
Cage: Hardware-Accelerated Safe WebAssembly
Martin Fink

martin.fink@cit.tum.de

Technical University of Munich
Munich, Germany

Dimitrios Stavrakakis
dimitrios.stavrakakis@tum.de

Technical University of Munich
Munich, Germany

Dennis Sprokholt
d.g.sprokholt@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Soham Chakraborty
S.S.Chakraborty@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Jan-Erik Ekberg
jan.erik.ekberg@huawei.com

Huawei Technologies
Helsinki, Finland

Pramod Bhatotia
pramod.bhatotia@tum.de

Technical University of Munich
Munich, Germany

Abstract
WebAssembly (WASM) is an immensely versatile and increas-
ingly popular compilation target. It executes applications
written in several languages (e.g., C/C++) with near-native
performance in various domains (e.g., mobile, edge, cloud).
Despite WASM’s sandboxing feature, which isolates appli-
cations from other instances and the host platform, WASM
does not inherently provide any memory safety guarantees
for applications written in low-level, unsafe languages.
To this end, we propose Cage, a hardware-accelerated

toolchain for WASM that supports unmodified applications
compiled to WASM and utilizes diverse Arm hardware fea-
tures aiming to enrich the memory safety properties of
WASM. Precisely, Cage leverages Arm’s Memory Tagging
Extension (MTE) to (i) provide spatial and temporal memory
safety for heap and stack allocations and (ii) improve the
performance of WASM’s sandboxing mechanism. Cage fur-
ther employs Arm’s Pointer Authentication (PAC) to prevent
leaked pointers from being reused by other WASM instances,
thus enhancing WASM’s security properties.
We implement our system based on 64-bit WASM. We

provide a WASM compiler and runtime with support for
Arm’s MTE and PAC. On top of that, Cage’s LLVM-based
compiler toolchain transforms unmodified applications to
provide spatial and temporal memory safety for stack and
heap allocations and prevent function pointer reuse. Our
evaluation on real hardware shows that Cage incurs min-
imal runtime (< 5.8%) and memory (< 5.3%) overheads
and can improve the performance of WASM’s sandboxing
mechanism, achieving a speedup of over 5.1 %, while offering
efficient memory safety guarantees.

CCS Concepts: • Security and privacy→ Systems secu-
rity; • Software and its engineering→ Compilers.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708920

Keywords: WebAssembly, Memory Safety
ACM Reference Format:
Martin Fink, Dimitrios Stavrakakis, Dennis Sprokholt, Soham Chak-
raborty, Jan-Erik Ekberg, and Pramod Bhatotia. 2025. Cage: Hard-
ware-Accelerated Safe WebAssembly. In Proceedings of the 23rd
ACM/IEEE International Symposium on Code Generation and Opti-
mization (CGO ’25), March 01–05, 2025, Las Vegas, NV, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3696443.3708
920

1 Introduction
WebAssembly (WASM) [23] has been gaining prominence as
a versatile compilation target [38]. WASM allows for deploy-
ing and executing native applications written in a variety of
languages, such as C/C++ and Rust, in a wide spectrum of
environments (e.g., Web, Edge Cloud, IoT devices) [5], while
achieving near-native performance. In principle, WASM en-
ables the compilation of high-level languages (e.g., C/C++) to
its bytecode format, which can then be seamlessly compiled
to native machine code based on the targeted underlying
architecture, which justifies its increasing adoption.
A core design principle of WASM is the sandboxing of

untrusted code [4], providing a safety property of Software
Fault Isolation (SFI) [54]. EachWASM application is confined
in its isolated address space and has no access rights beyond
that. Thus, WASM protects the host and other guest WASM
instances from potentially malicious or buggy code.

However, applications compiled to WASM are still vulner-
able to memory safety issues, such as buffer overflows or
dangling pointers, within an application’s memory space,
despite WASM’s sandboxing [35]. Such issues allow attack-
ers to manipulate the memory space of a WASM instance,
corrupting or leaking sensitive data or manipulating the con-
trol flow. This limitation becomes particularly evident when
compiling applications written in memory-unsafe languages,
e.g., C/C++. Importantly, numerous CVEs remain exploitable
when compiled to WASM (§3).

Unfortunately, existing memory safety solutions, designed
for applications compiled to native machine code, cannot be
directly applied for WASM due to several factors:
– Memory safe languages, such as Rust or OCaml, tackle
memory safety at the language level by encoding certain

538

https://orcid.org/0000-0002-3280-8974
https://orcid.org/0000-0002-3667-3763
https://orcid.org/0000-0002-2132-7315
https://orcid.org/0000-0002-4454-2050
https://orcid.org/0009-0007-5432-6128
https://orcid.org/0000-0002-3220-5735
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708920
https://doi.org/10.1145/3696443.3708920
https://doi.org/10.1145/3696443.3708920
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

properties in their type system or providing safe abstrac-
tions, e.g., in their standard libraries. However, it is not fea-
sible to port all applications or libraries written in C/C++
to languages with such guarantees.

– Trip-wire-based memory safety approaches [12, 14, 24,
41, 47, 48] do not apply to WASM without altering the
WASM memory layout properties, as these approaches
rely on shadow memory or guard pages.

– Pointer- or object-based solutions [7, 15, 17, 18, 30, 31,
37, 39, 41] can be adapted toWASM, but they either modify
the pointer layout and size, incur significant runtime over-
heads, or rely on custom hardware [55], thus, hindering
production deployment in common WASM environments.

Hence, we aim to answer the question: How can we design
a practical system to provide memory safety properties for
unmodified applications compiled to WASM without changing
its linear memory model and introducing minimal overheads
to allow for deployment in production environments?
Our key insight is to leverage modern commodity hard-

ware extensions by designing abstractions for WASM that
can be directly used by the compilers. Precisely, Arm re-
cently introduced new ISA extensions, namely PAC [46] and
MTE [11], that can serve as a base to design practical, high-
performance solutions against memory safety issues.
To this end, we propose Cage, a hardware-accelerated

WASM toolchain that leverages Arm’s MTE and PAC hard-
ware extensions to provide both spatial and temporal mem-
ory safety issues for unmodified C/C++ programs. Cage fur-
ther hardens applications against control flow highjacking
in the form of function pointer reuse between WASM in-
stances. Additionally, Cage improves the performance of
the sandboxing mechanism for 64-bit WASM by offloading
the bounds checks to MTE hardware. We design Cage so it
can fall back to software-based implementations on devices
lacking the relevant hardware.
To the best of our knowledge, Cage is the first practical,

comprehensive, and efficient solution for unmodified C/C++
programs that can be deployed on commodity hardware
and provides strong memory safety guarantees for WASM
instances running memory-unsafe code on Arm platforms.

Altogether, Cage makes the following contributions:
– WebAssembly extension: A minimal and generic exten-
sion to the WebAssembly specification to provide memory
safety guarantees and is deployable on every platform,
regardless of the availability of specialized hardware.

– Compiler toolchain: A compiler toolchain that transpar-
ently hardens unmodified programs to enforce spatial and
temporal memory safety for stack and heap allocations
and prevent unintended function pointer reuse.

– WASM runtime: A hardware-accelerated WASM com-
piler and runtime, leveraging Arm’s MTE and PAC with
minimal overhead that can be deployed in production.

WebAssembly Runtime

Runtime Address Space

WASM Instance #1
Heap base

#2
Heap base

#3
Heap base

Linear memory Guard page

Figure 1. WASM’s linear memory model.
– Evaluation on real hardware: Evaluation and security
analysis of Cage’s implementation on commercially avail-
able Arm hardware. Our evaluation is structured around
performance and memory overheads and is accompanied
by an extensive analysis of MTE and PAC performance as
implemented on real hardware.

We implement our Cage prototype on top of 64-bit WASM,
consisting of a compiler toolchain based on LLVM and a
WASM compiler and runtime based on wasmtime incorpo-
rating support for Arm’s MTE and PAC. We conduct an ex-
tensive analysis of Cage’s security guarantees and evaluate
Cage’s performance using the PolyBench/C [45] benchmark
suite. We further analyze Arm’s MTE and PAC performance
as implemented on production hardware through a set of mi-
crobenchmarks. Our evaluation on real Arm hardware shows
that Cage provides its memory safety properties while incur-
ring minimal runtime (< 5.6 %) and memory (< 5.3 %) over-
heads and is capable of significantly improving the perfor-
mance of WASM’s sandboxing feature, achieving a speedup
of over 5.1 %.

2 Background
2.1 WebAssembly
WebAssembly [23] is a versatile, high-performance compila-
tion target, initially designed as an alternative to JavaScript.
Its goal is to execute applications written in any language
with near-native performance regardless of the hardware
and software stack of the hosting platform. Several high-level
languages (e.g., C/C++, Rust) can be compiled to WASM’s
bytecode format. It is then lowered to the appropriate native
machine code, depending on the underlying system archi-
tecture. This feature expands the usability of WASM to vari-
ous other domains [5], such as Function-as-a-Service (FaaS)
workloads or even as an alternative to Linux containers [1].

WASM employs a linear memory model (see Fig. 1). Thus,
applications manage their memory without requiring un-
natural idioms, and WASM runtimes can efficiently map the
WASM instance memory directly to host memory. Impor-
tantly, WASM’s design does not allow unstructured control
flow. WASM uses indices into type- and bounds-checked
tables instead of raw function pointers to make indirect
function calls, while, for jumps, WASM provides a set of
well-defined control flow constructs. Additionally, WASM

539

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

16 bytes

char �buffer = malloc(32);

buffer[33];
free(buffer);

buffer[8];

Figure 2. Example of a heap allocation protected by MTE.
After allocation, the pointer and allocation are tagged
with , while the surrounding memory is tagged with .
When accessing memory, the hardware catches out-of-
bounds errors (≠). When freeing memory, the mem-
ory region is retagged with . This prevents use-after-free
errors (≠).
does not expose registers but operates on a verified, well-
typed stack to ensure compatibility with diverse compilation
targets that offer different sets of registers.

