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Abstract

We introduce tnic, a trusted NIC architecture for building
trustworthy distributed systems deployed in heterogeneous,
untrusted (Byzantine) cloud environments. tnic builds amin-
imal, formally verified, silicon root-of-trust at the network
interface level. We strive for three primary design goals: (1)
a host CPU-agnostic unified security architecture by pro-
viding trustworthy network-level isolation; (2) a minimal-
istic and verifiable TCB based on a silicon root-of-trust by
providing two core properties of transferable authentication
and non-equivocation; and (3) a hardware-accelerated trust-
worthy network stack leveraging SmartNICs. Based on the
tnic architecture and associated network stack, we present
a generic set of programming APIs and a recipe for build-
ing high-performance, trustworthy, distributed systems for
Byzantine settings.We formally verify the safety and security
properties of our tnic while demonstrating its use by build-
ing four trustworthy distributed systems. Our evaluation of
tnic shows up to 6× performance improvement compared
to CPU-centric TEE systems.

CCS Concepts: • Security and privacy→ Trusted com-

puting.
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1 Introduction

Distributed systems are integral to the third-party cloud
infrastructure [4, 18, 29, 33]. While these systems manifest in
diverse forms (e.g., storage systems [42, 48, 59, 63, 72, 76, 89],
management services [61, 101], computing frameworks [8,
10, 19]) they all must be fast and remain correct upon failures.

Unfortunately, the widespread adoption of the cloud has
drastically increased the surface area of attacks and faults [84,
96, 153] that are beyond the traditional fail-stop (or crash
fault) model [78]. The modern (untrusted) third-party cloud
infrastructure severely suffers from arbitrary (Byzantine)
faults [114] that can range frommalicious (network) attacks to
configuration errors and bugs and are capable of irreversibly
disrupting the correct execution of the system [66, 84, 96, 153].

A promising solution to build trustworthy distributed sys-
tems that can sustain Byzantine failures is based on the sil-
icon root of trust—specifically, the Trusted Execution Envi-
ronments (TEEs) [7, 26, 49, 74, 146]. While the TEEs offer a
(single-node) isolated Trusted Computing Base (TCB), we
have identified three core challenges (§ 3.3) that complicate
their adoption for building trustworthy distributed systems
spanning multiple nodes in Byzantine cloud environments.

First, TEEs inheterogeneous cloud environments intro-
duce programmability and security challenges. A cloud
environment offers diverse heterogeneous host-side CPUs
with different TEEs (e.g., Intel SGX/TDX, AMD SEV-SNP,
AWSNitro Enclaves,ArmTrustZone/CCA,RISC-VKeystone).
These heterogeneous host-side TEEs require different pro-
grammingmodelsandoffervaryingsecurityproperties.There-
fore, they cannot (easily) provide a generic substrate for build-
ing trustworthy distributed systems. Our work overcomes
this challenge by designing a host CPU-agnostic silicon root of
trust at the network interface (NIC) level (§ 4). We provide a
generic programmingAPI (§ 6) and a recipe (§ 6.2) for building
high-performance, trustworthy distributed systems (§ 7).

Secondly, TEEswith a large TCBare plaguedwith secu-
rity vulnerabilities, rendering them non-verifiable. With
hundreds of security bugs alreadyuncovered [85], TEEs’ large
TCBs further increase their security vulnerabilities [112, 136],
impeding a formal verification of their security.We overcome
thiswith aminimalistic verifiable TCB (§ 4.1). Our TCB resides
at the NIC hardware and is equipped with the lower bound of
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security primitives; we provide only two key security prop-
erties of non-equivocation and transferable authentication
for building trustworthy distributed systems (§ 2.1). Since we
strive for a minimal trusted interface, we can (and we did)
formally verify the security properties of our TCB (§ 4.4).
Thirdly, TEEs report significant performance bottle-

necks. TEEs syscalls execution for (network) I/O is extremely
costly [172], whereas even state-of-the-art network stacks
showed a lower bound of 4× slowdown [56]. We attack this
challenge based on two aspects. First, we build a scalable
transformation with our minimal TCB’s security properties
(§ 6.2) to transform Byzantine faults (3𝑓 +1) to much cheaper
crash faults (2𝑓 +1) for tolerating 𝑓 (distributed) Byzantine
nodes. Secondly, we design hardware-accelerated offload of
the security computation at the NIC level by extending the
scope of SmartNICswith the lower bound of security primitives
(§ 4) while offering kernel-bypass networking (§ 5).

To overcome these challenges, we present tnic, a trusted
NICarchitecture for building trustworthydistributed systems
deployed in Byzantine cloud environments. tnic realizes an
abstraction of trustworthy network-level isolation by build-
ing a hardware-accelerated silicon root of trust at the NIC
level. Overall, tnic follows a layered design:
• Trusted NIC hardware architecture (§ 4): We mate-
rialize a minimalistic, verifiable, and host-CPU-agnostic
TCB at the network interface level as the key component
to design trusted distributed systems for Byzantine set-
tings. Our TCB guarantees the security properties of non-
equivocation and transferable authentication that suffice
to implement an efficient transformation of systems for
Byzantine settings. We build tnic on top of FPGA-based
SmartNICs [3]. We formally verify the safety and security
guarantees of tnic protocols using Tamarin Prover [131].
• Network stack (§ 5) and library (§ 6): Based on the
tnic architecture, we design a HW-accelerated network
stack to access the hardware bypassing kernel for per-
formance. On top of tnic’s network stack, we present
a networking library that exposes a simplified program-
ming model. We show how to use tnic APIs to construct
a generic transformation of a distributed system operating
under the CFTmodel to target Byzantine settings.
• Trusted distributed systems using tnic (§ 7):We build
with tnic the following (distributed) systems for Byzantine
environments: Attested Append-onlyMemory [70], Byzan-
tine Fault Tolerance [65], Chain Replication [167], and Peer-
Review [95] —showing the generality of our approach.
We evaluate tnic with a state-of-the-art software-based

network stack, eRPC [106], on top of RDMA [132]/DPDK [24]
with two different TEEs (Intel SGX [104] and AMD-sev [49]).
Our evaluation shows that tnic offers 3×—5× lower latency
than the software-based approach with the CPU-based TEEs.
For trusted distributed systems, tnic improves throughput
by up to 6× compared to their TEE-based implementations.

2 Motivation and Background

Wefirstexamine thedesignrequirements forhigh-performance,
trustworthy distributed systems for cloud environments.

2.1 Trustworthy Distributed Systems

Byzantine fault model. In the untrusted cloud infrastruc-
ture, arbitrary (Byzantine) faults are a frequent occurrence
in the wild [84, 153, 177, 178]. To this end, system designers
introduced Byzantine Fault Tolerant (BFT) systems that re-
main correct even under the presence of (a bounded number
of) Byzantine failures [114]. Traditional BFT protocols need
at least 3𝑓 +1 nodes in order to provide consistent replication
while tolerating up to 𝑓 Byzantine failures. While BFT accu-
rately captures the realistic security needs in the cloud [82],
it is rarely adopted in practice [157] due to its complexity and
limited performance [54, 155].
Crash fault model. The vast majority of cloud applica-
tions operate under the fail-stop (crash fault) model [14, 17,
21, 62, 72], optimistically assuming that the entire cloud in-
frastructure is trusted and only fails by crashing [78]. Com-
pared to BFT replication, Crash Fault Tolerant (CFT) proto-
cols [101, 113, 138, 139], require 2𝑓 + 1 replicas to tolerate
𝑓 (yet non-Byzantine) failures. While CFT systems can of-
fer performance and scalability [88], they are fundamentally
incapable of ensuring safety in the presence of non-benign
faults, hence, are ill-suited for the modern cloud.
Security properties for BFT.We seek to build BFT systems
while reducing their programmability and performance over-
heads. Our approach, inspired by the theoretical findings of
Clement et al. [71], transforms CFT systems into BFT sys-
tems by providing the lower bound of security properties, i.e.,
transferable authentication and non-equivocation.

We next explain the two security properties. First, transfer-
able authentication allows a node to verify the original sender
of a received message, even if it is forwarded by other than
the original sender. Assuming that the sender 𝑝𝑖 sends an
authenticated message𝑚 to a recipient 𝑝 𝑗 , the authenticated
message𝑚 is accompanied by an authentication token 𝜎 (𝑝𝑖 )
that allows 𝑝 𝑗 to verify that 𝑝𝑖 generated the message, e.g.,
verify(𝑚,𝜎 (𝑝𝑖 )). Authentication tokens are unforgeable:
• if 𝑝𝑖 is correct, then verify(𝑚,𝜎 (𝑝𝑖 )) is true if and only if 𝑝𝑖
generated𝑚.
• if 𝑝𝑖 is faulty, verify(𝑚,𝜎 (𝑝𝑖 )) ∧ verify(𝑚′,𝜎 (𝑝𝑖 ))⇒𝑚=𝑚′.
As such, a compromised 𝑝𝑖 cannot produce two valid differ-
entmessages that can be verifiedwith the same token𝜎 (𝑝𝑖 ).

As an authentication token is transferable, it allows another
recipient 𝑝𝑘 to evaluate verify(𝑚,𝜎 (𝑝𝑖 )) in the sameway even
when𝑚 and 𝜎 (𝑝𝑖 ) are forwarded from 𝑝 𝑗 .

Second, non-equivocation guarantees that a node cannot
make conflicting statements to different nodes. Equivocation
also manifests as network adversaries or replay attacks that
send invalid messages or re-send valid but stale messages.
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The seminal paper [71] proves that, given these two proper-
ties, a transformation fromanyCFTprotocol to aBFTprotocol
is always possible without increasing the number of partici-
pating nodes; e.g., a reliable broadcast can be implemented to
tolerate up to 𝑓 Byzantine failures in an asynchronous system
with 2𝑓 +1 replicas, rather than the conventional 3𝑓 +1.

2.2 High-Performance Distributed Systems

The aforementioned two security properties are sufficient to
correctly transform (any) CFT distributed system to operate in
the BFTmodel [71, 73]. However, a fundamental design trade-
off exists between efficiency and robustness for practical de-
ployments in the cloud. Ourwork aims to resolve this tension.
Trusted hardware for BFT. System designers established
trusted hardware, TEEs, as the most effective way to elimi-
nate a system’sByzantine counterparts [56, 58, 77, 168].While
TEEs can be used to offer BFT, prior research illustrated signif-
icant performance and architectural limitations in the context
of networked systems [56, 58, 77, 168]. Based on performance
and security studies [46, 47], TEEs’ overheads in the heteroge-
neous cloud, in addition to their heterogeneity in programma-
bility and security guarantees, are incapable of offering high-
performant trusted networking under the BFTmodel.
SmartNICs for high-performance and BFT. We lever-
age the state-of-the-art hardware-level networking acceler-
ators, i.e., SmartNICs [3, 9, 11, 28, 30–32, 41], to address the
trade-off between performance and security, overcoming the
limitations of TEEs. Our design choice of leveraging Smart-
NICs is not hypothetical; SmartNIC devices have already been
launchedbymajor cloudproviders [9, 32, 41], presentinggreat
opportunities for performance thanks to their integrated fully
programmable hardware (e.g., ARM cores [11, 28, 31, 41], FP-
GAs [2, 3, 32]). Precisely, we rely on two promising directions:
(1) security and network processing offloading at the NIC-
level hardware and (2) an efficient transformation for BFT.

3 Overview

3.1 SystemOverview

Weproposetnic,a trustedNICarchitecture forhigh-performance,
trustworthy distributed systems, formally guaranteeing their
secure and correct execution in the heterogeneous Byzantine
cloud infrastructure. tnic is comprised of three layers (shown
in Figure 1): (1) the tnic hardware architecture (green
box) that implements trusted network operations on top of
SmartNIC devices (§ 4), (2) the tnic network stack (yellow
box) that intermediates between the application layer and the
tnic hardware (§ 5), and (3) the tnic network library (blue
box) that exposes tnic’s programming APIs (§ 6).

