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● Speedup: Quantum computing promises 

exponential speedup for certain applications

● Versatility: Quantum computing capabilities are 

applicable to many areas

The Quantum Computing Era
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Cryptography

Machine 
learning

Chemistry

Heterogeneity of quantum hardware architectures  

Multiple quantum technologies under development



Heterogeneous Quantum Architectures
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Superconducting FPQAs (Neutral Atoms) Trapped Ions

● State of the art

● Fast gates

● Fixed layout

● Reconfigurable layout

● Strong stability

● Slow execution

● High fidelity

● Less scalable

● Slow execution



State-of-the-art: Architecture-specific Compilers

SuperconductingApplication
Superconducting 

compiler

Application Neutral atoms 
compiler

Neutral atoms

Disadvantage: 
Do not support retargetability 
across different architectures

Advantage: 
Efficiently leverage unique 

quantum hardware capabilities



Retargetable Compilers for Classical Computing

Compilers for classical computing provide:

● Portability: 
○ Retargetability for different architectures

● Performance: 
○ Architecture-specific optimizations

5

LLVM 
compiler

C program
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Problem Statement

How can we retarget applications to different quantum technologies while 
leveraging the unique hardware capabilities in a performant manner?
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Weaver

Quantum 
application

Superconducting 
program

Weaver: A Retargetable Compiler Framework

FPQAs
program

Trapped ion 
program

Our focus



Design Goals
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wQASM 
retargetable input

FPQA-specific 
optimizations

Compilation 
checking

Retargetable Performant Correct

Three compilation stages

(a) Hardware-agnostic 
compilation

(b) Hardware-aware 
compilation

(c)  Equivalence 
checking

Quantum 
application

Weaver

FPQA
program

Superconducting 
program
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● Motivation

● Design

● Evaluation

Outline



● Qubits: Metal atoms

Neutral Atoms / FPQA Basics
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Qubits

Gates

SLM 
(Orange)

AOD 
(Green)

Shuttling

● Gates: Microwave pulses

● Hardware grid: Laser grid

○ Static Grid (SLM)

○ Dynamic Grid (AOD)

● Shuttling: Laser row and/or column 

movement



System Overview
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wQASM

QASM

wOptimizer FPQA 
Low-level 

Instructions

wChecker

Quantum 
application

Lowering to QASM

FPQA optimization

Superconducting 
program

FPQA program
(a) Hardware-agnostic 

compilation
(b) Hardware-aware 

compilation
(c)  Equivalence 

checking

Qiskit



(a) Hardware-agnostic 
Compilation

System Overview
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wOptimizer FPQA 
Low-level 

Instructions

wChecker

Input 
Application

Lowering to QASM

FPQA Optimization

Superconducting 
Program

FPQA Program
(b) Hardware-aware 

Compilation
(c)  Equivalence 

Checking

Qiskit

wQASM

QASM



● Retarget quantum application with 
minimal overhead

● Ability to leverage hardware's unique 
capabilities

Challenge #1: Retargetability
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QASM architecture-specific 
extension

Hardware-agnostic compilation 
stage

Challenge Our approach

Our contribution: 
wQASM: an FPQA-specific QASM extension
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OpenQASM

● OpenQASM is a low-level, hardware-agnostic, quantum description language

● By being hardware-agnostic it cannot leverage unique hardware capabilities

OPENQASM 3.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0], q[1]; // Apply CNOT gate
measure q -> c; // Measure both qubits

Defines two quantum and two classical 
bits (registers)

Applies Hadamard gate on qubit 0
Applies CNOT gate

Measures qubits and stores on classical bits
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● wQASM extends QASM with  FPQA-specific instructions on top of the annotation support

● can be interpreted as an FPQA instruction list

● allows leveraging architecture-specific capabilities

wQASM: An OpenQASM Extension for FPQAs

input q[4];
@rydberg
gate gate_1 a0, a1, a2, a3
{

cz a0, a1;
ccz a1, a2, a3;
ccz a0, a2, a3;

}
gate_1 q[0], q[1], q[2], q[3]