WASMalso provides sandboxing for programs. TheWASM
runtimemust ensure that each instance can only access mem-
ory within the bounds of its accessible linear memory. This is
typically achieved using either (i) explicit bounds checks that
are inserted before every memory access, validating that it
lies within the WASM instance’s memory range or (ii) guard
pages, where 4GiB of virtual memory is mapped and pages
beyond the WASM instance’s memory is marked as inacces-
sible, and any access in them results in a segmentation fault.
This only works for 32 bit pointers, which don’t allow ac-
cessing memory beyond 4GiB. Typically, switching to 64-bit
WASM entails switching to the more expensive approach (i)
with explicit bounds checks.

2.2 Memory Safety
Applications written in low-level, memory-unsafe languages
(e.g., C/C++) are prone to memory safety bugs that enable a
whole class of attacks on a vulnerable or buggy program [50].
Several studies have shown that in large software projects,
memory safety bugs make up between 70 % and 75 % of their
security vulnerabilities [2, 52, 53]. These bugs are classified
as spatial or temporal. Spatial memory safety errors occur
when a memory access is performed beyond the allocated
boundaries of a memory object (e.g., buffer overflows), while
temporal memory safety bugs refer to accesses to memory
regions before they are allocated or after their release (e.g.,
dangling pointers). These vulnerabilities can be exploited
by attackers to overwrite data or redirect control flow, for
instance, by manipulating the return address saved on the
stack to create return-oriented programming (ROP) chains,
chaining existing snippets of code together to create attacks.
To this end, several memory safety solutions have been

proposed, which can be divided into three major categories:
(i) trip-wire-based approaches [12, 14, 24, 41, 47, 48] that em-
ploy guard zones around memory objects and allocate des-
ignated memory regions, namely shadow memory, that de-
termine whether a memory location is accessible or not,
(ii) object-based approaches [7, 15, 17, 18] that track memory

address
16 bit 48 bit

No extension

addressMTE T

addressPAC S S

address
48 bit

MTE + PAC S
7 bit4 bit

S T
4 bit

Figure 3. Pointer layout on aarch64 in Linux with and
without MTE and PAC enabled.
safety metadata on a per-object level and ensure memory
safety for pointers with respect to an object, and (iii) pointer-
based approaches [13, 27, 30, 31, 39, 40, 42, 57] that keep track
of object bounds by either storing them in the pointer itself
(e.g., via fat pointers) or in external data structures. Addition-
ally, specialized solutions [6, 32, 36] have also been proposed
to mitigate control-flow attacks that occur via memory safety
bugs and either analyze applications to enforce valid control
flow paths or enforce memory safety for code pointers using
hardware- or software-based techniques.
Memory tagging approaches [11, 49] combine aspects from
object- and pointer-based approaches. They typically asso-
ciate metadata stored in the unused bits of a pointer with
memory objects by assigning tags to allocated memory re-
gions and performing checks at runtime.

2.3 Memory Safety Hardware Extensions
As an alternative to flexible yet slow software-based mem-
ory safety solutions, CPU designers develop hardware ex-
tensions [11, 13, 42, 46] to serve as a foundation for efficient
memory safety. They provide security primitives to fortify
applications with memory safety properties while having
minimal memory and performance overheads, making them
suitable for production deployment.

Fig. 3 presents an example layout of a pointer on aarch64,
the 64-bit variant of the ArmV8 ISA [10]. Only 48 out of the
available 64 bits are used to address memory. The remaining
bits are set to 0 or 1 to differentiate between kernel and
userspace. Hardware extensions such as Top Byte Ignore
(TBI), MTE (§2.3), or PAC (§2.3) leverage those unused bits
for storing metadata.
Memory Tagging Extension (MTE). ARMs MTE provides
a building block for spatial and temporal memory safety [11].
MTE implements a lock-and-key mechanism where mem-
ory regions can be tagged with one of 16 distinct tags, and
memory accesses are only allowed using pointers with the
corresponding tags. The locking mechanism stores a 4-bit
tag in bits 56–59 of an address. Accordingly, a tag is assigned
to memory with a granularity of 16 bytes.
Fig. 2 presents how MTE can provide spatial as well as

temporal memory safety. Precisely, MTE can ensure spatial
memory safety by assigning different tags to adjacent mem-
ory regions, while it also can offer temporal memory safety
by retagging freed memory regions.

540

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

Table 1.MTE and PAC instruction throughput (instruc-
tions per cycle, higher is better) and latencies (cycles, lower
is better). We only show PAC instructions using the Data
A-key (da).

Inst Cortex-X3 Cortex-A715 Cortex-A510
Tp Lat Tp Lat Tp Lat

MTE
irg 1.34 1.99 1.00 2.00 0.50 3.00
addg 2.01 1.99 3.81 1.00 2.22 2.00
subg 2.01 1.99 3.81 1.00 2.22 2.00
subp 3.49 0.99 3.81 1.00 2.50 2.00
subps 2.88 0.99 3.80 1.00 2.50 2.00
stg 1.00 – 1.81 – 1.00 –
st2g 1.00 – 1.84 – 0.46 –
stzg 1.00 – 1.84 – 0.98 –
st2zg 0.34 – 1.79 – 0.45 –
stgp 1.00 – 1.69 – 0.98 –
ldg 2.92 – 1.91 – 0.93 –

PAC
pacdza 1.01 4.97 1.51 5.00 0.20 4.99
pacda 1.01 4.97 1.42 5.00 0.20 5.00
autdza 1.01 4.97 1.51 5.00 0.20 7.99
autda 1.01 4.97 1.43 5.00 0.20 7.99
xpacd 1.01 1.99 1.56 2.00 0.20 4.99

MTE currently can be set in one the following modes:
(i) disabled, where no tag checks are performed, (ii) synchro-
nous, where a tag mismatch immediately triggers a fault
disallowing the read/write at the affected memory location,
(iii) asynchronous, where a tag mismatch does not cause a
fault directly but sets a CPU flag that is checked at the next
context switch, thus allowing for a potential read/write at the
affected memory location by the triggering command, and
(iv) asymmetric, where reads are checked asynchronously
and writes are checked synchronously.
Pointer Authentication (PAC). PAC [46] introduces hard-
ware primitives to prevent attackers from forging pointers.
PAC places a 7 to 16 bit signature in the upper bits of point-
ers, with the exact layout being dependent on the operating
system, the underlying hardware, and other factors (e.g. if
MTE is enabled). Signatures are created using the pointer
value, a secret key placed in an inaccessible register, and
a user-defined value (modifier). Signed pointers cannot be
used directly to access memory; they must be authenticated.
Authenticating a pointer consists of validating the signature
and stripping out the signature if the validation is successful,
thus producing a valid pointer. In case of a failed authenti-
cation, PAC can either produce a pointer that will trap on
memory access or trap immediately. This behavior depends
on whether FEAT_FPAC is implemented [10].

MTE and PAC can be combined at the cost of bits available
for the PAC signature. The exact layout of the PAC signature
varies depending on the system. On Linux, bits 56–59 are
used forMTEwhile bits 63–60 and 54–49 are used for PAC, as
shown in Fig. 3. The remaining bit 55 differentiates between
kernel- and user-space addresses.

Cortex-X3 Cortex-A715 Cortex-A510
0

20

40

60

80

100

R
u

n
ti

m
e

(m
s)

30.2 30.9
35.9

44.4 45.9
50.8

72.1
80.3

90.8

Lower is better ↓

none async sync

Figure 4. Performance overhead of MTE sync and async
mode for writing 128MiB of memory. See §7.1 for details
on the experimental setup.

Architectural performance analysis. We evaluate the
performance characteristics of MTE as implemented on the
Tensor G3 chip, such as throughput and latency of the in-
dividual instructions in Table 1. We run microbenchmarks
executing 1010 instructions in an unrolled loop. To measure
throughput, we execute the instructions without any data de-
pendencies; to measure latency, we force a data dependency
between subsequent instructions. For instructions storing
and loading memory tags, we only measure throughput.
We further measure the raw overhead of enabling MTE.

We perform a 128MiB memset with MTE disabled, synchro-
nous, and asynchronous mode. We perform each run with
a clean cache. In Fig. 4, we observe that with synchronous
MTE, memset is 19.1%, 14.4%, and 29.9% slower on the re-
spective cores compared to the baseline with MTE disabled.
Asynchronous MTE gets closer to the baseline with an over-
head of 2.6%, 3.3%, and 11.3%, respectively.

3 Motivation
WebAssembly is inherently protected by design against a
wide range of attack vectors, such as jumping to arbitrary
addresses or injecting shellcode. Despite its protection mech-
anisms, it is shown that WebAssembly is still susceptible
to attacks originating from memory safety issues, such as
buffer overflows or dangling pointer accesses [35].
Importantly, WASM compilers place data in the linear

memory of the WASM instance, where both read and write
permissions are granted to the executed code. The lack of
read-only memory regions and the ability to map arbitrary
pages in WASM prevents measures, such as Address Space
Layout Randomization (ASLR) or guard pages, from being
applied. Thus, in case of a successful exploit of a memory
safety bug, an attacker can overwrite application data. Ta-
ble 2 presents a set of exploits that were discovered outside
the scope of WASM but serve as examples that showcase
potential memory safety errors when the vulnerable appli-
cations run in a WASM instance.

Additionally, in WASM, a degree of control flow manipu-
lation is possible. Precisely, function pointers can be over-
written with pointers to other functions that share the same
signature. However, it can only occur with functions that are
1Although the ROP chain is mitigated, memory corruption is still possible.

541

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

C/C++ source
code

LLVM

Clang opt san-memsafety codegen Hardened
WASMsan-ptr-auth

WASI-libc

Wasmtime

MTE + PAC

WASM
Modified components
New components

Figure 5.Overview of Cage’s components and instrumentation pipeline: Unmodified C/C++ code is compiled along with our
modified WASI-libc. After optimizations, two sanitizer passes for memory safety and pointer authentication run, inserting
new WASM instructions. Wasmtime processes this hardened WASM and emits MTE and PAC.

Table 2. An exemplary list of memory safety errors, their
underlying cause, and the level of their mitigation.

