
IndiLog: Bridging Scalability and Performance in
Stateful Serverless Computing with Shared Logs

Maximilian Wiesholler
TU Munich/Huawei Munich Research Center

Florin Dinu
Huawei Munich Research Center

Javier Picorel
Huawei Munich Research Center

Pramod Bhatotia
TU Munich

Abstract

State management has long been a challenge for serverless
applications. Owing to their failure resilience and consis-
tency guarantees, distributed shared logs have been recently
proposed as a promising storage substrate enabling stateful
serverless applications. We show that, unfortunately, state-
of-the-art sacrifices compute tier scalability for log access
performance, a particularly undesirable exchange for the dy-
namic serverless environment. The culprit is the log indexing
architecture, namely relying on complete local indexes colo-
catedwith serverless functions. This design prevents efficient
scaling and even risks out-of-memory errors.
IndiLog is a novel distributed indexing architecture en-

abling stateful serverless applications to efficiently access a
distributed shared log for state management without imped-
ing compute tier scalability. IndiLog uses a combination of
local, size-bounded indexes designed to capture the expected
locality patterns alongside a sharded and balanced index tier
which tackles the challenges of supporting log sub-streams
and bounded reads. IndiLog bests or matches Boki, a state-
of-the-art distributed shared log, over various index hit rates,
workload concurrency and compute tier scaling sizes.

CCS Concepts

• Information systems→ Distributed storage; • Com-

puter systems organization → Cloud computing.

Work done during Maximilian’s internship at Huawei Munich.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SYSTOR ’24, September 23–24, 2024, Virtual, Israel

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1181-7/24/09
https://doi.org/10.1145/3688351.3689159

Keywords

Serverless computing, distributed shared log

1 Introduction

Serverless state management has long been complicated
by the ephemeral nature of serverless functions [8, 10, 16].
Distributed shared logs have been recently recognized as a
promising state management substrate for serverless [7] be-
cause they transparently provide failure resilience and strong
consistency guarantees, freeing serverless frameworks from
dealing with this complexity.

A distributed shared log [2, 3, 7] is an ordered sequence of
records distributed across several storage nodes. Such logs
benefit from storage disaggregation [17] where the storage
nodes are separated from the compute nodes for cost and
manageability advantages. Internally, a distributed shared
log uses an ordering tier [5] for assigning unique sequence
numbers (SQNs) to records and a storage tier for storing the
records. Outside of the log, a compute tier runs serverless
functions which access the log via a simple API composed
of append, read and trim calls. To locate the storage server
storing a specific record, an index structure is internally used.
To fully realize the serverless promise of elasticity when

leveraging a distributed shared log for serverless state man-
agement, two requirements are crucial. First, for perfor-
mance, functions needs to access the log efficiently, especially
since many are short-lived [16]. Second, the scalability of the
compute tier should not be hindered by the log accesses be-
cause efficient dynamic scaling is central to serverless ability
to transparently execute large bursts of functions [9].
We show that, unfortunately, the approach used by the

state-of-the-art to provide efficient log access severely lim-
its compute tier scalability. Specifically, state-of-the-art re-
lies on complete log indexes stored solely on the compute
tier nodes [7]. When scaling the compute tier, this design
leaves serverless applications with three sub-optimal options:
slow log accesses, slow function start-up times or wasted re-
sources. To explain, consider 𝑁 compute nodes each storing
a local, complete copy of the log index (partial local indexes
have the same problems). A sudden burst of functions ne-
cessitates𝑀 extra compute nodes which lack an index copy.

1

https://doi.org/10.1145/3688351.3689159
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3688351.3689159&domain=pdf&date_stamp=2024-09-16

SYSTOR ’24, September 23–24, 2024, Virtual, Israel Maximilian Wiesholler, Florin Dinu, Javier Picorel, and Pramod Bhatotia

𝑀 could be large relative to 𝑁 as serverless bursts can be
sizeable [9]. The first sub-optimal option is for the𝑀 nodes
to (temporarily) query the indexes on the 𝑁 nodes. However,
this creates contention, slowing down the index accesses
from the𝑀 nodes and even the local index accesses on the
𝑁 nodes (§3). The second option is for the𝑀 nodes to delay
functions until an index copy is transferred locally. This can
significantly delay function completion (many functions are
short-lived [16]) especially for large indexes. Also, the 𝑀

nodes may only be used briefly (due to a transient burst),
making the transfer of large indexes unnecessarily expensive.
The third option is to proactively ensure that 𝑁 >> 𝑀 which
reduces contention when the𝑀 nodes query the remote in-
dexes on the 𝑁 nodes. This wastes resources by keeping
compute nodes up solely for their index and also requires
advanced workload knowledge.

A second problem with relying on complete local indexes
in the compute tier is that they take considerable resources
away from serverless functions. Index lookups require CPU
cycles, index updates require CPU cycles and network band-
width and storing the index requires memory. In time, large
indexes can even lead to out-of-memory (OOM) crashes. We
analyzed the resource utilization of the complete local in-
dexes in Boki [7] (§3), a state-of-the-art distributed shared
log for serverless. We find that index lookups have a non-
trivial CPU cost. Remote index lookups from 3 4-core VMs
consume an entire core on a similar VM storing the index.
Also, the local index can quickly exhaust the memory on a
compute node (in 3 min on a 16GB RAM VM) leading to an
OOM crash. Fundamentally, complete local indexes unneces-
sarily couple the resources on any one compute node with
the size of the entire distributed log: the maximum index size
limits the total log size. Alternative approaches also have
limitations. Moving the index to secondary storage can miti-
gate the memory usage problem but can significantly slow
down log accesses, a significant problem for the short-lived
serverless functions. Partial indexes can also mitigate the
memory usage problem but not the CPU utilization.
This paper presents IndiLog, a distributed indexing ar-

chitecture enabling serverless applications to efficiently ac-
cess a distributed shared log for state management, crucially,
without hindering compute tier scalability. IndiLog relies
on a combination of local indexes on the compute nodes
and an index tier. A local index is size-limited (thus often
incomplete) and captures the locality patterns of serverless
applications. The local index is optional: compute nodes can
function without one to save local resources. The index tier is
composed of dedicated index nodes, it is always-on and com-
plete, i.e., it can answer any index lookup. IndiLog supports
log sub-streams [3, 7, 18], a popular way to enable selective
log reads as well as bounded reads [7] which use a given
SQN as a bound and return the closest match to it. Together,

sub-streams and bounded reads pose challenges for the index
tier. Sub-streams can grow large and usually contain non-
consecutive SQNs so IndiLog uses sharding to distribute
non-deterministically the index for sub-streams across sev-
eral index nodes. Bounded reads on such sub-streams may
need index lookups that span several index tier nodes. For
this, IndiLog uses a dedicated index aggregator node.

The contributions of this paper are:

• We identify and characterize the trade-off between
performance and scalability made by Boki, the state-
of-the-art distributed shared log for serverless.

• We present a measurement study of the resource usage
and scalability implications of indexes in Boki.

• We introduce IndiLog, a novel distributed indexing
architecture for distributed shared logs providing effi-
cient log accesses and compute tier scalability.

• We integrate IndiLog with the storage and ordering
tiers of a shared log.

• IndiLog achieves better or comparable performance
to Boki over various index hit rates, workload concur-
rency and compute tier scaling sizes.

2 Background

2.1 Distributed shared logs

Overview A distributed shared log is an ordered sequence
of records stored across several storage nodes. It is usually
append-only, i.e., once appended data is immutable. Such logs
facilitate building complex applications on top by offering
useful guarantees like strong consistency, failure resilience
and durability even when accessed concurrently by clients.