Our tnic hardware architecture implements the network-
ing IB/RDMA protocol [1] on FPGA-based SmartNICs [3]. It
extends the conventional protocol implementation with a
minimal hardware module, the attestation kernel, that mate-
rializes the security properties of the non-equivocation and

Application code

TNIC API

User-space buffers Network library

TNIC (sw) programming API

Device access interface

TNIC driver Mapped memory

RDMA OS abstractions

TNIC (sw) network stack

TNIC hardware

\ RDMA network stack

TNIC (hw) architecture

Security module
Attestation kernel

Network

Data path Control path

Figure 1. tnic system overview.

transferable authentication. The tnic network stack config-
ures the tnic device on the control path while it offers the
data path as kernel-bypass device access for low-latency oper-
ations. Lastly, the tnicnetwork library exposes programming
APIs built on top of (reliable) one-sided RDMA primitives.

3.2 Threat Model

Weinherit the faultandthreatmodel fromtheclassicalBFT[66]
and trusted computing domains [104]. The cloud infrastruc-
ture (machines, network, etc.) can exhibit Byzantine behavior
and also being subject to attackers that can control over the
host CPU (e.g., the OS, VMM, etc.) and the SmartNICs (post-
manufacturing). The adversary can attempt to re-program the
SmartNIC, but they cannot compromise the cryptographic
primitives [66, 117, 168]. The physical package, supply chain,
andmanufacturer of theSmartNICsare trusted [108, 180]. The
tnic implementation (bitstream) is synthesizedbya trusted IP
vendor with a trusted tool flow for covert channels resilience.

Since tnic does not rely on CPU-based TEEs and its net-
work stack and library run on the unprotected CPU, both soft-
ware can be compromised by a potentially Byzantine actor on
the machine. As such, tnic does not distinguish between dif-
ferent types of untrusted software components. Whether the
network library, the network stack, or the application code is
compromised, the node is considered faulty (Byzantine) and
must conform to the BFT application system model, which
should specify its tolerance to Byzantine failures.

3.3 Design Challenges and Key Ideas

While designing tnic, we overcome the following challenges:
#1:Heterogeneoushardware.CPU-basedTEEs in the cloud
infrastructure are heterogeneous with different programma-
bility [52, 57, 151, 164, 165, 173] and security properties [129,
134, 141] that complicate their adoption and the system’s
correctness [151]. Prior systems [58, 77, 125, 168] could not
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address this heterogeneity challenge as they require homoge-
neous x86machineswith SGX extensions of a specific version.
This is ratherunrealistic inmodernheterogeneousdistributed
systems where system designers are compelled to stitch het-
erogeneous TEEs together. TEE’s heterogeneity in programma-
bility and security semantics hampers their adoption and adds
complexity to ensuring the system’s overall correctness.
Key idea: A host CPU-agnostic unified security archi-

tecture based on trustworthy network-level isolation.

Ourtnic offers a unified andhost-agnostic network-interface
level isolation that guarantees the specific yet well-defined
security properties of the non-equivocation and transfer-
able authentication. tnic shifts the security properties from
CPU-hosted TEEs to NIC hardware, thereby addressing the
heterogeneity and programmability issues associated with
CPU-based TEEs. tnic also offers generic programming APIs
(§ 6.1) that are used to correctly transformawide variety of dis-
tributed systems for Byzantine settings. We demonstrate the
power of tnicwith a generic transformation recipe (§ 6.2) and
its usage to transform prominent distributed systems (§ 7).
#2: Large TCB in the TEE-based silicon root-of-trust.

TEEs based on a silicon root of trust are promising for build-
ing trustworthy systems [56, 58, 77, 168]. Unfortunately, the
state-of-the-art TEEs integrate a large TCB; for example, we
calculate the TCB size of the state-of-the-art Intel TDX [26].
The TEE ports within the trusted hardware the entire Linux
kernel (specifically, v5.19 [39]) and “hardens” at least 2000K
lines of usable code, leading to a final TCBof 19MB. Such large
TCBs have been accused of increasing the area of faults and
attacks [112, 136] of commercial TEEs that are already under
fire for their securityvulnerabilities [25, 27, 43, 53, 144]. Impor-
tantly,TEE’s largeTCBscomplicate their securityanalysisand
verification, rendering their security properties incoherent.
Key idea: A minimal and formally verifiable silicon

root-of-trust with low TCB. In our work, we advocate that
aminimalistic silicon root of trust (TCB) at the NIC level hard-
ware is the foundation for building verifiable, trustworthy
distributed systems. In fact, tnicbuilds aminimalistic andver-
ifiable attestation kernel (§ 4.1) that guarantees the tnic secu-
rity properties at the SmartNIC hardware. Moreover, we have
formally verified the tnic secure hardware protocols (§ 4.4).
#3: Performance.TEE’s overheads are significant in the con-
text of networked systems [56, 77, 90, 168]. Prior research [56]
reported 4×—8×performance degradationwith even a sophis-
ticated network stack. Others [58, 77, 168] limit performance
due to the communication costs between their untrusted and
TEE-based counterparts [108]. The actual performance over-
heads in heterogeneous distributed systems are expected to
be more exacerbated [46, 47]. As such, TEEs cannot naturally
offer high-performant, trusted networking.
Key idea: Hardware-accelerated trustworthy network

stack.Our tnic bridges the gap between performance and se-
curity with two design insights. First, tnic attestation kernel

offers the foundations to transform CFT distributed systems
to BFT systems without affecting the number of participat-
ing nodes, significantly improving scalability. Second, tnic
user-space network stack (§ 5) bypasses the OS and offloads
security and network processing to the NIC-level hardware.

4 Trusted NICHardware

Figure 2 shows our tnic hardware architecture that imple-
ments trustednetworkoperations ona SmartNICdevice. tnic
introduces two key components: (i) the attestation kernel that
guarantees the non-equivocation and transferable authenti-
cation properties over the untrusted network (§ 4.1) and (ii)
the RoCE protocol kernel that implements the RDMA proto-
col including transport and network layers (§ 4.2). We also
introduce a bootstrapping and a remote attestation protocol
for tnic (§ 4.3) and formally verify them (§ 4.4).

4.1 NIC Attestation Kernel

The attestation kernel shields network messages and mate-
rializes the properties of non-equivocation and transferable
authentication by generating attestations for transmittedmes-
sages. As shown in Figure 2, the attestation kernel resides
in the data pipeline between the RoCE protocol kernel that
transmits/receives networkmessages and the PCIe DMA that
transfers data from/to the host memory. The kernel processes
the messages as they flow from the memory to the network
and vice versa to optimize throughput.
Hardware design. The attestation kernel is comprised of
three components that represent its state and functionality:
the HMAC component that generates the message authenti-
cation codes (MAC), the Keystore that stores the keys used
by the HMACmodule, and the Counters store that keeps the
message’s latest sent and received timestamp.
The system designer initializes each tnic device during

bootstrapping with a unique identifier (ID) and a shared se-
cret key—ideally, one shared key for each session—stored in
static memory (Keystore). The keys are shared and, hence,
unknown to the untrusted parties.

tnic holds two counters per session in the Counters store:
send_cnts, which holds sending messages, and recv_cnts,
whichholds the latest seen counter value for each session. The
counters represent themessages’ timestampandare increased
monotonically and deterministically after every send and re-
ceive operation to ensure that unique messages are assigned
to unique counters for non-equivocation. Consequently, no
messages can be lost, re-ordered, or doubly executed.
Algorithm. Algorithm 1 shows the functionality of the at-
testation kernel. The module implements two core functions:
Attest(),whichgenerates auniqueandverifiable attestation
for a message, and Verify(), which verifies the attestation
of a received message. The message transmission invokes
Attest(), and likewise, the reception invokes Verify().
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Figure 2. tnic hardware architecture.

Upon transmission, as shown in Figure 2, the message is
first forwarded to the attestation kernel. The attestation ker-
nel executes Attest() and generates an attested message
comprised of themessage data and its attestation certificate𝛼 .
The function calculates 𝛼 as the HMAC of the message con-
catenated with the counter send_cnt and the device ID (for
transferable authentication) with the key for that connection
(Algo 1: L4). It also increases thenext available counter for sub-
sequent future messages (Algo 1: L2). The function forwards
themessagewith its𝛼 to theRoCEprotocol kernel (Algo 1: L4).
Upon reception, the received message passes through the

attestation kernel for verification before it is delivered to the
application. Specifically, Verify() checks the authenticity
and the integrity of the received message by re-calculating
the expected attestation 𝛼 ’ based on the message payload and
comparing it with the received attestation 𝛼 of the message
(Algo 1: L7—8). The verification also ensures that the received
counter matches the expected counter for that connection to
ensure continuity (Algo 1: L8).

4.2 RoCE Protocol Kernel

The RoCE protocol kernel implements a reliable transport ser-
vice on top of the IB Transport Protocol with UDP/IPv4 layers
(RoCE v2) [23] (transport and network layers). As shown in
Figure 2, to transmit data, the Req handler module in the
RoCE kernel receives the request opcode (metadata) issued
by the host. Themessage is fetched through the PCIeDMAen-
gineandpasses through theattestationkernel. The request op-
code and the attested message are forwarded to the Request
generationmodule that constructs a network packet.

Upon receiving amessage from the network, the RoCE ker-
nel parses the packet header and updates the protocol state
(stored in the State tables). The attested message is then for-
warded to the attestation kernel. The message is delivered to
the application’s (host) memory upon successful verification.

Algorithm 1: Attest() and Verify() functions.
1 function Attest(c_id, msg) {
2 cnt← send_cnts[c_id]++;
3 𝛼← hmac(keys[c_id], msg||ID||cnt);
4 return 𝛼||msg||ID||cnt;
5 }
6 function Verify(c_id, 𝛼||msg||ID||cnt) {
7 𝛼 ’← hmac(keys[c_id], msg||ID||cnt);
8 if (𝛼 ’ = 𝛼 && cnt = recv_cnts[c_id]++ )

9 return (𝛼||msg||cnt);
10 assert(False);
11 }

Hardware design. The RoCE protocol kernel is also con-
nected to a 100GbMAC IP and an ARP server IP.
100GbMAC. The 100Gb MAC kernel implements the link
layer connecting tnic to the network fabric over a 100G Eth-
ernet Subsystem [40]. The kernel also exposes two interfaces
for transmitting (Tx) and receiving (Rx) network packets.
ARP server. The ARP server has a lookup table containing
MAC and IP address correspondences. Right before the trans-
mission, the RDMA packets at the Request generation
first pass through aMAC and IP encoding phase, where the
Request generationmodule extracts the remote MAC ad-
dress from the lookup table in the ARP server.
IB protocol. The RoCE protocol kernel implements the reli-
able version of the IB protocol. Similarly to its original specifi-
cation [1], the kernel implements State tables to store protocol
queues (e.g., receive/send/completion queues) as well as im-
portant metadata, i.e., packet sequence numbers (PSNs), mes-
sage sequence numbers (MSNs), and a Retransmission Timer.
Dataflow. The transmission path is shown with the blue-
colored axes in Figure 2. The Req handler receives requests
issued by the host and initializes aDMAcommand to fetch the
payload data from the host memory to the attestation kernel.
Once the attestation kernel forwards the attested message to
theReq handler, themodule passes themessage fromseveral
states to append the appropriate headers IB hdr along with
metadata (e.g., RDMA op-code, PSN, QP number). The last
part of the processing generates and appends UDP/IP headers
(e.g., IP address, UDP port, and packet length). The message
is then forwarded to the 100GbMACmodule.
In the reception path (red-colored axes in Figure 2), the

