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We present the Quantum Gate Virtualization Machine (QVM), an end-to-end generic system for scalable
execution of large quantum circuits with high fidelity on noisy and small quantum processors (QPUs) by
leveraging gate virtualization. QVM exposes a virtual circuit intermediate representation (IR) that extends the
notion of quantum circuits to incorporate gate virtualization. Based on the virtual circuit as our IR, we propose
the QVM compiler—an extensible compiler infrastructure to transpile a virtual circuit through a series of
modular optimization passes to produce a set of optimized circuit fragments. Lastly, these transpiled circuit
fragments are executed on QPUs using our QVM runtime—a scalable and parallel infrastructure to virtualize
and execute circuit fragments on a set of QPUs.

We evaluate QVM on IBM’s 7- and 27-qubit QPUs. Our evaluation shows that our approach allows for the
execution of circuits with up to double the number of qubits compared to the qubit-count of a QPU, while
improving fidelity by 4.7× on average compared to larger QPUs and that we can effectively reduce circuit
depths to only 40% of the original circuit depths.
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1 Introduction
Quantum computers promise to solve otherwise intractable problems in optimization [22], factor-
ization [78], or quantum simulation [36, 66]. However, the reliable operation of quantum processing
units (QPUs) is extremely challenging, as the same properties that could lead to computational
benefits are also the main reason for uncontrollable noise and state-decoherence during a quantum
computation on a QPU[69]. This still severely limits the number of qubits and operations we can
run within the same quantum program.
Gate virtualization (GV) has recently been proposed to scale the size of quantum programs

running with high fidelity on small and noisy QPUs [47]. This technique virtualizes two-qubit
qubit gates by executing a predefined set of single-qubit operations instead, and reconstructs the
result of the original circuit via classical postprocessing. Theoretical work shows that GV allows
quantum circuits to be optimized to scale and improve fidelity in two different dimensions: First,
quantum circuits can be decomposed into multiple smaller circuit fragments to run on small QPUs
[47, 65, 67], and second, circuit depth can be reduced to increase overall fidelity [8, 95].
However, the effectiveness of gate virtualization is severely hampered by the lack of general

and extensible procedures for automatically applying and executing gate virtualization. Previous
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studies have primarily concentrated on utilizing gate virtualization through ad-hoc methods or on
an individual application level [7, 8, 95]. Moreover, the applicability of gate virtualization suffers
greatly from the high computational cost, since virtualizing 𝑘 two-qubit gates comes with a quantum
circuit and classical post-processing overhead of O(6𝑘 ) [47].

To this end, we target the following research question: How can we design a generic and extensible
system that fully utilizes the full potential of GV to scale the size of circuits that can be executed with
high fidelity on current QPUs, despite the computational overhead?

To address this research question, we introduce the QuantumGate VirtualizationMachine (QVM),
a system for scalable and reliable execution of quantum circuits on small and noisy QPUs by fully
leveraging GV. QVM therefore simulates a larger, noise-mitigated QPU, which internally comprises
multiple smaller, noisy QPUs. We make the following key contributions:

• To enable the general and programmable application of GV, and as the basis of our work,
we present the virtual circuit IR (VC-IR). The VC-IR extends the quantum circuit abstrac-
tion, manages virtual gates, decompositions into several smaller circuit fragments, and data
structures to efficiently analyze and apply GV (§ 4.2).

• To enable automatic and efficient GV that optimizes a circuit with as little post-processing
as possible, we introduce the QVM Compiler, an extensible pipeline for converting large
quantum circuits into optimized virtual circuits (§ 4). The compiler enables multiple opti-
mization passes that apply GVs based on the VC-IR. We present three generic optimization
passes for efficient gate virtualization on arbitrary quantum circuits. (1) The circuit cutter
(§ 4.3) decomposes a circuit into several smaller fragments to run on smaller QPUs, (2) the
dependency reducer (§ 4.4) reduces the dependencies within a circuit to reduce error propa-
gation and the number of SWAP gates, and (3) the qubit reuser (§ 4.5) applies a qubit reuse
technique to enable a trade-off between overhead and circuit depth.

