
TNIC
A Trusted NIC Architecture

Dimitra Giantsidi, Julian Pritzi, Felix Gust,
Antonios Katsarakis, Atsushi Koshiba, Pramod Bhatotia

ASPLOS 2025

Distributed systems in the cloud

● Distributed systems are the cloud computing foundations
○ scalability
○ performance

2

Crash Fault Tolerance (CFT) makes systems fault tolerant

● However, distributed systems are prone to failures!
○ machines can fail

● How to make distributed systems fault tolerant?

Crash Fault Tolerance (CFT)

● CFT model handles benign failures
○ requires 2f+1 nodes to handle f failures

3

CFT systems are not well-suited for the untrusted cloud infrastructure

CFT system
(2f+1 machine nodes)

● However, insufficient in the untrusted cloud
○ e.g., untrusted nodes, malicious attackers
○ arbitrary (Byzantine) failures go undetected

Byzantine Fault Tolerance (BFT)

● BFT model handles arbitrary failures
○ requires 3f+1 nodes to handle f failures

4

BFT’s low scalability impedes its adoption in the untrusted cloud

BFT system
(3f+1 machine nodes)

● However, BFT is costly
○ limited scalability (f more nodes than CFT)
○ complexity and high-latency

● Foundational building block for trustworthy systems
○ CPU-based Trusted Execution Environments (TEEs)

Trusted computing for BFT systems

5

Trusted computing can make BFT systems practical, but…

● TEEs can ensure a node to follow the protocol faithfully

● Therefore, TEEs can improve scalability in BFT systems
○ requires 2f+1 nodes, the same as CFT systems

Limitations of CPU-based TEEs

6

#3: Low performance #1: Heterogeneity

E.g., AMD-SEV's confidentiality
vs. Intel SGX's integrity

E.g., syscalls, virtualization
overheads, world switches

#2: Large TCB

E.g., 2M LoC on AMD-SEV
and Intel TDX TCBs

Research question

7

How do we design trustworthy distributed systems for Byzantine cloud
environments while overcoming the limitations of CPU-based TEEs?

, fast, slow

Key insight: Moving trusted computing into a NIC

8

CPU TEE
Trusted domain

Distributed app

Trusted NIC
Distributed app

Trusted hardware

Network

CPU

host-CPU

Minimal security primitive

, large TCB

OS, network lib

Trusted hardware

, small TCBCPU-dependent

CPU/NIC boundary

CPU-agnostic

NICSmartNIC

Our proposal

9

Properties:

● Uniform interface
○ host CPU-agnostic

● Minimalism
○ small TCB with verified security properties

● Performance
○ hardware-offloading of security processing

TNIC: A Trusted NIC Architecture
A hardware-network substrate for building

high-performance, trustworthy distributed systems

● Motivation

● Overview

● Evaluation

Outline

10

TNIC hardware (SmartNIC)

TNIC software

● TNIC hardware
○ guarantees two security properties for BFT:

#1 Non-equivocation
#2 Transferable authentication

TNIC overview

11

CPU-agnostic API

User-space network stack

Security module

Application

CPU/NIC boundary

TNIC attestation kernel

Network stack

● TNIC software
○ CPU-agnostic API
○ user-space networking

Key ingredients for trustworthy distributed systems

12

#1: Non-equivocation #2: Transferable authentication

Do not make conflicting statements
to different nodes

Be capable of verifying
the original sender of the message

Allow systems to operate with 2f+1 nodes in Byzantine environments1

1On the (limited) power of non-equivocation, PODC'12.

TNIC hardware

authenticated
msg

TNIC hardware

13

TNIC attestation kernel authenticates (and verifies) RDMA-driven messages

PCIe DMA/bridge

TNIC attestation
kernel

RoCE protocol kernel

● TNIC attestation kernel
○ non-equivocation
○ transferable authentication

untrusted network

req

msg

● RoCE protocol kernel
○ RDMA operations

● Separate data and control path

Sequencer module

TNIC attestation kernel

14

TNIC attestation kernel is minimal and formally verified

● Attest and verify operations
○ generates and verifies authenticated messages

Authentication module

TNIC attestation kernel

Formally verified

● Authentication module
○ guarantees transferable authentication
○ computes cryptographic MAC