Request decoder extracts the headers, metadata, and at-
tested message. The message is forwarded to the attestation
kernel for verification and finally copied to the host memory.
The message format in tnic follows the original RDMA

specification [1]; only thedifferencebetweenourtnic and the
original RDMAmessages is that the attestation kernel extends
the payload by appending a 64B attestation 𝛼 and the meta-
data. The metadata includes a 4B id for the session id of the
sender, a 4B ID for the device id (unique per device), and the
appropriate send_cnt. This payload extension is negligible
and does not harm the network throughput.
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4.3 tnic Attestation Protocol

We design a remote attestation protocol to ensure that the
tnic device is genuine and the tnic bitstream and secrets are
flashed securely in the device.
Boostrapping. The tnic hardware is securely bootstrapped
in an untrusted third-party cloud by the Manufacturer, Sys-
tem designer, and IP vendor, who trust each other. At the
device construction, the Manufacturer burns HW𝑘𝑒𝑦 , a secret
key unique to the device. It is possible with commercial FPGA
cards that have access to an AES key and the hash of a pub-
lic encrypted key embedded in secure, on-chip, non-volatile
storage (Intel [34], AMD [16]). The System designer shares
the configuration with the IP vendor and instructs the cloud
provider to load the (encrypted) FPGAfirmwarewhich is then
decrypted with the HW𝑘𝑒𝑦 . The firmware loads the controller
binary Ctrl𝑏𝑖𝑛 , generates a key pair Ctrl𝑝𝑢𝑏,𝑝𝑟𝑖𝑣 for the spe-
cific device and binary, and signs the measurement of the
Ctrl𝑏𝑖𝑛 and the Ctrl𝑝𝑢𝑏 with the HW𝑘𝑒𝑦 (Ctrl𝑏𝑖𝑛cert).
Remote attestation. Figure 3 shows tnic remote attesta-
tion. The IP vendor sends a random nonce n for freshness
to the Controller. The IP vendors public key IPVendor𝑝𝑢𝑏 is
embedded into the Ctrl𝑏𝑖𝑛 . The Controller generates a cer-
tificate cert over the Ctrl𝑏𝑖𝑛cert and n (2) which signs with
Ctrl𝑝𝑢𝑏 and sends it to the IP vendor (3).

The IP vendor verifies the authenticity of the cert (4)—(5)
andestablishesaTLSconnectionwith theController. First, the
vendor verifies the authenticity of mwith the HW𝑘𝑒𝑦 , ensuring
that a genuine Ctrl𝑏𝑖𝑛 and a genuine device has signed m (4).
As such, the vendor ensures that the Ctrl𝑏𝑖𝑛 runs in a genuine
tnic device by verifying that themeasurement of the Ctrl𝑏𝑖𝑛
has been signed with an appropriate device key installed by
the Manufacturer. Lastly, the vendor verifies the nonce n and
cert to ensure freshness (with the Ctrl𝑝𝑢𝑏 included in m).

Now, a mutually authenticated TLS connection is estab-
lished; the IP vendor verifies authenticity by checking for the
desired Ctrl𝑝𝑢𝑏 and the Controller checks for it’s embedded
IPVendor𝑝𝑢𝑏 (6.1)—(6.3). Once the TLS connection is estab-
lished the IP Vendor sends the Controller the secrets and the
tnic bitstream, TNIC𝑏𝑖𝑡 .

4.4 Formal Verification of tnic Protocols

We formally verify the safety and security properties of tnic
hardware using Tamarin [131]. Our verification consists of
a model for bootstrapping, remote attestation, message trans-
mission, and reception, according to Figure 3. This model is
augmented with custom action facts, which mark the occur-
rence of defined events in the execution trace. These include:
1. D𝑒 (𝑥), which marks the end of the attestation phase for

endpoint 𝑒 , with associated connection information 𝑥 .
2. S𝑒 (m) and A𝑒 (m) marking the sending and accepting of a

messagem, following Algorithm 1, respectively.
The intended temporal relationship of these action facts is ex-
pressed using lemmas,whichTamarin thenproves using auto-
mateddeductionandequational reasoning.The relationa@ 𝑡𝑖
expresses that action fact a occurred at time 𝑡𝑖 . Using this rela-
tion,wecanexpressourdesiredsecuritypropertiesas follows:
Remote attestation.We define the main attestation lemma
for any tnic device tnic and associated IP Vendor ipv. The
lemma holds if, after the last step of the remote attestation
protocol, the tnic device is in a valid, expected state:
∀ ipv,tnic,c,𝑡𝑖 . Dipv (c)@ 𝑡𝑖 =⇒∃ 𝑡 𝑗 . 𝑡 𝑗 < 𝑡𝑖∧Dtnic (c)@ 𝑡 𝑗 (1)

Transferable authentication.We define the lemma, which
states that any accepted message was sent by an authentic
tnic device in a valid configuration:
∀ 𝑒1,m,𝑡𝑖 . A𝑒1 (m)@ 𝑡𝑖 =⇒∃ 𝑒2,𝑡 𝑗 . 𝑡 𝑗 < 𝑡𝑖∧S𝑒2 (m)@ 𝑡 𝑗 (2)

Non-equivocation.We further extend the model by three
lemmas that help to reason about non-equivocation. For any
message that is accepted, it holds that (i) there is no message
that was sent before but not accepted:

∀ 𝑒1,𝑒2,m𝑗 ,𝑡𝑖 ,𝑡 𝑗 . A𝑒1 (m𝑗 )@ 𝑡𝑖∧S𝑒2 (m𝑗 )@ 𝑡 𝑗

=⇒ (∀m𝑘 ,𝑡𝑘 . 𝑡𝑘 < 𝑡 𝑗∧S𝑒2 (m𝑘 )@ 𝑡𝑘

=⇒∃ 𝑡𝑙 . 𝑡𝑙 < 𝑡𝑖∧A𝑒1 (m𝑘 )@ 𝑡𝑙 )
(3)

(ii) there is nomessage thatwas sent after, but accepted before:
∀ 𝑒1,m𝑖 ,m𝑗 ,𝑡𝑖 ,𝑡 𝑗 . 𝑡𝑖 < 𝑡 𝑗∧A𝑒1 (m𝑖 )@ 𝑡𝑖∧A𝑒1 (m𝑗 )@ 𝑡 𝑗

=⇒∃ 𝑒2,𝑡𝑘 ,𝑡𝑙 . 𝑡𝑘 < 𝑡𝑙∧S𝑒2 (m𝑘 )@ 𝑡𝑘∧S𝑒2 (m𝑙 )@ 𝑡𝑙
(4)

(iii) this message has not been accepted before:
∀ 𝑒1,m,𝑡𝑖 ,𝑡 𝑗 . A𝑒1 (m)@ 𝑡𝑖∧A𝑒1 (m)@ 𝑡 𝑗 =⇒ 𝑡𝑖 =𝑡 𝑗 (5)

Our complete verification includes additional action facts and
lemmas to verify properties like the secrecy of private infor-
mation and the implications of out-of-bandkey compromises.

To sum up, Tamarin successfully shows that there is no se-
quence of transitions that leads to any statewhere our lemmas
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Figure 4. tnic network system stack.

are violated. Thus, the attestation and transferable authenti-
cation lemmas hold for our model, and the counters behave
as expected for non-equivocation.

5 tnic Network Stack

We build a software tnic system network stack that oper-
ates as themiddle layer between the tnic programming APIs
(see § 6.1) and the hardware implementation of tnic. Fig-
ure 4 shows an overview of the network stack design that is
comprised of two core components: (1) the tnic driver and
mappedREGspages that are responsible for initializing thede-
vice and configuring host—device communication and (2) the
RDMAOS abstractions that execute networking operations.

5.1 tnic Driver andMapped REGs Pages

The tnic driver is invoked at the device initialization, before
the remote attestation protocol (§ 4.3), to configure the hard-
warewith its static configuration (thedeviceMACaddress, the
deviceQSFP port, and the network IP used by the application).
The driver enables kernel-bypass networking—similar to

the original (user-space) RDMA protocol—by mapping the
tnic device to a user-space addresses range, the Mapped
REGs pages. tnic reserves one page at the page granularity
of our system for each connected device that is represented as
pseudo-devices in /dev/fpga<ID>. Read and write access to
the pseudo-device is equal to accessing the control and status
registers of the FPGA. Applications directly interact with the
control path of the tnic hardware bypassing the host OS.

5.2 RDMAOSAbstractions

The RDMAOS abstractions are a user-space library that en-
ables the networking operations in the tnic hardware, by-
passing the OS kernel for performance. As shown in Figure 4,
the RDMAOS library is comprised of two parts: the network
(RDMA) library (colored in purple) that implements the soft-
ware part of the RDMA protocol and the OS library (colored
in red) that schedules the tnic requests.

Initialization APIs

ibv_qp_conn() Creates an ibv struct
alloc_mem() Allocates host ibv memory
init_lqueue() Registers local memory to tnic
ibv_sync() Exchanges ibv memory addresses

Network APIs

local_send/verify() Generates/verifies attested messages
auth_send() Transmits an attested message

poll() Polls for incoming messages
rem_read/write() Fetches/writes remote memory

Table 1. tnic programming APIs.
Network (RDMA) library. The network (RDMA) library
includes all the logic and data (e.g., Tx/Rx queues per connec-
tion, local and remote memory addresses, RDMA keys that
denote memory access permissions) required to implement
the RDMA protocol. It executes the application’s network-
ing operations by posting the requests to the hardware. More
specifically, it creates an internal representationof the request
and the associated data and metadata (i.e., request opcode,
remote IP, source/destination addresses, data length, etc.) and
writes them into specific offsets in the REGs pages to update
the control registers of the tnic hardware.
As shown in Figure 4, the transmission and reception of

requests and responses mandate the allocation of application
network buffers. We adopt memory management similar to
that in widely used user-space networking libraries [24, 106,
132]. Importantly, the network buffers need to be mapped to
a specific tnic-memory, called the ibvmemory. The ibvmem-
ory area is allocated at the connection creation in the huge
page area by the application through the ibv library. It resides
within the application’s address space with full read/write
permissions and is eligible for DMA transfers.
OS library.The tnic-OS library is responsible for scheduling
the requests and ensuring isolated access to the mapped REG
pages. For performance, the tnic data path eliminates unnec-
essary data copies throughout the network stack; the data to
besent isdirectly fetchedbythehardware throughDMAtrans-
fers. TheOS library creates a tnic-process object to represent
each tnic device. This tnic-process in tnic is not a separate
scheduling entity (i.e., a thread as in classical OSes). In con-
trast, it is an object handle, exposed to the ibv library butman-
aged by the tnic-OS library that acquires locks on the respec-
tive REGpages to ensure isolated access to the tnic hardware.

6 tnic Network Library

We present tnic’s programming APIs (§ 6.1), and a generic
recipe to transform existing distributed systems (§ 6.2).

6.1 Programming APIs

tnic implements a programming API (Table 1) that resem-
bles the traditional RDMA programming API [106] used in
modern distributed systems[81, 88, 92, 107, 110, 128, 137].We
further extend the security semantics, offering the properties
of non-equivocation and transferable authentication (§ 2.1).
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Initialization APIs. The tnic application first needs to con-
figure the tnic system to establish peer-to-peer RDMA con-
nections. The application creates one ibv struct for each con-
nection with ibv_qp_conn(), which sets up and stores the
queue pair, the local and remote IP addresses, device UDP
ports, and others. The application also invokes alloc_mem()
to allocate the ibv memory and then register the ibv memory
to the tnic hardware. Lastly, the application synchronizes
with the remote machine using ibv_sync() to exchange nec-
essary data (e.g., ibv memory address, queue pair numbers).
Network APIs. tnic executes trusted one-sided, reliable
RDMAwith the same reliability guarantees as the classical
one-sided RDMA over Reliable Connection (RC), i.e., a FIFO
ordering (per connection), similar to TCP/IP networking.

tnic offers auth_send() to send an attested message with
RDMA reliable writes. We support classical RDMA opera-
tions for reads and writes: rem_read() and rem_write().
The remote side runs poll() to fetch the number of com-
pleted operations; poll() is updated only when the message
verificationsucceedsat thetnichardware.Weoffer localoper-
ations for generating and verifying attested messages within
a single-node setup: local_send() and local_verify().
tnic does not support a hardware-assisted multicast, but

it can offer equivocation-free multicast uni-casting the same
attested message generated by local_send() as in [117].

