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Abstract
FPGAs provide a programmable, energy-efficient, and compute-
intensive acceleration substrate; thus, on the one hand, they offer
a compelling solution for optimizing serverless workloads in cloud
environments. On the other hand, FPGAs also introduce significant
challenges that directly contradict the serverless model in the cloud,
including their low-level and complexprogrammingAPIs, lack of vir-
tualization and isolationmechanisms, high reconfiguration and com-
munication overheads, and absence of orchestration mechanisms.

To this end, we present F3, the first system that enables efficient
and secure use of FPGAs to accelerate serverless functions. F3 allows
serverless functions to easily offload their tasks to FPGAs without
worrying about low-level device management. The system auto-
matically deploys and invokes FPGA-accelerated functions while
providing isolation, high throughput, and low latency. To achieve
thesedesigngoals,F3 simplifies thecomplexityofFPGAinitialization
by a high-level hardware-agnostic API, enables function isolation
with unikernel-based FPGA virtualization, reduces cold starts and
communication overheads with a per-node FPGA resource manager,
and maximizes FPGA utilization with an FPGA-aware orchestrator.

We implementanopen-sourceprototypeof F3basedonapractical
serverless framework, which consists of OpenFaaS, Kubernetes, and
containerd, following the CRI/OCI industry standards for cloud or-
chestrationengines.Our evaluationdemonstrates significant latency
reduction and throughput improvements for real-world application
workloads, microbenchmarks, and Azure production traces.
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1 Introduction
Motivation. Function-as-a-Service (FaaS) increasingly dominates
cloud computing workloads due to its inherent advantages [10, 17,
50, 87, 92]. FaaS abstracts infrastructuremanagement concerns away
from developers, allowing them to focus solely on writing and de-
ploying code, while cloud operators offer a serverless computing
model. In the serverless computing model, the cloud provider auto-
matically handles scaling, fault tolerance, and resource provisioning.
Serverless computing also improves cost efficiency, as it only charges
users for the resources consumed during function execution [74, 99].

Developers now use serverless computing for various workloads,
including high-performance, compute-intensive tasks such as data
analytics, scientific computing, andmachine learning/AI [26, 47, 107,
119]. However, running such compute-intensive workloads only on
CPUs may not be cost-effective or power-efficient, and integrating
accelerators is increasingly becoming a norm to accelerate domain-
specific computing.

As various types of accelerators are being adopted in the cloud:
GPUs [31, 37], TPUs [51], and Field-Programmable Gate Arrays (FP-
GAs) [9, 96, 120], a natural question arises: can we leverage these
accelerators to also accelerate serverless workloads? We are partic-
ularly interested in FPGAs, reconfigurable accelerators that can
dynamically build application-specific custom logic for acceleration
on demand. FPGAs are superior to other accelerators in terms of
programmability, flexibility, and energy efficiency [56, 97]. Their
ability to be reprogrammed to accommodate newworkloads makes
them a valuable component in on-demand, serverless environments
where workloads shift frequently.

Limitation of state-of-the-art approaches (and challenges).
This paper explores the design space of an FPGA-accelerated FaaS
platform. Despite the clear benefits of FPGAs, hard-to-reconcile
differences between FPGAs and serverless computing present a sig-
nificant research gap in FPGA adoption for serverless functions.
We identify four key challenges that are not fully addressed by the
state-of-the-art studies [19, 40].

First, there is a mismatch between the serverless computing model
and the FPGA execution model.Offloading tasks to FPGAs through
native FPGA libraries [5, 109] requires intricate low-level device
management beyond accelerators [94] and complicates serverless ex-
ecution patterns (e.g., function chain), which contrasts with the sim-
ple and easy-to-use serverless computing model. BlastFunction [19],
dedicated toOpenCL applications, inherits these limitations. Second,
FPGA virtualization support is limited.Multi-tenancy and isolation
are vital to sharing resources andminimizing costs in serverless envi-
ronments [8, 89]. However, since FPGA usage offloads code and data
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outside the sandboxed CPU, sharing FPGAs in a multi-tenant envi-
ronment requires support for FPGAvirtualization,which is often lim-
ited. Third, reconfiguration and communication overheads of FPGA
acceleratorsnegate their performancebenefits.The initialization (’cold’
boot) of FPGA accelerators can significantly increase the invocation
latency of serverless functions, as it involves reconfiguring the FPGA
logic, typically measured in seconds [118]. Molecule [40] statically
programs a fixed set of accelerators into FPGAs to avoid frequent
initialization, at the expense of their flexibility and reconfigurability.
Moreover, the lack of Inter-Process Communication (IPC) primitives
for FPGA accelerators becomes a serious performance bottleneck for
the serverless model, where typical functions are chained [78, 102]
to build realistic applications. Fourth, no orchestration support for
FPGA accelerators. FaaS platforms use efficient and battle-tested
orchestrators to schedule tasks across distributed machines while
maximizing resource utilization [15, 16]. However, reusing these
orchestratorswith FPGA resources is not ideal due to the latter’s lack
of preemption and migration capabilities without hardware support
in FPGAs. As such, no cloud orchestrator exists for FPGAs.

Key insights and contributions. To overcome these four chal-
lenges, we present F3 (FPGA-accelerated FaaS Framework), the first
end-to-end serverless computing framework that supports FPGA
acceleration in a convenient and isolated fashion with low latency
and high throughput. First, the F3 APIs abstract the complexities of
device management and allow CPU functions to interact with FPGA
resources transparently. Second, the F3 unikernels and hypervisors
let CPU functions run in an isolated, secure, lightweight sandbox to
share virtualized FPGAs amongmulti-tenant workloads. Third, the
F3 Shell and vFPGAmanager achieve both low invocation/commu-
nication latencies and flexible accelerator deployment by leveraging
partial reconfigurationandhardware-assisteddata transfers.Fourth,
the F3 orchestrator deploys functions across distributed nodes in an
FPGA locality-aware fashion, minimizing invocation latencies while
maximizing resource utilization. This cohesive architecture bridges
the gap between FPGAs and serverless, enabling their isolated, ef-
ficient, and practical use in serverless computing.

Experimentalmethodology and artifact availability.We imple-
ment an open-source prototype of F3 following Container Runtime
Interface (CRI) [34]andOpenContainer Initiative (OCI) [36] industry
standards. Theprototype consists ofKubernetes [16],OpenFaaS [79],
containerd [46], and kata-urunc [77] upon four-node x86 server clus-
ters with three AMD FPGA cards. We leverage IncludeOS [24] and
Solo5 [121] to implement our F3 unikernel and hypervisor. We im-
plement the vFPGAmanager that extends the Coyote Shell [67] for
low invocation latencies and function chaining. F3 is available as an
open-source project [114].

We evaluate F3’s effectiveness across three dimensions: perfor-
mance for real-world applications, latency analysis with extensive
micro benchmarking, and scalability analysiswithAzure production
traces. First, F3 achieves average speedups of 28.6 × (up to 150.3 ×)
over a CPU-only baseline across a broad range of real-world applica-
tions. Next, our micro-benchmarking analysis highlights that F3 has
comparable cold-start latency to standard containers (11.6% increases)
and achieves 1.4 × to 1.7 × speedups for function chaining against
the OpenFaaS baselines. Finally, using Azure production traces, we
demonstrate that F3 can scale to a cluster of 200 machines while
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Figure 1: Bare-metal computation times for various work-
loads executed on FPGA and CPU. The result highlights
FPGA’s significant performance benefits for compute-
intensive tasks. Experimental setups are detailed in § 5.

lowering the end-to-end average latency of function invocations by 3×
on production traces.

Limitations of the proposed approach.While F3 aims to address
key challenges in FPGA-accelerated serverless computing, its limita-
tions revolve around the effectiveness of its abstractions for all possi-
ble serverlessworkloads.As theevaluationshows,FPGA-basedaccel-
erationmight not be suitable for all workloads.We also note that our
evaluation does not compare F3with prior studies due to either their
unavailable codebase [19] or dedicated hardware requirements [40],
while this paper qualitatively differentiates our work from them.