FPQA-specific instruction

Defines gate_1 with 4 qubit inputs

Applies gate_1 on qubits 0,1,2 and 3

Superconducting-compatible 
instructions



System Overview
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wQASM

QASM

FPQA 
Low-level 

Instructions

wChecker

Input 
Application

Lowering to QASM

Superconducting 
Program

FPQA Program
(a) Hardware-agnostic 

Compilation
(b) Hardware-aware 

Compilation
(c)  Equivalence 

Checking

Qiskit

FPQA OptimizationwOptimizer



Challenge #2: Performance
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● FPQA gate execution is slow

● Movable rows or columns cannot 
overlap

High parallelization of gate 
execution

A smart shuttling algorithm 
avoids overlap

Challenge Our approach

Our contribution: 
wOptimizer leverages FPQA-specific capabilities for code optimization



1. execute first cluster 
in parallel

2
54

wOptimizer: Leveraging FPQAs - Showcase

● Are there actual quantum programs where hardware-specific optimizations are beneficial? 
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● Are there actual quantum programs where hardware-specific optimizations are beneficial? 
○ Max-3SAT:

Native 
Quantum 

Circuit

Clause 
Coloring

Color 
Shuttling

Atom groups

…
…
…

…
…
…

…
…
…

DSatur

2. shuttle dependencies

3. execute second 
cluster in parallel

Group #1

0 2
1 3

54

Group #2

Group #3

4
2

5



wOptimizer: Leveraging FPQAs - Showcase
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● Are there actual quantum programs where hardware-specific optimizations are beneficial? 
○ Max-3SAT:

Native 
Quantum 

Circuit

Clause 
Coloring

Color 
Shuttling

3-qubit Gate 
Compression

FPQA 
Low-level 

Instructions

Naive execution of a single atom group FPQA execution

● Unlike others, FPQAs offer native support for higher multi-qubit gates (3+)



Lowering to QASM

(b) Hardware-aware 
Compilation

wOptimizer

System Overview
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wQASM

QASM

FPQA 
Low-level 

Instructions

Input 
Application

FPQA Optimization

Superconducting 
Program

FPQA Program
(a) Hardware-agnostic 

Compilation
(c)  Equivalence 

Checking

Qiskit

wChecker



Challenge #3: Correctness
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● Ensure hardware-specific 
equivalence

● Fast equivalence checking to avoid 
compilation delays

Efficient one to one gate 
comparison

FPQA instructions translation

Challenge Our approach

Our contribution: 
wChecker ensures functional equivalence after code optimizations 
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wChecker: A Functional Equivalence Checker

Native 
Quantum 

Circuit

wChecker

Pulse-Gate 
Translator

Unitary 
Check

FPQA 
Low-level 

Instructions

Functionally 
Equivalent?

● Pulse-Gate Translator
○ Translates FPQA-specific pulses back into universal quantum gates

● Unitary Check
○ Compares gates one to one between the native and the translated circuit 
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● Motivation

● Design

● Evaluation

Outline



● RQ #1: What is Weaver’s execution time?

● RQ #2: What is the fidelity improvement?

● RQ #3: What is the compilation time overhead?

Research Questions
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● RQ #1: What is Weaver’s execution time?

● RQ #2: What is the fidelity improvement?

● RQ #3: What is the compilation time overhead?
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● Benchmarks:
○ QAOA circuits of MAX-3SAT formulas from the SATLIB benchmark
○ Varying the number of variables (20, 50, 75, 100, 150, 250)

● Baselines:
○ Superconducting (Qiskit)
○ DPQA [ICCAD ’22]
○ Atomique [ISCA ’24]
○ Geyser [ISCA ’22]

Evaluation Methodology



26

RQ #1: Execution Time

Weaver produces solutions with the fastest execution on large benchmarks

Hypothesis: Weaver aims for a highly parallelized execution, decreasing execution time

~8.2x 
improvement
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RQ #2: Fidelity (EPS)

Weaver achieves exponential increase in fidelity compared to the baselines

Hypothesis: Weaver reduces the number of gates which should improve overall fidelity

~108x 
improvement



Summary

Weaver: A retargetable compiler framework for FPQA quantum architectures

● OpenQASM extension with FPQA-specific instructions

● FPQA-specific optimization

● Compilation correctness with functional equivalence checking
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Try it out!
Weaver (source code) 

How can we retarget applications to different quantum technologies 
while leveraging their unique hardware capabilities?

https://github.com/TUM-DSE/Weaver