6.2 A Generic Transformation Recipe

Transformationproperties.Weshowhow tousetnicAPIs
to transform an existing (CFT) distributed system into one
that targets Byzantine settings. Our transformation is defined
as wrapper functions on top of the send and receive opera-
tions [71]. For safety, our transformation needs to meet the
following properties to provide the same guarantees expected
by the original CFT system [71, 98, 99]:
Safety. If a correct receiver receives a message𝑚 from a cor-
rect sender 𝑆 , then 𝑆 must have sent with𝑚.
Integrity. If a correct receiver receives anddelivers amessage
𝑚, then𝑚 is a validmessage.

1 void send(P_id, char[] msg) {
2 state = hash(my_state);
3 tx_msg = msg || state || receiver_state;
4 auth_send(follower, tx_msg);
5 }
6 void recv(recv_msg) {
7 auto [att, msg || state || receiver_state] = deliver();
8 [msg, cnt] = verify_msg(msg);
9 verify_sender_state(state);
10 local_verify(receiver_state);
11 verify_system_view(receiver_state); apply(msg);
12 }

Listing 1.Generic send and recv wrapper functions using
tnic. tnic additions are highlighted in orange.

Listing 1 shows our proposed send (L1-5) and recv (L7-13)
operations, providing a general method for transforming a

CFT system into a BFT system. We assume a two-node sce-
nario where the first node (sender) receives client requests
and forwards them to the second node (receiver). For trans-
mission, the sender sends the client message msg, its current
state (e.g., the sender’s action to the msg), and the receiver’s
previous state (known to the sender). The receiver’s state
is optional depending on the consistency guarantees of the
derived system and can be used to ensure that both nodes
have the same system view.
Upon receiving a valid message (L8-9), the receiver simu-

lates the sender’s state to verify that the sender’s action to the
request is as expected (L10). The way to simulate the states
depends on the applications, e.g., in our BFT protocol imple-
mentation (§ 7), each replicamaintains copies of counters that
represent the expected counter values for all other participat-
ing nodes. The simulation allows nodes to avoid replaying the
entire message history in order to reconstruct the system’s
state, as done in [71]. The receiver also ensures that it does
not lag, and both nodes have the same “view” of the system
inputs by verifying that the sender has seen the receiver’s
latest state (e.g., message) (L11-12).

Ourgeneric transformationsatisfies therequirements listed
above. First, tnic’s transferable authentication property di-
rectly satisfies the safety requirement. A faulty node cannot
impersonate correct nodes; if tnic validates a message𝑚
from a sender, the sender must have sent𝑚. tnic’s reliable
network operations ensure liveness properties between cor-
rect nodes. Second, our transformation satisfies the integrity
property. The integrity property is ensured by validating that
the sender’s response to the client’s request follows the proto-
col specification. The transferable authentication mechanism
allows correct receivers to prove the integrity flow by sim-
ulating the sender’s output and state, e.g., by maintaining a
copy of the sender’s state.
Consistencyproperty for replication.Our transformation
further needs tomeet the consistency property [71]. If correct
receivers 𝑅1 and 𝑅2 receive valid messages𝑚𝑖 and𝑚 𝑗 respec-
tively fromsender𝑆 , then either (a)𝐵𝑝𝑔𝑖 is a prefixof𝐵𝑝𝑔 𝑗 , (b)
𝐵𝑝𝑔 𝑗 is a prefix of 𝐵𝑝𝑔𝑖 , or (c) 𝐵𝑝𝑔𝑖 = 𝐵𝑝𝑔 𝑗 (where 𝐵𝑝𝑔𝑥 is the
process behavior that supports the validity of message𝑚𝑥 ).

Theconsistencyrequirement isenforced throughthetnic’s
non-equivocationprimitive that assignsa (unique)monotonic
sequence number to each outgoingmessage, enforcing a total
order on the sender’s outgoing messages. Along with the in-
tegrity requirement, the total order can prevent equivocation
and suffice for consistency. Importantly, tnic ensures that
correct receivers cannot miss any past messages. Following
this, two followers that receive from the same sender (us-
ing the equivocation-free multicast discussed in § 8.2) follow
the same transition (execution) path. tnic cannot transform
systems with non-deterministic specifications.
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7 Trusted Distributed Systems

Using tnic, we transform the following four distributed sys-
tems into BFT systems (see Appendix §D for details).
Attested Append-OnlyMemory (A2M).We design an At-
tested Append-Only Memory (A2M) [70] leveraging tnic,
which can be used to shield and optimize various systems [44,
66, 75, 120]. The original A2M, and hence our implementation
over tnic, builds append-only (trusted) logs, associating each
entry with a monotonically increasing sequence number to
combat equivocation. While A2M has a large TCB and ports
the log within the TEE, our implementation has only a min-
imal TCB in hardware and it can robustly store the log in the
untrusted host memory, improving memory efficiency [117].

As in the originalA2M,webuild theappend andlookupop-
erations. Theappend calls into tnic to generate an attestation
for the log entry while associating it with a monotonically in-
creased sequence number (sent_cnt). The sequence number
denotes the entry’s position in the log. The lookup operation
retrieves entries locally without verification.
Byzantine Fault Tolerance (BFT).We design a Byzantine
Fault-Tolerant protocol (BFT) using tnic. The protocol builds
a replicated counter as a foundational service for various sys-
tems [79, 102, 105, 149, 169]. Our system model considers a
network of replicas with at most 𝑓 Byzantine replicas out of
𝑁 =2𝑓 +1 total replicas. One replica serves as the leader, and
the others act as followers. The system prevents equivocation
through tnic, which enforces and validates the ordering of
messages. This reduces the number of replicas required and
themessage complexity compared to the classical BFT (3𝑓 +1).

Clients send increment counter requests to the leader, who
performs the requests and broadcasts the change along with
a proof of execution (PoE) message to followers. The proof of
execution is a tnic-attestedmessagewith the original client’s
request, the leader’s counter value, and metadata. The follow-
ers leverage their local state machine to detect a faulty leader
(or follower) [99]. Subsequently, if and only if a follower has
not applied the message before, it applies the incremented
counter value to its state machine before forwarding its own
PoE message to all other replicas and replying to the client.
A quorum of at least 𝑓 +1 identical messages from different
replicas guarantees a correctly committed result for the client.
Chain Replication (CR). We design a Byzantine CR sys-
tem [166] using tnic as the replication layer of a Key-Value
store. As in the CFT version of CR, the replicas, e.g., head,
middle, and tail, are connected in a chained fashion.
Clients execute requests by forwarding them to the head.

The head orders and executes the request, creating his own
proof of executionmessage (PoE), which is sent along the chain.
The PoE consists of the original request and the head’s output
that tnic attests. Each node in the chain verifies the previous
node’s PoE, executes the request, and creates its own PoE,
which consists of the last PoE and the node’s output.

System (host) TEE-free Tamper-proof

SSL-lib Yes No
SSL-server/Intel-x86*/AMD Yes No

SGX/AMD-sev No Yes
tnic Yes Yes

Table 2. Host-sided baselines and tnic. (*) We use the
term SSL-server for this run unless stated otherwise.
Unlike the CFT CR, local operations in the tail (e.g., reads)

areuntrusted in theBFTmodel. Therefore, all operationsmust
traverse the entire chain. Replicas reply to clients with their
output after forwarding their PoE message, and clients wait
for identical replies from all chained nodes. We discuss the
performance-security trade-offs of an alternative TEE-based
design of porting the entire CR protocol into the TEE (that
would allow clients to read only from the tail) in § 8.3.
Accountability (PeerReview).Lastly,wedesign an account-
ability systemwith tnic based on the PeerReview system [95]
to detectmalicious actions in large deployments [135, 162].
We detect faults impacting the system’s network messages
logged into the participant’s tamper-evident log. We frame
the protocol within an overlay multicast protocol for stream-
ing systems where the nodes are organized in a tree topology.
Witnesses assigned to each node audit the node’s log to detect
faults or non-responsive nodes. The witnesses replay the log
entries, comparing themwith a reference deterministic im-
plementation to identify inconsistencies. Our tnic prevents
equivocation at NIC hardware efficiently, which eliminates
the expensive all-to-all communication of the original Peer-
Review that does not use trusted hardware [117].

8 Evaluation

Weevaluate tnic across three dimensions: (i)hardware (§ 8.1),
(ii) network stack (§ 8.2) and (iii) distributed systems (§ 8.3).
Evaluation setup.We perform our experiments on a real
hardware testbed using two clusters: AMD-FPGACluster and
Intel Cluster. AMD-FPGA Cluster consists of twomachines
powered by AMD EPYC 7413 (24 cores, 1.5 GHz) and 251.74
GiBmemory. Eachmachine also has twoAlveoU280 cards [3]
that are connected through 100GbpsQSFP28 ports. Intel Clus-
ter consists of three machines powered by Intel(R) Core(TM)
i9-9900K (8 cores, 3.2 GHz) with 64 GiB memory and three
Intel Corporation Ethernet Controllers (XL710).

8.1 Hardware Evaluation: t-fpga

Baselines.We evaluate the performance of Attest() of the
tnic’s attestation kernel (§ 4.1) compared with four host-
sided systems shown in Table 2. For these host-sided versions,
we build OpenSSL v3.1 servers that run natively or within a
TEEwith the same BIOS configuration (AES-NI enabled). The
servers attest and forwardnetworkmessages to thehost appli-
cation. We use the terms Intel-x86 and AMD for a native run
of the server process (SSL-server) and SGX and AMD-sev for
their tamper-proof versions within a TEE. The TEE baselines
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follow the same system model as in state-of-the-art hybrid
systems [77, 108, 117, 168], where the host BFT application
runs on the untrustedCPUand communicateswith a separate
TEE-based process to generate and verify message attesta-
tions. tnic implements similar abstractions for counter and
message attestation. Thus, tnic does not introduce additional
protocol alterations compared to them.The server and host
process run in the same machine to eliminate network la-
tency and communicate through TCP sockets. We implement
SGX using the scone framework [52] while AMD-sev runs
in a QEMUVM using the official VM image [6]. In addition,
we build (non-temper-proof) SSL-lib, which integrates the
Attest function as a library.
Methodology and experiments.We use Vitis XRT v2022.2
and the shell xilinx_u280_gen3x16_xdma_base_1 for the
stand-aloneevaluationof thetnicattestationkernel: synchro-
nous data transfers between the host and device (U280). We
measure and report the average latency and communication
costs by executing an empty function body of Attest().
Results. Figure 5 shows the average latency of Attest()
based on the HMAC algorithm for 64B and 128B data inputs.
The latency of Verify() is similar, and as such, it is omitted.
Our tnic achieves performance in the microseconds range
(23 us) and outperforms its equivalent TEE-based competitors
at least by a factor of 2. Importantly, tnic is approximately
1.2× faster than AMD, which is not tamper-proof.

Figure6 shows the latencybreakdownofAttest().Access-
ing the tnic device and TEEs can be expensive, ranging from
30% to 90% of the total operation latency among the systems.
Regarding tnic, the transfer time (16us) accounts for 70% of
the execution time.We expect that tnic effectively eliminates
this cost by enabling asynchronous (user-space) DMA data
transfers. Regarding the TEE-based systems (SGX, AMD-sev),
the communication and system call execution costs account
for up to 40% of the total execution. To our surprise, this im-
plies that theHMAC computationwithin any of the two TEEs
experiences more than 30× overheads compared to its native
run. To analyze TEEs’ behavior, we instrument the client’s
code to measure the operations’ individual latency at various
periods of time during the experiment accurately.