CVE Cause Mitigated in WASM
CVE-2023-4863 Out-of-bounds No
CVE-2014-0160 Out-of-bounds No
CVE-2021-3999 Out-of-bounds Partially1
CVE-2018-14550 Out-of-bounds No
CVE-2021-22940 Use-after-free No
CVE-2021-33574 Use-after-free No
CVE-2020-1752 Use-after-free No
CVE-2019-11932 Double-free Partially1

present in the function table, i.e., functions that are targets
of virtual function calls, such as virtual functions in C++.
This results in a similar property as code-pointer separa-
tion (CPS) [32]. Listing 1 showcases such a vulnerability, as
an attacker can overwrite a function pointer and redirect
an indirect call to another function. When WASM is used
in a WebOS-like scenario [29, 33, 56], i.e., running multiple
instances in a single process, leaking function pointers in
one program is even more vulnerable, especially if instances
share a common library.
WebAssembly sandboxing. WASM engines use various
techniques to protect their sandboxes against malicious code.
While virtual memory and guard pages are preferred for
performance reasons, some settings (e.g., 64-bit WASM) ne-
cessitate software-based bounds checks, which come at a
higher performance cost. Based on our evaluation, switching
from 32-bit to 64-bit WASM results in a roughly 6–8 % over-
head on out-of-order CPUs, which can speculate through
bounds checks, and 52 % overhead on in-order CPUs (§ 7.2).
The measurements on out-of-order CPUs align with previous
works [51]. The fallback to software-based bounds checks
is especially painful when running on low-power in-order
cores using 64-bit WASM or in environments without an OS,
such as embedded devices. Additionally, software bounds
checks or the guard pages technique may suffer from imple-
mentation bugs and must be protected against spectre-style
attacks [28]. An example is CVE-2023-26489 [3], where an
erroneous code lowering rule allowed malicious WASM in-
stances to access memory outside the sandbox.

WASM is, despite limitations such as high overhead when
running 64-bit WASM or the lack of a practical and low-
overhead solution to prevent memory safety issues in pro-
grams written in C/C++, steadily growing in adoption [5].

1 struct VTable { void (*f)(); void (*g)(); };
2 void vulnerable(char *input) {
3 struct VTable vtable = {.f = foo, .g = bar};
4 char buf[16];
5 strcpy(buf, input);
6 vtable.f();
7 }

Listing 1. Vulnerable overflow allowing attackers to redi-
rect control flow to call foo instead of bar.

Recently, manufacturers have started shipping hardware sup-
porting both PAC and MTE, with the Google Pixel 8 being
the first commercially available device to feature both. These
extensions offer strong security guarantees with very low
overhead, as shown in Table 1 and Fig. 4.
Cage. To tackle the aforementioned memory safety issues,
we design Cage, an extension to WASM that efficiently pre-
vents memory safety and function-pointer reuse exploits
by leveraging Arm’s MTE and PAC. On top of that, Cage
implements hardware-based sandboxing using MTE to cir-
cumvent the overhead of software-based checks and prevent
vulnerabilities, e.g., CVE-2023-26489.

4 Design
Cage consists of a WASM extension to provide memory
safety guarantees within a WASM instance and improve the
performance of the sandboxing mechanism. Its core design
principles are to be (i) minimally invasive and (ii) applicable
on diverse platforms using various approaches, including
hardware extensions, such as MTE and PAC, software-based
techniques, or hybrid solutions similar to HWASan [49].
Figure 5 presents an overview of Cage. Precisely, un-

modified C/C++ source code is compiled using the LLVM
toolchain [34], where Cage includes a sanitizer that instru-
ments stack allocations and function pointers, along with
a modified libc based on WASI [22] that protects heap al-
locations. LLVM’s backend generates the hardened WASM
binaries that can be executed in wasmtime [9], which imple-
ments our extension using MTE and PAC.

4.1 System Model
Threat model. Figure 6 highlights two aspects of memory
safety, present in WASM, namely internal and external mem-
ory safety. We depict trusted components () in green and
untrusted components () in red. We further annotate the
hardened component by Cage in each of these models ().

542

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

Runtime
Input WASM Instance

(a) Internal memory safety.

WASM Instance
Runtime

(b) External memory safety.

Figure 6. Internal and external memory safety in WASM.
The internal memory safety model (Fig. 6a) mirrors the

threat environment of a standard non-WASM program. In
this case, the application in the sandbox and its runtime, in-
cluding the compiler, are considered trusted and assumed to
be bug-free. Untrusted input (e.g., network data) originates
outside the sandbox and can be controlled by an attacker.
This implies that commonmemory safety bugs, such as buffer
overflows or use-after-free, can be exploited to tamper with
the WASM memory. WebAssembly’s design inherently mit-
igates some threats common in non-WASM environments
(§ 2.1), so we do not consider ROP-style attacks or those
relying on unstructured control flow.
The external memory safety model (Fig. 6b) refers to the

security of the sandbox. Threats originate from running un-
trusted programs, which may be adversarial or contain bugs.
Typical attacks include sandbox escapes, where an attacker
attempts to break out of the sandbox’s restrictions and ac-
cess host resources, or side-channel attacks, where attackers
exploit timing differences or resource usage patterns to infer
sensitive information. In this setting, we assume that the op-
erating system and the underlying architecture do not have
exploitable bugs. Importantly, we do not make assumptions
about potential spectre-like [28] attacks. We do not protect
against protected against side-channel attacks.
Programming model. Cage currently supports unmodi-
fied applications written in C/C++ that target 64-bit WASM.
Note that our toolchain is not bound to any language and
can handle other languages compiled to LLVM in the future.
Cage provides spatial and temporal heap safety to applica-
tions that use its adapted WASI-libc that comes with a hard-
ened allocator. For applications using their own allocator, we
expose Cage’s memory safety primitives to C, enabling pro-
grammers to implement the same security guarantees. Lastly,
Cage reserves the unused upper 16 bits of 64-bit pointers to
place memory safety metadata.
Deployment model. Cage’s prototype is highly optimized
to use Arm’s hardware extensions to minimize the runtime
overheads. Therefore, its primary deployment target is Arm
CPUs with Arm PAC and MTE extensions. However, Cage
can also be deployed on any platform, regardless of the un-
derlying hardware, where the respective memory safety pro-
tection mechanisms have an equivalent software fallback,
resulting in higher performance overheads.

4.2 WebAssembly Extension
Cage essentially is an extension to WebAssembly that in-
troduces primitives that can be used by a modified standard
library or sanitizers to provide memory safety guarantees

(new instructions) 𝑒 F segment.new 𝑜

| segment.set_tag 𝑜
| segment.free 𝑜
| i64.pointer_sign
| i64.pointer_authenticate

Figure 7. Cage’s new instructions: Segment instructions
take a constant unsigned offset 𝑜 , which allows compilers
to fold in constant offsets when manipulating segments.

Allocation n Allocation n + 1

Heap Untagged allocator metadata

(a) Heap layout with untagged allocator metadata slots, ensuring
no tag collisions for adjacent allocations.

Frame n Frame n + 1 Frame n + 2

Stack Guard allocations

(b) Stack layout with guard slots ensuring tag collisions never occur
for adjacent allocations.

Figure 8. Untagged slots serving as guard slots to prevent
tag collisions for adjacent allocations.
for selected memory allocations. It builds on wasm64 [21],
the 64-bit variant of WebAssembly. Wasm64 extends point-
ers within a WASM instance to 64 bits. Out of those, only
48 are used to index memory. This allows Cage to utilize
the remaining 16 bits to store its required memory safety
metadata.
Memory safety. Cage introduces the notion of segments
and tagged pointers in the context of WASM. It further fea-
tures five new instructions, shown in Fig. 7, that allow the
creation of segments and the derivation of tagged pointers
from raw pointers. The Cage pointers carry provenance
and can only access the segment they were created with.
Conversely, segments can only be accessed by the tagged
pointers created with them.
At an instance startup, the linear memory consists of a

single segment that can be accessed via untagged indices,
allowing unmodified code to run under our new semantics
without modifications. This design choice allows the grad-
ual integration of safety primitives into specific parts of
WebAssembly applications where enhanced security is re-
quired. Thus, Cage can achieve security properties similar
to those of specialized hardware designed mainly for mem-
ory safety [57] by combining the concept of segments with
Arm’s hardware extensions (e.g., MTE).
Heap safety. In Cage, the memory allocator must be aware
of segments to provide heap safety. Adapting a memory al-
locator to utilize Cage’s memory safety extensions requires
minimal modifications. When allocating memory, the allo-
cator must align the requested size to 16 bytes, perform the
allocation, and create a segment. The corresponding tagged
pointer is then returned to the caller. Cage randomly selects

543

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Algorithm 1: Detect and harden safe and unsafe stack
allocations.

Input :Allocations
Output :Hardened stack allocations
handle_stack_allocations(allocations)
begin

allocsToInstrument ← ∅
foreach alloc ∈ allocations do

if escapes(𝑎𝑙𝑙𝑜𝑐) then
allocsToInstrument ← allocsToInstrument ∪ { alloc }

else if isUsedByUnsafeGEP(𝑎𝑙𝑙𝑜𝑐) then
allocsToInstrument ← allocsToInstrument ∪ { alloc }

end
end
foreach alloc ∈ allocsToInstrument do

insertTaggingCode(alloc)
insertUntaggingCode(alloc)

end
if allocsToInstrument ≠ ∅ ∧ allocations[0] ∉ allocsToInstrument then

insertGuardAlloc()
end

end

a tag for each allocation. When freeing memory, Cage’s al-
locator uses the segment.free instruction that ensures the
detection of potential use-after-free and double-free errors.

Further, Cage has to ensure that there are no tag collisions
for adjacent allocations to provide protection against off-by-
one buffer overflows/underflows. This is achieved by design
as Cage places metadata at the beginning of every heap allo-
cation, and the corresponding memory region is preserved
untagged, as shown in Fig. 8a. Thus, adjacent allocations are
always separated by an untagged memory segment.
Stack safety. To provide memory safety for the stack, Cage
creates segments for the stack slots when entering a function.
Cage generates a random tag per function for the first stack
allocation. Subsequent stack allocations use this tag and
increment it by one. As the available tag bits are limited,
the tag wraps around on overflow. Before returning from a
function, all stack slots are untagged and reassigned to the
original stack frame. This allows other functions to use the
memory and prevents stack slots from being accessed after
returning from a function. Note that each stack allocation
needs to be aligned to 16 bytes and gets processed when
entering/exiting from a function.
Similarly to the heap, Cage must guarantee protection

for off-by-one overflows/underflows on the stack. Therefore,
Cage must ensure that two adjacent stack allocations be-
tween functions do not share the same tag. To achieve this,
Cage inserts a single untagged stack guard slot at the be-
ginning of the frame if no such untagged stack slot exists,
as shown in Fig. 8b. Without the guard allocation, adjacent
allocations in stack frames 𝑛 + 1 and 𝑛 + 2 would share the
same tag (blue) and, thus, Cage would not be able to detect
overflows.