2 Background andMotivation
2.1 Serverless Computing andHardware

Acceleration
Serverless computing enables the deployment and management
of applications without the need for traditional server infrastruc-
ture [10, 17, 50, 87, 92]. In this model, developers write small and
stateless units of code known as functions that are executed in an
event-driven manner. More complex functionality is achieved by
combining different functions, allowing for greater agility and faster
time-to-market. As a result, serverless computing provides inherent
scalability, high resource utilization, and elasticity by executing func-
tions on demand and utilizing functions’ stateless design to scale
their execution to handle traffic peaks.

At the same time, the increasing demand for greater computa-
tional power in cloud data centers, along with the rise of machine
learning workloads, exposes traditional CPU-centric architectures’
limitations. With Dennard scaling reaching a plateau [126], general-
purpose CPUs can no longer deliver the required performance. In
response, cloud providers are deploying hardware accelerators such
as GPUs, FPGAs, and ASICs to address the performance require-
ments [9, 31, 96].

Unfortunately, serverless platforms have yet to integrate hard-
ware accelerators, as the two models present significant differences
that are hard to reconcile. The event-driven, auto-scaling, and self-
management characteristics of serverless computing, alongwith the
diversity of serverless workloads, make the integration of hardware
accelerators into serverless environments challenging [40, 93]. Hard-
ware accelerators must offer fast provisioning and de-provisioning
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capabilities to align with the transient nature of serverless applica-
tions. Furthermore, ease of management and seamless integration
with serverless platforms are essential considerations to simplify
development and deployment workflows.

Whilehardwareaccelerators come invarious forms, fromGPUs[7,
49, 54] to ASICs [82, 110, 128], we believe that FPGAs are well-suited
to meet serverless computing requirements. FPGAs are reconfig-
urable, allowing the execution of various serverless applications and
catering to their variability. They can be tailored to specific applica-
tions, making themwell-suited for scenarios where adaptability is
crucial [23, 27, 28, 115]. Finally, the potential performance benefits
of FPGA over CPU are significant, as demonstrated in Figure 1.

2.2 Cloud FPGAArchitecture
This paper targets standard FPGA-equipped cloud infrastructures,
where FPGAs serve as standalone PCIe devices installed in CPU
servers [122, 124].Aportionof theirFPGAfabric staticallyconfigures
a Shell, a set of essential hardware modules such as PCIe DMAs for
CPU-FPGA communications [123] andMMUs for memory virtual-
ization [67, 70]. The remaining part is called a dynamic region, where
users can instantiate (reconfigure) their custom logic as accelerators.

We adopt standard FPGA programming models to design and
develop custom logic on an FPGA. Users write the custom logic code
in HDL [21, 112], HLS [64, 73, 109], or DSLs [18, 30, 65] and compile
it to a bitstream using FPGA development tools such as Vivado [125].
Loading a bitstream to the FPGA reconfigures its dynamic region
and instantiates accelerators.

CPU (host) applications are responsible for FPGA device man-
agement and task invocation through user-space libraries such as
XRT [5] and OpenCL [109]. These libraries offer low-level FPGA
control APIs that allow CPU applications to perform FPGA reconfig-
uration, execution, and data transfers.

2.3 Challenges and Key Ideas
Incorporating FPGA acceleration into the serverless computing
model presents several challenges. To address this, we identify four
core functionalities necessary for successful FPGA adoption. First,
a high-level API is needed to simplify FPGA device management for
developers, maintaining the ease of serverless development. Second,
FPGA isolation and virtualization are crucial to ensuremulti-tenancy
within a single accelerator, as the fine granularity of the server-
less model forces cloud providers to mix multi-tenant functions to
achieve high utilization. Third, it is critical tomitigate the latency
issues associated with FPGA accelerators to prevent potential in-
creases in latency compared to CPUs. Finally, an accelerator-aware
orchestrator is required to coordinate the efficient execution of func-
tions on distributed FPGAs within a production-scale cluster.

Next, we break down individual challenges to achieve these func-
tionalities and present our solutions.
#1: High-level API for FPGA abstraction. Serverless computing
frees developers from dealing with hardware resources [55, 79]. In
contrast, native FPGA libraries [5, 109] only offer low-level APIs that
leave FPGA device management to developers. They force develop-
ers to carefully describe the execution lifecycle of the accelerators:
reconfiguration, data transfers, and task offloading. In addition, these
low-level APIs complicate popular serverless execution patterns,

i.e., function chains [78, 102]. Therefore, we need a high-level API
for serverless functions to invoke FPGA accelerators, which liberates
developers from the burden of managing FPGA devices.

To address this challenge, we design high-level and easy-to-use
FPGA control APIs that fit the serverless computing model. The
APIs abstract the complex FPGA execution flow from cloud users
and let the underlying system components transparently handle the
low-level FPGA device management (§ 3.2).
#2: FPGA virtualization formulti-tenancy. Serverless platforms
deploymulti-tenant functions on the samenodewhile isolating them
tomaximize resourceutilization and reduce running costs [75].Hard-
ware acceleration complicates the isolation as user function code
and data are distributed across different devices. Moreover, FPGAs
lack hardware support for multiplexing and isolation, presenting a
severe challenge to their use in a multi-tenant cloud. Therefore,we
need a new isolation and virtualization mechanism that protects user
code and data distributed across CPUs and FPGAs.

We design a lightweight FPGA virtualization mechanism that iso-
lates CPU functions and FPGA accelerators. A unikernel-based sand-
box isolates CPU functions, while FPGA accelerators aremaintained
by a per-node resource manager that leverages the Shell (§ 3.3).
#3: Invocation latencyandcommunicationoverheadsofFPGA
accelerators. Serverless functions are sensitive to cold start delays
and communication latencies [41, 60, 117]. These challenges are
more significant for FPGA accelerators. First, FPGA reconfiguration,
which can reach seconds [118], exacerbates the start-up latency. Pre-
warming [20, 84, 101, 131] is a well-known approach to eliminate
cold starts, but it is not easily adapted to FPGAs. Molecule [40] com-
bines multiple accelerators into a single bitstream for pre-caching.
However, this approach leads to poor flexibility (only a fixed group
of accelerators can be used at a time) and significant cachemiss laten-
cies. Second, FPGAs can incur high communication overheads for
function chains [39, 78, 102], building a complex workload by a com-
position of functions. While CPU functions leverage the IPCmech-
anism to mitigate the associated communication overheads [102],
FPGA accelerators cannot communicate directly without modifying
the hardware design, forcing them to do extra hops to transfer data
from one to another (e.g., through CPUmemory). Therefore,we need
a mechanism to mitigate function invocation latencies and commu-
nication overheads associated with FPGA hardware management.

We design an overhead-less FPGAmanagement mechanism for
on-demand accelerator invocation, which leverages dynamic partial
reconfiguration to guarantee accelerator isolation while preserving
flexibility. It offers three features to reduce accelerator invocation
and communication latencies (§ 3.4).
#4: Orchestration for distributed FPGAs.Orchestration is piv-
otal for serverless environments as it manages function deployment,
coordination, and scaling [10, 16, 50, 87]. Orchestration for FPGA
applications is far more complicated than CPU-only applications;
FPGAs are prone to race conditions due to their lack of task preemp-
tion support, high reconfiguration overheads, and limited resources.
Unfortunately, to our knowledge, no work exists that orchestrates
and schedules FPGA functions or determines which FPGA-specific
metrics are helpful for deployment decisions. Therefore,we need a
new orchestration mechanism that considers FPGA characteristics and
ensures fairness while maximizing the overall FPGA utilization.



HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA CharalamposMainas et al.