Figure 7 illustrates the individual operation latency, where
SGX-empty indicates SGXwithout HMAC computation. As
shown in Figure 7, the HMAC executionwithin the TEE often
experiences huge latency spikes. We attribute this behavior
to the scheduling effects and asynchronous exitless system
calls inherent in our SGX framework, scone [52].We observe
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Figure 8. Throughput of send operations across the three
selected network stacks.

similar latencyvariations during executions onAMDsystems,
spiking up to 200–500 us.

8.2 Software Evaluation: tnic Network Stack

Baselines. To evaluate the tnic performance, we discuss (1)
the effectiveness of offloading the network stack to the tnic
hardware and (2) the overheads incurred by the CFT systems
transformation for the BFTmodel. We compare tnic across
four other software/hardware network stacks with different
security properties as follows: (i) RDMA-hw, an untrusted
RoCE protocol on FPGAs, (ii)DRCT-IO (direct I/O), untrusted
software-basedkernel-bypass stack, (iii)DRCT-IO-att, altered
DRCT-IO that offers trust by sending attested messages but
does not verify them, and (iv) tnic-att, altered tnic that sim-
ilarly sends attested messages without verification. We build
(i)RDMA-hwon top of Coyote [15] network stack similarly to
tnic. For (ii) (iii)DRCT-IOs,webase our designon eRPC [106]
with DPDK [24] that offers similar reliability guarantees with
RDMA-hw. The hardware network stacks run onAMD-FPGA
Cluster, whereas the rest run on Intel Cluster.
Methodology and experiments.Our experiments measure
the latency and throughput for respective network stacks,
which run through a single-threaded client-server implemen-
tation. For the latency measurement, the client sends one
operation at a time, whereas for the throughput measure-
ment, one client can have multiple outstanding operations.
Results. Figure 9 and 8 show the latency and throughput of
the send operation with various packet sizes. First, regarding
(1) the effectiveness of network stack offloading, RDMA-hw
is 3×—5× faster than DRCT-IO, which indicates that the net-
work offloading boosts performance. Although DRCT-IO of-
fers minimal latency (16-16.6us) for small packet sizes up to
1 KiB due to its zero-copy transmission/reception optimiza-
tions [106], they are only effective for up to 1460B (MTU is
1500B, but 40B are reserved formetadata), and RDMA-hw still
achieves 3× lower latency (5-5.5us). For bigger data transfers,
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Figure 9. Latency of send operations across five competitive network stacks with various security properties.

the RDMA-hw latency increases steadily up to 19 us, whereas
DRCT-IO does not scale well with latencies up to 100us.

Second, regarding (2) the tnic performance overhead, tnic
offers trusted networkingwith 3×—20× higher latencies than
the untrusted RDMA-hw. The latency increase stems from the
HMAC calculation of the tnic hardware. As this algorithm
fundamentally cannot be parallelized, the higher themessage
size, the higher the latency our tnic incurs. More specifically,
for packet sizes less than 1 KiB, doubling the packet size in
tnic results ina13%—20% increment in theoverall latency. For
packet sizes bigger or equal to 1 KiB, doubling the packet size
increases the latency by 30%—40%. Compared toDRCT-IO-att
(82us), tnic is up to 5.6× faster. Importantly, DRCT-IO-att re-
portsextreme latencies (2000usormore) forpacket sizes larger
than 521B, which are omitted to avoid plot distortion. We at-
tribute these latencies to the scheduling effects of scone [52].

8.3 Distributed Systems Evaluation

We next evaluate four distributed systems described in § 7.
Methodology and experiments.We execute all four of our
codebases on Intel Cluster in three servers (as the minimum
required setup capable of withstanding a single failure, 𝑁 =

2𝑓 +1, where 𝑓 =1). We only use a single port of the U280 for
network communication because of a limitation introduced
in our systemby theCoyote codebase [15], on top ofwhichwe
base tnic implementation. Due to our limited resources, we
cannot install Alveo U280 cards on all these servers. Instead,
we build our codebase using the DRCT-IO stack (detailed in
§ 8.2) and inject busy waits to emulate the delays incurred by
tnic for generating and verifying attested messages.

We evaluate each codebase using five systems that gener-
ate and verify the attestations: (i) SSL-lib (no tamper-proof),
(ii) SSL-server (no tamper-proof), (iii) SGX, (iv) AMD-sev,
and (v) tnic. To perform a fair comparison, we integrate into
our codebases a library that accurately emulates all latencies
(measured in § 8.1) within the CPU. For the AMD latency,
we use 30us, representing the lower bound of the latencies
measured in § 8.1. We do not emulate the SSL-lib latency.
Given that DRCT-IO, which is used for the emulation, is

at least 3× slower than the hardware RDMA network stack
(RDMA-hw), the latencies outlined in this section are antici-
pated to reflect the upper limit for all four systems with tnic.

We additionally evaluate two TEEs-hosted CFT replication
protocols (TEEs-Raft and TEEs-CR) where the entire protocol

Throughput (Op/s)
System append lookup
SSL-lib 790K 256M
SGX-lib 380K 3.8M
AMD-sev 30K 263M
tnic 158K 257M

Latency (us)
append lookup

1.26 0.0039
2.6 0.26

32.37 0.0038
6.34 0.0039

Table 3. Throughput and latency of A2M.

codebase (Raft [139] andChain replication [167] respectively)
resideswithin the TEE.We compare the TEEs-hosted systems
with tnic and discuss the trade-offs between their threat
model, TCB, and performance.
A2M.We first evaluate our tnic-A2M system.We evaluate
twoTEEbaselines: SGX-lib,whichplaces the entire logwithin
the TEE, and AMD-sev, which places the attested log outside
the TEE as in the implementation of TrInc [117] and has been
shown to be effective. In this experiment, we construct a
9.3GiB log with 100 million entries and then lookup them
sequentially/individually.
Results. Table 3 shows the throughput and mean latency of
the append/lookup operations. The native execution (SSL-lib)
achieves the highest throughput as it incurs no communica-
tion costs. Compared to SSL-lib, SGX-lib experiences only a
2× slowdown because we avoid the costly communication
w.r.t. anSGX-based server implementation.On theotherhand,
AMD-sev, which runs the SSL server, incurs a 15× slowdown.
Lastly, tnic incurs5×and2.4× slowdowncompared toSSL-lib
and SGX-lib, respectively, due to the HMAC calculation.
Regarding the lookup operation, SSL-lib, AMD-sev, and

tnic report similar throughput and latency because they
lookup untrusted host memory for the requested entry. How-
ever, SGX-lib reports a 66× slowdown due to its trusted mem-
ory size constraints and expensive pagingmechanism [90] be-
causewe have to support a log of 9GBwithin the SGX enclave
that only provides 94MB of memory. In contrast, AMD-sev is
faster as it only accesses the untrusted host memory. Similar
findings have also been demonstrated in [117]. As a result,
while tnic increases append latencies, it greatly optimizes
lookup latencies due to its minimal TCB.
BFT.We evaluate the performance of our BFT protocol with
various network batching factors. We implement network
batching as part of the application’s message format.
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Results. Figure 10 shows the throughput and latency of the
protocol, which highlights that tnic significantly outper-
forms TEE-based versions (SGX, AMD-sev), improving the
throughput and latency 4—6×. On the other hand, tnic in-
curs 2.4× throughput overhead and up to 7× higher latency
compared to SSL-lib. We recall that SSL-lib is not tamper-
proof (Table 2) and eliminates the communication overheads
incurred by other tamper-proof solutions (SGX, AMD-sev).
We also observe that batching improves the throughput

and latency proportionally to the number of batched mes-
sages. For all except SSL-lib, the batching factors equal to 8
and 16 achieve 7× and 15× higher throughput than without
batching, respectively. For SSL-lib, they are moderately effec-
tive: approximately 4—6× faster. It is primarily because the
native execution of the attestation function is fast enough
to saturate the network bandwidth. As such, conventional
techniques can drastically eliminate the overheads for BFT
and improve tnic’s adoption into practical systems.
CR. In this experiment, we evaluate the performance of our
CR.We allocate onemessage structure per client request com-
prising 60B context, 4B operation type, and a 32B signature.
Results. Figure 11 shows the throughput and latency of our
Chain Replication. We highlight that our tnic is 5× and 3.4×
faster than SGX and AMD-sev, respectively. While tnic in-
curs 4.6× overheads compared to SSL-lib, it is 30% faster than
SSL-server, which is not tamper-proof. The performance ben-
efit stems primarily from hardware acceleration by the tnic’s
attestation kernel on the transmission/reception data path.
PeerReview.We evaluate our PeerReview system’s perfor-
mance by both activating and deactivating the audit protocol.
The system uses one witness for the source node that periodi-
cally audits its log. In our experiments, the witness audits the
log after every send operation in the source node until both
clients acknowledge the receipt of all source messages.
Results. Figure 12 shows the throughput and latency of our
PeerReviewsystemwithandwithout enabling theaudit proto-
col. Without the audit protocol, the TEE-based systems (SGX,
AMD-sev) result in up to 30× slower throughput than SSL-
lib, whereas our tnic mitigates the overheads: 3—5× better
throughput compared to AMD-sev and SGX.

Similarly, tnic outperforms AMD-sev and SGX by 3.7—5×
with the audit protocol. Importantly, when using tnic, the
audit protocol itself consumes about 25% (17us) of the overall
latency, leading to 1.33× performance slowdown. However,

TCB size (LoC)

System Threat model OS Att. kernel App Total

TEEs-Raft CFT 2,307K 1,268 856 2,309K
TEEs-CR CFT 2,307K 1,268 992 2,309K
tnic BFT - 2,114 - 2,114

Table 4. tnic compared with TEE-hosted applications.

even with the audit protocol, tnic offers 3.7—5.42× lower
latency compared to its TEE-based competitors.
TEEs-hostedbaselines.WecomparetnicwithTEEs-hosted
systems implementing two prototypes based on the failure-
freeexecutionofRaft (TEEs-Raft) andCR(TEEs-CR).Thecode
runs within three AMD-sev machines. Prior works [50, 56]
suggested this setup for performance—however, at the cost
of (1) significantly increased TCB size and (2) a weaker threat
model from the application perspective. Table 4 summarizes
the security costs. Regarding (1), the TCB of TEEs-hosted sys-
tems includes the entire OS [80], OpenSSL libraries for mes-
sages authentication [20] (labeled as Att. kernel), and the ap-
plication codebase,which is over 2MLoCs in total. In contrast,
tnic’s TCB only includes our hardware attestation kernel,
which is 2,114 LoC of HLS/HDL code. It is only 0.09% of TEE-
hosted systems.Regarding (2), theTEE-hostedapplicationcan
only fail by crashing; it can be thought to remain protected
from a potentially Byzantine cloud environment, whereas
tnic targets BFT settings, handling up to 𝑓 arbitrary failures.

We compare TEE-Raft with our tnic-based BFT (Figure 10)
as both are broadcast-based protocols, and TEEs-CR with
our tnic-based CR (Figure 11) as both require all messages
to traverse the entire chain of nodes. TEE-Raft achieves ap-
proximately 2.5× higher throughput than tnic-based BFT.
The performance difference is primarily due to Raft’s one-
phase commitment compared to our tnic-based BFT. Simi-
larly, TEE-CR achieves 2× higher throughput than the tnic-
basedCR.While both versions ofCR involve the samenumber
of network Round-Trip Times (RTTs), tnic involves a higher
number of the attestation kernel invocations to verify all the
chained messages in the PoE.