• To enable as many GVs as possible to benefit from its opportunities, we present the QVM
Runtime, a scalable system that can run a virtual circuit (VC) on a set of QPUs and classical
nodes (§ 5). The runtime uses the core component of a virtualizer (§ 5.2) that instantiates
fragments of the VC and computes the result of the VC using highly parallel post-processing.
The quantum circuits are executed scalably on QPUs using QVM’s QPU manager (§ 5.3).

By fully incorporating GV, we establish a hybrid approach to solving complex problems that
neither quantum nor classical computers can tackle alone. This enables the execution of larger
quantum circuits and broadens the practical applications of quantum computation.

We implement QVM in Python, building on Qiskit [70], maintaining full hardware agnosticism.
For our compiler, in addition to heuristic algorithms, we implement optimal passes using Answer
Set Programming following our optimization models [24].

We evaluate QVM on IBM’s 7- and 27-qubit QPUs and simulators using various circuits used in
popular quantum algorithms [40, 71, 88]. Our analysis on real QPUs shows that we can execute
circuits with up to 2× the qubit count of the available QPUs while improving fidelity by an average
of 4.7× and up to 33.6× (§ 6.1). Our intra-circuit dependency reduction techniques reduce the depth
of transpiled circuits on average to 64% of the original circuit and increase fidelity by an average of
1.4× and up to 5.2× (§ 6.2). Our dependency reducer also enables the reuse of more qubits to reduce
the width of circuits with less virtualization overhead (§ 6.3). Our QVM runtime scales efficiently
and enables the execution of large virtual circuits that surpass current hardware limitations by
several orders of magnitude with low memory requirements (§ 6.4-6.5).
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2 Background and Motivation
2.1 Quantum Computations
We define quantum computation following the computational model introduced by Peng et al. [65].
A quantum computation consists of a quantum circuit acting on𝑚 qubits, initialized in the com-
putational state |0⟩⊗𝑚 , and measuring the expectation value of an observable 𝑂 , denoted as ⟨𝑂⟩
(Fig. 1, (a)). Our work focuses on computing the probabilities of measurement outcomes for a given
quantum circuit, which corresponds to evaluating ⟨𝑃𝑥 ⟩, the expectation value of the projection
operator 𝑃𝑥 = |𝑥⟩ ⟨𝑥 | that projects onto the measurement outcome 𝑥 , represented as a bitstring. In
practice, this is achieved by sampling the a given circuit 𝑛 times and estimating ⟨𝑃𝑥 ⟩ as ⟨𝑃𝑥 ⟩ ≈ 𝑛𝑥

𝑛
,

where 𝑛𝑥 denotes the number of times the outcome 𝑥 is observed.

2.2 Impact of Circuit Properties in the NISQ Era
NISQ QPUs face challenges such as significant noise, limited qubit connectivity, and decoherence
within microseconds [2, 33]. Additionally, imperfections in quantum gates and measurement
operations introduce computational errors during program execution. For instance, two-qubit
operations on superconducting QPUs have an error rate in the orders of 0.1% to 1%, varying
between different hardware-vendors and implementation of qubits [2, 33]. For other QPU-types,
such as neutral-atoms or ion-traps, two-qubit gate errors are in a similar range [34, 38].
Further, limited qubit connectivity necessitates non-local SWAP operations, each introducing

three more CNOT operations [41]. Finally, qubit dependencies [31] amplify noise-propagation
between operations and qubits [28], and restrict circuit placement on a QPU, leading to more SWAP
operations. Systems that optimize circuits by reducing their depth, number of CNOT operations,
and qubit dependencies, are essential for practical quantum computing.

