Risotto

A Dynamic Binary Translator for
Weak Memory Model Architectures

Redha Gouicem*, Dennis Sprokholt*, Jasper Ruehl,
Rodrigo C. O. Rocha, Tom Spink, Soham Chakraborty, Pramod Bhatotia

Technical 4
University
TUDelft

Towards a heterogeneous CPU landscape

New emerging architectures challenge the x86 dominance ARM : 4

RISC

AAzu re
< D W3

Major vendors build Major cloud providers offer
custom Arm CPUs Arm-based instances

What does this mean for legacy applications?

Legacy applications on new architectures

Source code available? ¢
No x86-specific assembly code? ¢

—®—— ARM

Just compile and run!

You only have pre-built binaries?
Your codebase contains x86 assembly,
requiring complicated porting?

(inte) —e—> ARM

Binary translation is the way to go!

Binary translation and memory models

Translated binaries must have the same behaviour as on the source architecture

What about the architectural differences between source and target architectures?

Memory ordering model: reordering rules for memory accesses

X=Y=0
RISC-V +TSO X =1 if (Y==1)
Sequential (thread 1) C: Y= assert(X == 1 (thread 2)
+Arm +X86
‘] 86, assert n Arm, assert can fail if
Weak Strong On x86, © .
always succeeds instructions are re-ordered

The source memory model must be enforced

The cost of correctness...

Enforcing a memory model = inserting fences next to memory operations

QEMU, a state-of-the-art binary translator, tries to enforce the x86 memory model on
Arm by inserting strong fences before every memory operation:
e.g., store — full-fence; store
load — load-fence ; load

But fences have a performance cost:

48% of the execution time of PARSEC and Phoenix benchmarks
is spent executing memory fences!

... without the correctness

We still find correctness bugs in QEMU with atomic operations
(see the paper for full details)

How can we maximise the performance of binary
translation while ensuring the execution correctness?

Risotto: A Dynamic Binary Translator for
Weak Memory Model Architectures

We base our design on QEMU and its
intermediate representation, TCG IR

1. Correctness
> Precise memory mappings
> Formal correctness proofs

2. Performance
> Optimised code generation
> Maximising native code use with
shared libraries

Agda proof
assistant

x86 model

N/

TCG IR model

QEMU |*

Translator

Dynamic host
library linker

\ 4

Host kernel

\
(Host library)

Risotto: A Dynamic Binary Translator for -
Weak Memory Model Architectures

We base our design on QEMU and its
intermediate representation, TCG IR

Agda proof
assistant

1. Correctness
> Precise memory mappings

> Formal correctness proofs I
TCG IR model

x86 model

2. Performance
> Optimised code generation
> Maximising native code use with

Dynamic host
library linker

\ 4

-
Host kernel J(Host library)
_

shared libraries

Precise memory mappings

We propose precise memory mappings to enforce the x86 memory model
i.e., every fence is necessary and sufficient

store — full-fence ; store-fence ; store
load — lo ; load load ; load-fence

x86 model

We formally verify the correctness of our d
mappings with the Agda theorem prover TCG IR model

U 49do o

Fixing the Arm model

casal: Compare-And-SwaplAcquire Release |\

Act as a full fence

Our proofs show that the official Arm memory model
does not enforce the full fence!

We fix the official Arm model and submit the issue

The official model was fixed!

10

Risotto: A Dynamic Binary Translator for -
Weak Memory Model Architectures

We base our design on QEMU and its

intermediate representation, TCG IR QEMU] o
Aagsi?sgar(r)\(t)f Translator
1. Correctness
> Precise memory mappings x86 model
> Formal correctness proofs I
TCG IR model
2. Performance l
A 4
> Optimised code generation et || Dynamic host
« Armmodel | Arm 3 KBrarvling
.. . A I ry linker
> Maximising native code use with :
shared libraries v v
p
Host kernel (Host library)

Maximising native code usage

Native binaries (from source code to host) are faster than translated binaries
— maximising the native binary base is a good target for optimisation

. . _ Risotto
Native host instructions Kernel Kernel

Guest translated instructions =

We introduce a dynamic host library linker that:
> detects calls to shared library functions
> patches the target jump address to invoke the native host library

12

Evaluation

1. Do Risotto mappings outperform QEMU mappings?
— Risotto vs QEMU (incorrect)
— Benchmarks: PARSEC and Phoenix

2. Does our host library linker achieve native performance for shared libraries?
— Risotto vs QEMU
— Benchmarks: openssl, math and sqlite

13

Run time w.r.t. QMU

Evaluation: Memory Mappings

EEE Risotto Lower is better
PARSEC Phoenix
A
100% == N
80%
60%
40%
20%
0%
o\e":v ¢ a(y~ .\0(\9 \"\QC" (’b‘(\ a(\9 é\o(\ \'{,\Q\\; Q(,a a‘c‘“ 0\)(\"
\ac\f"d\ \30&‘ S o 6\9@% o a((eq“”(’ K 5 (;&\(\Q ¢
\‘\(\e ((\

Risotto vs QEMU: 6.7% faster on average

14

Evaluation: Dynamic Host Library Linker

Openssl and sqglite speedtests

_ _ Higher is better
B risotto 1 native

= = NN
o U1 o WU

Speedup w.r.t. QEMU
unl

Risotto matches native execution

15

Conclusion

We propose Risotto, a dynamic binary translator for weak memory model architectures

e Correct enforcement of the x86 memory model on Arm hosts
o Formal model of QEMU’s intermediate representation, TCG
O Precise memory mappings from x86 to Arm via TCG
O Proof of correctness in Agda
o Fix to the official Arm memory model
e Improved performance while being correct
o Optimised generated code — 6.7% faster than QEMU on average
© Dynamic host library linker — matches native library performance

Check out the paper here!