8.4 FPGAResource Usage

Lastly, we perform a resource utilization analysis to show
tnic’s scalability capabilities. Wemeasure the resource con-
sumption of tnic’s primary hardware components [97] and
estimate maximum connections on the latest FPGA.
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Name LUT (%) FF (%) RAMB36 (%)

U280 1303680 (100) 2607360 (100) 2016 (100)

TNIC 216905 (16.6) 423891 (16.3) 335 (16.6)
XDMA 48258 (3.7) 50701 (1.9) 64 (3.1)

Att. kernel 34138 (2.6) 56914 (2.2) 81 (4.0)
RoCE 30379 (2.3) 75804 (2.9) 46 (2.3)
CMAC 1484 (0.1) 3433 (0.1) 0 (0.0)

Table 5. tnic’s resource usage. The relative (%) compares
with theU280FPGAcapacity. tnicmeans the entire design.

Table5showstheresourceconsumptiondetails.Theoverall
tnic design consumes 16.6% of LUTs, 16.3% of Flip-Flops (FF),
and 16.6% of RAMB36 (3.46 % of the entire on-chip memory)
on the U280 FPGA. Note that tnic only requires commodity
FPGANICdesigns to add the attestation kernel, whose utiliza-
tion is comparablewith the othermodules, XDMAandRoCE.

Figure 13 shows the scaling capabilities of tnic hardware.
As the number of network connections increases, we only
need to replicate the attestation kernel because the XDMA
and CMACmodules are independent of the number of con-
nections, and the RoCE kernel is configured to hold up to 500
connections [154]. The result demonstrates that tnic can sup-
port up to 32 concurrent connections on a single U280 FPGA.

8.5 Discussion

tnic’s applicability.As FPGA-based SmartNICs are widely
adopted by major cloud providers for hardware accelera-
tion [86], we believe that tnic has the potential for broader
industry application. In addition, ASIC-based NICs can also
provide the same functionalities by integrating tnic’s hard-
ware modules into an optimized System-on-Chip (SoC).
Usecases.Thepaperdeliberately focusesondistributedcloud
applications as tnic’s primaryuse cases. Trust in shared third-
party clouds is a more critical concern than in other environ-
ments, posing unique challenges in trust, performance, and
scalability.While the current scope is specific, the underlying
principles could extend to other use cases, such as HPC or
on-premise computing.
Message drops. tnic guarantees packet retransmission be-
tween two correct nodes until their successful reception ex-
tending a RoCE implementation that supports reliable oper-
ations. The application need not re-send the message as it
receives a different sequence number, which is not accepted
(or verified) by the remote tnic until all preceding messages
have been received.
View-change and recovery.Detailing view-change and re-
covery in tnic protocols are beyond the scope of our work.
tnic could adopt similar techniques as in TrInc [118] without
disrupting these operations. In a new leader’s election, repli-
cas can establish new connections with new identifiers. As
such, previous connectionswill not block execution, and state
transfers, e.g., view-change, can be performed effectively.
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Figure 13. The scalability analysis of tnic hardware. The
resource usage is normalized to the U280 FPGA capacity.

PCIe transaction encryption. tnic encrypts PCIe transac-
tions forCPU-to-devicecommunication, allowingattackers to
modify the PCIe transactions. This vulnerability is not unique
to tnic; it applies to any network stack, including the OS-
based ones, since the untrusted OS drives PCIe transactions.

9 Related work

Trustworthydistributedsystems.ClassicalBFTsystems[45,
55, 60, 66–68, 158, 163] provide BFT guarantees at the cost
of high complexity, performance, and scalability overheads.
tnic bridges the gap between BFT and prior limitations, de-
signing a silicon root-of-trustwith generic trusted networking
abstractions that materialize the BFT security properties.
Trusted hardware for distributed systems. Trustworthy
systems [56, 77, 77, 90, 93, 145, 168] leverage trusted hardware
to optimize the performance of classical BFT at the cost of gen-
eralization and easy adoption. The systems suffer from high
latencies (50us—105ms) [108, 117], build large TCBs [56, 90],
and rely on specific TEEs [58, 168]. In contrast, our tnic aims
to offer performance and generality, while our minimalistic
TCB is verifiable and unified in the heterogeneous cloud.
SmartNIC-assisted systems.Networked systems offer fast
network operations with emerging (programmable) Smart-
NIC devices [3, 9, 11, 28, 30–32, 41]. Some of them offload
the network functions to the hardware and reduce the host
processing and energy overheads [51, 86, 91, 103, 115, 123,
133, 143, 152, 156, 159, 160] or re-design generic networking
protocols, from RDMA/RoCE to TCP/IP network stacks, on
top of FPGA-based SmartNICs for performance [5, 15, 87,
100, 147, 154, 171]. Others [111, 116, 119, 122, 124, 126, 127,
130, 140, 142, 148, 150] build generic execution frameworks
to optimize a wide variety of distributed systems. Our tnic
follows a similar approach by building a high-performant
unified network stack with SmartNICs and extending its se-
curity semantics with the properties of non-equivocation and
transferable authentication.
Programmable HW for network security. Programmable
hardware, SmartNICs, and switches are used to shield net-
working. Recent systems [109, 161, 170, 176, 179] leverage
programmable switches and FPGAs to offload security pro-
cessing and boost performance in the context of blockchain
systems [161] or security functions (e.g., access control, DNS
traffic inspection) [109, 176, 179]. Our tnic similarly offloads
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security into the hardware, but it carefully uses SmartNICs
to overcome the processing bottlenecks of the switches.
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Appendix

A Full Version

The full version of the paper [36] covers (1) the formal veri-
fication proofs of the tnic security protocols and (2) the im-
plementation details of four distributed systems using tnic.

B Artifact Appendix

B.1 Abstract

Our artifacts include the tnic codebase as well as the soft-
ware artifact with the four tnic applications, i.e., A2M, BFT,
CR, and PeerReview. In addition, we provide the codebases
of all the microbenchmarks we discuss in the paper including
those of the TEE-based systems. Lastly, we attach the security
proofs of tnic system operations and attestation protocol
based on Tamarin [131]. This appendix provides the neces-
sary information to set up, build, and run the experiments we
present in the paper.

B.2 Artifact check-list (meta-information)

• Program: tnic hardware implementation codebase. tnic
software codebases that include the systems where tnic has
been applied (run in emulated hardware) and microbench-
marks (e.g.,networkbenchmark).tnic’s securityproofsbased
on Tamarin [131].
• Compilation:RequiresVitisHLS[174],Vivado[175],CMake,
C++, Boost, eRPC [106], DPDK [24], Tamarin [131].
• Run-timeenvironment:RequiresNixOS, 5.15.4, scone [52]
(for SGX-based experiments).
• Hardware: Requires Alveo U280 cards [3], Intel(R) Core(TM)
i9-9900Kwith Intel Corporation Ethernet Controllers (XL710)
(or any other DPDK compatible NIC) and AMD EPYC 7413.
• Execution: The time of the experiments are configurable.
Each of our experiments did not take more than 10 minutes.
However, the compilation and synthesis phases of the tnic
hardware implementation might take up to 4 hours.
• Metrics: Throughput and latency
• Publicly available: Yes.
• Code licenses:MIT License. tnic doesn’t use any external
license.
• Archived (DOI): 10.5281/zenodo.14775354

B.3 Description

B.3.1 How to access. The open-source version of the tnic
codebase can be found on GitHub at the following address:

https://github.com/TUM-DSE/TNIC-main.git

B.3.2 Hardware dependencies. For AMD-SEV and tnic-
hardware setups, you need three machines with AMD EPYC
7413 CPU. Each machine is equipped with an Alveo U280
card [3] and one of every U280’s QSFP28 ports connects to the
100Gbps network. For Intel SGX setups, you need machines
with Intel(R) Core(TM) i9-9900K with Intel Corporation Eth-
ernet Controllers (XL710) (or any other DPDK compatible
NIC) for network connection.

B.3.3 Software dependencies. The software build pro-
cess involves building the low-level Linux kernel driver and
the high-level user application layers. All codebases run on
top of NixOS, 5.15.4. We provide the appropriate .nix files to
set up a nix-shell environment with all necessary system
dependencies.
The code has been built with Makefile and cmake. The

applications, as well as the TEE-based code and application
layer, are written in C++17.We depend on Boost libraries and
gflgas for the parsing of the command line arguments. We
rely on several other dependencies, which we explain in our
README files, including; scone [52] for SGX-based exper-
iments, Vivado [175] and Vitis HLS [174] for building tnic
hardware, eRPC [106], DPDK [24], and Tamarin [131].

B.4 Installation

The artifact is linked to the repository as submodules. Each
repositoryprovidesanalytical instructions in theirREADME.md
files of how to build and run the binaries.

Tobuild thetnic’shardware implementation, please follow
the instructions provided in [12].
To build the software including the driver and the bench-

marks, please follow the instructions in [13].
To run the experiments for the tnic hardware implementa-

tion, you need to first load the tnic’s kernel module and then
run the compiled binary. Detailed instructions are available
in [22].
Similar instructions have been documented for the appli-

cations [37] and the security proofs [38].

B.5 Evaluation and expected results

Each of the experiments will output information about its
progress; this is a hint that the script is still running andhasn’t
halted. The output of the experiment reports important mea-
surements about theexecution.The results are expectednot to
vary significantly (less than 5%)when compared to the results
presented in the paper. However, as discussed, we observed
quite a significant variance in some TEE-based systems (Intel
SGX and AMD-SEV).

10.5281/zenodo.14775354
https://github.com/TUM-DSE/TNIC-main.git
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B.6 Methodology

Submission, reviewing, and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

C Formal verification Proofs

In this appendix, we also present the detailed security proofs
for tnic security protocols using the Tamarin Prover [131].
Proof artifact. The complete proofs, including the detailed
formal models used to generate them, can be found under the
following link:
https://github.com/TUM-DSE/TNIC-proofs.git
Symbolicmodel.We prove the security properties of tnic
in a symbolic model because Tamarin analyzes protocols in
symbolic models and can prove properties by verifying user-
defined lemmas. We leverage Tamarin’s built-in primitives
and automated and interactive analysis to verify the security
protocols.
We impose a set of assumptions on our proofs motivated

by Tamarin’s symbolic model: (i) The symbolic model does
not reason about bitstrings directly. Instead, it assumes a set
of atomic terms and functions that operate on these terms.
All messages that are part of the model are composed of such
atomic terms and functions applied on these terms (ii) These
cryptographic functions are assumed to be perfect with no
side-effects, e.g., hash functions are irreversible, and hash
collisions are impossible. This allows for proving lemmas
without considering the probabilities of violating specific
properties and thus significantly reducing the complexity.
The computational model is an alternative to the symbolic
model that considers such probabilities. (iii) Attackers can
read and delete all messages that are sent on the network and
modify them in accordance with the set of defined functions.

Tamarin works on symbolic models specified using multi-
set rewriting rules that operate on the system’s state.Different
states of the system are expressed as a set of facts with rules
capturing the available transitions from one system state to
another. Rules are used tomodel the actions of agents running
the protocol and the adversary’s capabilities. In addition to
the rules, Tamarin also makes use of restrictions. Restrictions
further refine the sources of facts in the protocol to improve
the efficiency of the proof generation.

Our verificationwork relies on properties of the already an-
alyzedTLShandshake[35]. Itprovidesamodeland lemmas for
the security properties of the protocols presented in this paper.

To prove the correctness of our lemmas, Tamarin computes
possible executions for each rule. Tamarin employs constraint
solving to refine its knowledge about the sequence of protocol
transitions. To check the correctness of the protocolmodelwe
also employ sanity lemmas which ensure that there exists a

sequenceof transitions to reachapredefinedvalid state. These
lemmas ensure that the protocol can be executed as intended.
In the following paragraphs, we give an overview of the

rules and lemmas used to model the tnic protocols.
Rules. The bootstrapping rules, in accordance with the boot-
strapping steps in Section 4.3:
• bootstrapping_1: Models step (1), the generation and
burning of the hardware key by the tnic manufacturer.
• bootstrapping_2: Models step (2), the loading and verifi-
cation of firmware from the insecure storage medium.
• bootstrapping_3_4_5:Models step (3-5), the loading, key
and certificate generation of the controller.
• publish_firmware: Models the hardware manufacturer
publishing a new firmware version.
• get_tnic_public_key: Models the retrieval of the public
tnic key for verification.
• compromise_tnic_private_key: Models an attacker com-
promising a specific tnic device and retrieving the
private key.