Component tiers The log comprises an ordering and a
storage tier. The ordering tier assigns unique SQNs to records
using dedicated servers called sequencers. Corfu [2] uses a
single sequencer which unfortunately could be a bottleneck.
Scalog [5] enables high throughput ordering using record
batching, a tree of aggregators and a replicated ordering
tier. The storage tier stores the data, is usually sharded, and
uses data replication for failure resilience and load balancing.
Data is stored in SSDs [2] or RAM.
The applications accessing the log run in a compute tier.

Especially in the context of serverless workloads, there is
significant benefit in using storage disaggregation [17] where
the compute nodes are physically separated from the storage
nodes for cost, scalability and manageability advantages.

APIs The log is accessed via a simple API composed of ap-
pend, read and trim calls. The append adds a new record
to the log tail and returns to the caller the corresponding,
unique SQN. The read takes an SQN and returns the corre-
sponding record, if one exists. There are two types of reads.

2

IndiLog: Bridging Scalability and Performance in Stateful Serverless Computing with Shared Logs SYSTOR ’24, September 23–24, 2024, Virtual, Israel

Scalog [5] and Corfu [2] offer point reads where the read tar-
gets a specific SQN. Boki [7] offers bounded reads, which re-
turn the next/previous record whose SQN is greater/smaller
or equal to a given SQN (the lower/upper bound).

Ordering and multiplexing Several log designs [2, 5, 7]
offer a single total order across all the records stored across all
storage shards. Other proposals [12] provide partial ordering.
Multiple applications can write to the log concurrently,

thus it is useful to create logical sub-streams in the log so
that applications can selectively read data (e.g. for efficient
log replays). To implement sub-streams Tango [3] uses back-
pointers and Boki [7] uses tags assigned to records during
appends. vCorfu [18]’s materialized streams are similar.

Storing and locating records Given an SQN, a read needs
to locate the storage shard storing the corresponding record.
One storage node can host one or more shards. Corfu [2]
uses a deterministic round-robin mapping between storage
shards and SQNs. This constrained placement makes locat-
ing a record trivial, but has performance implications for
both reads and writes [5]. Scalog [5] and Boki [7] avoid de-
terministic mappings. An SQN can be stored on any shard
so an indexing mechanism is needed. Boki uses a complete
log index stored in RAM and collocated with the compute
nodes. Record caches can be used on the compute nodes to
store recently accessed or hot records.

Applications The canonical use for a shared log involves
databases which write transaction information to the log
for failure resilience. After failures, the log is replayed for
recovery. Several proposals have also implemented complex
data structures [3] and protocols [4] on top of a shared log.
Support for serverless applications can also be built on top
of a shared log. Boki provides support libraries for (1) fault-
tolerant workflows by adapting Beldi’s techniques [20] to
provide exactly-once semantics and transactions, (2) durable
object storage for stateful functions by adapting Tango [3]
and (3) message queues by adapting vCorfu’s techniques.

2.2 Serverless requirements

When designing our indexing architecture for a distributed
shared log for serverless state management we consider the
strict performance requirements of serverless applications.

Fast readsMany serverless tasks are short lived [8, 16]. In
the Azure Functions production workload [16], 50% of the
serverless tasks run in less than 1s. Similarly, [9] describes
runtimes starting from hundreds of milliseconds. This is in
line with the millisecond billing granularity available today
(e.g. 1ms in AWS Lambda [11]). Thus, reads and any index
lookup operations that they depend on should complete as

fast as possible. This also points to the benefits of servicing
most index lookups locally on the nodes running the tasks.

Low start-up times Serverless tasks are known to be im-
pacted by the start-up times (the cold start problem) of the
VMs and of the frameworks they run on because the task exe-
cution times and the cold start take comparable time [15, 16].
Thus, tasks should not wait for large indexes to be replicated
locally before starting as this worsens the cold start problem.

Extreme scalability Serverless applications are known for
creating large, sudden bursts of tasks [9]. To accommodate
the bursts, the compute tier needs to efficiently scale out.
This suggests that the approach to access the shared log
should in no way impact the scalability of the compute tier.

3 Motivation

This section analyzes the resource usage and compute tier
scalability implications of the indexing design in Boki [7], a
state-of-the-art distributed shared log. In Boki, every com-
pute node keeps a complete index of the entire distributed
shared log, in the hope that it fits in RAM thus allowing
fast local lookups. The index contains tags and SQNs but no
records. We use VMs (nodes) with 4 cores and 16GB RAM.
The VMs run a mixed append/read workload, where an ap-
pend with a new random tag completes and then the value
is read back. Boki’s threading model is detailed in §5. Gorou-
tines generate append/read calls continuously. On each VM,
3 OS threads run the workload (96 Goroutines).

We find that (1) complete indexes in Boki can quickly ex-
haust the VM memory leading to out-of-memory (OOM)
crashes, (2) index lookups can consume significant CPU cy-
cles and (3) scaling the compute tier by allowing new com-
pute nodes without an index to remotely query the indexes
on the existing nodes significantly impacts the request la-
tency on both types of nodes. In turn, these lessons drive the
design of IndiLog (§4): IndiLog only stores partial indexes
on compute nodes and a separate index tier ensures that the
compute tier scalability remains unhindered.

A complete local index can quickly exhaust local RAM

Figure 1a shows the RAM usage over time for one Boki
node with a complete index. It is one of four Boki nodes
running functions which append new records to the log. The
RAM usage is measured in two ways: with OS tools (the
top two dark-red lines) and inside the indexing process with
knowledge of the tag and record sizes (the bottom two blue
lines). The OS shows higher RAM usage because the memory
allocator doubles the size of the data structures when nearly
full. The dotted lines show the case when the same tag is
reused. For the solid lines a new tag is used for every append.

In all cases, the RAM usage grows fast. In the worst case,
when every tag is new, the system crashes with an OOM

3

SYSTOR ’24, September 23–24, 2024, Virtual, Israel Maximilian Wiesholler, Florin Dinu, Javier Picorel, and Pramod Bhatotia

0 200 400 600 800 1000 1200
Time (s)

0

2

4

6

8

10

12

14

M
em

or
y

(G
B)

Index Memory - empty tag
RAM of VM - empty tag
Index Memory - new tag
RAM of VM - new tag

(a) Memory usage over time

0 50 100 150 200 250
Concurrency (# GO Routines)

0

20

40

60

80

100

120

CP
U

(%
)

Local funcs + local index lookups
Only remote index lookups
Local funcs + local & remote index lookups

(b) CPU usage vs concurrency

Figure 1: Resource usage for indexing in Boki.

error after only 800s. At best, when one tag is reused, the
RAM usage grows linearly and an OOM crash is inevitable
after less than 1 hour. More RAM would only proportionally
delay the inevitable OOM crash. The OOM crash tracks the
OS memory usage but it would occur even based on the
index-level measurement. In a real deployment the OOM
would be hastened because plenty of RAM would be taken
by the functions themselves. Second, the size of the index
depends on the appends generated across all compute nodes

since the index captures the entire log. We used 4 nodes so
more nodes would hasten the OOM crash.

The take-away is that a complete local index is only useful
for restricted workloads (few appends) or restricted duration,
both of which limit applicability. Thus, an indexing design
is needed that uses only partial local indexes but can still
capture most of the accesses locally for good performance.