Worker node(s)

Guest VM

Client Leader node

send metrics

vFPGA manager

KVM

Image registry

Metrics collector
Kubernetes
scheduler

API gateway

Kubernetes
API server

OCI runtimeContainer engine
Kubelet

F3 unikernel

F3 hypervisor

deploy functions
pick up node

 invoke function
OCI image

Image packager
unikernel lib

Function
code

create image

scripts

request
request

InvocationDeployment

2

4
3

a
b

1

Configs Bitstream
info

Orchestration layer

FPGA management layer

Application layer

function

Guest VM

F3 unikernel

F3 hypervisor
function

invoke vFPGAcd

...

OrchestratorUser interface

Bitstream
registry FP

G
A

s

Shell
vFPGA 1 vFPGA 2 vFPGA n... ...

Figure 2: High-level overview of the F3 architecture, illustrating the interaction between client, application, orchestration,
and FPGAmanagement layers for function deployment and invocation. Key components are highlighted in green.

We design an FPGA-aware orchestrator to fairly distribute FPGA
functions across worker nodes. Our extended Kubernetes scheduler
measures and collects per-node FPGA usage metrics to enhance
placement decisions (§ 3.5).
Summary. This paper tackles these challenges by building F3, the
first end-to-end FaaS framework that offers all the core functionali-
ties for FPGA adoption into serverless domains.While a few existing
studies [19, 40, 100] partially address them, to our knowledge, F3 is
the first system that brings comprehensive and practical solutions
to all the challenges.

3 Design
3.1 SystemOverview
Figure 2 illustrates a high-level view of the F3 architecture. We
target a Kubernetes-based cluster as an industry-standard server-
less environment, where Kubernetes runs on the leader node as an
orchestrator and manages multiple worker nodes equipped with
PCIe-connected FPGA cards. Clients (users) send requests to de-
ploy/invoke FPGA-accelerated functions to Kubernetes through the
API gateway, e.g., OpenFaaS [79].

F3 system components. We highlight key system components
shown in Figure 2. The image packager resides on the client node and
offers user-space libraries for F3APIs (§ 3.2) and scripts to let users
build serverless functions. It packages the functions as Open Con-
tainer Initiative (OCI) images [35] stored in the image registry. FPGA
bitstreams are maintained in the bitstream registry. On the worker
node, the functions are running within guest sandboxes offered by
the F3unikernel and F3hypervisor (§ 3.3). Theunikernel encapsulates
CPU functions to ensure isolation in a multi-tenant cloud. The hy-
pervisor launches the unikernel and communicates with the vFPGA
manager to handle FPGA-related requests from the guest function.
Each FPGA device configures the F3 Shell (§ 3.4) on their static re-
gion, which splits the FPGA fabric into multiple dynamic regions

(vFPGAs) for concurrent execution and FPGA sharing. The vFPGA
manager maintains vFPGAs and reconfigures/invokes the acceler-
ators upon requests from CPU functions. The orchestrator (§ 3.5),
i.e., Kubernetes, provisions and manages hardware resources in a
cluster while cooperating with worker-node system components.
The extended Kubernetes scheduler plugin performs FPGA-aware
orchestration with FPGA usage metrics obtained from themetrics
collector that tracks FPGA behaviors at the execution.
F3 systemworkflow.The serverless systemworkflow is comprised
of two phases: deployment and invocation. In the deployment phase,
users prepare CPU function code and serverless configuration file
(step 1○). The function code is built with the F3 unikernel library,
making the code deployable on worker nodes. The user can then
deploy the application, sending the request to the API gateway (step
2○). Upon the requests, the Kubernetes scheduler is invoked and
decides on which node the function is to be deployed (step 3○). The
decision is notified to system components on the respective node,
and the OCI runtime spawns the function (step 4○).

In the invocation phase, a user makes an invocation request (e.g.,
HTTP) to an endpoint created by the API gateway (step a○). The
gateway forwards the request to the watchdog running in the F3
unikernel, which invokes the function execution with the relevant
arguments (step b○). The function can also invoke FPGA accelerator
execution by calling F3 APIs (step c○). Upon completion of func-
tion execution, the watchdog returns the results to the API gateway,
which forwards them to the user. Meanwhile, the Metrics collector
periodically measures and calculates the FPGA’s usage statistics and
informs the Kubernetes scheduler (step d○).

3.2 F3API for FPGAAcceleration
We first introduce F3APIs. The F3APIs provide high-level and easy-
to-use abstractions for serverless functions to execute on FPGA
accelerators. The APIs abstract away the complexity of FPGA device
management from users and delegate the responsibility to F3 system
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F3APIs Description
void* alloc_fpga_buffer(size) allocates input/output buffers.
int call_fpga_acc(acc_id, inputs, outputs,
args)

invokes an FPGA accelerator.

int wait_fpga_acc(call_id) waits for a job completion.
Table 1: The definition of F3APIs.

1 void fpga−acc(uint64_t key_high, uint64_t key_low) {
2 void∗ in = alloc_fpga_buffer(INPUT_SIZE);
3 void∗ tmp = alloc_fpga_buffer(INPUT_SIZE);
4 void∗ out = alloc_fpga_buffer(OUTPUT_SIZE);
5

6 int id = call_fpga_acc("gzip", in, out, null);
7 wait_fpga_acc(id); /∗ single ∗/
8

9 call_fpga_acc("gzip", in, tmp, null);
10 id = call_fpga_acc("aes", tmp, out, {key_high, key_low});
11 wait_fpga_acc(id); /∗ chained ∗/
12 }

Listing 1: A code example using F3APIs.

components. They also support modern features of existing FaaS
frameworks, e.g., function chain [105], and make it easy to integrate
F3 functions into existing API gateways such as OpenFaaS [79].
API description. F3APIs are accelerator-agnostic APIs that enable
CPU functions to control any FPGA accelerators. Unlike low-level
FPGA control APIs [5, 109], F3APIs delegate jobs for FPGA initializa-
tion, e.g., acquire a free vFPGA, program a bitstream, and configure
registers to the serverless backend. Moreover, F3 supports chain-
ing multiple invocations of different FPGA accelerators, which is
called an accelerator chain. The accelerator chain allows the output
streams of an accelerator to be directly forwarded to another as in-
put streams. It effectively works for services that consist of multiple
FPGA-accelerated functions; it not only mitigates the complexity
of programming inter-function communications but also reduces
associated performance overheads.

Table 1 shows the F3API definition. F3 offers only three primitive
APIs that are essential for task offloading: memory allocation, accel-
erator invocation, and synchronization. alloc_fpga_buffer() creates
FPGA-accessible data buffers in guest memory space. These buffers
need to be initialized for input and output data of FPGA accelera-
tors before the accelerator invocation. call_fpga_acc() invokes the
execution of the selected FPGA accelerator. The accelerator, input
buffers, and output buffers are specified as acc_id, inputs, and outputs,
respectively. args represents optional parameters configured on the
accelerator’s control registers. Importantly, this API can chain FPGA
accelerators; it builds a directed acyclic graph (DAG) based on data
dependency of accelerator invocations, i.e., whether multiple API
calls specify the same input/output buffer. wait_fpga_acc() lets CPU
functions wait for FPGA accelerator execution, which is specified
by a return value of call_fpga_acc(), i.e., call_id.