To further reduce its performance and memory overheads,
Cage omits the instrumentation of stack allocations that
(i) do not escape the function or (ii) are only accessed using
statically verifiable indices. In Algorithm 1, we present a
simplified version of Cage’s algorithm for the identification
of the (un)safe stack allocations.

WASM Instance

Function Table
0x8000'5f000
0x8000'65001
0x8000'86502

......

i64.ptr_auth

i32.wrap_i64

call_indirect

PointerSig

Pointer0

trap

Pointer

Figure 9. Our modified instruction sequence for indirect
function calls.

𝐶memory = 𝑛

𝐶 ⊢ segment.new 𝑜 : i64 i64→ i64
𝐶memory = 𝑛

𝐶 ⊢ segment.set_tag 𝑜 : i64 i64 i64→ 𝜖

𝐶memory = 𝑛

𝐶 ⊢ segment.free 𝑜 : i64 i64→ 𝜖

𝐶 ⊢ i64.pointer_sign : i64→ i64

𝐶 ⊢ i64.pointer_auth : i64→ i64

Figure 10. Typing rules of Cage’s new instructions. For
the definition of context 𝐶 , see the WASM paper [23].

Pointer authentication. Cage provides pointer authentica-
tion primitives that prevent function pointer reuse between
WASM instances. On the instantiation of a WASM module, a
secret key is generated. The key is not accessible by the user
code. Cage’s authentication operations leverage this key to
sign and authenticate pointers using a cryptographic hash
function. The signature is placed in the unused 16 bits of a
WASM pointer, alongside the pointer tag, if applicable. Point-
ers containing a signature cannot directly access memory.
On authentication, the signature is checked and stripped, if
it is valid. Otherwise, the WASM module traps. While func-
tion pointer reuse within a WASM instance is still possible,
Cage prevents the reuse across different instances, as each
instance generates its own key.
While memory64 [21] extends function pointers to 64 bits,
the indices for the WASM function table remain 32 bit wide.
Cage uses the instruction sequence in Fig. 9 to authenticate
function pointers and perform indirect function calls. 64-bit
pointers are first authenticated, which traps in case of a in-
valid signature. If successful, the signature is stripped and
the pointer is truncated to 32 bits. Similarly, when creating
function pointers, indices into the function table are first
zero-extended to 64 bits and then signed.

5 Semantics
5.1 Typing Rules
Cage extends the typing rules of the original WASM pa-
per [23], as shown in Figure 10. We adopt the notation used
in previous work [43]. Specifically, the rules are of the form
of 𝐶 ⊢ 𝑒 : tf . An instruction 𝑒 is valid under the context
𝐶 , with 𝐶memory being used to access a context component,
such as the memory. The rule 𝐶memory = 𝑛 ensures that the

544

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

(store) 𝑠 F { . . . , inst inst∗}
inst F { . . . , tag taginst∗, key 𝑘𝑠 }

taginst F 𝑏∗

𝑠 ; (i64.const 𝑘) (𝑡 .load 𝑎 𝑜) ↩→𝑖 (𝑡 .const 𝑏∗) if 𝑠tag (𝑖, 𝑘 + 𝑜, |𝑡 |) = tag(𝑘) ∧ 𝑠mem (𝑖, 𝑘 + 𝑜, |𝑡 |) = 𝑏∗ (1)
𝑠 ; (i64.const 𝑘) (𝑡 .load 𝑎 𝑜) ↩→𝑖 trap otherwise (2)

𝑠 ; (i64.const 𝑘) (𝑡 .const 𝑐) (𝑡 .store 𝑎 𝑜) ↩→𝑖 𝑠′;𝜖 if 𝑠tag (𝑖, 𝑘 + 𝑜, |𝑡 |) = tag(𝑘) (3)

∧ 𝑠′ = 𝑠 with mem(𝑖, 𝑘 + 𝑜, |𝑡 |) = bits|𝑡 |𝑡 (𝑐)
𝑠 ; (i64.const 𝑘) (𝑡 .const 𝑐) (𝑡 .store 𝑎 𝑜) ↩→𝑖 trap otherwise (4)

𝑠 ; (i64.const 𝑘) (i64.const 𝑙) (segment.new 𝑜) ↩→𝑖 𝑠′; (i64.const 𝑡) if 𝑡 = new_tag(𝑘 + 𝑜) ∧ 𝑠′ = 𝑠 with tag(𝑖, 𝑘 + 𝑜, 𝑙) = 𝑡 (5)
𝑠 ; (i64.const 𝑘) (i64.const 𝑙) (segment.new 𝑜) ↩→𝑖 trap otherwise (6)

𝑠 ; (i64.const 𝑘) (i64.const 𝑡) (i64.const 𝑙) (segment.set_tag 𝑜) ↩→𝑖 𝑠′;𝜖 if 𝑠′ = 𝑠 with tag(𝑖, 𝑘 + 𝑜, 𝑙) = 𝑡 (7)
𝑠 ; (i64.const 𝑘) (i64.const 𝑡) (i64.const 𝑙) (segment.set_tag 𝑜) ↩→𝑖 trap otherwise (8)

𝑠 ; (i64.const 𝑘) (i64.const 𝑙) (segment.free 𝑜) ↩→𝑖 𝑠′;𝜖 if 𝑡 = free_tag(𝑘 + 𝑜) ∧ 𝑠tag (𝑖, 𝑘 + 𝑜, |𝑡 |) = tag(𝑘) (9)
∧ 𝑠′ = 𝑠 with tag(𝑖, 𝑘 + 𝑜, 𝑙) = 𝑡

𝑠 ; (i64.const 𝑘) (i64.const 𝑙) (segment.free 𝑜) ↩→𝑖 trap otherwise (10)
𝑠 ; (i64.const 𝑘) i64.pointer_sign ↩→𝑖 (i64.const 𝑘 ′) if 𝑘 ′ = sign(𝑘, 𝑘𝑠) (11)
𝑠 ; (i64.const 𝑘) i64.pointer_auth ↩→𝑖 (i64.const 𝑘 ′) if 𝑘 ′ = strip(𝑘) ∧ 𝑘 = sign(𝑘 ′, 𝑘𝑠) (12)
𝑠 ; (i64.const 𝑘) i64.pointer_auth ↩→𝑖 trap otherwise (13)

Figure 11. Small-step reduction rules of the new instructions and added rules for load/stores. See the WASM paper [23] for
the definitions of all rules and auxiliary constructs.

instruction can only be used when memory is declared. The
type tf = 𝑡∗1 → 𝑡∗2 describes how the instruction manipu-
lates the operand stack. The instruction 𝑒 expects an operand
stack where it pops 𝑡∗1 and pushes 𝑡∗2 .

5.2 Small-Step Reduction Rules
Figure 11 highlights how Cage extends the WASM small-
step reduction rules [23] using the notation established by
previous work [44]. The lower part of Fig. 11 presents the
new tag-aware load/store rules that replace the load/store
rules from the WASM paper as well as new rules tailored
based on the introduced instructions. To signal a trap, we
reuse operators from the original WASM rules, including
the trap operator. The store, 𝑠 , is augmented with a storage
mechanism that assigns a tag, 𝑡 , to each 16-byte memory
granule and a per-instance secret key 𝑘𝑠 . The key is unique
per WASM instance and ensures that leaked signatures can-
not be used in another instance or in another run of the same
instance. Precisely, we use the following notation:
• 𝑡 = 𝑠tag (𝑖, addr, len): Extracts the tag 𝑡 for a memory region
in instance 𝑖 accessed at address addr with length len, if the
tag is the same for all bytes in the range [addr, addr + len).
• 𝑠′ = 𝑠 with tag(𝑖, addr, len) = 𝑡 : Updates the state with new
tags for the memory region at address addr with length
len, if addr is aligned to 16 bytes and the memory region
is in bounds of the memory.
• 𝑡 = tag(pointer): Extracts the tag from a tagged pointer.
• 𝑡 ′ = new_tag(𝑡): Creates a tagged pointer 𝑡 ′ from an un-
tagged pointer 𝑡 to be used for a new segment. The tag is
randomly chosen from a pool of tags.

• 𝑡 ′ = free_tag(𝑡): Creates a tagged pointer 𝑡 ′ for the pur-
pose of freeing a segment. The tag is different from the
tag stored in 𝑡 .
• 𝑘 ′ = sign(𝑘, 𝑘𝑠): Creates a cryptographic signature based
on the index 𝑘 and a per-instance secret key 𝑘𝑠 and inserts
it into the upper bits of 𝑘 .
• 𝑘 ′ = strip(𝑘): Removes the cryptographic signature from
the upper bits of 𝑘 .

Further, Figure 11 presents the added and modified compo-
nents in the rules. Each reduction rule is depicted with the
top of the operand stack and the state, 𝑠 , on the left side,
representing the pre-execution state. The resulting stack and
state after the execution of the instruction is placed on the
right side. For rules with ↩→𝑖 , 𝑖 represents the instance in
which the instruction is executed. Cage modifies the seman-
tics of load/store instructions by adding new rules for loads
and stores in Eqs. (1) to (4), which trap on tag mismatches.
Additionally, Cage introduces new rules that express its

new instructions, which are described below:
• segment.new: It creates a new, zeroed memory segment
for a given pointer and size and returns a tagged pointer
(Eq. (5)).
• segment.set_tag: It transfers ownership for a given point-
er and size to a tagged pointer (Eq. (7)). This results in the
tagged pointer being able to access the memory segment
and can be used to merge adjacent segments.
• segment.free: It invalidates a segment specified by a
pointer and length by tagging the segment with a new,
implementation-defined tag (Eqs. (9) and (10)), ensuring
accesses to the freed segment are caught. This instruction

545

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

WebAssembly Runtime

Runtime Address Space

Virtual Memory
OS

HW
Physical Memory

WebAssembly Instance

Code Tables ...
Linear Memory

Tag Memory

(a) Internal memory safety, as implemented in wasmtime using
MTE. Memory segments are tagged, with different colors repre-
senting different tags. The virtual memory maps to physical and
tag memory, which stores the tags assigned to memory granules.