2.3 Foundations of Gate Virtualization
Gate virtualization (GV) allows us to decompose two-qubit gates into a combination of single-qubit
operations [47]. GV can be realized through the technique of Quasiprobability Decomposition.
Quasiprobability Decomposition (QPD). Quasiprobability Decomposition (QPD) is a powerful
technique for implementing otherwise infeasible quantum operations on a QPU [47]. The key
idea is to represent a desired quantum channel F , which acts on a quantum state 𝜌 and cannot
be directly realized, as a quasi-probabilistic mixture of implementable channels E𝑖 on a quantum
computer:

F (𝜌) =
∑︁
𝑖

𝑐𝑖E𝑖 (𝜌),

where 𝑐𝑖 are real-numbered coefficients. When computing the expectation value of an observable
𝑂 , given by ⟨𝑂⟩ = Tr [𝑂F (𝜌)], we can express it as: ⟨𝑂⟩ = Tr [𝑂F (𝜌)] =

∑
𝑖 𝑐𝑖Tr [𝑂E𝑖 (𝜌)] =∑

𝑖 𝑐𝑖 ⟨𝑂⟩𝑖 , where we define ⟨𝑂⟩𝑖 as the expectation value of the observable 𝑂 for the 𝑖th channel.
In the context of GV, we apply QPD to a unitary channelU(𝜌) = 𝑈𝜌𝑈 †, where𝑈 represents a two-

qubit gate. Thus, to virtualize a two-qubit gate𝑈 , we express it as a mixture of single-qubit channels,
which, on a quantum computer, consists of single-qubit gates and projective measurements. Such
decompositions have been demonstrated for widely used two-qubit gates, such as the 𝐶𝑍 and 𝑅𝑍𝑍
gate families, each requiring a decomposition into a set of six different gates [47]. Notably, this
approach generalizes to any two-qubit unitary 𝑈 by finding a decomposition into appropriate
channels E𝑖 that can be implemented on a QPU [48, 76, 97]. This makes the circuit-level abstraction
for QPD broadly hardware-independent and applicable to any circuit.
Gate virtualization. Based on the established theory on QPD, we show GV schematically in
Fig. 1 (b). Instead of executing the original circuit’s two-qubit gate, we can use QPD to instead
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(a) quantum circuit
(quantum computation)

(b) gate virtualization

Fig. 1. Computational model and gate virtualization (§ 2.3). (a) A quantum computation to estimate the
expectation value of an observable 𝑂 . (b) Virtualizing a two-qubit gate by computing a weighted sum over
circuit instances with single-qubit gates inserted (𝑂 = 𝑂1 ⊗ 𝑂2)

calculate a weighted sum of six circuit instances to estimate ⟨𝑂⟩. In each circuit instance 𝑖 , instead
of the original two-qubit gate, we insert 𝐴𝑖 and 𝐵𝑖 , which are either one-qubit unitary gates or
projective measurements. This allows us to decompose each instance 𝑖 into two smaller, completely
independent sub-circuits, which can be sampled independently. We reconstruct the result with

⟨𝑂⟩ =
6∑︁

𝑖=1
𝑐𝑖 ⟨𝑂⟩𝑖 =

6∑︁
𝑖=1

𝑐𝑖 ⟨𝑂1⟩𝑖 ⟨𝑂2⟩𝑖 , (1)

where ⟨𝑂⟩𝑖 is the result of each instance 𝑖 and𝑂 = 𝑂1 ⊗𝑂2. The property𝑂 = 𝑂1 ⊗𝑂2 must hold to
ensure that instances are decomposable into individual subcircuits. However, this is not a limitation,
as every observable can be expressed as a linear combination of decomposable observables [55].
Furthermore, projection operators, which are the focus of this work, are also decomposable.
Virtualizing multiple gates. We now generalize GV to be applied on 𝑘 gates in a circuit. We can
think of adding a GV of another gate in a circuit as performing an additional GV for each instance
of the original virtual gate.
To formalize the QPD of multiple gates in a circuit, let 𝐺𝑣 be the set of all virtual gates in a

quantum circuit. We then define a coefficient vector for each virtual gate 𝑔 ∈ 𝐺𝑣 as c𝑔 = (𝑐1, ..., 𝑐6).
We define the global coefficient vector as C =