A local index uses plenty of CPU Figure 1b shows the CPU
usage of a single Boki node for different concurrency levels
in 3 cases: (1) only local functions and index lookups, (2)
local functions and index lookups plus remote index lookups
and (3) only remote index lookups. In (2) and (3) the remote
index lookups are generated by 3 other nodes. We present
(3) because this is the only way to scale the compute tier in
Boki without waiting for entire indexes to be replicated on a
new machine. 100% CPU usage means 1 core fully utilized.
The main take-away is that remote index lookups are

expensive. These remote requests can use in the absence
of any functions (3), one entire core on the node hosting
the index (purple starred line). Comparing (1) and (2) (blue
circled line vs grey triangle line) shows the impact of adding
remote index lookups on top of a local workload. There is
an increase in CPU usage at low concurrency but smaller
than (3) (purple starred line) due to additional concurrency
and locking overheads (§5). The same overheads lead to CPU
utilization being slightly lower at higher concurrency.

Thus, scaling a compute tier via remote index lookups can
use significant CPU resources on the nodes hosting the index.
Thus, there is a need for a compute tier scaling approach
that does not impact existing compute nodes.

100 200 300 400 500
Concurrency (# GO Routines)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (k

Op
/s

)Append 0.5
Append 0.99
Read 0.5
Read 0.99
Throughput

(a) @indexnode - lw

100 200 300 400 500
Concurrency (# GO Routines)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (k

Op
/s

)Append 0.5
Append 0.99
Read 0.5
Read 0.99
Throughput

(b) @indexnode - lw + rlook

100 200 300 400 500
Concurrency (# GO Routines)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (k

Op
/s

)Append 0.5
Append 0.99
Read 0.5
Read 0.99
Throughput

(c) @remote - rlook

100 200 300 400 500
Concurrency (# GO Routines)

2
4
6
8

10
12
14
16
18

La
te

nc
y

(m
s)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (k

Op
/s

)Append 0.5
Append 0.99
Read 0.5
Read 0.99
Throughput

(d) @remote - lw + rlook

Figure 2: Impact of remote index lookups on request

latency and throughput. lw = local workload on the in-

dex node, rlook = remote lookups from remote nodes.

Impact of remote index lookups on latency and through-

put Figure 2 illustrates the downside of scaling the compute
tier in Boki by having new nodes query indexes on existing
nodes. There are 4 nodes: 1 index and 3 remote. The index
node has a complete local index and may also run functions
while the 3 remotes do not have a local index (emulating
a compute tier scaling from 1 to 4 nodes) and send remote
index lookups (only for reads, not needed for appends) to
the index node. The figures show the latency (50th and 99th
percentiles) for reads and appends and the throughput for
each node type. On the x-axis we vary the concurrency level
(simultaneously on all 4 nodes) by adding more OS threads.
As per §6.1, the latencies do not include queueing time.

Figure 2a shows the latency on the index node in isolation.
No remote index lookups exist in this case, only the local
workload. As expected, latencies increase with concurrency
and so does the throughput (up to a point). Thus, Figure 2a
also points to the benefits of scaling out the compute tier
to keep latencies low since a single node can only scale up
so much. Figure 2b shows the same index node when it
additionally serves the remote index lookups generated by
the 3 remote nodes. The resulting contention significantly
impacts the latencies and the throughput on the index node
(Figure 2b vs 2a). The 50th percentile read latency is low
because these reads are likely served from a local record
cache instead of from separate storage nodes.

Figures 2c and 2d show the negative impact on one remote
node’s read latency caused by the contention that the remote
nodes’ index lookups create on the index node. Figure 2c

4

IndiLog: Bridging Scalability and Performance in Stateful Serverless Computing with Shared Logs SYSTOR ’24, September 23–24, 2024, Virtual, Israel

shows the latencies on one remote node when the index node
is not running any workload. The append latency is similar
to the one in Figure 2a because the append path does not
include an index lookup. However, the read latency visibly
increases. Figure 2d adds the workload on the index node on
top of Figure 2c. The throughput and the read latencies on
the remote node are visibly impacted by the contention.
Thus, there is a need to scale the compute tier without

the new nodes impacting the performance of existing nodes
(due to remote index lookups) and vice-versa.

4 Design

4.1 Overview

Figure 3 shows the design of IndiLog at a high level, includ-
ing the four tiers (compute, ordering, index and storage) and
the main control and data flow between them. More specific
control flow is presented along with the append (§4.3) and
the read (§4.4) paths.

The main contribution of IndiLog is the design of the index-

ing architecture (local indexes and index tier) and its integra-

tion with the rest of the tiers.

Innovations to the compute, ordering and storage tier
are not the focus of this paper so IndiLog builds on well-
established concepts. Specifically, the metalog from Boki [7]
is used for failure handling, read consistency and ordering.
The metalog records the log’s internal state transitions and
increases monotonically. Receivers of the metalog updates
learn about the log’s progress, remember their own metalog
positions and use this information in inter-communication
to prevent stale data access. As in Boki, Scalog’s [5] high-
throughput ordering protocol underpins the ordering tier.

API IndiLog uses a similar API to most other shared log
designs, consisting of appends, reads and trim operations.
As in Boki, all these operations take tags as parameters to
work within logical sub-streams in the log. The reads are
bounded reads as described in §2. The interaction with the
indexes is transparent to the tasks because it is encapsulated
in an IndiLog library running on each compute node.

High level interaction between tiers In Figure 3, server-
less tasks (blue circles) running in the compute tier perform
reads or appends. For reads, index lookups are needed to find
which storage node stores the desired record. Index lookups
may be served either locally, from the local index collocated
with the task (T1.2), or remotely from the index tier when
the local index lookup does not yield the relevant informa-
tion (T2.1). The identified storage node is contacted either
by the compute node (T1.2) or by the index tier (T2.1). The
storage node then sends the record to the compute node (not
illustrated). On appends (T1.1), the compute node sends data
to a pre-determined shard on a pre-determined storage node.

Compute tier
2 nodes and 3 tasks

T1.1 T1.2

Index lookup
for sqn X

T2.1

Ordering tier
1 primary and 2 replicas

Metalog

MetalogMetalog

Replicate
metalog
changes

Sharded storage tier
2 nodes and 3 shards

Number of newly
appended records

Sharded index tier
2 nodes

Metalog
updates

Metalog updates
w/ index data

Local
index

Local
index

Send data for
sqn X to CN2

Index lookup
for sqn Y

Get data for sqn Y

Append data

Metalog updates
w/ index data

CN2CN1

Metalog
updates

Figure 3: IndiLog’s architecture along with its 4 tiers:

compute, ordering, index and storage.

Periodically, the storage nodes report the number of newly
appended records (since the last report) on each storage shard
they own to the ordering tier using the Scalog [5] approach.
The ordering tier is implemented as a primary-driven pro-
tocol. The primary sequencer is the only point of contact
and it appends to the metalog which is a representation of
the state of the log. The secondary sequencers replicate the
metalog change. As part of the metalog update, the ordering
tier assigns a contiguous range of SQNs for each storage
shard. It then forwards the metalog updates (red dashed line)
to the storage tier where shards derive the SQNs for each of
their newly appended records and to the compute tier where
pending append calls (T1.1) derive the awaited SQNs. Finally,
the storage tier forwards the metalog updates with index
data (red dotted line) to the compute and index tiers which
can now update the indexes to point to the newly appended
records.

4.2 Index data structures and properties

IndiLog uses a combination of local indexes collocated with
the compute nodes alongside a separate index tier. Prior
work on shared logs has either neglected indexing [5] or has
assumed that complete indexes fit in each compute node’s
RAM [7]. We argued (§3) that the latter limits compute tier
scalability and can actually quickly exhaust the RAM.

Local indexes Local indexes are optional i.e., tasks on a com-
pute node lacking a local index can execute normally by con-
tacting the index tier. This can allow resource-constrained
nodes to participate without paying the resource cost of host-
ing an index. Importantly, in IndiLog compute nodes never
serve remote index lookups from other compute nodes. Lo-
cal indexes are size-bounded and thus often incomplete i.e.,
they may only have information about a subset of the SQNs.