WhileF3APIsoffer aunified interface formanagingvarious FPGA
accelerators, some accelerators require unique invocation and syn-
chronization sequences, e.g., specific orders of read/write accesses
to control registers. To abstract these accelerator-specificworkflows,
F3 enables accelerator developers to register two low-level func-
tions: invoke(args) andwait(), which encapsulate accelerator-specific

1 fpga−acc:
2 fpga−resources:
3 alveo−u50/f3−shell:2
4 fpga−accelerators:
5 gzip: "gzip_accelerator:v1.0"
6 aes: "aes_accelerator:v1.0"

Listing 2: An example of the F3 function configuration.

invocation and synchronization logic. They serve as dynamically
loadable libraries for the vFPGA manager. Given these functions,
call_fpga_acc() and wait_fpga_acc() APIs act as their wrappers. The
vFPGA manager dispatches these high-level API calls from guest
functions to the low-level functions for the selected accelerator.
Code example. Listing 1 shows an example function code, fpga-acc,
that uses two accelerators, gzip and aes. It demonstrates two exe-
cution modes: single and chained accelerators. For both modes, the
function needs to prepare input/output buffers before invocation
(L2-4). When the function uses only a single accelerator, it simply
invokes the accelerator (L6) and waits for completion (L7). When
the function wants to chain two or more accelerators, it invokes the
acceleratorswith shared buffers to pipe the output of one accelerator
into the input of the other (L9-10); tmp is shared by two accelerator
invocations in this example.
Function configuration. To deploy F3 serverless functions, the
orchestrator needs to know their hardware requirements (e.g., the
number of FPGAs) so that it properlymanages the underlying FPGAs
on behalf of users. F3 adopts the same approach as other serverless
frameworks [10, 79], configuration files where users describe the
hardware requirements. Listing 2 shows an example of the configura-
tion file for the fpga-acc function (Listing 1). F3 offers two new fields
for the FPGAmanagement. The fpga-resources field (L2-L3) defines
the type and number of vFPGAs. The fpga-accelerators field (L4-L6)
defines accelerator names as labels and corresponding bitstreams.
These labels (gzip, aes) are used as IDs when the function invokes
these accelerators. The function code and configuration file are pack-
aged as an OCI image [35] and uploaded to the image registry as
well as other FaaS frameworks [10, 79, 92].
Bitstream registry. F3 offers the bitstream registry, where cloud
users and developers store the bitstreams of their FPGA accelerators.
The bitstream registry allows third-party IP vendors to register and
publish their accelerators like Vitis Accelerated libraries [13] so that
users do not have to design the hardware logic by themselves. More-
over, it facilitates multiple serverless functions to share the same
accelerators, which prevents frequent FPGA reconfiguration. Users
can select accelerators to be used from the bitstream registry and
describe them in the configuration file. Appropriate bitstreams are
loaded with the function’s image in the deployment phase.

3.3 F3 FPGAVirtualization
We next introduce F3’s FPGA virtualization designed for latency-
sensitive serverless functions. F3 uses unikernels as a guest CPU
sandbox. Unikernels are lightweight VMs that contain only essential
OS components to execute the target application [83]. Their fast boot
times and small memory footprint make them a good candidate for
serverless environments, where scalability and responsiveness are
critical. In order to facilitate an FPGA serverless system on top of
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unikernels, we design the F3 unikernel, F3 hypervisor, and vFPGA
manager. The hypervisor manages the life cycle of unikernels, and
the vFPGAmanager securely handles FPGA acceleration requests
frommultiple guests and manipulates the underlying FPGA device.
The vFPGAmanager also leverages Shells [61, 67, 70] to guarantee
isolation for FPGA accelerators.

F3 unikernel and hypervisor. Figure 3 shows F3’s virtualization
system stack. The F3 unikernel follows an event-driven execution
model for serverless functions, hosting anHTTP server calledwatch-
dog to receive and send serverless requests through the API gateway.
Upon receiving a function invocation request, thewatchdog triggers
the guest functionwritten byusers, passing anynecessary arguments
and data for the function. The acceleration library exposes F3APIs
(§ 3.2) to the guest function for buffer allocation and accelerator
invocation. For buffer allocation, the acceleration library creates
user buffers that are mapped to hypervisor-side host buffers. The
host buffers are accessible from vFPGAs by the DMA controller. For
accelerator invocation, it communicates with the guest driver to
issue hypercalls offered by the F3 hypervisor.

The F3 hypervisor is a unikernel monitor [121], a host process
servingasa thinhypervisor layer forF3unikernels.Thehypervisor is
assigned toeachunikernel and launches thecorrespondingunikernel
during function deployment. For security guarantees, the hypervisor
does not allow guest unikernels to manage the FPGA device directly
but offers hypercalls to forward their requests to the vFPGAmanager.

vFPGAmanager.We design the vFPGAmanager, a per-node cen-
tralizedFPGAresourcemanager that fairly and safelyhandles andex-
ecutes FPGA acceleration requests frommulti-tenant functions. The
vFPGAmanager schedules incoming requests on the node and exe-
cutes them accordingly with the help of the underlying FPGA Shell.
The centralized manager fits the FPGA serverless scenario, where
deployed functions randomly send FPGA acceleration requests in
an event-driven way to use the limited number of FPGA resources.

The scheduler of the vFPGAmanager is responsible for initializ-
ing a vFPGA upon a new request. The bitstream cache is in-memory
storage that keeps bitstreams of accelerators specified by the func-
tion description (§ 3.2). The scheduler can program the selected
bitstream to vFPGAs using the Dynamic Partial Reconfiguration
(DPR) controller offered by the Shell. Importantly, the scheduler does
not reorder requests and follows an FCFS approach, while it aims
to avoid frequently reconfiguring vFPGAs to reduce the start-up
latency by reusing accelerators that are already configured on vFP-
GAs (described in § 3.4). After the accelerator is ready to execute, the
request handler manipulates the dedicated DMA controller offered
by the Shell to invoke the accelerator. The request handler specifies
the addresses of host buffers as input/output of the accelerator, as
they are accessible from the FPGA.

3.4 F3 Shell Management
We introduce the F3’s Shell architecture and FPGA management
that mitigates the invocation and communication latencies of FPGA
accelerators. The Shell management enables three key features: ac-
celerator reuse, parallelization, and accelerator chaining.

Architecture. Figure 4 illustrates the F3 Shell architecture. It fol-
lows the architecture of Coyote [67], but F3 can also adopt other
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Figure 3: Detailed view of the F3 virtualization stack, show-
ing the interactionbetweenguestVMs, thevFPGAmanager,
and FPGAs. The data and control paths include hypercalls,
DMA operations, and FPGA-specific request handling.

Shells offering multiple vFPGAs and memory isolation (e.g., Amor-
phOS [61], FSRF [70]). In F3, the vFPGAmanager is responsible for
manipulating the Shell. The PCIe DMA IP exposes memory-mapped
I/O interfaces to the vFPGAmanager for access to control and status
registers (CSRs) and enables data transfers between host memory
and accelerators on vFPGAs. The DPR controller allows the vFPGA
manager to program a bitstream to any vFPGA. MMUs are assigned
to every vFPGA and manage a virtual memory space for memory
isolation for accelerators. TheMMUs are also responsible for issuing
read/write requests to the DMA controller, which is triggered by the
vFPGAmanager through CSRs.

The F3 Shell leverages partial reconfiguration, which causes a
fabric fragmentation issue [61, 134]. It is supposed to be manage-
able for serverless functions that are small pieces of cloud services.
Assuming they are already partitioned into small tasks, we expect
that FPGA accelerators for serverless functions are small, indepen-
dent computation logic rather than offloading the entire application.
Moreover, FPGA partitioning reduces the invocation latency since
the smaller FPGA area leads to faster reconfiguration [67].

Molecule [40] proposes a different approach to mitigate accel-
erator invocation latencies, caching multiple accelerators within a
single bitstream. However, this approach compromises FPGA flexi-
bility and can lead to underutilization. Cached accelerators cannot be
released until all accelerators programmed on the FPGA are inactive,
potentially causing significant cache miss latencies. Furthermore,
it is impractical to pre-build a bitstream for any combination of
users’ custom accelerators, as even a single-bitstream generation
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takes several hours [104]. Instead, F3 individually prepares single-
accelerator bitstreams for dedicated DPR regions. Once generated,
these bitstreams can be reused across the same type of FPGAs.