WebAssembly Runtime

Runtime Address Space

Virtual Memory
OS

HW
Physical Memory Tag Memory

WASM Instance #1
Code Tables ...

Heap base

#2 #3

(b) External memory safety enforced by MTE. The linear memory
of each instance is assigned a unique tag, which is stored in the
heap base pointer and is used for effective address calculation.

Figure 12. System design of internal and external memory safety as implemented using MTE in Cage.

also traps if a segment is freed twice, i.e., the given tagged
pointer cannot access the memory region.
• i64.pointer_sign: It signs a pointer and places a cryp-
tographic hash in its upper bits (Eq. (11)).
• i64.pointer_auth: It validates a signed pointer to ensure
the hash in the upper bits matches the address in the lower
bits. If the hash matches, the hash is removed from the
upper bits (Eq. (12)). Otherwise, it produces a trap (Eq. (13)).

Using the above rules, the Eqs. (6), (8) and (10) of Figure 11
ensure traps when code tries to create, modify, or free un-
aligned segments or segments outside the linear memory for
a given instance. Cage requires all segments to be aligned
to 16 bytes.

6 Implementation
Cage is built based on LLVM 17, wasi-libc, and wasmtime
16.0.0. Cage consists of a modified LLVM toolchain (§6.1),
wasi-libc (§6.2) and implementation of the memory safety
extension in wasmtime (§6.3, §6.4).

6.1 LLVM Compiler Toolchain
In Cage, we use LLVM [34] to compile our C/C++ applica-
tions to WebAssembly. We extend its existing WASM back-
end to be able to emit the new Cage’s instructions. We fur-
ther introduce new intrinsic functions that correspond and
are lowered to Cage’s WASM instructions by the compiler.
The clang frontend and the Cage compiler passes are mainly
responsible for inserting calls to Cage’s new intrinsic func-
tions when necessary. Precisely, we introduce two WASM-
specific sanitizer passes that can be enabled in the LLVM
pipeline via compiler flags. In clang, we introduce new built-
in functions, which directly map to these intrinsics and allow
programmers to use the new instructions, e.g., to build a
segment-aware memory allocator.

The first sanitizer pass is designed to provide memory
safety for stack allocations when compiling the source code
to WebAssembly. It analyzes functions for stack allocations,
applies padding, and creates the memory segments (§4.2),
ensuring temporal and spatial safety of stack allocations.

The second sanitizer pass enforces pointer authentication
for indirect function calls. Cage instruments code taking ref-
erences to functions and performing indirect calls. We do not
handle other operations on code pointers, as pointer arith-
metic on function pointers is undefined behavior in C [25,
§6.5.6/2, §6.5.2/1] and C++ [26, §7.6.6/1, §6.8/8, §31.8.4/4].
Note that both sanitizer passes run after all LLVM opti-

mizations. This ensures that Cage does not block passes that
might remove stack allocations, such as mem2reg.

6.2 WASI Libc Modifications
We port theWebAssembly System Interface (WASI) andwasi-
libc to wasm64 to run applications relying on libc on wasm64.
To achieve this, Cage adapts the size and the pointer types
from 32 to 64 bits. Further, we modify dlmalloc, the default
allocator in wasi-libc, to provide memory safety for heap
allocations. Cage’ allocator creates memory segments and
returns tagged pointers to these segments. Thus, it protects
both allocator metadata and adjacent allocations from being
accessed or modified through heap overflows, as illustrated
in Fig. 8a. When freeing or reallocating memory, segments
are freed, ensuring temporal safety. Lastly, we recompile
WASI-libc with pointer authentication to ensure function
pointers are signed and authenticated by library code.

6.3 Internal Memory Safety
Figure 12a illustrates an overview of Cage’s implementation
of the internal memory safety (§4.1) extension in wasmtime
usingMTE.Wemodifywasmtime and its supporting libraries
to parse, process, and enforce the memory safety extension

546

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

heap base

index

add

mask

address

(a) Sandboxing with MTE, with all tags being reserved for the
runtime to isolate WASM guests.

heap base

index

add

mask

address

(b)MTE sandboxing and the memory safety extension combined,
with three tags reserved for the guest.

Figure 13. Pointer masking to ensure bounds tags cannot be manipulated.

described in §4.2. More specifically, we add support for MTE
and PAC in the form of new instructions and lowering rules.
We implement segments using MTE. Cage provides memory
safety for the heap via its modified allocator that protects
heap allocations by creating segments. Respectively, to pro-
vide memory safety for the stack, Cage adapts the stack
allocations; the first segment in each function is assigned a
random tag and successive allocations increment the tag by
one (§4.2), eventually wrapping around. This ensures adja-
cent allocations on the stack never share a tag. Importantly,
Cage uses synchronous MTE to trap on memory safety vio-
lations before their effects become observable.

For pointer authentication,Cage ensures that eachWASM
instance receives a distinct secret key to sign pointers. If mul-
tipleWASM instances run in a single process,Cage initializes
a global random value per instance used as the PAC’s instruc-
tions modifier. This is required, as PAC keys are shared per
process. Otherwise, Cage uses PAC instructions without a
modifier.

6.4 External Memory Safety
Fig. 12b presents how Cage utilizes memory tagging to re-
place software-based bounds checks and preserve external
memory safety (§4.1) for each WASM instance. Initially, the
runtime assigns a tag to each instance on module instantia-
tion, which is stored in the heap base address. The effective
memory access address is calculated by adding the accessed
index to the tagged heap base address. The memory of the
runtime is tagged with zero. It enables MTE to catch any
access outside the sandbox due to the tag mismatch.

Cage can further combine both its external and its internal
memory safety extensions by splitting the pointer tag bits
among them. The upper bits are used for internal memory
safety, while the lower bits are reserved for sandboxing. In
Cage’s prototype, we assign three bits for internal memory
safety and one bit for enforcing external memory safety. This
isolates a single WASM instance while assigning three bits
for internal memory safety.

Lastly, Cagemust ensure that adding an untrusted pointer
to the heap base does not allowWASM code to craft arbitrary
values to escape the sandbox. To provide these guarantees,
Cagemasks theWASM index before address computation, as
shown in Fig. 13. Cage masks bits 56–59 when only external
memory safety is enabled (Fig. 13a) and bit 56 when both
internal and external memory safety are enabled (Fig. 13b).
Limitations. A natural limitation of Cage is the number of
sandboxes within a single process. MTE provides a limited

Table 3. Runtime benchmarking configurations.
Variant Ptr width Internal External Ptr auth
baseline wasm32 32-bit No No No
baseline wasm64 64-bit No No No
Cage-mem-safety 64-bit Yes No No
Cage-ptr-auth 64-bit No No Yes
Cage-sandboxing 64-bit No Yes No
Cage 64-bit Yes Yes Yes

number of tags (16). Cage reserves the zero tag for the run-
time, leaving the remaining 15 for the sandboxes. In a future
version of Cage, the number of available sandboxes can be
increased by ensuring tags are only reused for memory re-
gions outside the address range reachable byWASMpointers,
i.e., via combining guard pages with memory tagging.
We must exclude certain tags from being generated by

MTE instructions, as Cage uses the tag bit 56 to distinguish
between runtime and guest memory. On top of that, Cage
must also exclude the zero tag from the guest, as this tag is
reserved for guard slots and untagged segments. To this end,
at runtime startup, we specify which tags can be generated
using the prctl mechanism.

7 Evaluation
7.1 Experimental Setup
We conduct our benchmarks on a Google Pixel 8 equipped
with an ArmV9 Tensor G3 chip, including one Cortex-X3
(2.91GHz, out-of-order), four Cortex-A715 (2.37GHz, out-
of-order), and four Cortex-A510 (1.7 GHz, in-order) cores.
All cores feature MTE and PAC with FEAT_FPAC enabled,
making PAC trap on authentication.
Methodology.We evaluate Cage on the PolyBench/C 3.2
suite [45] and microbenchmarks with the configurations out-
lined in Table 3. These include wasm32 and wasm64 as base-
lines and the memory-safety, pointer-authentication (§6.3),
and sandboxing (§6.4) components from Cage, as well as all
components of Cage combined. We perform and compare
each benchmark on every type of CPU core available on the
Tensor G3 by pinning benchmarks to a single core.

7.2 Performance Overheads
Figure 14 illustrates the mean runtime overheads for the
PolyBench/C benchmarks.
Cage memory safety. Compared to wasm64, our memory
safety extension has amean overhead of 3.6±6.9 %, 5.6±4.3 %,
and 1.5 ± 3.3 %. Cage sandboxing.MTE-based sandboxing
achieves a mean speedup of 3.7±6.5 %, 5.1±4.0 %, and 33.9±
2.4% over wasm64. Cage. When combining our memory

547

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Cortex-X3 Cortex-A715 Cortex-A510
0%

25%

50%

75%

100%

125%

150%

R
u

n
ti

m
e

ov
er

h
ea

d

94.4
100.0

103.6
101.3

96.3 97.9
92.0

100.0
105.6

99.8
94.9 95.5

65.6

100.0 101.5 101.5

66.1
70.7

Lower is better ↓

baseline wasm32

baseline wasm64

Cage-mem-safety

Cage-ptr-auth

Cage-sandboxing

Cage

Figure 14. PolyBench/C runtime overheads of differ-
ent configurations described in Table 3, normalized to
wasm64.