5

SYSTOR ’24, September 23–24, 2024, Virtual, Israel Maximilian Wiesholler, Florin Dinu, Javier Picorel, and Pramod Bhatotia

Bounding local index size ensures that a predictable amount
of memory remains available to the serverless tasks. IndiLog
indexes are designed to capture the typical access and lo-
cality patterns of serverless functions [14]. Local indexes
are updated based on metalog updates from the storage tier
and index the entire shared log, not only the SQNs appended
locally.
A local index handles two types of tags: an empty (de-

fault) tag and a custom function-generated tag. The empty
tag is the union of all other tags and covers the entire log.
All records have the empty tag, so the corresponding SQNs
are consecutive. If applications wish to create a logical sub-
stream in the log, they create a custom tag. The SQNs corre-
sponding to any one custom tag need not be consecutive.

A local index contains the following components:

• The Suffix. It holds the storage shards for the high-
est SQNs (the most recent appends) allocated with
any tag across the entire log. The rationale is that
recently appended SQNs [14] are likely to be accessed
again. The suffix is bounded in size; the oldest entries
are evicted when a threshold size is reached.

• The Popularity Cache. It holds the storage shards for
the SQNs of the most recent reads accessed via any
tag on the compute node hosting this index. Thus,
these SQNs need not be consecutive. The rationale is
that recently accessed SQNs are likely to be accessed
again [14]. It is a size-bounded LRU cache.

• TheTag Cache. For each tag it stores a suffix and a last
update timestamp which is the highest metalog update
round that either (1) added SQNs to that tag or (2) came
from the most recent read that had an index hit for that
tag in the Tag Cache. When a size threshold is reached,
the entries with oldest timestamps are evicted.

Index tier The index tier is sharded (for simplicity we as-
sume one index shard per index node), always-on and com-
plete i.e., it can definitively answer any index lookup. It is
composed of one or more dedicated index nodes i.e., they
only handle index operations, and one or more aggregator
nodes which aggregate the best matches of the index nodes
when no index node has an exact match. The index tier is
designed to balance the storage space used across all index
nodes. For simplicity, this paper does not consider index tier
replication. However, IndiLog provides support for repli-
cating index tier data. As a data structure, each index tier
node holds a hash table from a tag to its SQNs and their
corresponding storage shard in the storage tier.

4.3 Append path

Figure 4 and Algorithm 1 illustrate the append path. Tasks in
the compute tier issue𝑎𝑝𝑝𝑒𝑛𝑑 (𝑙𝑖𝑠𝑡 ⟨𝑡𝑎𝑔𝑠⟩, 𝑣𝑎𝑙𝑢𝑒) calls and get

Sharded storage tier
2 nodes and 3 shards

Metalog
updates

Metalog update
round 1,3,5

IN1

AGG
IN2

Sharded index tier
2 index nodes and 1 aggregator node

Metalog update
round 2,4,6

emp. tag (1,2,4,5)
tag 1 (1)
tag 2 (4)

IN1

emp. tag (3,6,7,8,9)
tag 1 (3,8)
tag 3 (9)

IN2

Figure 4: Index tier integration on the append path.

back the unique SQN assigned to that appended record. For
brevity, assume a single tag per append instead of 𝑙𝑖𝑠𝑡 ⟨𝑡𝑎𝑔𝑠⟩.
The latter case can be derived by repeating the corresponding
operations for each tag in the list.
All tasks on one compute node append to a single stor-

age shard and no other compute node appends to that shard.
This is necessary for the Scalog [5] high throughput ordering
protocol as it enables compute nodes to efficiently translate
local per-shard SQNs into global ones once the metalog up-
dates are received. Storage imbalances are avoided as storage
nodes can host many shards. A compute node can start an-
other shard, on a potentially different storage node, if the
first shard is sealed.

Challenges The index tier aims to balance the index data
across the index nodes to avoid imbalances that can occur
when some tags are often appended to. Another goal is to
minimize the overhead of the metalog updates, e.g., it is best
avoided to send a metalog update to all index tier nodes.

Algorithm 1 IndiLog appends: SQN = append(tag = T, val)
1: procedure On the compute tier
2: Send append to the corresponding storage shard
3: Listen to the metalog updates to get SQN
4: Return SQN to the calling function
5: Incorporate metalog updates in the local index
6: Evict index items if threshold sizes reached

7: procedure On index tier node X – on recv. metalog updates
8: if Metalog update round % nr_index_nodes == X then

9: X incorporates update into local index

Index distribution over the index tier Every metalog
update, a single index shard is chosen in round-robin fashion
to receive the metalog updates (Alg1:7-9). In Figure 4 there
are two index tier nodes so one is chosen for the odd metalog
update rounds and one for the even. Since metalog updates
are frequent (in Boki every 300 µs) this ensures that index
data is well distributed over the index tier. This has several
important implications for reads. Tags which are appended

6

IndiLog: Bridging Scalability and Performance in Stateful Serverless Computing with Shared Logs SYSTOR ’24, September 23–24, 2024, Virtual, Israel

Send data for
max(z1,z2)

to CN3

Compute tier
3 nodes and 3 tasks

T1

Index lookup
for sqn >= y

T2 Sharded
storage tier

2 nodes
3 shards

Sharded index tier
2 index nodes and 1 aggregator node

Local
index

Local
index

Index lookup
for sqn X

Get data for sqn X

CN2CN1

IN1

AGG

IN2

T3
Local
index

CN3
read (<=x) read (>=y) read (<=z)

Send data for
sqn y to CN2

Index lookup
for sqn <= z

z2z1 Y

max(z1,z2)

z1 z2

Figure 5: Integration of indexes on the read path.

to over a longer period of time appear over many metalog
updates and thus are indexed over many (or all) index nodes
(e.g., tag1 in Figure 4). This avoids the undesirable situation
when one popular tag uses a disproportionate amount of
memory on a single index node. Tags which are only briefly
appended to may be indexed on as little as one index node
(e.g. tag2 and tag3 in Figure 4). Any SQN can end up being
indexed on any index node (non-deterministic placement).

On the compute nodes For a function, an append blocks
until an SQN is returned. SQNs are derived from metalog
updates from the ordering tier (Alg1:3-4). Metalog updates
from the storage tier provide the information to update the
local indexes (Alg1:5). Eviction occurs when the local index
reaches a threshold size (Alg1:6).

4.4 Read path

Figure 5 and Algorithm 2 illustrate the read path. Tasks can
issue two types of bounded reads: 𝑟𝑒𝑎𝑑 (𝑡𝑎𝑔, 𝑠𝑞𝑛 <= 𝑋) and
𝑟𝑒𝑎𝑑 (𝑡𝑎𝑔, 𝑠𝑞𝑛 >= 𝑋). The first returns the record with the
closest SQN to X that is less than or equal to X. For clarity,
Algorithm 2 only treats the first case. The second case is
similar. Let 𝑂𝑊𝐿 be the one-way network latency.

ChallengesAs described, the appends scatter the SQNs for a
single tag, non-deterministically over the index tier in order
to mitigate memory imbalances and reduce metalog update
overheads. Thus, the index tier needs to involve several index
nodes to answer a read. For bounded reads that return the
bound, one index tier node has the exact match. However,
this is not the case when a bounded readmust return a closest
match (e.g. when the bound does not belong to the queried
tag). Since index tier nodes know nothing about each other,
they cannot tell which other index node is closer so no single
index tier node may be able to draw a final conclusion.

