Weaver

A Retargetable Compiler Framework for FPQA Quantum Architectures

Oğuzcan Kırmemiş*, Francisco Romão* Emmanouil Giortamis, and Pramod Bhatotia

The Quantum Computing Era

- **Speedup:** Quantum computing promises exponential speedup for certain applications
- Versatility: Quantum computing capabilities are applicable to many areas

Heterogeneity of quantum hardware architectures

Multiple quantum technologies under development

Heterogeneous Quantum Architectures

ТЛП

Superconducting

- State of the art
- Fast gates
- Fixed layout

FPQAs (Neutral Atoms)

- Reconfigurable layout
- Strong stability
- Slow execution

Trapped Ions

- High fidelity
- Less scalable
- Slow execution

State-of-the-art: Architecture-specific Compilers

Advantage:

Efficiently leverage *unique* quantum hardware capabilities

Disadvantage:

Do not support *retargetability* across different architectures

Retargetable Compilers for Classical Computing

Compilers for classical computing provide:

- Portability:
 - Retargetability for different architectures
- Performance:
 - Architecture-specific optimizations

Problem Statement

How can we **retarget** applications to different quantum technologies while leveraging the **unique** hardware capabilities in a **performant** manner?

Weaver: A Retargetable Compiler Framework

Design Goals

Outline

- Motivation
- Design
- Evaluation

Neutral Atoms / FPQA Basics

- **Qubits:** Metal atoms
- Gates: Microwave pulses
- Hardware grid: Laser grid
 - Static Grid (SLM)
 - Dynamic Grid (AOD)
- Shuttling: Laser row and/or column movement

Our contribution: <u>wQASM</u>: an FPQA-specific QASM extension

- OpenQASM is a low-level, hardware-agnostic, quantum description language
- By being hardware-agnostic it cannot leverage unique hardware capabilities

wQASM: An OpenQASM Extension for FPQAs

- wQASM extends QASM with FPQA-specific instructions on top of the annotation support
- can be interpreted as an FPQA instruction list
- allows leveraging architecture-specific capabilities

System Overview

Our contribution:

wOptimizer leverages FPQA-specific capabilities for code optimization

wOptimizer: Leveraging FPQAs - Showcase

- ТЛП
- Are there actual quantum programs where hardware-specific optimizations are **beneficial**?
 - Max-3SAT: $(x_0 \lor x_1 \lor x_2) \land (x_3 \lor x_4 \lor x_5) \land (\neg x_2 \lor \neg x_4 \lor \neg x_5)$

wOptimizer: Leveraging FPQAs - Showcase

• Are there actual quantum programs where hardware-specific optimizations are **beneficial**?

• Max-3SAT: $(x_0 \lor x_1 \lor x_2) \land (x_3 \lor x_4 \lor x_5) \land (\neg x_2 \lor \neg x_4 \lor \neg x_5)$

• Unlike others, FPQAs offer native support for higher multi-qubit gates (3+)

System Overview

Our contribution:

wChecker ensures functional equivalence after code optimizations

wChecker: A Functional Equivalence Checker

- Pulse-Gate Translator
 - Translates FPQA-specific pulses back into universal quantum gates
- Unitary Check
 - Compares gates one to one between the native and the translated circuit

Outline

- Motivation
- Design
- Evaluation

Research Questions

• **RQ #1:** What is Weaver's execution time?

• **RQ #2:** What is the fidelity improvement?

• **RQ #3**: What is the compilation time overhead?

Evaluation Methodology

- Benchmarks:
 - QAOA circuits of MAX-3SAT formulas from the SATLIB benchmark
 - Varying the number of variables (20, 50, 75, 100, 150, 250)
- Baselines:
 - Superconducting (Qiskit)
 - DPQA [ICCAD '22]
 - Atomique [ISCA '24]
 - Geyser [ISCA '22]

RQ #1: Execution Time

Hypothesis: Weaver aims for a highly parallelized execution, decreasing execution time

Weaver produces solutions with the fastest execution on large benchmarks

RQ #2: Fidelity (EPS)

Hypothesis: Weaver reduces the number of gates which should improve overall fidelity

Weaver achieves exponential increase in fidelity compared to the baselines

How can we **retarget** applications to different quantum technologies while leveraging their **unique** hardware capabilities?

Weaver: A retargetable compiler framework for FPQA quantum architectures

- OpenQASM extension with FPQA-specific instructions
- FPQA-specific optimization
- Compilation correctness with functional equivalence checking