Cortex-X3 Cortex-A715 Cortex-A510
0%

25%

50%

75%

100%

125%

150%

R
u

n
ti

m
e

ov
er

h
ea

d

100.0

122.2 120.9

100.0

115.3 115.2

100.0

115.9 115.4

Lower is better ↓

static dynamic ptr-auth

Figure 15. Overheads of pointer authentication.
safety extension with MTE-based sandboxing, we see a mean
speedup of 2.1± 5.6 %, 4.5± 4.1 %, and 29.2± 2.5 % compared
to wasm64, while providing stronger security guarantees.
Cage pointer authentication. As the PolyBench/C test
suite does not exercise virtual function calls, we only see
an overhead within error margins over 64-bit WASM. We
perform a microbenchmark, comparing static against dy-
namic and authenticated dynamic function calls in Fig. 15.
We observe virtually no overhead occurring as the result of
pointer authentication, as adding pointer authentication only
adds 5 cycles of latency, which is not noticeable. Switching
from static to dynamic function calls results in a 15 %–22%
overhead, depending on the CPU being run on.
Cage Startup Overhead.Wemeasure the startup overhead
for a WASM instance with a static memory of 128MiB, call-
ing a function that immediately returns. The overhead of
tagging the linear memory is hidden by the runtimes startup
overhead.

7.3 Memory Overheads
The memory overheads of Cage consist of two factors: (i)
the overhead of switching from 32-bit to 64-bit WASM and
(ii) the overhead of memory tags caused by MTE, which is
1/32 of the memory with MTE enabled. Tags are stored in a
separate physical address space, the tag PA space [10]. This
space is not managed by the operating system and is not in-
cluded in maximum resident set size (rss) measurements. We
thus estimate the memory overhead with MTE by factoring
in 4 bits for every 16 byte of memory, which results in an ad-
ditional 1/32 = 3.125 %. As our maximum rss measurements
include the runtimes memory, which does not use MTE, this

Table 4. Variants for initializing and tagging memory.
Variant Instr Granule Sets 0 memset
memset - - No Yes
stg stg 16 bytes No No
st2g st2g 32 bytes No No
stgp stgp 16 bytes Yes No
stzg stzg 16 bytes Yes No
st2zg st2zg 32 bytes Yes No

stg+memset stg 16 bytes Yes Yes
st2g+memset st2g 32 bytes Yes Yes

should be considered an over-approximation; in reality, the
memory overhead of Cage is lower. We measure the mean
overhead of wasm64 over wasm32 at 0.6 % and thus estimate
Cage’s overhead at < 5.3 %.

7.4 Security Guarantees
We evaluate the security guarantees from the perspective of
internal and external memory safety (Section 4.1).
External memory safety. Cage implements sandboxing
with MTE in synchronous mode, which enforces sandboxes
through hardware. This prevents sandbox escapes, such as
CVE2023-26489, from accessing memory outside the linear
memory. We prevent malicious code from forging tags to
escape the sandbox, as described in §6.4. However, we limit
the number of sandboxes in one process to at most 15, which
is required to assign a distinct tag to each sandbox and one
to the runtime.
Internal memory safety. Our choice to utilize a memory-
tagging-based approach does not provide complete memory
safety, as we rely on a limited number of tags. As we reserve
one tag for guard allocations and untagged segments, the
probability for a tag collision is 1/15 = 6.6%. If we utilize
MTE for sandboxing, the chance of a tag collision rises to
1/7 ≈ 14.3 %. Cage deterministically protects against off-by-
one overflows, use-after-free, and double-free errors, which
are caught at least until the reuse of a memory allocation.
Signing function pointers further reduces the possible at-
tack surface. As WASM already provides strong guarantees
against control-flow-based attacks, adding pointer authen-
tication primitives does not substantially improve security.
Cage protects against reusing leaked function pointers be-
tween instances and statically deducing function pointers.
We recommend Cage to be used as a secondary defense
mechanism to mitigate classes described in Table 2. With the
ability to deploy the prototype in production, bugs may be
found in production environments not discovered by testing
workloads.
Initializing tagged memory. We benchmark several prim-
itives to initialize an uncached 128MiB large memory region
while setting its allocation tag, representing the scenario of
setting up a WASM instance. We run the configurations in
Table 4 with synchronous MTE and measure the results in
Fig. 16. stzg, stz2g, and stgp are slightly faster than a raw
memset, even though they initialize memory and set tags.

548

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

Cortex-X3 Cortex-A715 Cortex-A510
0

20

40

60

80

100

120

140

R
u

n
ti

m
e

(m
s)

33.6 32.8 31.3 33.3 32.5
29.5

44.4 45.5
48.9 49.1 46.7 46.8 48.0 46.7

53.3 52.0

91.9
96.6

83.1

98.1

78.0 77.2

133
138

Lower is better ↓

memset

stg

stgp

st2g

stzg

stz2g

stg+memset

st2g+memset

Figure 16. Performance results of the benchmarking vari-
ants from Table 4 on 128MiB of memory.

We believe this is the case as they do not perform tag checks
before accessing memory [10]. The Cortex-X3 core compen-
sates for its lower throughput (Table 1) with a higher clock
speed (2.91GHz) compared to the Cortex-A715 (2.37GHz).

8 Related Work
Prior research exists on enriching WASM with memory
safety properties. A significant project is MS-WASM [16, 37],
a memory safety extension for WASM that introduces a new
segment memory distinct from the linear memory, preventing
access through arbitrary offsets. The segment memory re-
lies on accesses through unforgeable handles, akin to CHERI
pointers [57]. On the contrary, Cage does not introduce a
distinct memory region and a new pointer type, but rather
builds upon 64-bit WASM without altering its memory lay-
out to be able to minimize its runtime overheads on devices
supporting Arm’s MTE.
RichWasm is another approach towards memory safety

for WASM [20]. It provides a richly typed intermediate lan-
guage for safe memory interactions between languages with
varying memory management models. RichWasm allows
for static detection of memory safety violations in the con-
text of mixed-language interoperability between strongly
typed languages like Rust or OCaml. Unsafe languages (e.g.,
C/C++) lack information for static safety analysis and are not
directly supported by RichWasm’s type-driven safety model.
In contrast, Cage targets languages that do not encode safety
in their runtime or type system.
Wasm memcheck (wmemcheck) [8] is a tool in wasmtime

providing the ability to check for invalid mallocs, double-
frees, reads, and writes inside a WASM module, assuming
certain properties about malloc and free. It is conceptually
similar to Valgrind memcheck [41].

9 Conclusion
In this paper, we present Cage, a hardware-accelerated We-
bAssembly toolchain to provide memory safety, consisting
of a minimally invasive and adaptable WASM extension, a
compiler toolchain based on LLVM, a modified wasi-libc that
includes a custom allocator to provide spatial and tempo-
ral memory safety, and a wasmtime implementation, that is
responsible for compiling and running the Cage’s WASM

extension using MTE and PAC. Further, Cage improves the
performance of WASM sandboxing mechanism by utilizing
MTE as a replacement for software-based bounds checks.
Our evaluation of Cage highlights that Cage is a memory
safety solution for WASM that is suitable for production
deployment as it incurs minimal runtime and memory over-
heads while providing efficient memory safety guarantees.
Software artifact. Cage is publicly available with its entire
experimental setup [19]. Detailed information can be found
in Appendix A.3.

Acknowledgement
We thank the anonymous reviewers for their helpful feed-
back. We also thank Fritz Rehde, Janne Mantyla, and Car-
los Chinea Perez for their work and feedback in the early
stages of the project. This work was partially supported
by a research grant from Huawei Research Finland, the
TUM Innovation Network Resilient, Trustworthy, Sustain-
able (ReTruSt), a Google Safe Compilation grant, and an ERC
Starting Grant (ID: 101077577).

A Artifact Appendix
A.1 Abstract
This appendix provides the necessary information to build
the artifacts and reproduce the experiments of the CGO’25
paper “Cage: Hardware-Accelerated Safe WebAssembly” by
M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E.
Ekberg., and P. Bhatotia. Cage provides a memory safety
abstraction for WebAssembly, with an implementation in
LLVM to transparently compile unmodified C/C++ programs,
a modified libc that provides memory safety for heap alloca-
tions, and an implementation in wasmtime that utilizes Arm
MTE and PAC to implement the abstraction. We provide an
artifact including pre-compiled binaries and all sources and
scripts to build and evaluate the artifact to reproduce the
results and figures in this paper.

A.2 Artifact Check-List (Meta-Information)
• Program: LLVM with Cage modifications, source included;
wasmtime with Cagemodifications, source included; wasi-libc
with Cage modifications, source included.
• Compilation: Clang 17, rustc 1.80
• Transformations: Stack allocation hardening as an LLVM
pass.
• Binary: Pre-built binaries for wasmtime, LLVM, wasi-sdk in-
cluded. Source code and makefiles to re-generate binaries in-
cluded.
• Run-time environment: Provided binaries built for Linux
6.8.12 (nixOS) and Android 14.
• Hardware:We require an AArch64 device with both PAC and
MTE (Pixel 8) and an x86-64 machine for cross-compilation.
• Metrics: Average runtime overhead; estimated memory over-
head

549

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

• Output: PDFs for the plots; Text files with raw data for tables
and claims in text.
• Experiments:Makefile to run all experiments is included.
• How much disk space required (approximately)?: 25 GiB.
• How much time is needed to prepare workflow (approxi-
mately)?: 2–3 hours.
• How much time is needed to complete experiments (ap-
proximately)?: 2–3 days.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache License with
LLVM Exceptions (LLVM, wasi-libc); Apache License (wasm-
time).
• Workflow framework used?:Makefiles.
• Archived (provide DOI)?: 10.5281/zenodo.13772996

A.3 Description
A.3.1 How Delivered. All source code can be found at the git
repositories below, as well as the following persisted DOI for the
artifact: 10.5281/zenodo.13772996, which contains all source code
as well as the scripts to build and evaluate all artifacts.
• https://github.com/TUM-DSE/llvm-memsafe-wasm

• https://github.com/TUM-DSE/wasmtime-mte

• https://github.com/TUM-DSE/wasm-tools-mte

• https://github.com/martin-fink/wasi-libc

A.3.2 Hardware Dependencies. The evaluation is performed
on a Google Pixel 8 with Arm MTE and PAC. We cross-compile
LLVM, wasmtime, and the benchmarks on an x86 machine.