Algorithm 2 IndiLog reads: read (tag, sqn ≤ Bound)
1: procedure On the compute tier
2: if Empty Tag then
3: Search in Suffix
4: Search in Popularity Cache
5: else if Custom tag then
6: Search in Tag Cache
7: if Local index lookup succeeded then

8: Send read request to the identified storage shard
9: else if Local index lookup failed then

10: Send lookup to each index tier node tagged with the function’s
metalog update round

11: procedure On the index tier - at index nodes
12: if Found Bound in the index then
13: Forward read request for Bound to storage tier
14: Send Bound to the aggregator
15: else if Bound not found in index then
16: Send to the aggregator closest BS, such that BS < Bound

17: procedure On the index tier - at aggregator nodes
18: Receive BS from index node for read with unique ID RID
19: if RID complete then
20: Continue with next request
21: if BS == Bound then

22: Mark RID complete. An index node contacts storage
23: Continue with next request
24: if all index nodes answered for RID then

25: REC = max (all (BS))
26: Forward read request for REC to storage

Read type 1 - Exact/closest match in local index This
corresponds to task T1 in Figure 5 where the local index
locates the right SQN. This is an exact match when the index
contains 𝑋 (in Figure 5) or a closest match when the index
does not contain X but rather the SQN Y preceding X for that
tag (Y is in the suffix for that tag). Node CN1 then contacts the
storage node hosting the SQN (Alg2:7-8). This takes 2∗𝑂𝑊𝐿

latency and 2 messages.

Read type 2 - Exact match in index tier This corresponds
to task T2 in Figure 5. After an unsuccessful local index
lookup, node CN2 contacts each index node (Alg2:9-10).
For consistency reasons (discussed in §4.5), the request in-
cludes the function’s metalog update round. In this example
𝐼𝑁2 has an exact match (it indexed Y). 𝐼𝑁2 immediately
forwards the read request to the responsible storage node
(Alg2:13) which sends the data to T2. This exchange takes
3 ∗ 𝑂𝑊𝐿 latency and the number of messages is equal to
2 ∗ (𝑛𝑟_𝑜 𝑓 _𝑖𝑛𝑑𝑒𝑥_𝑡𝑖𝑒𝑟_𝑛𝑜𝑑𝑒𝑠) + 2. This is because the index
nodes still need to message the aggregator since they do not
know that another index node had an exact match. Only a
single index node can have an exact match due to the way
the index data is distributed over the index nodes. When
the aggregator receives an exact match (Alg2:21) then it can

7

SYSTOR ’24, September 23–24, 2024, Virtual, Israel Maximilian Wiesholler, Florin Dinu, Javier Picorel, and Pramod Bhatotia

safely assume that the storage tier has been contacted by the
index node who stored that exact match and can consider
that read request completed (Alg2:22-23).

Read type 3 - Closest match in index tier This corre-
sponds to task T3 in Figure 5. After an unsuccessful local
index lookup, node CN3 contacts each index node (Alg2:9-
10). Neither 𝐼𝑁1 nor 𝐼𝑁2 have an exact match. Neither
stores 𝑍 . The index tier nodes search locally for the closest
𝑍_𝑙𝑜𝑐𝑎𝑙 < 𝑍 and send it to the aggregator (Alg2:16) which
calculates the closest value to Z (the max of all aggregated
𝑍_𝑙𝑜𝑐𝑎𝑙) (Alg2:24-25). The aggregator forwards the read re-
quest to the storage tier node responsible for the identified
SQN (Alg1:26) which sends the data to T3. This takes 4∗𝑂𝑊𝐿

latency and 2 ∗ (𝑛𝑟_𝑜 𝑓 _𝑖𝑛𝑑𝑒𝑥_𝑡𝑖𝑒𝑟_𝑛𝑜𝑑𝑒𝑠) + 2 messages.

4.5 Other design properties

Index consistency IndiLog leverages the metalog update
round as a logical consistency timestamp. Each function and
each index (local or in the index tier) have such an associated
timestamp. The timestamp of a function depends on its last
read or append. It is either (1) that of the last index it used
for a read or (2) the last metalog update round that included
an SQN for an append from that function. The timestamp of
an index is that of the last metalog update round which up-
dated it. To guarantee useful properties like monotonic reads
and read-your-writes consistency, the simplest approach is
to disallow a function to lookup an index with an earlier
timestamp than its own. Such lookups could occur if the
local indexes or the index tier nodes did not get updated yet.

However, in IndiLog this condition can be safely relaxed
for the index tier. It is safe for an index node to participate in
some index lookups for functions with a higher timestamp if
it was not meant to receive updates in the meantime (i.e., the
other index nodes were selected for metalog updates). There
is a limit to this flexibility. If the function has the timestamp
that an index node expects next based on the round-robin
schedule then the index node will temporarily block the
lookup and place it in a special queue that is processed with
the next metalog update.

Failure resilience For the ordering and storage tiers, In-
diLog employs techniques from related work. Replication is
used for both tiers and the computing framework deals with
compute node failures by restarting tasks. For the index tier,
the loss of local indexes due to a compute node crash is not a
concern as only that node could access its local index. Index
shards can be replicated. If an index lookup is impacted by an
index tier failure, it is restarted by IndiLog after a timeout.

Index tier scalabilityWe expect the index tier to need to
scale up far less often than the compute tier because the

index tier does not run functions and all its resources are
dedicated to indexes. Still, scaling up the index tier is easy
due to IndiLog’s round-robin schedule for distributing met-
alog updates. The storage and compute nodes only need to
discover a new index tier node to send it metalog updates
and lookups. Aggregator nodes can also be easily added since
they only keep state briefly and on a per-request basis. The
index nodes only need to discover the new aggregators. A
special case is when an index node is running out of memory
and must be removed from the round-robin schedule for
further metalog updates. This node should still participate
in index lookups. Consistency is not an issue since it will
not receive future updates. Adding and removing index tier
nodes in IndiLog is done via a Zookeeper-like service.

5 Implementation

IndiLog is built in C++ by adding the indexing architecture
on top of Boki [7]. Boki reuses the Scalog [5] high-throughput
ordering protocol. The functions running in the compute tier
are written in Go and use the approach from Nightcore [8].

Threading model For running the functions IndiLog uses
Goroutines, a form green threads, a flow of execution man-
aged entirely by the Go language runtime from user space.
A number of Goroutines map to an OS thread (32 in our
case). Each compute node in IndiLog also has I/O threads
running C++ code that performs index lookups, reads or
writes data and handles metalog updates. The Goroutines
and I/O threads communicate via Linux pipes (FIFO queues)
as in Nightcore [8]. Therefore, several appends and reads
may be queued waiting for an I/O thread.

Some API calls have two distinct phases, served separately
by I/O threads. For reads type 2/3 (§4.3), the first phase checks
the local index and contacts the index tier. The second phase
runs when data is received from the storage tier. All appends
are split. The first append phase sends the data to the storage
tier. The second obtains the SQN via a metalog update.

Locking Locking the index data structure is needed so that
metalog updates do not impact reads. The index can change
during the metalog update e.g., some arrays may be moved
in memory. In Boki, the locking is coarse grained; the entire
local index is locked for reads or metalog updates. For fair
comparison, in IndiLog we reuse the same coarse-grained
locking for both the local indexes and the index tier. For the
aggregators we used a finer-grained, per-request locking.

6 Evaluation

6.1 Methodology

Setup We use cloud VMs with 16GB RAM and 4vCPUs run-
ning Ubuntu 20.04 with kernel v5.10.0. The mean latency

8

IndiLog: Bridging Scalability and Performance in Stateful Serverless Computing with Shared Logs SYSTOR ’24, September 23–24, 2024, Virtual, Israel

between VMs measured by ping is 180 ± 40 𝜇𝑠 . The band-
width between two VMs measured by iperf is 2,127 Mbps.

