Weaver

A Retargetable Compiler Framework
for FPQA Quantum Architectures

Oguzcan Kirmemis¥, Francisco Romao*
Emmanouil Giortamis, and Pramod Bhatotia

Technische
Universitat
Miinchen

ACM CGO 2025

The Quantum Computing Era TI.ITI

e Speedup: Quantum computing promises

exponential speedup for certain applications
e Versatility: Quantum computing capabilities are Cryptography

applicable to many areas

- . hi
Heterogeneity of quantum hardware architectures e 'l\ngm';;
Multiple quantum technologies under development %e®

2 02

Chemistry

Heterogeneous Quantum Architectures

Superconducting FPQAs (Neutral Atoms) Trapped lons

e State of the art e Reconfigurable layout e High fidelity
e Fast gates e Strong stability ® lessscalable

e Fixed layout e Slow execution e Slow execution

State-of-the-art: Architecture-specific Compilers

=B @

Superconducting

TUTI

Application compiler Superconducting
Application Neutral atoms Neutral atoms
compiler
Advantage: Disadvantage:
Efficiently leverage unique Do not support retargetability

quantum hardware capabilities across different architectures

Retargetable Compilers for Classical Computing TI.ITI

Compilers for classical computing provide:

e Portability: ‘<C> C program

o Retargetability for different architectures
e Performance:
o Architecture-specific optimizations

LLVM
compiler

L : L

Problem Statement

How can we retarget applications to different quantum technologies while
leveraging the unique hardware capabilities in a performant manner?

Weaver: A Retargetable Compiler Framework TI_ITI

- Superconducting\
— <> T program

OOO—
- FPQAs
E —> Weaver ——> <> program
/

Quantum O
application

> Our focus

- Trapped ion
> </ > — program

Design Goals

Three compilation stages

<

Weaver
- wQASM. > FPQ.A-.spe.ciﬁc Compila'ltion
retargetable input optimizations checking
Quantum K
application (a) Hardware-agnostic (b) Hardware-aware (c) Equivalence
compilation compilation checking
Retargetable Performant Correct

TUTI

Superconducting
program
(o0 |

</> -

</>_

FPQA
program

Outline

Mrotivati
e Design

e Evaluation

Neutral Atoms / FPQA Basics

e Qubits: Metal atoms

e Gates: Microwave pulses
e Hardware grid: Laser grid
o Static Grid (SLM)
o Dynamic Grid (AOD)
e Shuttling: Laser row and/or column

movement

10

System Overview

Lowering to QASM

Quantum
application

(a) Hardware-agnostic
compilation

—> Qiskit - <>
| Superconducting
A0 S S - program
i wChecker -----
QASM : ;
FPQA optimization |
_ 2 FPQA v - -
- wOptimizer ———| | . jevel - <> _I
: Instructions
. — FPQA program
(b) Hardware-aware : (c) Equivalence
compilation : checking

1

System Overview

WQASM

QASM

12

Challenge #1: Retargetability

TUTI

Challenge Our approach
. . . / \
o Retarget quantum appllcatlon with Hardware-agnostic Compilation
minimal overhead stage
A J
e Ability to leverage hardware's unique QASM architecture-specific
capabilities extension
A\ J
Our contribution:
WQASM: an FPQA-specific QASM extension

13

OpenQASM TI.ITI

® OpenQASM is a low-level, hardware-agnostic, quantum description language

e By being hardware-agnostic it cannot leverage unique hardware capabilities

OPENQASM 3.0;
include "qelib1.inc";

qreg ql[2]; | . Defines two quantum and two classical
creg c[2]; I bits (registers)
h qle]; » Applies Hadamard gate on qubit o

cx q[@], q[1]; // Apply CNOT gate > Applies CNOT gate
measure q -> c; // Measure both qubits

Measures qubits and stores on classical bits

14

wQASM: An OpenQASM Extension for FPQAs TUTI

wWQASM extends QASM with FPQA-specific instructions on top of the annotation support

can be interpreted as an FPQA instruction list

allows leveraging architecture-specific capabilities

input q[4];

@rydberg

gate gate_1 a@, a1, a2, a3
{
cz a0, ail;
ccz al, a2, a3;
ccz aod, a2, a3;
}
gate_1 q[e@], q[1], ql[2], q[3]

FPQA-specific instruction
Defines gate 1 with 4 qubit inputs

Superconducting-compatible
instructions

Applies gate 1on qubits 0,1,2and 3

15

System Overview

wOptimizer

16

Challenge #2: Performance TI.ITI

Challenge Our approach
s R
e FPQA gate execution is slow —= High parallelization of gate
execution
\ J
e Movable rows or columns cannot 4 huttling aleorith b
overlap > A smart s ‘utt Ing algorithm
avoids overlap
A J

