
IndiLog
Bridging Scalability and Performance in 

Stateful Serverless Computing with Shared Logs
Maximilian Wiesholler

TU Munich / Huawei Research Center Munich
Florin Dinu

Huawei Research Center Munich

Javier Picorel
Huawei Research Center Munich

Pramod Bhatotia
TU Munich



Motivation: Serverless Computing

● Serverless functions are stateless by design
○ However: non-trivial applications need statefulness 
○ How to get statefulness? Rely on a dedicated storage service for state management

● Serverless functions run short-lived tasks
○ Rely on fast storage access

● Cloud storage services (e.g., S3) perform bad for state-sharing
○ May not offer consistency guarantees
○ Performance and costs trade-offs



State-of-the-art

● Recent development of new systems to improve state management for 
serverless functions

● Boki [SOSP21]1: distributed shared logs – a promising serverless storage 
substrate to manage function state

○ Resilient to failures
○ Offers consistency guarantees 

1Z. Jia et al. “Boki: Stateful Serverless Computing with Shared Logs.”



Background: distributed shared logs

2 main tiers:
storage and ordering

For serverless
● Compute tier to run functions
● Indexes to locate records on the log

Log: sequence of immutable log records; append-only



Boki: distributed shared log

State-of-the-art for state management of serverless functions



Boki: indexing

Indexes are complete and co-located with serverless functions on compute nodes.

The complete index lets functions locate records on the storage tier.



Boki: read semantics

Boki uses tags to create logical sub-streams over the log1

- Function only needs to read records
that belong to the same sub-stream

Boki uses bounded reads which may not target a specific sequence number

1M. Balakrishnan et al. “Tango: Distributed Data Structures over a Shared Log.”

Read tag 1 with X ≥ 6

6 is exact match

Read tag 1 with X ≤ 5

4 is closest match

Exact match
Bound is in sub-stream

Closest match
Bound is not in sub-stream



Research gap

Shared logs for serverless state management bring indexing in focus.

Limitations of the current approach to indexing:

● Functions share resources with co-located indexes

● Scalability of the compute tier is impeded by the design of indexing

● Indexes can exceed local resources



Boki: complete index quickly exceeds memory limit

Experiment: continuously append new records to the log to create new index data

● Measure the memory of the compute node

Index memory usage increases over time 
and eventually causes OOM



Boki: index lookups add high contention after scaling

Red CN4: Significant performance 
drop due to index lookup contention

Experiment:
● Functions in each CN: 

append records and 
read them

● Increase workload
● Measure throughput 

of CN4



Problem statement

How to design an efficient indexing architecture for a distributed shared log

● Do not impede the scaling of the compute tier by the design of indexing

● Limit resources for indexes co-located with functions on compute nodes



Compute nodes maintain optional, local and incomplete indexes

A sharded index tier balances the index data across index nodes and is complete

IndiLog: 
a distributed indexing architecture for shared logs

Performance: many index lookups are captured locally

Resource efficiency: local indexes are size-bounded

Scalability: compute tier scalability is not impeded

Functions run anywhere: no constraints where functions run

System design goals



IndiLog: system overview

4 tiers: compute, ordering, storage and index

Compute nodes have optional, local indexes to capture most of the index lookups

- size-limited by eviction policies



Design of the index tier

Sharded: indexes on any two index shards do not intersect

Completeness: the index tier can serve all index lookups

Aggregating: aggregator determines the closest match from index lookups



Append path

New index data is balanced (round-robin) over the index tier nodes



Read path

In IndiLog we have three types of reads

No lookup in index tier:
2 * one-way network latency

Type 1: the local index of a compute node has a match for the index lookup

1. Index lookup with local hit
2. Read request
3. Read response



Read path

In IndiLog we have three types of reads

Index node with exact match forwards read 
request:
3 * one-way network latency

Type 2: the lookup goes to the index tier - one index shard has an exact match

1. Index tier lookup
2. IN2 with exact match → IN2 read request 
3. Read response



Read path

In IndiLog we have three types of reads

Aggregator forwards read request:
4 * one-way network latency

Type 3: the lookup goes to the index tier - all index shards have closest match

1. Index tier lookup
2. Closest matches from the index nodes
3. Read request for aggregated best match
4. Read response



Evaluation

For IndiLog we want to observe

● … the effects of scaling its compute tier
● … the performance of the index tier
● … its behavior for real applications



Evaluation: Setup

● Cloud VMs with 16 GB RAM and 4 vCPUs
● Workload: mix of appending records (1 KB) and reading persisted records

IndiLog Boki

Compute Tier 4 VMs 4 VMs

Storage Tier 4 VMs 4 VMs

Ordering Tier 3 VMs 3 VMs

Index Tier 3 VMs (2 IN, 1 AGG) -

Local Index 20 MB complete i.e., 16 GB

We compare 
IndiLog against Boki



Scaling the compute tier from 1 to 4

Workload: 50/50 Append/Read + 87% Local Index Hit Ratio in IndiLog

IndiLog beats Boki when IndiLog captures many index lookups locally

IndiLog
● Starts with 1 compute node
● Scales to 4 compute nodes after 30 sec

Boki
● Cannot scale dynamically
● Simulate past scaling event:

→ only 1 compute node has a complete index
→ 3 compute nodes send remote index lookups



Scaling the compute tier from 1 to 4

Workload: 50/50 Append/Read + 20% Local Index Hit Ratio in IndiLog

A low index hit ratio in IndiLog lowers the overall throughput



Scaling the compute tier from 1 to 2/4/6

Workload: 5/95 Append/Read + IndiLog: 87% Local Index Hit Ratio

IndiLog’s throughput scales with the number of nodes
Boki’s node with the complete index gets under heavy contention 



IndiLog’s sharded index tier comparable to remote complete indexes

Read latencies of the index tier

IndiLog
● Local index disabled

○ All index lookups go to the index 
tier

Boki
● 2 more compute nodes maintain 

complete indexes but do not run 
functions

● 4 compute nodes with functions do 
remote index lookups only



Real application

IndiLog as infrastructure layer of an object storage library with transaction support

● Workload: functions of 10k users doing CRUD operations on key-value 
objects for 30 seconds

IndiLog’s performance comparable with Boki 
Even with a small index IndiLog captures almost 50% of lookups locally

Boki throughput:
8950 Op/s



Conclusion

Current state-of-the-art shared logs neglect efficient indexing

● Boki’s complete index:
○ Leads to high RAM consumption and eventually OOM crash
○ Impedes scalability of the compute tier

IndiLog

● Local indexes + index tier for efficient indexing of log records
● Dynamic scaling of the computer tier