The number of storage tier nodes is equal to the number
of compute nodes and the replication factor is 1. For the
ordering tier we use 3 nodes, 1 primary and 2 secondaries.
Updates from the storage tier to the ordering tier and meta-
log updates from the ordering tier occur every 300 µs. The
IndiLog index tier is sharded over 2 index nodes, uses a repli-
cation factor of 1 and 1 aggregator node. Each compute node
has 4 I/O threads. Index nodes, storage nodes and sequencer
nodes have 2 I/O threads. The Suffix stores up to 105 entries.
The Popularity Cache holds up to 104 entries. The Tag Cache
stores up to 106 SQNs over all tags. A single tag in the Tag
Cache is limited to 104 SQNs. This local index configuration
in IndiLog limits the size of a local index to ≈20 MB. All
indexes are stored in RAM. Unless otherwise stated, we dis-
able local record caches because we are interested in how
the communication between tiers impacts performance.

Metrics We show the 50th and the 99th percentile tail la-
tency for reads and appends. The latency measurement starts
when an I/O thread first picks up a request and ends when
the request returns to the Goroutine that started it. Thus, the
latency does not include queueing time waiting to start the
request but does include any queueing time inside the sys-
tem when there is a second request phase (§5). This latency
measurement allows us to understand the behavior of the
system under challenging workloads and at high throughput.
We show the global throughput, across all compute nodes.
We also present various statistics (e.g., index hit rates) and
breakdowns (e.g., different types of reads).

Workload Our workloads are composed of a mix of reads
and appends. There is a balanced workload (50% reads and
50% appends) and a read-heavy workload (95% reads and 5%
appends). The workloads run the functions with either high
(15 OS threads/node) or low concurrency (4 OS threads/node).
In order to stress the system, our functions do not perform
additional computation and just continuously serve appends
and reads. Generally, both appends and reads stress the sys-
tem via network communication and they require locking
for correctness. In addition, appends stress the system via
metalog updates and reads via index lookups.
We use the empty and custom tags as described in §4.2.

Record sizes are 1KB. To choose an SQN to read from a tag,
our workloads use a mix of accesses (e.g. the first SQN, the
last, etc). We describe this alongside each experiment. Simi-
larly, a tag can be globally new (across all compute nodes)
or can be re-used locally or globally. We also mix these.

Competitors We compare IndiLog against Boki [7], the
state-of-the-art distributed shared log for serverless which
uses complete local indexes. We purposely avoid the OOM

errors that affect Boki (§3) by running the experiments for
a shorter period of time. Boki cannot dynamically scale the
compute tier so, for a fair comparison, we start Boki in the
final scaled-out configuration. As in §3, we distinguish be-
tween Boki-hybrid nodes (running workload and hosting an
index) and Boki-no-index nodes (the added nodes running a
workload but not hosting an index and thus needing remote
index lookups on Boki-hybrid nodes).

Highlights We find that IndiLog provides better or compa-
rable performance to Boki over a range of scenarios including
(1) either high or low local index hit rates in IndiLog, (2)
lower or higher workload concurrency level on the compute
nodes and (3) varying the scaling size i.e. the number of
compute nodes dynamically joining the compute tier.

6.2 Scaling the compute tier - high hit ratio

Figure 6 shows the impact of scaling the compute tier from 1
to 4 nodes. In Boki, the 3 new nodes query the index hosted
on the first node. In IndiLog, the 3 new nodes, each hosting
a local index, join at second 30. This shows the envisioned
case for IndiLog in which the local indexes catch most of
the lookups but a small portion still goes to the index tier.
The hit rate in the local indexes for IndiLog across all 4
nodes is 87%. The local hit rate for Boki is, as expected, 100%.
Essentially this experiment puts in balance (1) for Boki the
increased overhead on the Boki-hybrid node resulting from
the contention caused by the newly added nodes and (2) for
IndiLog the penalty of going to the index tier for some of
the reads. Note that improving on Boki by a large margin
is not the ultimate goal because in practice Boki is likely to
OOM. Rather, IndiLog strives to obtain better or comparable
performance without the risk of OOM.
For this experiment we use the balanced workload. Each

Goroutine runs a loop where one append follows one read.
The appends use equally the empty tag or a custom tag. The
reads are related to the last appended tag but may or may
not be related to the SQN of the last append. For an empty
tag we read with equal probability (1) the appended value,
(2) a popular SQN, (3) from the suffix and (4) the current log
tail. For a custom tag we read with equal probability (1) the
appended value, (2,3) left/right of it, (4) from the head of the
log and (5) from the tail of the log.
Figure 6a shows the throughput across all 4 nodes av-

eraged every 5s. IndiLog dynamically scales well from 110
KOp/s to 390 KOp/s and the 4 nodes have comparable through-
put. In contrast, Boki achieves 350 KOp/s. Its nodes have
skewed throughput: 96 KOp/s for the Boki-no-index nodes
and only 60 KOp/s for the Boki-hybrid node due to the con-
tention. Figures 6b and 6c shows median and tail (p99) la-
tencies for appends and reads. As expected, the tail latencies

9

SYSTOR ’24, September 23–24, 2024, Virtual, Israel Maximilian Wiesholler, Florin Dinu, Javier Picorel, and Pramod Bhatotia

0 10 20 30 40 50 60 70 80
Time (s)

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 (k

Op
/s

)

Boki
Indilog

(a) Throughput

0 10 20 30 40 50 60 70 80
Time (s)

1
2
3
4
5
6
7
8
9

10

La
te

nc
y

(m
s)

Boki no index: Append 0.5
Boki hybrid: Append 0.5
Indilog: Append 0.5

Boki no index: Append 0.99
Boki hybrid: Append 0.99
Indilog: Append 0.99

(b) Append latencies

0 10 20 30 40 50 60 70 80
Time (s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

La
te

nc
y

(m
s)

Boki no index: Read 0.5
Boki hybrid: Read 0.5
Indilog: Read 0.5

Boki no index: Read 0.99
Boki hybrid: Read 0.99
Indilog: Read 0.99

(c) Read latencies

Figure 6: Throughput and request latencies (y-axis) when scaling the compute tier (x-axis = 30s) from 1 to 4 nodes.

High local cache hit ratios in IndiLog. Boki cannot scale dynamically, it starts with 4 nodes. Balanced workload.

show a larger variation. The append latencies are signifi-
cantly higher for the Boki-hybrid node because of the con-
tention. In contrast, the append latencies are the best for
the Boki-no-index node because it does not have a local
index and thus does not pay the overhead of managing it.
The reads on the Boki-hybrid node are faster than for Boki-
no-index because the latter requires a remote index lookup.
Finally, IndiLog reads show the best latency as IndiLog is
not impacted by contention like on the Boki-hybrid node.

Impact of varying the scaling size Figure 7 varies the
number of nodes added during scaling. We use both the
balanced and the read-heavy workload. 𝑋 = 4 in Figure 7a
corresponds to Figure 6. IndiLog scales well, almost linearly.
In contrast, Boki behaves increasingly worse as the size of the
scaling increases (𝑋 = 6) due to increased pressure on the
Boki-hybrid node, especially for the read-heavy workload.

0 2 4 6 8
Number of compute nodes after scaling

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (k

Op
/s

)

Boki
Indilog

(a) 50/50 Read/Append

0 2 4 6 8
Number of compute nodes after scaling

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (k

Op
/s

)

Boki
Indilog

(b) 95/5 Read/Append

Figure 7: Varying the scaling size. The number of com-

pute nodes grows from 1 to 2/4/6 by adding 1/3/5 nodes.

