytics Platform”. In: Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI). 2017.

https://www.vmware.com/products/vrealize-suite-vcloud-suite.html
https://www.vmware.com/products/vrealize-suite-vcloud-suite.html
https://github.com/wg/wrk
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://lwn.net/Articles/735275

	Introduction
	Trends
	Challenges
	Contributions
	Outline

	Background
	Containers
	Namespaces
	Cgroups
	Container runtimes
	Orchestration manager

	Fuse
	Hardware virtualisation
	Kernel-based virtual machine (KVM)
	VirtIO

	Trusted execution environments
	SGX

	Direct I/O frameworks
	DPDK
	SPDK

	Library OS
	SGX-LKL

	[height=1.5 `C,valign=c]cntr/figures/logo.png Cntr : Lightweight OS Containers
	Introduction
	Motivation
	Container-based virtualisation
	Traditional approaches to minimize containers
	Background: container internals
	Use-cases of Cntr

	Design
	System overview
	Design details
	Optimizations

	Implementation
	Evaluation
	Completeness and correctness
	Performance overheads and optimizations
	Effectiveness of Cntr

	Related Work
	Limitations and future work
	Summary

	[height=1.5 `C,valign=c]vmsh/figures/logo.png Vmsh : Hypervisor-agnostic Guest Overlays for VMs
	Introduction
	Motivation
	Example use-cases enabled by Vmsh

	Overview
	System overview
	Threat model
	Design challenges

	Design
	Hypervisor-agnostic side-loading for VMs
	Kernel-agnostic library
	Hypervisor-independent VirtIO devices
	Container-based system overlay
	Security

	Implementation
	Evaluation
	Robustness
	Generality
	Performance
	Use-cases

	Related work
	Limitations and future work
	Summary

	[height=1.5 `C,valign=c]rkt-io/figures/logo.png Rkt-io : A Direct I/O Stack for Shielded Execution
	Introduction
	Motivation
	Threat model
	Analysis of existing I/O mechanisms
	Problem statement and our approach

	Overview
	Design
	Host-independent I/O interface
	I/O event handling
	I/O stack partitioning for TEEs
	Transparent encryption

	Implementation
	Runtime environment for the I/O stack
	Network stack
	Storage stack

	Evaluation
	Nginx web server
	Redis key-value store
	SQLite database
	MySQL database server

	Related work
	Limitations and future work
	Summary

	Conclusion

