
Weaver
A Retargetable Compiler Framework

for FPQA Quantum Architectures
Oğuzcan Kırmemiş*, Francisco Romão*

Emmanouil Giortamis, and Pramod Bhatotia

1ACM CGO 2025

● Speedup: Quantum computing promises

exponential speedup for certain applications

● Versatility: Quantum computing capabilities are

applicable to many areas

The Quantum Computing Era

2

Cryptography

Machine
learning

Chemistry

Heterogeneity of quantum hardware architectures

Multiple quantum technologies under development

Heterogeneous Quantum Architectures

3

Superconducting FPQAs (Neutral Atoms) Trapped Ions

● State of the art

● Fast gates

● Fixed layout

● Reconfigurable layout

● Strong stability

● Slow execution

● High fidelity

● Less scalable

● Slow execution

State-of-the-art: Architecture-specific Compilers

SuperconductingApplication
Superconducting

compiler

Application Neutral atoms
compiler

Neutral atoms

Disadvantage:
Do not support retargetability
across different architectures

Advantage:
Efficiently leverage unique

quantum hardware capabilities

Retargetable Compilers for Classical Computing

Compilers for classical computing provide:

● Portability:
○ Retargetability for different architectures

● Performance:
○ Architecture-specific optimizations

5

LLVM
compiler

C program

6

Problem Statement

How can we retarget applications to different quantum technologies while
leveraging the unique hardware capabilities in a performant manner?

7

Weaver

Quantum
application

Superconducting
program

Weaver: A Retargetable Compiler Framework

FPQAs
program

Trapped ion
program

Our focus

Design Goals

8

wQASM
retargetable input

FPQA-specific
optimizations

Compilation
checking

Retargetable Performant Correct

Three compilation stages

(a) Hardware-agnostic
compilation

(b) Hardware-aware
compilation

(c) Equivalence
checking

Quantum
application

Weaver

FPQA
program

Superconducting
program

9

● Motivation

● Design

● Evaluation

Outline

● Qubits: Metal atoms

Neutral Atoms / FPQA Basics

10

Qubits

Gates

SLM
(Orange)

AOD
(Green)

Shuttling

● Gates: Microwave pulses

● Hardware grid: Laser grid

○ Static Grid (SLM)

○ Dynamic Grid (AOD)

● Shuttling: Laser row and/or column

movement

System Overview

11

wQASM

QASM

wOptimizer FPQA
Low-level

Instructions

wChecker

Quantum
application

Lowering to QASM

FPQA optimization

Superconducting
program

FPQA program
(a) Hardware-agnostic

compilation
(b) Hardware-aware

compilation
(c) Equivalence

checking

Qiskit

(a) Hardware-agnostic
Compilation

System Overview

12

wOptimizer FPQA
Low-level

Instructions

wChecker

Input
Application

Lowering to QASM

FPQA Optimization

Superconducting
Program

FPQA Program
(b) Hardware-aware

Compilation
(c) Equivalence

Checking

Qiskit

wQASM

QASM

● Retarget quantum application with
minimal overhead

● Ability to leverage hardware's unique
capabilities

Challenge #1: Retargetability

13

QASM architecture-specific
extension

Hardware-agnostic compilation
stage

Challenge Our approach

Our contribution:
wQASM: an FPQA-specific QASM extension

14

OpenQASM

● OpenQASM is a low-level, hardware-agnostic, quantum description language

● By being hardware-agnostic it cannot leverage unique hardware capabilities

OPENQASM 3.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0], q[1]; // Apply CNOT gate
measure q -> c; // Measure both qubits

Defines two quantum and two classical
bits (registers)

Applies Hadamard gate on qubit 0
Applies CNOT gate

Measures qubits and stores on classical bits

15

● wQASM extends QASM with FPQA-specific instructions on top of the annotation support

● can be interpreted as an FPQA instruction list

● allows leveraging architecture-specific capabilities

wQASM: An OpenQASM Extension for FPQAs

input q[4];
@rydberg
gate gate_1 a0, a1, a2, a3
{

cz a0, a1;
ccz a1, a2, a3;
ccz a0, a2, a3;

}
gate_1 q[0], q[1], q[2], q[3]