Impact of lower concurrency Figure 8 shows the lower
concurrency workload. This benefits Boki by lowering the
contention on the Boki-hybrid node but also reduces the
overheads that IndiLog nodes have to maintain their local
index. The workload change is best seen by comparing the

throughput in Figure 8a and 6a. The former is significantly
lower due to lower concurrency. Figure 8b shows read laten-
cies. IndiLog still comes out on top. Compared to Figure 6c,
the less intensive workload shows much lower latencies. We
omit append latencies but they show a similar pattern.

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (k

Op
/s

)

Boki
Indilog

(a) Throughput

0 10 20 30 40 50 60 70 80
Time (s)

1

2

3

4

5

La
te

nc
y

(m
s)

Boki no index: Read 0.5
Boki hybrid: Read 0.5
Indilog: Read 0.5

Boki no index: Read 0.99
Boki hybrid: Read 0.99
Indilog: Read 0.99

(b) Read latencies

Figure 8: Throughput and latency. Lower concurrency.

6.3 Scaling the compute tier - low hit ratio

Next, we show a difficult case for IndiLog when most local
index lookups fail and need to be serviced by the index tier.
Still, IndiLog matches or bests Boki. Figure 9 shows the
throughput for the balanced and read-heavyworkloads. Here,
the local index hit ratio in IndiLog is 20%. To obtain low hit
ratios we use only custom new tags. 80% of the reads are from
the head of the log and 20% read the last appended value.
This yields 80% of type 3 reads (§4.4), the most expensive
reads in IndiLog because they are handled by the aggregator.
Figure 9a shows a lower throughput than Figure 9b for

both Boki and IndiLog because the workload has a higher
ratio of appends which are the more expensive operation. De-
spite the low index hit ratio, IndiLog shows higher through-
put than Boki in Figure 9b. In Figure 9a, Boki has a slight
edge because only the Boki-hybrid node pays the overhead

10

IndiLog: Bridging Scalability and Performance in Stateful Serverless Computing with Shared Logs SYSTOR ’24, September 23–24, 2024, Virtual, Israel

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (k

Op
/s

)

Boki
Indilog

(a) 50/50 Read/Append

0 10 20 30 40 50 60 70 80
Time (s)

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 (k

Op
/s

)

Boki
Indilog

(b) 95/5 Read/Append

Figure 9: Throughput. Scaling the compute tier (x=30s)

from 1 to 4 nodes. Low local cache hit ratios in IndiLog.

of maintaining the local index via metalog updates. Instead,
in IndiLog, all 4 nodes pay this overhead.

6.4 Breakdown of read latencies

Next, we single out the performance of the different types
of IndiLog reads. IndiLog has 3 types of reads (§4.4) but of
particular interest are the reads not present in Boki i.e. the
type 2 and 3 reads served by the index tier. To single them
out we use the read-heavy workload and remove the local
indexes from the IndiLog nodes so all reads go to the index
tier. For comparison, since IndiLog uses 2 index nodes, we
give Boki 2 nodes with complete indexes which do not run
functions. 4 other Boki-no-index nodes send requests.

0 2 4 6 8
Latency (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
at

ed
 L

at
en

cy

Boki Remote
Thrpt: 318 KOp/s
Avg Lat: 0.951 ms
Indilog Type 3
Thrpt: 283 KOp/s
Avg Lat: 1.315 ms
Indilog Type 2
Thrpt: 302 KOp/s
Avg Lat: 1.053 ms

(a) Low concurrency

0 2 4 6 8
Latency (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
at

ed
 L

at
en

cy

Boki Remote
Thrpt: 456 KOp/s
Avg Lat: 1.363 ms
Indilog Type 3
Thrpt: 463 KOp/s
Avg Lat: 2.095 ms
Indilog Type 2
Thrpt: 450 KOp/s
Avg Lat: 1.43 ms

(b) High concurrency

Figure 10: IndiLog latency for the reads that involve

index tier lookups.

Figure 10 shows the latency CDFs for both high and low
concurrency. The type 2 reads in IndiLog show a very similar
performance to those in Boki in both cases. The type 3 reads
are, as expected, slower because they go to the aggregator
node. The high concurrency increases tail latencies and also
the gap between the type 2 and type 3 reads.

6.5 Scalability of the index tier

Scaling the index tier Next, we increase the number of
index nodes and the number of aggregators. Table 1 shows
the configurations and the resulting throughput. Scaling

the index tier is mostly relevant for type 3 reads where the
aggregator(s) must collect best matches from all other index
tier nodes before forwarding the result to the storage tier.
We reuse the high concurrency workload in §6.4 and issue
only type 3 reads by reading an SQN beyond the log tail.
As expected, adding more shards decreases the through-

put due to more messages between the compute tier and the
index tier and between the index nodes and the aggregator.
Increasing the number of aggregators does not influence
the results much because in our setup that is not the bottle-
neck. The slight differences between 1 and 2 aggregators are
explained by natural variations in the cloud network latency.

Index Tier Thrpt. [kOp/s] Index Tier Thrpt. [kOp/s]

S:2, A:1 465 S:6, A:1 385
S:2, A:2 461 S:6, A:2 389

Table 1: Throughput when scaling the index tier. S =

number of index shards. A = number of aggregators.

Benefit of aggregators We repeat the experiment with 2
index nodes but without a dedicated aggregator node to
show its importance. For comparison, the aggregation is
done by one of the index tier nodes randomly selected as
master during the index tier lookup request. The throughput
is 465.2 KOp/s (as above) with a dedicated aggregator and
440.6 KOp/s without. The median latency is 1.76 ms with
a dedicated aggregator and 2.07 ms without. The trend is
similar for the low concurrency workload: 282.4 KOp/s and
1.23 ms with the aggregator and 237.9 KOp/s and 1.62 ms
without it. We expect the gap between the two solutions to
increase for more index nodes.

6.6 Object storage workload

Next, using a real application, we show how the size-bounded
local indexes in IndiLog and the continuous eviction from
them affect performance. The take-away is that IndiLog
matches Boki’s performance in a real application even with
local indexes far smaller than Boki’s complete local indexes.

System Thrpt. [Op/s] System Thrpt. [Op/s]

IndiLog 8700 Boki-Complete 8950
IndiLog-Small 8430 Boki-Remote 8381

Table 2: Throughput in the object storage workload.

We run IndiLog and Boki as the infrastructure layer of
an object storage library. We reuse the BokiStore [7] library
that stores objects durably on shared logs and provides trans-
action support. BokiStore uses only customs tags and for
two reasons: (1) to find an object in the log along with its
deltas so that it can apply further deltas to it and (2) to handle

11

SYSTOR ’24, September 23–24, 2024, Virtual, Israel Maximilian Wiesholler, Florin Dinu, Javier Picorel, and Pramod Bhatotia

transactions. We reuse Boki’s Twitter clone [7] workload. We
initialize it with 10,000 users and use 192 concurrent clients
to trigger the functions via HTTP requests. We enable the
local record cache in IndiLog and Boki.

Appends
Reads

Index hits

Index misses

Record cache hits

Record cache misses
0

500

1000

1500

2000

Co
un

ts
 in

 th
ou

sa
nd

s

229

2072
1920

152

1572

348

(a) Default index size (∼20 MB)

Appends
Reads

Index hits

Index misses

Record cache hits

Record cache misses
0

500

1000

1500

2000

Co
un

ts
 in

 th
ou

sa
nd

s

227

1873

880
993

690

190

(b) Small index size (∼0.2 MB)

Figure 11: Aggregated statistics over all compute nodes

in IndiLog with different index size configuration.

