
uIO: Lightweight and Extensible Unikernels

Masanori Misono, Peter Okelmann, Charalampos Mainas, Pramod Bhatotia

ACM SoCC 2024
1

Unikernels

● Specialized OS for an application
👍 Better performance by optimization
👍 Short boot time thanks to small vm image size
👍 Strong isolation by hypervisor

2

Hypervisor

App-1 App-2 App-3

Unikernel 1 Unikernel 2 Unikernel 3

Problem of unikernels
● Tension between image size and available functionality/tools of unikernels

● No common Interface for the management (no ssh)

3

Unikernel Debug
Profiling

Unikernel

Configuration
Logging

Generally not needed
But useful sometimes

Extensibility is crucial for real-world adaptation

State-of-the-art

● Hypervisor-specific debugging tool
○ Uniprof (Xen), dumpcore (solo5), gdb stub provided by a hypervisor
○ ❌ Specific to the use-case

● Running unikernel as process on Linux
○ Unikraft linux mode, solo5-spt
○ ❌ Not usable when deploying

● Debugging and extending general VM/containers at runtime
○ VMSH (EuroSys’22), CNTR (ATC’18), HyperShell (ATC’14)
○ ❌ Targeting Linux environment

4

Existing works focus on specific use-cases or relies on Linux environment

Problem statement

How do we achieve on-demand extensibility in unikernels?

5

● Design goals:
○ Lightweightness: Keep unikernels advantages
○ Generality: Generic interface for extensibility for unikernels
○ Safety: Prevent loaded program from accidentally compromising the app

● uIO provides unikernels overlay for on-demand extensibility

uIO overview

6

Unikernel

Hypervisor

uIO

File System

Loads

App

Console

Host

Extension

interacts

Outline

● Overview
● Design
● Evaluation

7

Design challenges

#1 Generic overlay
interface in unikernels

#2 Dynamic extension
loading and execution #3 Lightweight safety

Virtio-based
overlay interface

Load and link to
the unikernel context

HW-assisted and
language-based isolation

8

#1 Overlay interface

9

● Provide virtio-based overlay for console and file system

UnikerneluIO

File System VIrtIO

Console

Root /

/uio/…
Console

Cmd

Extension

…

#2 uIO context for extension execution

● Schedulable entity, handling user request from the outside
● Directly link loaded program with the unikernel

uIO Context

Func
Loaded
program

Unikernel

Data

Threads

VirtIO
console/fs

10

LinkConsole

#3 Safe execution environment (1) HW-based (MPK)

11

Unikernel

MPK Domain

Loaded
Program

Data

Calls
Function

Loads

Application explicitly request write access to the main unikernel memory

Accesses

Default
✅ Read
❌ Write

✅ Read
✅ Write

Req

#3 Safe execution environment (2) language-based (BPF)

12

Unikernel

BPF runtime

BPF program

Function / Data

Calls
BPF Helper FunctionLoads

BPF map (KVS)

Retrieve/Store data

Safe access

Application developers expose helper functions for their needs

❌

Outline

● Overview
● Design
● Evaluation

13

Implementation

● Prototype on Unikraft unikernel
○ Virtio-console for console
○ Virtio-9p for filesystem
○ Integrate uBPF runtime

■ Use interpreter mode, dynamic safety checking

● Enabling real-world use cases
○ 🐛 Interactive debug environment
○ 📝 Nginx re-configuration
○ 📈 Performance monitoring with performance counters
○ 👓 BPF-based introspection and function tracing

14

Evaluation

Question: Does uIO preserve unikernels benefits?

● Image size overhead
● Application performance
● Robustness
● Console responsiveness
● Program loading time
● File system performance

Experimental setup

● Intel Xeon Gold 5317 CPU, 256GB memory
● VM: 1 vCPU and 1GB of memory

15

Refer to the paper

Image size overhead

16

uIO increases image size only by several kilo bytes

Lower is better

Application performance (nginx)

17

uIO achieves extensibility with minimal overhead

Higher is better

Summary

● uIO provides unikernels overlay to realize on-demand extensibility
● Two safe execution environment with tradeoff between performance and safety

○ Hardware-assisted memory isolation (MPK)
○ Language-based isolation (BPF)

● Prototype on Unikraft unikernel and present several use-cases

✉ Masanori Misono <masanori.misono@in.tum.de>
Source: github.com/TUM-DSE/uio

18

mailto:masanori.misono@in.tum.de
http://github.com/TUM-DSE/uio

Backups

19

Deployment model

20

Hypervisor

Unikernel

uIO

VM

User 1 User 2

Cloud Provider

Provides uIO as a service

uIO leaves the responsibility of user authentication to the cloud provider

eBPF (extended Berkeley Packet Filter)

Lightweight in-kernel language VM

Sandbox property can be ensured by:

● Using interpreters (weaker)
● Using verifiers to verify in advance (stronger)

○ Detects potential sandbox escalation
○ Forbid undefined behaviors

Useful features:

● Maps (kv-store)
● Helper functions
● Program Types: Runtime context & helper permissions

21

Kernel Space

Verifier &
JiT Compiler

BPF
program

BPF runtime

Accesses

Calls

Accesses

Loads

BPF Maps

BPF program

BPF Helpers

User Application

Evaluation - Safety

22

Evaluation Program MPK BPF (interpreter) BPF (verifier)

OOB* SEGV Terminated Rejected

OOB* with Nullptr SEGV Terminated Rejected

Infinity Loop System freezes Terminated Rejected

Division by Zero Error Ignored Handled^ Rejected (explicit)
Handled (runtime)

Instruction Type Safety Error Ignored Error Ignored Rejected

Program Type Safety Error Ignored Error Ignored Rejected

Helper Function Type Safety Error Ignored Error Ignored Rejected

*) OOB: Out of bound memory access, ^) the interpreter returns 0

██: Memory Safety

██: Termination

██: Runtime Errors

██: Type Safety

MPK

● Domain-based memory isolation

23

Domain 0: RW-

Domain 1: R - -

…

Virtual page

Domain 2: RWX

● Use upper bits of page table
entry to specify domain

● Update permission using
wrpkru instruction

MPK in the kernel mode

● MPK enforces permission checks on any user-accessible page (=U/S bit = 1)
● We modify Unikraft memory management so that it allocates a page as user page

to use MPK
● Note

○ This imply that SMAP and SMEP needs to be disabled
■ Otherwise cannot access user pages in ring-0
■ This does not raise any security concern for unikernels

○ The latest Intel processors support PKS (Supervisor Protection Keys)
■ This provides MPK functionality for kernel pages as well

24

Safe execution environment

Unikernel

MPK domain

Loaded
program

✅ Maximum flexibility (access arbitrary data)
❌ Limited safety guarantee

✅ Storonger safety guarantee
❌ Limited functionality (compensated by helpers)

Users can choose the execution environment depending on the needs

Hardware-based isolation (MPK) Language-based isolation (eBPF)

Unikernel

BPF runtime

BPF
program

Data

Function

Accesses

Calls

Data

Calls

❌

BPF Helper
Function

Loads

25

Loads