Our contribution:
wOptimizer leverages FPQA-specific capabilities for code optimization

17

wOptimizer: Leveraging FPQAs - Showcase TI_ITI

® Are there actual quantum programs where hardware-specific optimizations are beneficial?
O Max-3SAT: (zg V 1 V x2) A (x5 V 24 V x5) A (12 V g V —T5)

Native

Quantum Clause Color
.. i huttlin
Circuit Clenig > 8
N N
N
4 Atom groups \§
a0 JE1—o {{z0, 21 @ @ e e . 2. shuttle dependencies
A {:cg, ______ . _________ . _ @ : ______ 3. execute second
& }} kk‘cluster in parallel
. ' DSatur Group #1 Group #2
A 1. execute first cluster ~ ______/5)_-___.

—a—l—a—;—I—eL nparale Group #3
©)

18

wOptimizer: Leveraging FPQAs - Showcase TI_ITI

® Are there actual quantum programs where hardware-specific optimizations are beneficial?
O Max3SAT: (zo V1 V) A (T3 V Ty VIs) A(-zg V oy V —as)
e Unlike others, FPQAs offer native support for higher multi-qubit gates (3+)

Native I) FPQA
Quantum ; [au.se o Colo-r ___ 3-qubit Ga)te — > Low-level
Circuit oloring Shuttling SO Instructions
Naive execution of a single atom group FPQA execution

Fmm o o =

do I

— I !

19

System Overview

wChecker

20

Challenge #3: Correctness TI.ITI

Challenge Our approach
.)
e Ensure hardware-specific
equivalence —> FPQA instructions translation
J
3 3 3 \
e Fast e.qu1.valence checking to avoid l Efficient one to one gate
Compllatlon d6|ayS Comparison
J

Our contribution:
wChecker ensures functional equivalence after code optimizations

21

wChecker: A Functional Equivalence Checker

Native
Quantum

Circuit

FPQA
Low-level

Instructions

e Pulse-Gate Translator

> PulseGate | __ Unitary

— Functionally
—» Translator Check Equivalent?

wChecker

o Translates FPQA-specific pulses back into universal quantum gates

e Unitary Check

o Compares gates one to one between the native and the translated circuit

22

Outline
oo
e+—Design

e Evaluation

23

Research Questions

e RQ #1: What is Weaver’s execution time?
e RQ #2: What is the fidelity improvement?

e RQ#3: What is the compilation time overhead?

24

Evaluation Methodology

Benchmarks:

©)

©)

QAOA circuits of MAX-3SAT formulas from the SATLIB benchmark
Varying the number of variables (20, 50, 75, 100, 150, 250)

Baselines:

©)

©)
©)
©)

Superconducting (Qiskit)
DPQA [ICCAD ’22]
Atomique [ISCA "24]
Geyser [ISCA’22]

25

RQ #1: Execution Time TUTI

Hypothesis: Weaver aims for a highly parallelized execution, decreasing execution time

Lower is better |

~
10%4 < — N ¢<__ ~8.2x
] improvement
! 2%
oo’y B 7
= N - v Z
S
310724 N
9 —
x —
i —
-3 |
__J10 N
F A X X X X X X X X X X X X
20 50 75 100 150 250

I Number of variables |
3 Superconducting [XT Atomique [ZZ1 Weaver EXJ DPQA [XO Geyser

[Weaver produces solutions with the fastest execution on large benchmarks }

26

RQ #2: Fidelity (EPS) TUTI

Hypothesis: Weaver reduces the number of gates which should improve overall fidelity

Higher is better 1

LI

8
% ~10°X
—

improvement
10732+ 7

IEstimated Probability of Sucess |
)
N
N

H
<

&
v/

i A X A X A x X A X X FAX
20 50 15 100 150 250
Number of variables |
A Superconducting [N Atomique EZI1 Weaver EXJ DPQA Geyser

{ Weaver achieves exponential increase in fidelity compared to the baselines }

27

Summary TI.ITI

How can we retarget applications to different quantum technologies
while leveraging their unique hardware capabilities?

Weaver: A retargetable compiler framework for FPQA quantum architectures
e OpenQASM extension with FPQA-specific instructions

® FPQA-specific optimization

e Compilation correctness with functional equivalence checking

Try it out!

Weaver (source code)

https://github.com/TUM-DSE/Weaver