Figure 11 shows how the local index size in IndiLog af-
fects the index hit ratio ((a): default size limits from §6.1,
(b): small index (called IndiLog-SIdx)). For IndiLog-SIdx we
limit the tag cache to 104 SQNs and a single tag to 100 SQNs
before eviction. With the default limits IndiLog successfully
handles 93% of all local index lookups. Even with its small
index (0.2MB) almost 50% of all lookups are handled locally.

Indilog Indilog-SIdx Boki Compl Boki Remote
Latency 50th 99th 50th 99th 50th 99th 50th 99th
Login 3.6 38.9 4.2 38.4 3.4 37.3 4.2 40.0
SeeProfile 2.6 36.6 2.7 34.0 2.7 36.0 2.8 38.8
SeeTimel. 6.4 50.8 7.9 51.3 6.0 48.5 7.9 50.3
PostTweet 8.2 49.8 10.3 52.7 7.6 48.0 9.9 51.4

Table 3: Latencies (msec) for object storage workload.

We next compare IndiLog with Boki. Each system uses 4
compute nodes to run the functions. We configure IndiLog
with either the default or small local index. For Boki we
also use two configurations: complete and remote. In the
former, all Boki nodes store a complete index. In the latter,
the 4 Boki nodes that run functions have no index and do
remote index lookups to 2 other Boki nodes that do not
run functions but have complete indexes. Tables 2 and 3
show the throughput and latencies for the operations in
the workload. Boki-Complete performs best due to its 100%
hit ratio. Its record cache serves 76% of all reads which is
similar to IndiLog. Due to evictions, IndiLog-SIdx has lower
throughput and higher latencies compared to IndiLog but
still outperforms Boki-Remote in overall throughput.

7 Related Work

Serverless state management Other storage abstractions,
apart from distributed shared logs, have been proposed for

serverless state management. Neither of these works focuses
on an indexing architecture for efficiently accessing the stor-
age. At first, functions shared state via cloud object stores
(e.g. Amazon S3) which is inefficient [13]. Locus [13] pro-
poses to benefit shuffles between functions by leveraging a
mix of slow but cheap storage (e.g. Amazon S3) and a small
amount of memory-based fast storage to bring performance
benefits while remaining cost effective. Cloudburst [17] uses
Anna [19], an autoscaling key-value store for state sharing,
and adds caches co-located with the functions. Cloudburst
modified Anna to construct an in-storage index that maps
keys to the local caches that store the key-value pairs. This
index is used to propagate key updates to caches and is
partitioned across server nodes. IndiLog differs in several
ways. IndiLog indexes the storage while Cloudburst indexes
the local caches. Importantly, Cloudburst does not analyze
the scalability and performance implications of an index-
ing architecture. Pocket [10] is a distributed data store for
the ephemeral data used by serverless functions to share
state. Pocket is multi-tiered and balances elasticity and cost-
effectiveness but does not tackle challenges related to an
indexing architecture.
Distributed shared logs Several designs have been pro-
posed [1–7, 12, 18] and IndiLog builds on some of these de-
signs. However, none of these systems focuses on the design
and implications of the indexing architecture which is the
main contribution of IndiLog. IndiLog builds on the high-
throughput ordering protocol from Scalog [5] and the meta-
log from Boki [7] which itself is inspired from Delos [1]. Log
sub-streams appear in Tango [3], vCorfu [18] and Boki [7].
FlexLog [6] is a very recent distributed shared log proposal. It
proposes a fast storage layer based on persistent memory and
a scalable ordering layer which leverages a tree of sequencer
nodes. FlexLog is complementary to IndiLog because it does
not tackle the challenges of the indexing architecture.

8 Conclusion

State-of-the-art systems using distributed shared logs for
serverless state management sacrifice compute tier scala-
bility for storage access performance. The culprit are the
complete log indexes in the compute tier which hinder scal-
ability while increasing the risk of OOM errors. IndiLog
is a novel distributed indexing architecture for serverless
applications that provides comparable or better log access
performance to the state-of-the-art, crucially, without im-
peding compute tier scalability. IndiLog uses a combination
of size-bounded, optional local indexes alongside a sharded
index tier tackling challenges introduced by log sub-streams
and bounded reads.
Software artifact IndiLog’s code is publicly available:
https://github.com/MaxWies/IndiLog

12

https://github.com/MaxWies/IndiLog

IndiLog: Bridging Scalability and Performance in Stateful Serverless Computing with Shared Logs SYSTOR ’24, September 23–24, 2024, Virtual, Israel

References

[1] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi,
Ahmed Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman
Sagar, Rhed Shi, Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy
Hoang, Ahmed Yossef, Francois Richard, and Yee Jiun Song. Virtual
consensus in delos. In OSDI 2020.

[2] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
bler, Michael Wei, and John D. Davis. CORFU: A shared log design for
flash clusters. In NSDI 2012.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan
Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and
Aviad Zuck. Tango: Distributed data structures over a shared log. In
SOSP 2013.

[4] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David
Geraghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh
Ghosh, Mihir Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li,
Rounak Tibrewal, Ali Zaveri, Rajeev Nagar, Ahmed Yossef, Francois
Richard, and Yee Jiun Song. Log-structured protocols in delos. In SOSP

2021.
[5] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and

Robbert Van Renesse. Scalog: Seamless reconfiguration and total order
in a scalable shared log. In NSDI 2020.

[6] Dimitra Giantsidi, Emmanouil Giortamis, Nathaniel Tornow, Florin
Dinu, and Pramod Bhatotia. Flexlog: A shared log for stateful serverless
computing. In HPDC 2023.

[7] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In SOSP 2021.

[8] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable
serverless computing for latency-sensitive, interactive microservices.
In ASPLOS 2021.

[9] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Cen-
tralized core-granular scheduling for serverless functions. In SoCC

2019.
[10] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage
for serverless analytics. In OSDI 2018.

[11] Amazon AWS Lambda. New for AWS Lambda – 1ms Billing Granular-
ity Adds Cost Savings. https://aws.amazon.com/blogs/aws/new-for-
aws-lambda-1ms-billing-granularity-adds-cost-savings/.

[12] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran,
Daniel J. Abadi, James Aspnes, Siddhartha Sen, and Mahesh Balakrish-
nan. The FuzzyLog: A partially ordered shared log. In OSDI 2018.

[13] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and
slow: Scalable analytics on serverless infrastructure. In NSDI 2019.

[14] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos
Kozyrakis, and Ricardo Bianchini. Faa$t: A transparent auto-scaling
cache for serverless applications. In SoCC 2021.

[15] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. What serverless computing is and
should become: The next phase of cloud computing. Commun. ACM,
page 76–84, apr 2021.

[16] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In USENIX ATC 2020.

[17] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful functions-as-a-service. In VLDB 2020.

[18] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham,
Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott
Fritchie, Steven Swanson, Michael J. Freedman, and Dahlia Malkhi.
vCorfu: A Cloud-Scale object store on a shared log. In NSDI 2017.

[19] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. Anna:
A kvs for any scale. In ICDE 2018.

[20] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,
and Vincent Liu. Fault-tolerant and transactional stateful serverless
workflows. In OSDI 2020.

13

https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/

	Abstract
	1 Introduction
	2 Background
	2.1 Distributed shared logs
	2.2 Serverless requirements

	3 Motivation
	4 Design
	4.1 Overview
	4.2 Index data structures and properties
	4.3 Append path
	4.4 Read path
	4.5 Other design properties

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Scaling the compute tier - high hit ratio
	6.3 Scaling the compute tier - low hit ratio
	6.4 Breakdown of read latencies
	6.5 Scalability of the index tier
	6.6 Object storage workload

	7 Related Work
	8 Conclusion
	References