Accelerator reuse. Since F3 adopts an on-demand invocation of
FPGA accelerators, FPGA reconfiguration significantly exacerbates
the overall invocation latency. To eliminate the reconfiguration, the
vFPGAmanager enables temporal sharing of the already-configured
accelerator on the vFPGA. In particular, the scheduler keeps track
of bitstreams programmed to vFPGAs and, if an incoming request
targets the existing accelerator, schedules the request to the corre-
spondingvFPGA.Before assigning thenewtask, thevFPGAmanager
flushes the MMU and accelerator states to guarantee data isolation.

Parallelism. F3 assumes CPU functions store input/output data in
the host memory. To allowmultiple accelerators to be executed in
parallel while sustaining the PCIe throughput, F3 adopts channel
interleaving [123], which offers multiple read/write channels for
each vFPGA and processes multiple DMA requests in parallel.

Accelerator chaining. In a typical serverless environment, chained
functions are deployed to the same worker node and communicate
with eachother through IPCmechanisms to avoid expensive commu-
nications over the network [102, 133]. Similarly, for chained FPGA
accelerators in our F3 framework, instead of going the long path of
IPCbetweenCPU function instances, the vFPGAmanager lets the ac-
celerators directly pass input/output datawithin the FPGAdevice. In
particular, the vFPGAmanager prepares one temporal buffer (𝐴𝑚𝑖𝑑

in Fig. 4) and sets the buffer as the output of the leading accelerator
(𝐹𝑢𝑛𝑐 𝐴1) and as the input of the following accelerator (𝐹𝑢𝑛𝑐 𝐴2). As
soon as the first accelerator finishes, the vFPGAmanager invokes
the next accelerator in the chain.

Algorithm 1: The scoring algorithm of our scheduler.
1 schedule(𝑝𝑜𝑑 ,𝑛𝑜𝑑𝑒𝑠, 𝑓 𝑝𝑔𝑎_𝑢𝑠𝑎𝑔𝑒𝑠, 𝑟𝑒𝑐𝑜𝑛𝑓 _𝑡𝑖𝑚𝑒𝑠,𝑏𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠)
2 begin

/* Find the most suitable node by scoring nodes */
3 picked_node←𝑛𝑢𝑙𝑙 ;
4 foreach node in nodes do
5 best_score, curr_score←0,0;
6 curr_score← score(node,

fpga_usages, reconf_times, bs_locations, pod);
7 if curr_score > best_score then
8 best_score← curr_score;
9 picked_node← node;

10 end
11 return picked_node;
12 end
13 score(𝑛𝑜𝑑𝑒, 𝑓 𝑝𝑔𝑎_𝑢𝑠𝑎𝑔𝑒𝑠, 𝑟𝑒𝑐𝑜𝑛𝑓 _𝑡𝑖𝑚𝑒𝑠,𝑏𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑝𝑜𝑑)
14 begin

/* Score the node based on FPGAmetrics */
15 𝑠𝑐𝑜𝑟𝑒𝑢←1− (fpga_usages.index(node) / fpga_usages.size());
16 𝑠𝑐𝑜𝑟𝑒𝑟←1− (reconf_times.index(node) / reconf_times.size());
17 𝑠𝑐𝑜𝑟𝑒𝑙←0;
18 if bs_locations.find(node, pod.bitstream) == true then
19 𝑠𝑐𝑜𝑟𝑒𝑙←1;
20 return (𝑠𝑐𝑜𝑟𝑒𝑢 ×𝑤𝑢 ) + (𝑠𝑐𝑜𝑟𝑒𝑟 ×𝑤𝑟 ) + (𝑠𝑐𝑜𝑟𝑒𝑙 ×𝑤𝑙 ) ;
21 end

3.5 F3Orchestrator
Wedesign an FPGA-aware orchestrator by extending theKubernetes
scheduler plugin [15] and adding a mechanism to monitor FPGA
usage characteristics, i.e., themetric collector. Our orchestrator aims
to achieve two goals: (1) minimizing the function invocation latency
from the customer’s viewpoint while (2) maximizing FPGA utiliza-
tion from the cloud provider’s viewpoint. Importantly, to minimize
the invocation latency, our orchestrator minimizes the reconfigura-
tion overheads by taking the locality of accelerators into account;
if it receives multiple function invocation requests using the same
accelerator, it attempts to deploy them on the same worker node so
that the accelerator gets more chances to be reused without recon-
figuration (§ 3.4).
Kubernetes cluster extension.Due to CRI/OCI compatibility, we
have adapted Kubernetes for our FPGA-aware orchestration with
two simple changes. First, our F3 cluster deploys the metrics col-
lector, a worker-node daemon process that receives FPGA usage
data from the vFPGAmanager and reports it to the scheduler plugin.
The scheduler uses the aggregated metrics to predict the frequency
and duration of FPGA reconfigurations, cold starts, and resource
utilization trends.

Second, the Kubernetes scheduler plugin [15] selects the most
feasible node to place a set of functions (called pod) on by filtering
and scoring all theworker nodes.Wepropose a newplugin extending
the filtering and scoring steps to improve the invocation latency and
FPGA utilization. In the filtering step, the plugin eliminates nodes
that do not meet FPGA-related criteria required by the pod, in ad-
dition to CPU and memory requirements. In the scoring step, the
plugin computes a score for each feasible worker node based on the
reported metrics.
Scoringalgorithm.Algorithm1details the scoring algorithmof our
scheduler plugin. The scheduler picks up a pod to schedule next in an
FCFS manner. It ranks each node in the node list, which contains all
the feasible nodes after the filtering step, based on the score function
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Spec. Leader node Server node

CPU Intel(R) Xeon(R) Gold 5317 Intel(R) Xeon(R) Gold 6238R
12 cores, 3.0GHz 28 cores, 2.2GHz

OS NixOS 23.11, Linux 6.8.10 Ubuntu 20.04, Linux 5.8.0
Memory 256GiB DDR4, 3200MHz
Network QSFP28 (100GbE)
FPGA - 1 × AMDAlveo U50 card

Table 2: Server cluster configuration.

(L.6). We design the score as a weighted average of multiple crite-
ria periodically measured by the metrics collectors. F3 specifically
uses three metrics: FPGA usage time, the time vFPGAs are occupied,
reconfiguration time, the time spent for FPGA reconfiguration, and
bitstream locality, a boolean value representing if the node has at
least one vFPGA where a bitstream specified by the job is already
programmed. The function first computes the scores for each metric
(the best value receiving a score of 1), then weighs each metric’s
score by configurable weights (𝑤𝑢 ,𝑤𝑟 ,𝑤𝑙 ) and computes the average
(L.15-20). The system administrator can adjust each weight to reflect
the desired trade-off between the different metrics. Note that lower
vFPGA occupancy gives a higher score, so idle worker nodes can
likely be chosen to improve FPGA utilization. Finally, the scheduler
picks the node with the highest score to place the application (L.11).

4 Implementation
We implement our F3 prototype using industry-standard server-
less system components: OpenFaaS [79] as the API gateway, Kuber-
netes [16] as theorchestrator, containerd [46] as thecontainer engine,
kata-urunc [77] (kata-containers [3] modified to spawn unikernels)
as the OCI runtime. We use a default registry of containerd [46]
for the image and bitstream registries. We target Alveo U50 FPGA
cards [122] for acceleration.

F3API and F3 unikernel.We implement the F3API and F3 uniker-
nel on top of IncludeOS [24]. There are two key components: the
OpenFaaSwatchdog and the acceleration library. Thewatchdog is an
HTTP server that monitors the health and responsiveness of guest
functions and reports them to OpenFaaS. The acceleration library
implements the F3APIs and performs the respective hypercalls to
the F3 hypervisor. These components are directly linked against
IncludeOS, which provides essential OS functions such as memory
management and a TCP/IP stack.

