
uIO: Lightweight and Extensible Unikernels

Masanori Misono, Peter Okelmann, Charalampos Mainas, Pramod Bhatotia

ACM SoCC 2024
1



Unikernels

● Specialized OS for an application
👍 Better performance by optimization
👍 Short boot time thanks to small vm image size
👍 Strong isolation by hypervisor
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Problem of unikernels
● Tension between image size and available functionality/tools of unikernels

● No common Interface for the management (no ssh)
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Unikernel Debug
Profiling

Unikernel

Configuration
Logging

Generally not needed
But useful sometimes

Extensibility is crucial for real-world adaptation



State-of-the-art

● Hypervisor-specific debugging tool
○ Uniprof (Xen), dumpcore (solo5), gdb stub provided by a hypervisor
○ ❌ Specific to the use-case

● Running unikernel as process on Linux
○ Unikraft linux mode, solo5-spt
○ ❌ Not usable when deploying

● Debugging and extending general VM/containers at runtime
○ VMSH (EuroSys’22), CNTR (ATC’18), HyperShell (ATC’14)
○ ❌ Targeting Linux environment
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Existing works focus on specific use-cases or relies on Linux environment



Problem statement

How do we achieve on-demand extensibility in unikernels?
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● Design goals:
○ Lightweightness: Keep unikernels advantages
○ Generality:  Generic interface for extensibility for unikernels 
○ Safety:  Prevent loaded program from accidentally compromising the app



● uIO provides unikernels overlay for on-demand extensibility

uIO overview
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Outline

● Overview
● Design
● Evaluation
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Design challenges

#1 Generic overlay 
interface in unikernels

#2 Dynamic extension 
loading and execution #3 Lightweight safety

Virtio-based 
overlay interface

Load and link to 
the unikernel context

HW-assisted and
language-based isolation
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#1 Overlay interface

9

● Provide virtio-based overlay for console and file system

UnikerneluIO

File System VIrtIO

Console

Root / 

/uio/… 
Console

Cmd

Extension

… 



#2 uIO context for extension execution

● Schedulable entity, handling user request from the outside
● Directly link loaded program with the unikernel

uIO Context

Func
Loaded 
program

Unikernel

Data

Threads

VirtIO 
console/fs
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LinkConsole



#3 Safe execution environment (1) HW-based (MPK)
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#3 Safe execution environment (2) language-based (BPF)
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Unikernel

BPF runtime

BPF program

Function / Data

Calls
BPF Helper FunctionLoads

BPF map (KVS)

Retrieve/Store data

Safe access

Application developers expose helper functions for their needs

❌



Outline

● Overview
● Design
● Evaluation
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Implementation

● Prototype on Unikraft unikernel
○ Virtio-console for console
○ Virtio-9p for filesystem
○ Integrate uBPF runtime

■ Use interpreter mode, dynamic safety checking

● Enabling real-world use cases
○ 🐛 Interactive debug environment
○ 📝 Nginx re-configuration
○ 📈 Performance monitoring with performance counters
○ 👓 BPF-based introspection and function tracing
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Evaluation

Question: Does uIO preserve unikernels benefits?

● Image size overhead
● Application performance
● Robustness
● Console responsiveness
● Program loading time
● File system performance

Experimental setup

● Intel Xeon Gold 5317 CPU, 256GB memory
● VM: 1 vCPU and 1GB of memory
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Refer to the paper



Image size overhead

16

uIO increases image size only by several kilo bytes

Lower is better



Application performance (nginx)
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uIO achieves extensibility with minimal overhead

Higher is better



Summary

● uIO provides unikernels overlay to realize on-demand extensibility
● Two safe execution environment with tradeoff between performance and safety

○ Hardware-assisted memory isolation (MPK)
○ Language-based isolation (BPF)

● Prototype on Unikraft unikernel and present several use-cases

✉  Masanori Misono <masanori.misono@in.tum.de>
Source:  github.com/TUM-DSE/uio 
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Backups
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Deployment model
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Hypervisor
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User 1 User 2

Cloud Provider

Provides uIO as a service

uIO leaves the responsibility of user authentication to the cloud provider



eBPF (extended Berkeley Packet Filter)

Lightweight in-kernel language VM

Sandbox property can be ensured by:

● Using interpreters (weaker)
● Using verifiers to verify in advance (stronger)

○ Detects potential sandbox escalation
○ Forbid undefined behaviors

Useful features:

● Maps (kv-store)
● Helper functions
● Program Types: Runtime context & helper permissions
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Evaluation - Safety
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Evaluation Program MPK BPF (interpreter) BPF (verifier)

OOB* SEGV Terminated Rejected

OOB* with Nullptr SEGV Terminated Rejected

Infinity Loop System freezes Terminated Rejected

Division by Zero Error Ignored Handled^ Rejected (explicit)
Handled (runtime)

Instruction Type Safety Error Ignored Error Ignored Rejected

Program Type Safety Error Ignored Error Ignored Rejected

Helper Function Type Safety Error Ignored Error Ignored Rejected

*) OOB: Out of bound memory access,  ^) the interpreter returns 0

██: Memory Safety

██: Termination

██: Runtime Errors

██: Type Safety

 



MPK

● Domain-based memory isolation
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Domain 0: RW-

Domain 1: R - -

…

Virtual page

Domain 2: RWX

● Use upper bits of page table 
entry to specify domain

● Update permission using 
wrpkru instruction



MPK in the kernel mode

● MPK enforces permission checks on any user-accessible page (=U/S bit = 1)
● We modify Unikraft memory management so that it allocates a page as user page 

to use MPK
● Note

○ This imply that SMAP and SMEP needs to be disabled
■ Otherwise cannot access user pages in ring-0
■ This does not raise any security concern for unikernels

○ The latest Intel processors support PKS (Supervisor Protection Keys)
■ This provides MPK functionality for kernel pages as well
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Safe execution environment

Unikernel

MPK domain

Loaded 
program

✅ Maximum flexibility (access arbitrary data)
❌ Limited safety guarantee

✅ Storonger safety guarantee
❌ Limited functionality (compensated by helpers)

Users can choose the execution environment depending on the needs

Hardware-based isolation (MPK) Language-based isolation (eBPF)

Unikernel

BPF runtime

BPF 
program

Data

Function

Accesses

Calls

Data

Calls

❌

BPF Helper 
Function

Loads
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