FPQA-specific instruction

Defines gate_1 with 4 qubit inputs

Applies gate_1 on qubits 0,1,2 and 3

Superconducting-compatible
instructions

System Overview

16

wQASM

QASM

FPQA
Low-level

Instructions

wChecker

Input
Application

Lowering to QASM

Superconducting
Program

FPQA Program
(a) Hardware-agnostic

Compilation
(b) Hardware-aware

Compilation
(c) Equivalence

Checking

Qiskit

FPQA OptimizationwOptimizer

Challenge #2: Performance

17

● FPQA gate execution is slow

● Movable rows or columns cannot
overlap

High parallelization of gate
execution

A smart shuttling algorithm
avoids overlap

Challenge Our approach

Our contribution:
wOptimizer leverages FPQA-specific capabilities for code optimization

1. execute first cluster
in parallel

2
54

wOptimizer: Leveraging FPQAs - Showcase

● Are there actual quantum programs where hardware-specific optimizations are beneficial?

18

● Are there actual quantum programs where hardware-specific optimizations are beneficial?
○ Max-3SAT:

Native
Quantum

Circuit

Clause
Coloring

Color
Shuttling

Atom groups

…
…
…

…
…
…

…
…
…

DSatur

2. shuttle dependencies

3. execute second
cluster in parallel

Group #1

0 2
1 3

54

Group #2

Group #3

4
2

5

wOptimizer: Leveraging FPQAs - Showcase

19

● Are there actual quantum programs where hardware-specific optimizations are beneficial?
○ Max-3SAT:

Native
Quantum

Circuit

Clause
Coloring

Color
Shuttling

3-qubit Gate
Compression

FPQA
Low-level

Instructions

Naive execution of a single atom group FPQA execution

● Unlike others, FPQAs offer native support for higher multi-qubit gates (3+)

Lowering to QASM

(b) Hardware-aware
Compilation

wOptimizer

System Overview

20

wQASM

QASM

FPQA
Low-level

Instructions

Input
Application

FPQA Optimization

Superconducting
Program

FPQA Program
(a) Hardware-agnostic

Compilation
(c) Equivalence

Checking

Qiskit

wChecker

Challenge #3: Correctness

21

● Ensure hardware-specific
equivalence

● Fast equivalence checking to avoid
compilation delays

Efficient one to one gate
comparison

FPQA instructions translation

Challenge Our approach

Our contribution:
wChecker ensures functional equivalence after code optimizations

22

wChecker: A Functional Equivalence Checker

Native
Quantum

Circuit

wChecker

Pulse-Gate
Translator

Unitary
Check

FPQA
Low-level

Instructions

Functionally
Equivalent?

● Pulse-Gate Translator
○ Translates FPQA-specific pulses back into universal quantum gates

● Unitary Check
○ Compares gates one to one between the native and the translated circuit

23

● Motivation

● Design

● Evaluation

Outline

● RQ #1: What is Weaver’s execution time?

● RQ #2: What is the fidelity improvement?

● RQ #3: What is the compilation time overhead?

Research Questions

24

● RQ #1: What is Weaver’s execution time?

● RQ #2: What is the fidelity improvement?

● RQ #3: What is the compilation time overhead?

25

● Benchmarks:
○ QAOA circuits of MAX-3SAT formulas from the SATLIB benchmark
○ Varying the number of variables (20, 50, 75, 100, 150, 250)

● Baselines:
○ Superconducting (Qiskit)
○ DPQA [ICCAD ’22]
○ Atomique [ISCA ’24]
○ Geyser [ISCA ’22]

Evaluation Methodology

26

RQ #1: Execution Time

Weaver produces solutions with the fastest execution on large benchmarks

Hypothesis: Weaver aims for a highly parallelized execution, decreasing execution time

~8.2x
improvement

27

RQ #2: Fidelity (EPS)

Weaver achieves exponential increase in fidelity compared to the baselines

Hypothesis: Weaver reduces the number of gates which should improve overall fidelity

~108x
improvement

Summary

Weaver: A retargetable compiler framework for FPQA quantum architectures

● OpenQASM extension with FPQA-specific instructions

● FPQA-specific optimization

● Compilation correctness with functional equivalence checking

28

Try it out!
Weaver (source code)

How can we retarget applications to different quantum technologies
while leveraging their unique hardware capabilities?

https://github.com/TUM-DSE/Weaver