F3hypervisor.Weimplement theF3hypervisorontopofSolo5[121],
a thin hypervisor layer on top of KVM. Solo5 creates a VM sandbox
for each F3 unikernel andmanages their execution lifecycle. Solo5 of-
fers a customPIO/MMIO-alike interface fornetworkandfile I/Os.We
implement new hypercalls to Solo5 to provide FPGAdevice access to
the F3 unikernel. The F3 hypervisor communicates with the vFPGA
manager over a UNIX socket to handle FPGA-related hypercalls.

F3 Shell and vFPGAmanager.Our prototype adopts Coyote [67]
as theShell forFPGAmanagement, customized forAlveoU50FPGA[122].
Wedisable all the external I/O interfaces (onboardmemory, network)
while enabling multiple vFPGAs and DPR. The number of vFPGAs
is set to two due to the limited capacity of the U50 FPGA.

We implement the vFPGAmanager as a host process interacting
with the Coyote Shell through its kernel driver. Every F3 hypervi-
sor establishes a connection with the vFPGAmanager through the

Application Description Bitstream
ADDMUL [52] Integer arithmetic ~7.5 MB
AES [52] AES-128-ECB encryption ~11.1 MB
SHA3 [91] SHA3-512 hashing algorithm ~8MB
GZIP [12] GZIP compression ~12.4 MB
NW [44] All pairs Needleman-Wunsch ~15.9 MB
HLS4ML [69] Convolutional neural network ~16.5 MB
HLL [52] Hyperloglog cardinality estimation ~14.9 MB
HCD [13] Harris corner detection ~10.2 MB
MD5 [90] MD5 brute force ~8.9 MB
FFT [11] Auto correlation via FFT ~14.8 MB

Table 3: Benchmark and application summary.

UNIX socket and maintains this connection till the end of the F3
unikernel execution. The vFPGAmanager accepts three commands:
a) load_bitstream() for informing the vFPGA manager of the bit-
streamof the guest function, b)map_memory() specifies thememory
location of input/output buffers of the function, and c) exec() places
the acceleration task in the selected vFPGA.
F3orchestrator.Weuse theKubernetesSchedulingFramework [15]
to implement a custom scheduler plugin that enables FPGA-aware
scheduling. The custom plugins are implemented as Go modules
that are compilable into the scheduler binary. The scheduler plugin
attaches to the Filter, PreScore, Score, andNormalizeScore extension
points that the scheduling framework exposes. Themetrics collector
is also implemented as a Gomodule. Metrics updates are synchro-
nized with the Kubernetes scheduler by updating node annotations
using the Kubernetes API.

5 Evaluation
We next comprehensively evaluate F3 through a multifaceted ap-
proach that includes end-to-end benchmarks (§5.1), microbench-
marks (§5.2), and real-world production traces (§5.3).
Testbed.We perform the experiments on our server cluster, which
consists of one leader node and three worker nodes. Table 2 shows
our server configurations. Every worker node is equipped with a
single Alveo U50 card.We configure the Coyote Shell on each FPGA,
which serves two vFPGAs.
Application benchmarks. Because there are no benchmark suites
for FPGA-accelerated serverless functions, we use a representative
subset of real workloads accelerated by state-of-the-art FPGA im-
plementations (Table 3). Our workloads cover a broad range of ap-
plication types: matrix operation (ADDMUL), data compression
(GZIP), data analytics (NW, HLL), machine learning (HLS4ML), and
image processing (HCD, FFT). These classifications are also shown
in CPU-oriented serverless benchmark suites [62, 133].
Azure production traces. For large-scale design exploration, we
leverage thereal-worldproductiontraces fromMicrosoftAzure[138].
While the original traces focus on CPU functions only, we reason-
ably preprocess the traces with the measured invocation latency of
our FPGAworkloads listed in Table 3 on our testbed and simulate
a large-scale FPGA-equipped cluster (detailed in § 5.3.1).

5.1 Overall Performance
We first broadly evaluate how F3 performs when executing appli-
cations representative of typical serverless environments.
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Figure 5: End-to-end function execution timeonF3 andOpenFaaS (CPU). Thenumbers show the speedupbyFPGAacceleration.

Single function performance.We begin with a microbenchmark
comparing the performance of individually executing each function
with FPGA on F3 (F3-FPGA) against a CPU-only baseline where
the function executes inside a container (OpenFaaS-CPU ). For the
CPU baseline, we build a container based on the Alpine container
image [57] and package each function and OpenFaaS’s watchdog
inside the container.We assume the case where both CPU and FPGA
are warmed up and avoid cold starts. We repeat 20 executions for
each application and calculate their mean values.

Figure 5 presents the results. F3 achieves 28.6× average speedups
and outperforms CPU-only execution in 9 out of the 10 applications
(from 1.6× to 150.3×). F3 significantly improves the performance of
compute-intensive tasks (NW,HLS4ML,HLL,MD5)because theycan
benefit from FPGA acceleration. Relative speedups for SHA3, HLL,
and HCD are smaller than the bare-metal computation (Figure 1)
because the end-to-end execution time involves common jobs for
the two settings, such as invocation request handling and data pre-
processing on CPU (e.g., JPEG decoding for HCD). We observe that
only AES is slower on F3 than the CPU baseline (0.18 ×) because the
CPU baseline performance is highly optimized with AES-NI instruc-
tions of Intel processors [58]. In summary, F3 brings the significant
speedup benefits of FPGA acceleration in a serverless situation.

Function invocation latency.Next, we evaluate the end-to-end
latency of function invocations in cold and warm boot scenarios,
comparing them as before to the CPU-only baseline. We use SHA3
to measure the invocation latencies. We minimize the input dataset
size for SHA3 and eliminate its computation time to highlight the
overheads induced by the system components. In the FPGA case, we
additionally measure the latency for cold and warm boots combined
with whether or not there is a need to reconfigure the FPGA.

Table 4 shows the invocation latencies. First, F3 offers compa-
rable cold-boot latencies to the CPU baseline. In the cases of Cold
Boot (CB) and CB with Reconfiguration (CBR), F3 increases 9.3%
and 15.6% of the invocation latency compared to the CPU-only in-
vocation, respectively. The overheads mostly come from F3’s FPGA
initialization steps and reconfiguration. These FPGA-specific over-
heads are reasonable and not dominant in the end-to-end tail latency.
On the other hand, in the case of warm boots, we observe that F3’s
on-demand FPGA reconfiguration affects the tail latency. In aWarm
Boot (WB) scenario, F3 induces even smaller invocation latencies

thanCPU-only execution.Meanwhile, in aWBwithReconfiguration
(WBR) scenario, the reconfiguration overhead is dominant in the
latency.Wenote that theWBR latency is stillmuch less thanCBR, i.e.,
only 7.3% in comparison. We address the reconfiguration overhead
by applying a further optimization, accelerator reuse, to reduce the
number of reconfigurations (§ 5.2). In summary, F3 induces compa-
rable cold-boot and warm-boot latencies against the CPU baseline
if we can suppress the FPGA reconfiguration.

5.2 Microbenchmarks
In this section, we empirically evaluate different aspects of the F3
system stack using a series of microbenchmarks.
Virtualization overhead.We first explore the overhead imposed
by our virtualization mechanism from the application point of view.
We use ADDMUL to measure the time required to complete each
F3API with and without hypervisor virtualization (unikernel and
native). We omit the call of alloc_fpga_buffer() because it does not
induce hypercalls.

Figure 6 compares the time taken by the API calls. Our F3 virtual-
ization introduces 𝜇𝑠-order overheads (10.8 𝜇s, 4.6 𝜇s) compared to
the corresponding native execution. This overhead can be attributed
to the virtualization stack’s additional layers. The primary factor
contributing to the overhead is the hypercall from theF3unikernel to
the hypervisor, which takes around∼5 𝜇𝑠 to complete. Note that the
overhead from these three hypercalls, even combined, is negligible
in practice compared to the application runtime, which averages
167.9 ms (8.6-368.8 ms range) for the representative applications in
Table 3. In summary, F3 induces negligible virtualization overheads
at the function invocation.
Cold boot time.We next break down the overhead of cold boot
in F3. We use ADDMUL and measure the time a client requests a
deployment until the function becomes responsive. We then break
down the overhead into each step: service image fetching, worker-
node environment setups, and VMM/OS setups. We compare F3
with two different container settings: Docker runtime (Docker) and
KataContainers runtime (Kata containers). Note thatKata containers
runtime deploys a container in a Firecracker microVM [6].