A.3.3 Software Dependencies. We require the following set of
software on the Google Pixel 8 device:
• Termux
• sshd
• bash
We require the following set of software on the x86 machine to

compile LLVM, wasmtime, and evaluate the benchmarks:
• Linux (tested with 6.8.12)
• nix (tested with 2.18.5): All other dependencies are fetched and
pinned to a specific version using the nix package manager
and can be found in the nix/ directory in the artifact.

A.3.4 Benchmarks. We run the PolyBench/C benchmark suite
to measure the runtime and memory overhead of Cage’s compo-
nents compared to the 32- and 64-bit baselines. To measure startup
overheads, we measure the overhead of instantiating a module
declaring a 128MiB memory and calling an empty function. To
measure pointer authentication overheads, we measure a modified
version of PolyBench/C’s 2mm benchmark, where the matrix mul-
tiplication is moved into a function call that is either performed
statically or dynamically through a vtable.

A.4 Installation
To get started, download the artifact from Zenodo, navigate to the
artifact directory, and run the following command to download all
required dependencies using nix.

1 curl -L -o cgo-artifact.zip https://zenodo.org/records
/13772996/files/cgo-artifact.zip?download=1

2 nix-shell -p unzip --run 'unzip cgo-artifact.zip'
3 cd cgo-artifact
4 cd nix

5 nix develop
6 cd ..

This opens a new shell with all dependencies required to build,
run, and evaluate all benchmarks.

A.4.1 SSH Connection to the Pixel 8. Install Termux from the
Play Store or F-Droid. Once Termux is opened, install and start
sshd, then connect to the x86 machine and open a port forwarding,
allowing the x86 machine to connect to the Pixel 8.

1 pkg install sshd
2 sshd
3 ssh -R 8023:localhost:8022 user@x86machine

To connect to the Pixel 8, replace the following two lines in
config.mk with the values corresponding to your device.

1 export SSH_HOST=u0_a265@localhost
2 export SSH_PORT=8023

A.5 Experiment Workflow
All required software (LLVM, wasmtime, benchmarks) is cross-
compiled on the x86 machine and copied to the Pixel 8 using a set
of provided scripts.

Building LLVM, wasmtime, wasi-sdk, and the Benchmarks:
[1 human-minute + 2–3 compute-hours]

For convenience and to reduce build times, we have included
pre-built versions of wasi-sdk and LLVM in the artifact. To build
them from scratch, delete the following files:

1 rm -rf toolchain/wasi-sdk-20
2 rm -rf toolchain/wasi-sdk-20+memory64
3 rm -rf toolchain/wasi-sdk-20+memory64+memsafety
4 rm -rf toolchain/wasi-sdk-20+memory64+memsafety+ptr-auth
5 rm -rf toolchain/wasi-sdk-20+memory64+ptr-auth

To build the toolchain and benchmarks, run:
1 make -j$(nproc) build

This produces the following artifacts, as well as the benchmarks
used in this paper:

1 # wasmtime:
2 ./toolchain/wasmtime/target/aarch64-linux-android/release/

wasmtime
3 # llvm:
4 ./toolchain/wasi-sdk-20+memory64+memsafety+ptr-auth/wasi-sdk

-wasi-sdk-20+memory64+memsafety+ptr-auth/bin/clang
5 # wasi-sdk with different configurations
6 ./toolchain/wasi-sdk-20
7 ./toolchain/wasi-sdk-20+memory64
8 ./toolchain/wasi-sdk-20+memory64+memsafety
9 ./toolchain/wasi-sdk-20+memory64+ptr-auth
10 ./toolchain/wasi-sdk-20+memory64+memsafety+ptr-auth

A.6 Evaluation and Expected Result
Expected duration: [1 human-minute + 2–3 compute-days]
Running the experiments on the Pixel 8 devices takes a long time.
This is primarily caused by our choice to run all experiments on
all three types of cores found in the Pixels chipset. Running the
benchmarks on the low-power Cortex-A510 cores takes up most of
the runtime. To perform the evaluation, run:

550

https://doi.org/10.5281/zenodo.13772996
https://doi.org/10.5281/zenodo.13772996
https://github.com/TUM-DSE/llvm-memsafe-wasm
https://github.com/TUM-DSE/wasmtime-mte
https://github.com/TUM-DSE/wasm-tools-mte
https://github.com/martin-fink/wasi-libc

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA M. Fink, D. Stavrakakis, D. Sprokholt, S. Chakraborty, J.-E. Ekberg, P. Bhatotia

1 make -j$(nproc) evaluate

This copies all benchmarks and artifacts to the connected Pixel
8, performs benchmarks, copies the results to the x86 machine,
and creates plots and results claimed in the paper. The results can
be found in the results/ directory. We reproduce the following
figures/claims:
• Runtime overhead (Fig. 14): results/runtime.pdf
• Pointer auth. overhead (Fig. 15): results/ptr-auth.pdf
• Memory overhead (Section 7.3): results/mem.txt
• Startup overhead (Section 7.2): results/startup.txt
• Memory tagging overheads (Fig. 16): results/stg.pdf

Additionally, we reproduce the following architectural analysis
results from §2:
• MTE sync/async mode overhead (Fig. 4):
results/mte-mode.pdf
• MTE instruction latencies/throughput (Table 1):
results/inst-cycles.txt

A.7 Notes
We provide hardware with the required software preinstalled for
the CGO’25 artifact reviewers.

A.8 Methodology
Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/artifact-review-

badging

References
[1] [n. d.]. Docker docs - Wasm workloads (Beta). https://docs.docke

r.com/desktop/wasm/. https://docs.docker.com/desktop/wasm/

Accessed on May 15, 2024.
[2] [n. d.]. Memory Safety. https://www.chromium.org/Home/chromium-

security/memory-safety/. https://www.chromium.org/Home/chromi

um-security/memory-safety/ Accessed on March 14, 2024.
[3] 2019. CVE-2023-26489. Available from NIST National Vulnerability

Database, CVE-ID CVE-2023-26489.. https://nvd.nist.gov/vuln/detail

/CVE-2023-26489

[4] 2024. WebAssembly - Security. https://webassembly.org/docs/secur

ity/. https://webassembly.org/docs/security/ Accessed on May 15,
2024.

[5] 2024. WebAssembly Use Cases. https://webassembly.org/docs/use-

cases/ Accessed on March 28, 2024.
[6] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009.

Control-flow integrity principles, implementations, and applications.
ACM Transactions on Information and System Security (TISSEC) 13, 1
(2009), 1–40. https://doi.org/10.1145/1609956.1609960

[7] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009.
Baggy Bounds Checking: An Efficient and Backwards-Compatible
Defense against Out-of-Bounds Errors.. InUSENIX Security Symposium,
Vol. 10. 96. https://dl.acm.org/doi/10.5555/1855768.1855772

[8] Bytecode Alliance. 2024. Wasm memcheck. https://docs.wasmtime.

dev/wmemcheck.html

[9] Bytecode Alliance. 2024. Wasmtime. https://github.com/bytecodeall

iance/wasmtime A fast and secure runtime for WebAssembly.
[10] ARM Ltd. [n. d.]. Arm Architecture Reference Manual for A-profile

architecture. White Paper. https://developer.arm.com/documentatio

n/ddi0487/latest/ Accessed: 2024-03-21.

[11] ARM Ltd. 2019. ArmV8.5-A Memory Tagging Extension. White Paper.
https://developer.arm.com/documentation/102925/latest/ Accessed:
2023-12-14.

[12] Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod
Bhatotia. 2022. SafePM: A sanitizer for persistent memory. In Pro-
ceedings of the Seventeenth European Conference on Computer Systems.
506–524. https://doi.org/10.1145/3492321.3519574

[13] Intel Corporation. 2013. Introduction to Intel(R) Memory Protection
Extensions. https://software.intel.com/en-us/Articles/introduction-

to-intel-memory-protection-extensions Accessed 2024-05-09.
[14] Thurston Dang, Petros Maniatis, and David Wagner. 2015. The Per-

formance Cost of Shadow Stacks and Stack Canaries. ASIACCS 2015 -
Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security (04 2015), 555–566. https://doi.org/10.1145/

2714576.2714635

[15] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFE-
Code: enforcing alias analysis for weakly typed languages. In PLDI
’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation (Ottawa, Ontario, Canada). ACM,
NewYork, NY, USA, 144–157. https://doi.org/10.1145/1133981.1133999

[16] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy,
and Deian Stefan. 2019. Position paper: Progressive memory safety
for webassembly. In Proceedings of the 8th International Workshop
on Hardware and Architectural Support for Security and Privacy. 1–8.
https://doi.org/10.1145/3337167.3337171

[17] Gregory Duck and Roland Yap. 2016. Heap bounds protection with
low fat pointers. 132–142. https://doi.org/10.1145/2892208.2892212

[18] Gregory J. Duck, R. Yap, and L. Cavallaro. 2017. Stack Bounds Protec-
tion with Low Fat Pointers. In Network and Distributed System Security
Symposium (NDSS). https://doi.org/10.14722/ndss.2017.23287

[19] Martin Fink, Stavrakakis Dimitrios, Sprokholt Dennis, Chakraborty
Soham, Ekberg Jan-Erik, and Bhatotia Pramod. 2024. "Cage: Hardware-
Accelerated Safe WebAssembly" Artifact. https://doi.org/10.5281/zeno

do.13772996

[20] Michael Fitzgibbons, Zoe Paraskevopoulou, Noble Mushtak, Michelle
Thalakottur, Jose Sulaiman Manzur, and Amal Ahmed. 2024. Rich-
Wasm: Bringing Safe, Fine-Grained, Shared-Memory Interoperability
Down to WebAssembly. 8 (2024), 214:1656–214:1679. Issue PLDI.
https://doi.org/10.1145/3656444

[21] WebAssembly Community Group. 2024. Memory64: 64-bit Memory
Indexing for WebAssembly. https://github.com/WebAssembly/mem

ory64 Proposal for 64-bit memory addressing in WebAssembly.
[22] WebAssembly Community Group. 2024. WebAssembly System Inter-

face - WASI. https://github.com/WebAssembly/WASI

[23] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017.
Bringing the web up to speed with WebAssembly. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 185–200. https://doi.org/10.1145/3062341.3062363

[24] Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-Weight
Bounds Checking. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization (San Jose, California) (CGO ’12).
Association for Computing Machinery, New York, NY, USA, 135–144.
https://doi.org/10.1145/2259016.2259034