The attestation rules, in accordance with the attestation steps
in Section 4.3:
• attestation_6_7 : Models step (6-7), the receiving of the
configuration data from the protocol designer, and the
start of the secure channel establishment with the tnic
device.
• attestation_8a: Models step (8) on the tnic side.
• attestation_8b_9: Models step (8) on the IP Vendor side
and step (9), the sending of the encrypted configuration
bitstream.
• attestation_10_11_12: Models step (10-12), the report
generation of the tnic device.
• attestation_13_14_15_16: Models step (13-16), the re-
port retrieval and verification, as well as the sending of
the bitstream encryption key.
• attestation_17 : Models step (17), the decryption and
configuration of the bitstream, as well as the acknowl-
edgment.
• attestation_18: Models the final step of the IP Vendor
after which the attestation protocol is completed.
• add_bitstream: Models the addition of a new bitstream
to the IP Vendor, which potentially contains sensitive
information.

The communication rules, in accordance with the functions
provided in Algorithm 1:
• init_ctrs: Models the initialization of the send and re-
ceive counters for each session. Is restricted to guaran-
tee the uniqueness of the session counters.
• send_msg: Models send an arbitrary message by attest-
ing it before sending it over the secure channel. Is re-
stricted to guarantee the session counters are increased.
• recv_msg: Models receive an arbitrary message by only
accepting it after a successful verification.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://github.com/TUM-DSE/TNIC-proofs.git
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Lemmas. The sanity lemmas, which ensure the protocol can
be executed as intended:
• sanity (verified in 26 steps): Ensures that the protocol
allows for successfully completing the bootstrapping &
attestation phase, such that the IP Vendor and uncom-
promised tnic device are in an expected state.
• send_sanity (verified in 23 steps): Ensures that the pro-
tocol allows for successfully verifying a message sent
during the communicationphase after twotnicdevices
are successfully initialized.

The attestation lemmas, which ensure the bootstrapping &
attestation phase behaves as expected:
• HW_key_priv_secret (verified in 3 steps): Ensures that
the private key of the tnic device is not obtainable from
any messages sent as part of the tnic protocols of the
model.
• S_key_secret (verified in 97 steps): Ensures all symmet-
ric keys established during initialization phases are
secret. It also ensures that past symmetric keys stay
secret even if the hardware key is compromised in the
future after the session is completed.
• bitstream_secret (verified in 83 steps): Ensures all bit-
streams shared during initialization phases are secret.
It also ensures that past shared bitstreams stay secret
even if the hardware key is compromised in the future
after the session is completed.
• initialization_attested (verified in 5540 steps): Ensures
that after the IP Vendor finished the attestation dur-
ing the initialization phase, the tnic device is in an
expected state and loaded the correct configuration.

The transferable authentication lemma:
• verified_msg_is_auth (verified in 31795 steps): Ensur-
ing that eachmessage that is successfully accepted by a
tnic device is sent by a genuine tnic device, assuming
the hardware of the tnic deviceswas not compromised.

The non-equivocation lemmas:
• no_lost_messages (verified in four steps): Ensures that
for all messages that are successfully accepted by a gen-
uine tnic device, there are no messages that were sent
before but not accepted by the same tnic device.
• no_message_reordering (verified in 5447 steps): Ensures
that for all messages that are successfully accepted by
a genuine tnic device, there are no messages that were
sent after that message but accepted before.
• no_double_messages (verified in 10850 steps): Ensures
that a genuine tnic device does not accept the same
message multiple times.

D Protocols Implementation

Wenext present the implementationdetails of four distributed
systems shown in Table 6 using tnic, presented in Section 7.

System 𝑁 𝑓 (𝑁 =3) Byzantine faults

A2M 1 0 Prevention
BFT 2𝑓 +1 𝑓 =1 Prevention

Chain Replication 𝑓 +1 𝑓 =2 Prevention
PeerReview 𝑓 +1 𝑓 =2 Detection

Table 6. Properties of the four trustworthy distributed
systems implemented with tnic.

D.1 Clients

Clients in a tnic distributed system execute requests by send-
ing singed request messages to tnic nodes through the net-
work. tnic assumes Byzantine (untrusted) clients; as such, its
installed shared keys cannot be outsourced. We assume that
at the initialization, the System Designer also loads to tnic
devices a (per-device) key pair 𝐶𝑝𝑢𝑏,𝑝𝑟𝑖𝑣 where the 𝐶𝑝𝑢𝑏 is
distributed to clients. tnic then replies to a client by verifying
the (under transmission) attestedmessage and signing it with
𝐶𝑝𝑟𝑖𝑣 . As such, tnic is restricted to only sending valid attested
messages to clients where clients can prove the transferable
authentication and validity of the message. The only attack
vector open to a Byzantine machine is to try to equivocate by
sending a stale, valid, attested message that does not reflect
the current execution round. However, clients can detect this
by verifying that the original request is theirs.

D.2 Attested Append-OnlyMemory (A2M)

We designed a single-node trusted log system based on the
A2M system (Attested Append-Only Memory) [70] using
tnic. A2M has been proven to be an effective building block
in improving the scalability andperformance of various classi-
cal BFT systems [44, 66, 121].We show the how to use tnic to
build this foundational systemwhile we also show that tnic
minimizes the system’s TCB jointly with the performance
improvements demonstrated in § 8.
Systemmodel.Our tnic version and the original A2M sys-
tems are single-node systems that target a similar goal; they
both build a trusted append-only log as an effective mecha-
nism to combat equivocation. The clients can only append en-
tries to a log; each log entry is associatedwith amonotonically
increasing sequence number. Each data item, e.g., a network
message, is bound toaunique sequencenumber, awell-known
approach for equivocation-free operations [58, 71].

A2MwasoriginallybuiltusingCPU-sideTEEs—specifically,
Intel SGX—whereas we build its tnic derivative. While the
original A2M system keeps its entire state and the log within
the TEE,we use tnic to keep the (trusted) log in the untrusted
memory. As such, in contrast to the original A2M, tnic ef-
fectively reduces the overall system’s TCB. Our evaluation
showed that naively porting the application within the TEE
has adverse performance implications in lookup operations.
Execution. Similarly to A2M, we expose three core opera-
tions: the append, lookup, and truncate operations to add,
retrieve, and delete items of the log, respectively. A2M stores
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the lowest and highest sequence numbers for each log. Upon
appendinganentry,A2Mincreases thehighest sequencenum-
ber and associates it with the newly appended entry. When
truncating the log, the system advances the lowest sequence
number accordingly. We next discuss howwe designed the
operations using tnic APIs.
Algorithm 2:Attested Append-Only Memory (A2M)
using tnic.

1 function append(id, ctx) {
2 [𝛼 ,i,ctx]← local_send(id,ctx);
3 log[id].append(log_entry(𝛼,i,ctx));
4 return [𝛼,i,ctx];
5 }

6 function lookup(id, i) {
7 return log[id].get(i);
8 }

9 function truncate(id, head, z) {
10 [𝛼 ,tail,ctx]← append(id, trnc||id||z||head);
11 e← append(manifest,[𝛼,tail,ctx]);
12 return e;
13 }

14 function verify_lookup(id, e, head, tail) {
15 assert(e.i>=tail);
16 local_verify(id, e);
17 }

Append operation. The append(id,ctx) operation takes a
data item, ctx, and appends it to the log with identifier id. A
log entry at index i is comprised of three items: the sequence
number of that entry (i), the context of the entry (ctx), and
the authenticator field, namely the digest of the ctx||i as
in [117]. In our implementation, we additionally support the
original A2M authenticator format calculated as the cumu-
lative digest c_digest[i] for that entry which is calculated
as c_digest[i]=hash(ctx||sq||c_digest[i-1]) where
c_digest[0]=0. The sequence number i is then increased to
distinguish any entry that will be appended in the future.
Lookup operation. The lookup(id, i) retrieves the log
entry at index i of log with identifier id. Compared to A2M,
where lookups are compelled to access the trusted hardware,
tnic-log only performs a local memory access. The function
does not verify whether the entry is legitimate. Developers
need to implement the verify_lookup(id, entry, head,
tail) to verify the attestation. The boundaries of the log (i.e.,
head and tail) can constantly be retrieved by replaying a
specific log, which keeps the state changes, the manifest.We
explain how manifest works in the next paragraph.
Truncate operation. The truncate(id, head, z), where
z is a nonce provided by the client for freshness, “forgets” all
log entries with sequence numbers lower than head. A non-
Byzantine client can never successfully verify a forgotten log
entry. To do that, tnic-log uses an additional log manifest,

which keeps the logs’ state changes. First, the operation at-
tests to the tail of the log by appending a specific entry, which
includes the nonce for a correct client to be later able to ver-
ify the operation. Then, the algorithm will append the last
attested message of the log to the manifest log and return
the attested message for the second append. To retrieve the
boundaries of a log, clients can always attest to the tail of the
manifest and read backward until they find a trnc entry.
Systemdesign takeaway. tnicminimizes the required TCB
in the A2M system while offering faster lookup operations
than its original version.

D.3 Byzantine Fault Tolerance (BFT)

As a second example of tnic applications, we build a Byzan-
tine Fault-Tolerant protocol (BFT) that implements a robust
counter based on state machine replication (SMR). Clients
send increment counter requests to the SMR and receive the
updated value of the counter. Despite its simplicity, this partic-
ular system can represent an ordering service, which is a fun-
damental building block of various distributed applications
ranging from event logging and database systems to server-
less and blockchain [79, 102, 105, 149, 169]. Our BFT combats
equivocation by leveraging the attestation kernel of tnic. As
such, via tnic, it reduces (i) the number of replicas and (ii) the
message complexity (and latency) required by classical BFT.
Systemmodel.We consider a system of 𝑁 =2𝑓 +1 replicas
(or nodes) that communicate with each other over unreliable
point-to-point network links. At most 𝑓 of these replicas can
be Byzantine (aka faulty), i.e., can behave arbitrarily. The rest
of the replicas are correct. Recall that classical BFT protocols
require an extra set of 𝑓 replicas, in total 3𝑓 +1, to handle 𝑓
Byzantine failures. One of the replicas is the leader that drives
the protocol, whereas the remaining replicas are (passive)
followers. There is only a single active leader at a time.

For liveness, we assume a partial synchronymodel [69, 83].
We have only explored deterministic protocol specifications;
the correct replicas begin in the same state, and receiving the
same inputs in the same order will arrive at the same state,
generating the same outputs. Lastly, as in classical BFT pro-
tocols, we cannot prevent Byzantine clients who otherwise
follow the protocol from overwriting correct clients’ data.
Execution.We implement BFT with tnic as a leader-based
SMR protocol for a Byzantine model that stores and increases
the counter’s value. The leader receives clients’ requests to
increment the counter. The leader, in turn, executes the proto-
col and applies the changes to its state machine—in our case,
the leader computes and stores the next available counter
value. Subsequently, the leader broadcasts the request along
with somemetadata to the passive followers. The metadata
includes, among others, the leader’s calculated output in re-
sponse to theclient’s command,namely, the increasedcounter
value the leader has calculated.
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The followers, in turn, execute and apply the incremented
counter value to their state machines. However, they first at-
test to the leader’s (and other followers’) actions to detectmis-
behavior. Importantly, followers validate if the state (counter)
of the replicas (including the leader and all other replicas)
match the expected value.