Figure 7 presents the cold boot analysis over the three settings.
Overall, F3 induces reasonable cold boot overheads compared to
Docker (11.6% increases),which lackshypervisor isolation, and faster
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Device WB WBR CB CBR
CPU 0.015 s - 1.621 s -
FPGA 0.007 s 0.141 s 1.787 s 1.921 s

Table 4: Invocation latency of SHA3 in
different scenarios:WarmBoot (WB),WB
with Reconfiguration (WBR), Cold Boot
(CB), and CBwith Reconfiguration (CBR).
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boot times than the Kata container (35.8% reduction). In F3, the time
for fetching the image (image_fetch) is reduced by 13.1% compared
to the other runtimes due to the smaller storage footprint of the F3
unikernel.Wealsoobserve that theF3unikernel significantly reduces
the guest OS setup time (OS_setup) by 95.3% compared to Kata con-
tainers that use a standard Linux kernel image. Likewise, F3 reduces
the VMM setup time by 47.8% thanks to its thin hypervisor layer. In
summary,F3offers stronghypervisor-level isolationwith reasonable
cold-boot latencies and is superior to the container-in-VMapproach.

Accelerator reuse.We examine the effectiveness of the accelerator
reuse function for mitigating the invocation latency in a warm-boot
scenario (WBR in Table 4). Tomeasure the reconfiguration overhead,
we execute SHA256 [14] on an FPGAwith 16 MB of random input
data in two scenarios: Reconfig including a forced reconfiguration
ahead of each invocation, and Re-use reusing the bitstream from the
previous invocation.

Figure 8 shows the results, omitting the bitstream file I/O over-
heads. We observe that our accelerator reuse function reduces the
invocation latency by 35.4 ms. We note that the reduction becomes
more significant ifwe include thefile I/Ooverheads,which take up to
several hundredmilliseconds depending onmemory and cache activ-
ities. In summary, F3’s accelerator reuse function effectively works
for millisecond-order invocation latencies of serverless functions.

Parallelization. We investigate F3’s performance of concurrent
function invocations usingmultiple vFPGAson a single FPGAdevice
under a multi-tenant scenario. We target SHA256 and configure the
accelerator with 1, 2, and 4 vFPGAs on a single U50 FPGA. In this
experiment, 30 clients concurrently submit a task to execute SHA256
on 8 MB of random input data.

Figure 9 shows the results. We observe a linear correlation be-
tween speedup and the number of vFPGAs, i.e., approximately 2 ×
and 4 × speedup with two and four vFPGAs, respectively, compared
to one vFPGA. In summary, F3 effectively handles concurrent invo-
cation requests on a single FPGA device with the help of F3’s Shell.

Function chaining.We now evaluate the effectiveness of the ac-
celerator chaining, F3’s I/O abstraction mechanism for function
chaining in FPGAs (§ 3.4). Our experiment executes a chain of two

Entity LUT (%) Register (%) BRAM (%) URAM (%)
U50 FPGA 872,000 (100) 1,743,000 (100) 1,344 (100) 640 (100)
Shell (static) 114,590 (13.1) 179,663 (10.3) 158 (11.8) 0 (0.0)
PCIe DMA 59,034 (6.8) 58,153 (3.3) 80 (6.0) 0 (0.0)
MMU 5,995 (0.7) 9,821 (0.6) 28 (2.1) 0 (0.0)
vFPGA 253,112 (29.0) 507,840 (29.1) 456 (33.9) 176 (27.5)
ADDMUL 2,207 (0.3) 3,849 (0.2) 0 (0.0) 0 (0.0)
AES 43,448 (5.0) 9,777 (0.6) 0 (0.0) 0 (0.0)
SHA3 4,081 (0.5) 5,624 (0.3) 0 (0.0) 0 (0.0)
GZIP 44,134 (5.1) 35,630 (2.0) 42 (3.1) 6 (0.9)
NW 138,661 (15.9) 80,702 (4.6) 79 (5.9) 0 (0.0)
HLS4ML 72,770 (8.3) 31,987 (1.8) 20 (1.5) 0 (0.0)
HLL 16,979 (1.9) 23,781 (1.4) 48 (3.6) 0 (0.0)
HCD 23,820 (2.7) 23,192 (1.3) 33 (2.5) 0 (0.0)
MD5 8,242 (9.5) 8,412 (0.5) 0 (0.0) 0 (0.0)
FFT 15,866 (1.8) 29,273 (1.7) 354 (26.3) 8 (1.3)
Table 5: FPGA resource usage for Shell components and
accelerators of applications (as per Table 3).

functions,GZIP andAES,where afile is first compressedbyGZIPand
then encrypted by AES. The file size is 150 KB before and 70 KB after
compression. We compare our accelerator chaining with two base-
lines: Client-side piping and Server-side piping of OpenFaaS [78].

Figure 10 compares the function-chaining approaches. We ob-
serve thatF3’s accelerator chaining achieves 1.4× and1.7× speedups
against Client-side and Server-side pipings, respectively. This is
because our approach eliminates the network round-trip for the
intermediate result compared to the other mechanisms. In summary,
F3’s communication-less function chains lead to higher throughputs
than the OpenFaaS baselines.

FPGA resource usage. Table 5 reports the resource usage of Shell
components and applications in our setup. We configure the vFPGA
size to approximately 29% of the entire FPGA fabric, which is suffi-
cient to place the largest accelerator (NW) in the region. Because the
reconfiguration time is linearlyproportional to the areaof thevFPGA
region [67], further resource optimization can contribute tominimiz-
ing the reconfiguration overhead. In summary, F3’s Shell and vFPGA
regions are properly configured to fit real-world applications.
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Figure 13: Selective acceleration.

5.3 Azure Production Traces
For large-scale design exploration, we evaluate the impact of FPGAs
in a distributed production system running on Azure Functions [87].

5.3.1 Experimental Methodology .

Traces. We use production traces from Azure [138] that contain

1.9 million anonymized function invocations captured over two
weeks. We further preprocess these traces to scale them up to real-
istic workloads for large-scale deployment, increasing the number
of function invocations and their concurrency. We also enrich the
traces by matching each function invocation to applications in Ta-
ble 3, allowing us to work around the limitations an anonymized
trace imposes. This approach is the closest to obtaining data on re-
source consumption and hardware acceleration from a real-world
production serverless environment without having access to a more
detailed trace or an actual production environment.

Preprocessing.Weuse kernel density estimation (KDE) to generate
extended traces adhering to the original characteristics. This ap-
proach estimates invocation arrival time and duration distributions
from the original trace and subsequently uses these distributions to
create more extensive traces following the same distribution.

After extending the trace, we employ a two-stage mapping pro-
cess to augment it and overcome the limitations of anonymization.
In the first stage, we match functions from the anonymized trace to
real-world counterparts in our testbed. This first stage involves a
comprehensive analysis of all function identifiers and their invoca-
tion arrival and duration patterns, which we correlate to the most
likely application types we have previously assessed. Despite the
inherent ambiguities of this exercise, we strive for the closest ap-
proximation to reality. In the second stage, we augment the matched
trace with parameters from our testbed to create a richer dataset.
This enriched trace facilitates more nuanced simulations, enabling
us to make informed assessments about potential performance im-
provements under varying system conditions.