⊗
𝑔∈𝐺𝑣

c𝑔, i.e., the tensor product of all individual
coefficient vectors 𝑐𝑔 . Therefore, C is a vector with |C| = 6𝑘 entries. To reconstruct the final results,
we calculate

⟨𝑂⟩ =
∑︁
𝑐𝑖 ∈C

𝑐𝑖

𝑓∏
𝑗=1

⟨𝑂 𝑗 ⟩𝑖 , (2)

which is the generalization of Eq. (1). Here 𝑓 is the number of subcircuits, and ⟨𝑂 𝑗 ⟩𝑖 is the result
of the 𝑗th subcircuit in the 𝑖th global instance. We must, therefore, calculate a sum over |C| = 6𝑘
elements. Since in general |C| ≫ 𝑓 > |𝐺𝑣 |, we need O(6𝑘 ) operations to calculate Eq. (2).
GV thus causes an exponential post-processing overhead of O(6𝑘 ) [47]. This severely limits

the number of gates that can be virtualized within a circuit, meaning that we need to find a good
compromise between the additional runtime and the benefits of GV, as described in the next section.

2.4 Motivation: Opportunities of Gate Virtualization
State-of-the-art circuit transpilers mainly focus on minimizing the circuit’s post-transpilation depth
and number of CNOTs. GV can be used effectively to reduce the width and qubit dependencies in a
circuit, leading to improved execution fidelity for larger circuits on small QPUs, mostly at the cost of
computational overheads, as shown in previous ad-hoc and theoretical work [47, 65, 75, 95]. In total,
GV gives us opportunities in the two dimensions: In total, GV provides opportunities in two key
dimensions: (1) reducing qubit connectivity (by cutting circuits) and (2) reducing qubit dependency.
Here, we define two qubits as connected if they belong to the same (sub-)set of connected qubits
(cf. Fig. 2 (b)). A qubit 𝑞 𝑗 is defined as dependent on another qubit 𝑞𝑖 if an operation on 𝑞 𝑗 influences
an operation on 𝑞𝑖 [35] (cf. Fig. 2 (c)).
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(a) quantum circuit (c) operation graph(b) qubit graph

Fig. 2. Quantum circuit dependency structures (§ 3.1). (a) A quantum circuit, (b) the corresponding qubit
graph 𝐺𝑞 , modeling qubit connectivity, and (c) the operation graph 𝐺op, modeling qubit dependencies.

Cutting quantum circuits. By virtualizing two-qubit gates, a circuit can be divided into smaller
subcircuits, each with a lower number of qubits which can be run independently on small and
noisy QPUs [47, 65], effectively reducing the qubit connectivity of the circuit. Circuits with lower
widths exhibit less qubit mapping and routing constraints, therefore less post-transpilation CNOT
operations and lower depth [53]. Moreover, as recent work shows, the wire-cutting technique
[65, 83] can also be modeled using gate virtualization [14]. Therefore, a system that is able to
virtualize gates is a complete solution for circuit cutting and knitting.
Reducing qubit dependencies. Gate virtualization can be used to virtualize gates that cause
qubit dependencies. Virtualizing them and therefore reducing qubit dependencies in a circuit has
three-fold advantages: Firstly, by reducing the propagation of errors through gates and qubits,
fidelity can be improved. Secondly, reducing intra-circuit dependencies facilitates optimized qubit
mapping and routing on QPUs during the transpilation process, which leads to lower depth and
number of CNOTs. Lastly, fewer qubit dependencies enable the application of qubit-reuse [31, 35],
which could enable a computationally efficient way to reduce circuit width.

To summarize, GV is a promising technique for improving the execution accuracy and scaling of
quantum circuits, as shown in small ad-hoc examples in previous work. However, to fully exploit
the benefits of GV on arbitrary circuits despite the exponential post-processing overhead, we need
an automatic and efficient application as well as a scalable execution of GV.