● Sequencer module

○ guarantees non-equivocation
○ assigns monotonically increased numbers to

messages (and verifies them)

TNIC network stack and API

15

TNIC implements user-space trusted networking

● TNIC network stack
○ driver enables user-space device access
○ library for RDMA support

Library

Driver

network
requests

TNIC network stack

config

Mapped
pages

TNIC API

● TNIC API
○ trusted message format
○ peer-to-peer trusted operations
○ group communication primitives

Multicast under equivocation attack

16

Untrusted distributed system

Primary

16

msg
(1) Multicast msg

(2) send(msg)

msg != msg2

(3) send(msg2)

Follower 2
msg2

Follower 1
msg

TNIC in action: equivocation-free multicast

17

Trustworthy distributed system

Primary

17

(2) TNIC hw:
 a = attest(msg)

(1) TNIC API:
 multicast(msg) msg

a
TNICauthenticated messages are

always distinct!

(5) TNIC hw:
 verify(a)

(5) TNIC hw:
 verify(a)

TNIC

a
Follower 1

TNIC

a
Follower 2

(3) send(a) (4) send(a)

Outline

18

● Motivation

● Overview

● Evaluation

Evaluation

Questions:

● What is the performance of TNIC?

● What is the performance for the trusted systems?

19

Experimental setup:

● HW evaluation on 2 Alveo U280 FPGA NICs

● Distributed systems evaluation on 3x Intel i9-9900K @3.60GHz

Evaluation

Questions:

● What is the performance of TNIC?

● What is the performance for the trusted systems?

20

Experimental setup:

● HW evaluation on 2 Alveo U280 FPGA NICs

● Distributed systems evaluation on 3x Intel i9-9900K @3.60GHz

Q1: TNIC performance

21

Lo
w

er
 is

 b
et

te
r

message size

la
te

nc
y

(u
s)

Untrusted

Q1: TNIC performance

22

Lo
w

er
 is

 b
et

te
r

message size

la
te

nc
y

(u
s)

X

-16x -16x -16x

Q1: TNIC performance

23

TNIC is up to 5x faster w.r.t. a TEE-based network stack

Lo
w

er
 is

 b
et

te
r

message size

la
te

nc
y

(u
s)

X

5x 4.5x 3.5x

Evaluation

Questions:

● What is the performance of TNIC?

● What is the performance for the trusted systems?

24

Experimental setup:

● HW evaluation on 2 Alveo U280 FPGA NICs

● Distributed systems evaluation on 3x Intel i9-9900K @3.60GHz

TNIC application on distributed systems

● Attested-Append-Only-Memory (A2M) [SOSP'07]
○ append-only log in the untrusted memory

25

● BFT [OSDI’99]
○ broadcast-based protocol with a unique leader

● Chain Replication (CR) [OSDI’04]
○ nodes organized as a chain

● PeerReview accountability protocol [SOSP'07]
○ failure detection

th
ro

ug
hp

ut
 (O

p/
s)

Q2: Performance of trusted systems

26

H
ig

he
r i

s
be

tt
er

A2M BFT CR Accountability

-2x more than 20x slowdown
Untrusted

th
ro

ug
hp

ut
 (O

p/
s)

Q2: Performance of trusted systems

27

H
ig

he
r i

s
be

tt
er

A2M BFT CR Accountability

15-25x slowdown compared to native

Q2: Performance of trusted systems

28

TNIC offers at least 3x better throughput w.r.t. to TEE-based trusted systems

A2M BFT CR Accountability

th
ro

ug
hp

ut
 (O

p/
s)

H
ig

he
r i

s
be

tt
er

5x

4-6x 3-5x
3-5x

TNIC has 4-5x slowdown compared to native

Summary

29

CPU-based TEEs for efficient trustworthy distributed systems are not a good fit!
● heterogeneity in security properties, programmability and performance
● large TCBs with vulnerabilities that go undetected
● performance overheads

TNIC: A trusted NIC architecture
● CPU-agnostic network APIs
● minimal and verified security properties
● hardware-offloaded high-performance networking Paper Code