Simulation.With system parameters for cluster size, FPGA config-
uration, function scheduling, and invocation serving in place, the
simulator maintains the system state for each invocation, replaying
requests as they appear in the traces. The simulator verifies if a de-
ployed function is available for each invocation and picks the most
suitable node otherwise. When the required bitstream is missing,
we log a function cold start and reduce the trace duration by the

expected acceleration inferred from the previous testbed evaluation
(§ 5.2). We simulate the trace until no more invocations are left.

5.3.2 Experimental Results .

Next, we present the experimental results based on the simulation
framework using the Azure production traces.
Scalability.We begin by evaluating how F3 scales with an increas-
ingnumber ofmachines (scale-out).We increase the cluster size from
1 to 200machines with one vFPGA per machine. We simulate the
execution of the above trace using First Come, First Served (FCFS)
scheduling and measure the latency for each function invocation.

Figure 11 shows latency boxplots for the scale-out experiment.
The latency plots tighten as the cluster size increases because more
FPGAs are available to process invocations, reducing queuing delays
and cold starts. We observe improvements in the average latency of
up to 3×when increasing the number of machines from 1 to 200. In
summary, F3’s performance effectively scales up to the number of
machines in the cluster.
Scheduling strategies.Next, we evaluate the impact of the sched-
uling policy on latency. We execute the trace in our simulator using
FCFS and priority-based scheduling for a cluster size of 100with 4 vF-
PGAs per machine. Priority-based scheduling involves designating
25% of all invocations with a higher priority than other invocations,
ensuring that the corresponding functions always have at least one
vFPGA configured, i.e., removing cold starts but not queuing delays.

Figure 12 shows the result of this experiment. The priority-based
policy achieves 0.69× lower invocation latency (7.1 ms) than the
FCFS policy (10.2 ms) on average. Because prioritized invocations
are more likely to reuse pre-configured accelerators, they avoid fre-
quent FPGA reconfiguration and lead to low latencies. Priorities also
significantly improve the99thpercentileof latency (P99), 0.01× lower
than the FCFS policy, at the expense of worsening it for the other
non-prioritized invocations (2.4× higher). Thus, priorities provide
better latency and predictability. In summary, F3 supports different
scheduling policies efficiently.
Selective acceleration. Finally, we consider the impact of accelerat-
ing only a subset of the functions in a workloadwhile the rest run on
CPUs.Weconsiderfive scenarios: 0% (noacceleration), 25%, 50%, 75%,
and 100% (all functions accelerated).We select the subset of functions
to accelerate uniformly at random. In all cases, we execute the trace
with FCFS scheduling on a cluster size of 100 with 4 vFPGAs per ma-
chine. We measure the invocation latency of functions in each case.
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Figure 13 shows the latency boxplots corresponding to each sce-
nario.We observe that 25%, 50%, 75%, and 100% of the acceleration ra-
tios achieve 2.0×, 3.5×, 4.6×, and6.4× latency speedups relative to the
0% case, respectively. These results indicate that FPGA acceleration
significantly benefits the workload by reducing the average latency
substantially. In summary, F3 drastically improves the end-to-end
latency even if the number of FPGA-accelerated functions is limited.

6 Related work

Serverless frameworks. Serverless computing has been the tar-
get of much research in the past few years [4, 8, 20, 22, 25, 41, 48,
53, 59, 60, 66, 76, 80, 84, 88, 95, 98, 101, 103, 106, 108, 116, 127, 129–
132, 136–141]. Major cloud providers offer proprietary serverless
function frameworks [10, 50, 87] that offer limited customizability to
integrate hardware accelerators. Several open-source alternatives,
such as OpenWhisk [45] and OpenLambda [55], provide more flex-
ibility for on-premise deployments. We opt to integrate F3 with
OpenFaaS [79] for simplicity, but our approach can also be imple-
mented into other frameworks by wrapping function invocation
inside lightweight VMs and unikernels.

Functions cold start.A significant challenge in serverless comput-
ing is thecold startproblem.There is awidevarietyof existing studies
tackling the mitigation of cold start by function compression [20],
data caching [101, 131], pre-warming [101], and checkpointing [66].
Due to our focus on FPGAs, F3 takes a different approach to reduce
cold start delays by minimizing the necessary software stack to run
a function and leveraging opportunistic task scheduling to reuse
FPGA slots.

Serverless function virtualization. Lightweight VMs and hy-
pervisors have been studied to improve isolation and performance
in serverless environments. Firecracker [6] is a production-grade,
lightweight hypervisor with a lean device model tailored for server-
less workloads. LightVM [85] focuses on reducing boot time in
Xen [2]. VMSH [111] provides a hypervisor-agnostic solution to
attach services on the fly to a running lightweight VM. They achieve
lightweightness to some extent by eliminating unnecessary func-
tions from standard VMs and hypervisorswithout losing application
compatibility.

On the other hand, our approach is based on unikernels, spe-
cialized single-image binaries that bundle application code with
minimal OS services, significantly improving memory footprint,
performance, and robustness. Despite manifold implementations
in the last decade [1, 24, 63, 68, 83], there are not so many studies
leveraging unikernels for serverless computing [43, 86]. Our focus
on workload acceleration with FPGAs leads us to choose unikernels
over other technologies because of their simplicity, modularity, and
lightweightness.

Accelerators for serverless.With the surge in computation-heavy
and machine-learning workloads, systems leveraging accelerators
are in high demand in the cloud [33, 95, 113]. Systems like Mole-
cule [40], Kernel-as-a-Service [93], BlastFunction [19], Mantle [100],
and 𝜆-NIC [29] strive to support various heterogeneous accelerators,
where multiple OSes and a shim abstract the device heterogeneity
from the serverless runtime. They align with our goal of achieving
multi-tenancy for accelerators,whileF3offers further functionalities

required to adopt FPGAs into today’s serverless system stack, e.g.,
programmability and isolation.

FPGAmulti-tenancy and scheduling.Multi-tenancy support for
FPGA aims to maximize utilization while maintaining isolation be-
tween accelerators based on FPGAOSes and Shells, e.g., Coyote [67],
AmorphOS [61], FSRF [71], Synergy [72], Optimus [81], ViTAL [134],
and HeteroViTAL [135]. F3 could be built upon any of these Shells
that support multiple isolated DPR regions (vFPGAs).

Efficient task scheduling for high FPGA resource utilization on a
distributed cluster is an active area of research [28, 32, 38, 42]. These
approaches offer priority-based task scheduling based on the com-
parative speedup of CPU versus FPGA, reallocating oversubscribed
tasks toavailableCPUs.F3diverges fromthese systemsby leveraging
and adapting Kubernetes and OpenFaaS to achieve similar function-
ality in a serverless computing ecosystem. Moreover, F3 provides
a general mechanism to support various scheduling policies.

7 Conclusion
We have developed F3, the first comprehensive system that allows
FPGAs to be seamlessly incorporated into serverless computing en-
vironments, enabling their efficient and accessible use. Overall, our
paper makes the following contributions:
• High-level FPGA API (§ 3.2):We introduce a high-level,
hardware-agnostic API that simplifies FPGAmanipulation
in serverless environments by abstracting low-level device
management.
• Unikernel-based FPGAvirtualization (§ 3.3):Wepropose
a lightweight and secure isolation mechanism for serverless
functions accelerated with FPGAs by means of a unikernel
architecture.
• FPGAShellmanagement (§ 3.4):We run an FPGA resource
manager that manipulates the Shell and improves invocation
latencies through intelligent bitstream reuse and data transfer
optimizations.
• FPGA-aware orchestration (§ 3.5):We design an FPGA-
aware orchestrator that leverages accelerator locality to re-
duce reconfiguration overhead.

We build F3’s end-to-end system stack based on an OpenFaaS
framework and OCI/CRI standards. We comprehensively evalu-
ate and demonstrate its utility using real-world applications, mi-
crobenchmarks, and Azure production traces.

Artifact availability
The F3 codebase is publicly available at https://github.com/TUM-
DSE/F3.git.
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