3 Overview
We aim to design a system that can scale the sizes of circuits and practically execute them on
QPUs with high fidelity. To realize this goal, gate virtualization (GV) is a promising technique
that decomposes circuits into smaller circuit fragments or reduces the intra-dependencies in the
circuit. However, dealing with the programming and exponential computational complexity of GV
is challenging. We first describe the problem statement (§ 3.1), and next discuss these challenges
and present our key ideas for addressing them (§ 3.2).

3.1 Problem Statement
We now formally describe the problems that arise from applying gate virtualization efficiently to
(1) cut circuits into smaller subcircuits and (2) reduce dependencies between operations or qubits.
The circuit cutting problem. To define the problem of optimal gate virtualization, we use the
qubit graph 𝐺𝑞 , which expresses the connection of qubits via two-qubit gates in a given circuit.
The qubit graph𝐺𝑞 = (𝑉 , 𝐸,𝑤) is defined with the vertices𝑉 = {𝑞0, 𝑞1, . . . } representing the qubits
of the circuit, and the edges (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸 describe the connection between two qubits, which is the
case when two a two-qubit gate exists between 𝑞𝑖 and 𝑞 𝑗 . Each edge is weighted via𝑤 : 𝐸 → N,
where𝑤 (𝑞,𝑞 𝑗 ) indicates the number of two-qubit operations between the two qubits. We show an
example of a qubit graph in Figure 2 (b).
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Cutting a circuit into multiple subcircuits now corresponds to the following problem defined on
the qubit graph: We need to partition 𝐺𝑞 into 𝑘 subgraphs 𝐺𝑙

𝑞 = (𝑉𝑙 , 𝐸𝑙 ,𝑤) with 𝑉𝑙 ⊆ 𝑉 and 𝐸𝑙 ⊆ 𝐸,
where the number of vertices/ qubits is defined as |𝑉𝑙 |. The cut edges between the subgraphs are
then 𝐸cut = {(𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸 | 𝑞𝑖 ∈ 𝑉𝑎, 𝑞 𝑗 ∈ 𝑉𝑏, 𝑎 ≠ 𝑏}. The cut-weight, corresponding to the number of
virtualized gates in the given graph-partition setting, corresponds to 𝑛cut =

∑
(𝑞𝑖 ,𝑞 𝑗 ) ∈𝐸cut 𝑤 (𝑞𝑖 , 𝑞 𝑗 ).

To obtain an optimal cut, we need to solve the following optimization problem:

Minimize
∑︁

(𝑞𝑖 ,𝑞 𝑗 ) ∈𝐸cut

𝑤 (𝑞𝑖 , 𝑞 𝑗 ) + 𝛼 · 1
𝑘

𝑘∑︁
𝑖=1

|𝑉𝑖 |

subject to |𝑉𝑖 | ≤ 𝑠, ∀𝑖 = 1, 2, . . . , 𝑘,
𝑘⋃
𝑖=1

𝑉𝑖 = 𝑉 , 𝑉𝑖 ∩𝑉𝑗 = ∅, ∀𝑖 ≠ 𝑗

(3)

Here, 𝑠 is a constraint of the maximal number of vertices a subgraph can have, which corresponds
to the maximal number of qubits a subcircuit is allowed to have, e.g., constraint by the maximum
size of the available QPUs. We minimize the total number of gate virtualizations by the first term in
the optimization while also minimizing the average size of the subcircuits to steer the optimization
into the direction of minimizing the subcircuit sizes to generate less noise. The user can set the
weighing factor 𝛼 to prioritize minimizing weight cuts or the subcircuit sizes. We show an example
of a operation graph in Figure 2 (c).
The dependency reduction problem. To define the dependency reduction problem, we use the
operation graph 𝐺op. The operation graph 𝐺op = (𝑉 , 𝐸, 𝜙) is directed acyclic graph (DAG), where
the vertices 𝑉 = {𝑔0, 𝑔1, . . . } are the operations of the circuit, and an edge (𝑔𝑖 , 𝑔 𝑗 ) ∈ 𝐸 exists if the
operation 𝑔 𝑗 directly follows 𝑔𝑖 on a qubit in the circuit. Each vertex has assigned a set of qubits via
𝜙 : 𝑉 → P({𝑞0, 𝑞1, . . . }) that the respective operation acts on.