[25] International Organization for Standardization 2018. ISO/IEC 9899:2018
Programming languages – C. International Organization for Standard-
ization, Geneva, Switzerland. https://www.iso.org/standard/74528.h

tml

[26] International Organization for Standardization 2020. ISO/IEC
14882:2020 Programming languages – C++. International Organiza-
tion for Standardization, Geneva, Switzerland. https://www.iso.org/st

andard/79358.html

[27] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. 2002. Cyclone: a safe dialect of

551

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://docs.docker.com/desktop/wasm/
https://docs.docker.com/desktop/wasm/
https://docs.docker.com/desktop/wasm/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://nvd.nist.gov/vuln/detail/CVE-2023-26489
https://nvd.nist.gov/vuln/detail/CVE-2023-26489
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/
https://doi.org/10.1145/1609956.1609960
https://dl.acm.org/doi/10.5555/1855768.1855772
https://docs.wasmtime.dev/wmemcheck.html
https://docs.wasmtime.dev/wmemcheck.html
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/102925/latest/
https://doi.org/10.1145/3492321.3519574
https://software.intel.com/en-us/Articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/Articles/introduction-to-intel-memory-protection-extensions
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.14722/ndss.2017.23287
https://doi.org/10.5281/zenodo.13772996
https://doi.org/10.5281/zenodo.13772996
https://doi.org/10.1145/3656444
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/WASI
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2259016.2259034
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html

Cage: Hardware-Accelerated Safe WebAssembly CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

C.. In USENIX Annual Technical Conference, General Track. 275–288.
https://dl.acm.org/doi/10.5555/647057.713871

[28] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. 2020. Spectre attacks: Exploiting speculative execution.
Commun. ACM 63, 7 (2020), 93–101. https://doi.org/10.1145/3399742

[29] Pierre Krieger. 2024. The redshirt operating system. https://github.c

om/tomaka/redshirt

[30] Taddeus Kroes, Koen Koning, Erik Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2018. Delta pointers: buffer overflow checks without the
checks. 1–14. https://doi.org/10.1145/3190508.3190553

[31] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan
Trach, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2017.
SGXBOUNDS: Memory Safety for Shielded Execution. In Proceedings
of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). Association for ComputingMachinery, New York,
NY, USA, 205–221. https://doi.org/10.1145/3064176.3064192

[32] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Can-
dea, R Sekar, and Dawn Song. 2018. Code-pointer integrity. In
The Continuing Arms Race: Code-Reuse Attacks and Defenses. 81–116.
https://dl.acm.org/doi/10.5555/2685048.2685061

[33] kwast os. 2024. Kwast: Rust operating system running WebAssembly
as userspace in ring 0. https://github.com/kwast-os/kwast

[34] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
symposium on code generation and optimization, 2004. CGO 2004. IEEE,
75–86. https://doi.org/10.5555/977395.977673

[35] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Ev-
erything old is new again: Binary security of WebAssembly. In 29th
USENIX Security Symposium (USENIX Security 20). 217–234. https:

//dl.acm.org/doi/10.5555/3489212.3489225

[36] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N Asokan. 2019. {PAC} it up: Towards pointer
integrity using {ARM} pointer authentication. In 28th USENIX Security
Symposium (USENIX Security 19). 177–194. https://dl.acm.org/doi/10.

5555/3361338.3361352

[37] Alexandra E Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson,
Aidan Denlinger, Craig Disselkoen, Conrad Watt, Bryan Parno, Marco
Patrignani, Marco Vassena, et al. 2023. Mswasm: Soundly enforcing
memory-safe execution of unsafe code. Proceedings of the ACM on
Programming Languages 7, POPL (2023), 425–454. https://doi.org/10.1

145/3554344

[38] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad
Rieck. 2019. New Kid on the Web: A Study on the Prevalence of
WebAssembly in the Wild. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 16th International Conference, DIMVA 2019,
Gothenburg, Sweden, June 19–20, 2019, Proceedings 16. Springer, 23–42.
https://doi.org/10.1007/978-3-030-22038-9_2

[39] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve
Zdancewic. 2009. SoftBound: Highly compatible and complete spatial
memory safety for C. In Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 245–258.
https://doi.org/10.1145/1543135.1542504

[40] George C Necula, Scott McPeak, and Westley Weimer. 2002. CCured:
Type-safe retrofitting of legacy code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
128–139. https://doi.org/10.1145/1065887.1065892

[41] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework
for heavyweight dynamic binary instrumentation. ACM Sigplan notices
42, 6 (2007), 89–100. https://doi.org/10.1145/1273442.1250746

[42] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Fel-
ber, and Christof Fetzer. [n. d.]. Intel MPX Explained: A Cross-layer
Analysis of the Intel MPX System Stack. 46, 1 ([n. d.]), 111–112.

https://doi.org/10.1145/3292040.3219662

[43] Benjamin C Pierce. 2002. Types and programming languages. MIT
press. ISBN: 9780262162098.

[44] Gordon D Plotkin. 1981. A structural approach to operational seman-
tics. (1981).

[45] Louis-Noel Pouchet. [n. d.]. Polybench: The polyhedral benchmark
suite. https://web.cs.ucla.edu/~pouchet/software/polybench/

Accessed: 2024-03-25.
[46] Qualcomm Technologies, Inc. 2017. Pointer Authentication on ArmV8.3:

Design and Analysis of the New Software Security Instructions. White
Paper. https://www.qualcomm.com/content/dam/qcomm-martech/

dm-assets/documents/pointer-auth-v7.pdf Accessed: 2023-12-14.
[47] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitriy Vyukov. 2012. AddressSanitizer: A fast address sanity checker.
In 2012 USENIX annual technical conference (USENIX ATC 12). 309–318.
https://doi.org/10.5555/2342821.2342849

[48] Kostya Serebryany, Chris Kennelly, Mitch Phillips, Matt Denton, Marco
Elver, Alexander Potapenko, Matt Morehouse, Vlad Tsyrklevich, Chris-
tian Holler, Julian Lettner, et al. 2023. GWP-ASan: Sampling-Based
Detection of Memory-Safety Bugs in Production. arXiv preprint
arXiv:2311.09394 (2023). https://doi.org/10.1145/3639477.3640328

[49] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad
Tsyrklevich, and Dmitry Vyukov. 2018. Memory Tagging and how
it improves C/C++ memory safety. arXiv preprint arXiv:1802.09517
(2018).

[50] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok:
Eternal war in memory. In 2013 IEEE Symposium on Security and Pri-
vacy. IEEE, 48–62. https://doi.org/10.1109/SP.2013.13

[51] Raven Szewczyk, Kimberley Stonehouse, Antonio Barbalace, and Tom
Spink. 2022. Leaps and bounds: Analyzing WebAssembly’s perfor-
mance with a focus on bounds checking. In 2022 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 256–268.
https://doi.org/10.1109/IISWC55918.2022.00030

[52] Gavin Thomas. 2019. A proactive approach to more secure code.
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-

more-secure-code/. https://msrc.microsoft.com/blog/2019/07/a-

proactive-approach-to-more-secure-code/ Accessed on March 14,
2024.

[53] Jeff Vander Stoep and Chong Zhang. 2019. Queue the Hardening
Enhancements. https://security.googleblog.com/2019/05/queue-

hardening-enhancements.html. https://security.googleblog.com/20

19/05/queue-hardening-enhancements.html Accessed on March 14,
2024.

[54] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Gra-
ham. 1993. Efficient software-based fault isolation. In Proceedings of the
fourteenth ACM symposium on Operating systems principles. 203–216.
https://doi.org/10.1145/168619.168635

[55] Robert N M Watson, Alexander Richardson, Brooks Davis, John Bald-
win, David Chisnall, Jessica Clarke, Nathaniel Filardo, SimonWMoore,
Edward Napierala, Peter Sewell, and Peter G Neumann. 2020. CHERI
C/C++ Programming Guide. (June 2020).

[56] Elliott Wen and Gerald Weber. 2020. Wasmachine: Bring IoT up to
Speed with A WebAssembly OS. In 2020 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom
Workshops). 1–4. https://doi.org/10.1109/PerComWorkshops48775.2

020.9156135

[57] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI capability
model: Revisiting RISC in an age of risk. ACM SIGARCH Computer
Architecture News 42, 3 (2014), 457–468. https://doi.org/10.1145/2678

373.2665740

Received 2024-05-23; accepted 2024-07-22

552

https://dl.acm.org/doi/10.5555/647057.713871
https://doi.org/10.1145/3399742
https://github.com/tomaka/redshirt
https://github.com/tomaka/redshirt
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3064176.3064192
https://dl.acm.org/doi/10.5555/2685048.2685061
https://github.com/kwast-os/kwast
https://doi.org/10.5555/977395.977673
https://dl.acm.org/doi/10.5555/3489212.3489225
https://dl.acm.org/doi/10.5555/3489212.3489225
https://dl.acm.org/doi/10.5555/3361338.3361352
https://dl.acm.org/doi/10.5555/3361338.3361352
https://doi.org/10.1145/3554344
https://doi.org/10.1145/3554344
https://doi.org/10.1007/978-3-030-22038-9_2
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/3292040.3219662
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://doi.org/10.5555/2342821.2342849
https://doi.org/10.1145/3639477.3640328
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/IISWC55918.2022.00030
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://doi.org/10.1145/168619.168635
https://doi.org/10.1109/PerComWorkshops48775.2020.9156135
https://doi.org/10.1109/PerComWorkshops48775.2020.9156135
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/2678373.2665740

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Memory Safety
	2.3 Memory Safety Hardware Extensions

	3 Motivation
	4 Design
	4.1 System Model
	4.2 WebAssembly Extension

	5 Semantics
	5.1 Typing Rules
	5.2 Small-Step Reduction Rules

	6 Implementation
	6.1 LLVM Compiler Toolchain
	6.2 WASI Libc Modifications
	6.3 Internal Memory Safety
	6.4 External Memory Safety

	7 Evaluation
	7.1 Experimental Setup
	7.2 Performance Overheads
	7.3 Memory Overheads
	7.4 Security Guarantees

	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Notes
	A.8 Methodology

	References