After a follower applies the increments to its local counter,
it replies to the client. In addition, it forwards the leader’s re-
quest to every other replica to ensure that all correct replicas
will eventually receive and apply the same command. Repli-
cas that have already applied the request ignore it; otherwise,
they validate it and apply it. The leader, upon successful val-
idation, will also reply to the client. The client can trust the
result if they receive identical replies from amajority quorum,
i.e., at least 𝑓 +1 identical messages from different replicas
(including the leader). This guarantees that at least one correct
replica has responded with the correct result.
Failure handling. Our strategy to verify the replica’s exe-
cution jointly with the primitives of non-equivocation and
transferable authentication offered by tnic shields the proto-
col against Byzantine behavior. The leader cannot equivocate;
even if it attempts to send different requests for the same
round to different followers, executing the local_send()
will assign different counter values, which healthy followers
will detect. As such, a leader in that case will be exposed.

Likewise, the equivocation mechanism allows correct fol-
lowers to discard stale message requests sent through replay
attacks on the network. If a follower is Byzantine, a healthy
leader or replica can detect it. For 𝑓 ≥ 2, it is impossible for a
faulty leader and, at most, 𝑓 −1 remaining Byzantine follow-
ers to compromise the protocol. Either these faults will be de-
tected by a healthy replica during the validation phase, or the
protocol will be unavailable, i.e., if the leader in purpose only
communicates with the Byzantine followers. This directly af-
fects BFT correctness requirements; a client will never get at
least 𝑓 +1 matching replies. Even in the extreme case of a net-
work partition or a faulty leader that purposely excludes some
healthy replicas from its multicast group, when the network
is restored, these replicas will not accept any future messages
unless they receive all missed ones. Suppose the leader fails
in the middle of the broadcast. In that case, the last step in the
follower’s protocol ensures that if a correct replica accepts the
requests, all correct replicas will eventually apply the same
request. Since the reliability aspect and FIFO ordering are
implemented in hardware, healthy replicas will ultimately
receive all past messages in the proper order. For protocols to
progress in the case of a faulty leader, theymust pass through
a recovery protocol or view-change protocols similar to those
described in previous works [66, 168]. Recovering is beyond
the scope of this work, and as such, we did not implement it.
System design takeaway. tnic optimizes the replication
factor and the message rounds compared to classical BFT.

Algorithm 3: BFT using tnic.
1 function leader(req) {
2 output← execute(req);
3 msg← req||output;
4 attested_msg← local_send(msg);
5 rem_write(followers[:], attested_msg);
6 upon reception of ack from followers:

7 [𝛼 || f_attested_msg || f_output || f_id]

8 ← upon_delivery(ack);
9 assert(validate_follower(f_attested_msg,

10 f_output));
11 incr_req_acks_if_not_incr_before(f_id);
12 auth_send(client,msg);
13 }

14 function follower() {
15 upon reception of attested_msg:

16 [𝛼 || req || output]←
17 upon_delivery(attested_msg);
18 assert(validate_sender(req, output));
19 if (in_order_not_applied(req))

20 current_output← execute(req);
21 f_attested_msg←

local_send(req||current_output);
22 ack← f_attested_msg

23 auth_send(leader, ack);
24 auth_send(client ∪ followers[:],
25 f_attested_msg);
26 }

D.4 Chain Replication (CR)

We implement a Byzantine Chain Replication using tnic that
represents the replication layer of a Key-Value store. Chain
Replication is a foundational protocol for building state ma-
chine replication and initially operates under the CFT model
using 𝑓 +1 nodes to tolerate up to 𝑓 failures. We show how to
use tnic to shield the protocol without changes to the core
of the algorithm (states, rounds, etc.) while keeping the same
replication factor.
Systemmodel.Wemake the same assumptions for the sys-
tem as in the previous BFT system. For error detection and
reconfiguration, we assume a centralized (trusted) configu-
ration service as in [166] that generates new configurations
upon receiving reconfiguration requests from replicas. Recall
that theclassicalChainReplicationunder theCFTmodel relies
on reliable failuredetectors [167]. For liveness,wealsoassume
that the configuration service will eventually create a config-
uration of correct replicas that do not intentionally issue re-
configuration requests to perform Denial-of-Service attacks.
Clients send requests to put or get a value and receive

the result. The replicas (e.g., head, middle, and tail nodes) are
chained, and the requests flow from the head node to the tail
through the intermediate middle replicas.
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Algorithm 4: Chain Replication using tnic.
1 function head_operation(req) {
2 output← execute(req);
3 msg← req||output;
4 auth_send(middle,msg);
5 auth_send(client,msg);
6 }

7 function middle_tail_operation(msg) {
8 assert(validate_chain(msg));
9 output← execute(req);

10 chained_msg← msg||output;
11 if (!tail)
12 auth_send(middle,chained_msg);
13 auth_send(client,req||output);
14 }

15 function validate(msg) {
16 len← sz;
17 [req, out, cmt]← unmarshall(msg[0:len]);
18 assert(memcmp(req, out));
19 assert((cmt == expected_cmt));
20 for (i = 1; i < node_id; i++) {
21 [out, cmt]← unmarshall(msg[len:len+sz]);
22 assert(memcmp(req, out));
23 assert((cmt == expected_cmt));
24 len← len + sz;
25 return True;
26 }

Malicious primaries, i.e., the head that does not forward
the message intentionally, are detected on the client’s side
and trigger reconfiguration [66, 168].
Execution. To execute a request req, e.g., put/get, a client
first obtains the current configuration from the configuration
service and sends the req to the head of the chain. The head
orders and executes the request, and then it creates a proof of
execution message, which is sent along the chain. The proof
of execution includes the req and the leader’s action (out) in
response to that request. In our case, the leader sends the req
along with the assigned commit index. The message is then
sent (signed) to the middle node that follows in the chain.
The middle node checks the message’s validity by verify-

ing that the head’s output is correct, executes the req, and
forwards the request to the following replica. Similarly, every
other node executes the original request, verifies the output of
all previous nodes, and sends the original request and a vector
of all previous outputs. A replica must construct a proof of ex-
ecution message that achieves one goal. t allows the following
replicas in the chain to verify all previous replicas. s such the
messages is of the form < < <req, out𝑙𝑒𝑎𝑑𝑒𝑟>𝜎0 , out𝑚𝑖𝑑𝑑𝑙𝑒1>𝜎1 ,
.., out𝑡𝑎𝑖𝑙>𝜎𝑁 . The tail is the last node in the chain that will
execute and verify the execution of the request.

In contrast to the CFT version of the Chain Replication pro-
tocol, local operations in the tail, get or ack in a put request
cannot be trusted. As such, the replicas in the chain need to re-
ply to the clients with their output after they have forwarded
their proof of executionmessage.Clients canwait for at least 𝑓
replicas replies and the tail reply to collide.Clients canexecute
the get requests similarly to write requests, traversing the
entire chain, or clients can consult themajority and broadcast
the request to 𝑓 +1 replicas, including the tail.
Failure handling. By the protocol definition, all nodes will
see and execute all messages in the same order imposed by
the head node. As such, all correct replicas will always be in
the same state. In addition, network partitions that may split
the chain into two (or more) individual chains that operate
independently cannot affect safety: the clients must verify at
least 𝑓 +1 identical replies. Suppose a correct replica or a client
detects a violation (by examining the proof of execution mes-
sage or having to hear for too long from a node). In that case,
they can expose the faulty node and request a reconfiguration.
Systemdesign takeaway. tnic seamlessly shields the Chain
Replication system for Byzantine settings with the same
replication factor as the original CFT system.

D.5 Accountability (PeerReview)

We implement an accountability protocol based on the Peer-
Review system [94, 95]. Compared to the previous three BFT
systems that prohibit an improper action from taking effect,
accountability protocols [94, 95, 99] slightly weaken the sys-
tem (fault) model in favor of performance and scalability.
Specifically, our protocol allows Byzantine faults to happen
(e.g., correct nodes might be convinced by a malicious replica
to permanently delete data). Still, it guarantees that malicious
actions can always be detected. Accountability protocols can
be applied to different systems as generic guards that trade
security for performance [95], e.g., NFS, BitTorrent, etc.

The original version of the system did not use trusted com-
ponents. t incurs a high message complexity, i.e., all-to-all
communication to combat equivocation. We use tnic to im-
prove that message complexity.
Systemmodel.We only detect faults that directly or indi-
rectly affect a message, implying that (i) correct nodes can
observe all messages sent and received by that node and (ii)
Byzantine faults that are not observable through the network
cannot be detected. For example, a faulty storage node might
report that it is out of disk space, which cannot be verified
without knowing the actual state of its disks.

We further assume that each protocol participant acts ac-
cording to a deterministic specification protocol. As such,
detection can be accomplished even with a single correct ma-
chine, requiring only 𝑓 +1 machines. This does not contradict
the impossibility results for agreement [83] because detection
systems do not guarantee safety.
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Algorithm 5: PeerReview using tnic.
1 function root(ctx) {
2 auth_send(child,ctx);
3 upon reception of response:;
4 assert(validate_reception(response));
5 log(response);
6 }

7 function child(𝛼||cmd||seq) {
8 assert(validate_reception(𝛼||cmd||seq));
9 log(𝛼||cmd||seq);

10 result← execute(cmt);
11 response← log(result||cmd);
12 auth_send(root, response);
13 }

14 function log_audit() {
15 while last_id < log_tail {
16 entry← validate_log_entry_at(last_id);
17 last_id++;
18 assert(replay(entry));
19 }
20 }

Execution. The participants communicate through network
messages generated by tnic. In addition, each participant
maintains a tamper-evident log that stores all messages sent
and received by that node as a chain. A log entry is associated
with an entry index, the entry data, and an authenticator, cal-
culated as the signed hash of the tail of the log and the current
entry data.
We frame our protocol in the context of an overlay mul-

ticast protocol [64] widely used in streaming systems. The
nodes are organized as a tree where the streaming content
(e.g., audio, video) flows froma source, i.e., rootnode, to clients
(childrennodes). To supportmany clients, each canbe a source
to other clients, which will be connected as children nodes.
In our implementation, we consider nodes in a tree topol-

ogy. The tree’s height equals one, comprising one source node
and two client (children) nodes connected to the source. Al-
gorithm 5 (§ D) shows the operations of our implemented
accountability protocol. hen the source sends a context (ex-
ecutes the root() function), it implicitly includes a signed
statement that thismessage has a particular sequence number
(generated by tnic). he clients execute the child() function
that validates the receivedmessage, logs the receivedmessage,
executes the result, and responds to the source.

Each node is assigned to a set ofwitness processes to detect
faults. Similarly to the original system, we assume that the set
of nodes and itswitnesses set always contain a correct process.
The witnesses audit and monitor the node’s log. To detect
destructive behaviors (or expose non-responsive nodes), the

witnesses read the node’s log and replay it to run the partic-
ipant’s state machine. As such, they ensure the participant’s
state is consistent with proper operation.

Specifically, eachwitness for a participant node keeps track
ofn, a logsequencenumber, ands, thestate that theparticipant
should have been in after sending or receiving the message
in log entry n. t initializes n to 0 and s to the initial state of
the participant.

Whenever awitnesswants to audit a node, it sends its n and
a nonce (for freshness). The participant returns an attestation
of all entries between n and its current log entry using the
nonce. The witness then runs the reference implementation,
starting at state 𝑠 , and progressing through all the log entries. f
the reference implementation sends the samemessages in the
log, then the witness updates n, which is the state of the refer-
ence implementation at that point. If not, then thewitness has
proof it can present of the participant’s failure to act correctly.

The original PeerReview system requires a receiver node to
forward messages to the original sender’s witnesses so they
can ensure this message is legitimate, i.e., it appears in the
sender’s log. No other conflicting message is sent to another
peer (equivocation). As such, a peer must communicate (in
every round) with the witness set of any other peer, leading
to a quadratic message complexity. tnic eliminates the over-
head; a participant that sends or receives a message needs to
attest and append the message and its attestation in each log.
A participant can process received messages only if they are
accompanied by attestations generated by the sender’s tnic
hardware.
System design takeaway. tnic can be used to optimize the
message complexity in accountable systems.
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