Now, we define a operation dependency 𝑔𝑖 ↦→ 𝑔 𝑗 when there exists a path from 𝑔 𝑗 to 𝑔𝑖
in 𝐺op. A qubit dependency 𝑞𝑖 ↦→ 𝑞 𝑗 exists, when there is a gate-dependency 𝑔𝑘 ↦→ 𝑔𝑙 , and
𝑞𝑖 ∈ 𝜙 (𝑔𝑘 ) ∧𝑞 𝑗 ∈ 𝜙 (𝑔𝑙 ). Let further𝐷 (𝐺op) = {(𝑞𝑖 , 𝑞 𝑗 ) |𝑞𝑖 ↦→ 𝑞 𝑗 } be the set of all qubit dependencies
in 𝐺op.
Our goal is now to minimize the number of qubit dependencies by virtualizing a set of gates

𝑉virt ⊆ 𝑉 . For this, let 𝐺 ′
op = (𝑉 ′,𝐺 ′, 𝜙) the DAG when virtualizing the gates 𝑔𝑖 ∈ 𝑉virt, with

𝑉 ′ = 𝑉 \𝑉virt. Let 𝐺 ′
op = 𝐺op [𝑉virt] the graph with the gates 𝑔𝑖 ∈ 𝑉virt virtualized. We now want to

optimize the following:
min

𝑉virt⊆𝑉

��𝐷 (𝐺op [𝑉virt])
�� + |𝑉virt |

subject to |𝑉virt | ≤ 𝑏
(4)

where 𝑏 is a given threshold of a maximum number of gates to virtualize to control the maximum
overhead from gate virtualization. The second term of the minimization statement ensures that
for multiple solutions that minimize the qubit dependencies, we find the one that uses the least
amount of gate virtualizations.

3.2 Design Challenges and Key Ideas
Challenge #1: Programmability and generality. The promising technique of GV is a new and
rather complex concept. It is not trivial how to virtualize two-qubit gates using single-qubit gates
or how to keep track of the created circuit fragments. Therefore, we must develop general abstrac-
tions that implement the new virtualization techniques and allow simple, automatic application
to quantum circuits while allowing straightforward integration into existing transpilation and
optimization infrastructures.
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Virtualizer
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Dependency
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Qubit
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Optimizervirtual circuit IR 
(VC-IR)

distributed virtualization code

Fig. 3. Overview of the QVM framework (§ 3.3). The Quantum Gate Virtualization Machine (QVM) consists
of two main components: QVM Compiler and QVM Runtime.

Approach: Virtual circuit IR (VC-IR) as an intermediate representation:We introduce the
virtual circuit IR (VC-IR) to enable a unified optimization and execution process of large circuits using
gate virtualization. The VC-IR is an intermediate step between any high-level circuit representation
and smaller optimized circuit fragments.
Challenge #2: Fidelity. The noisy circuit executions on QPUs hinder the practicality of current
quantum algorithms. Every operation applied on a qubit incurs noise to the final result, which prop-
agates and amplifies throughout the circuit. To ensure higher fidelity in quantum computations, it is
essential to employ procedures that optimize the circuit’s structure using the promising technique
of gate virtualization. This involves decomposing the circuit into smaller fragments, reducing the
circuit’s depth, and minimizing the number of non-local operations or qubit dependencies while
minimizing the overhead of virtualization.
Approach: A compiler for optimal gate virtualization:We introduce the QVM Compiler,

a modular architecture designed to compile circuits utilizing gate virtualization. The compiler
converts a quantum circuit into a VC, applies a customizable series of optimization passes on the
VC to take advantage of gate virtualization opportunities, and prepares the VC for execution on a
set of QPUs.
Challenge #3: Scalability. Gate virtualization incurs an exponential overhead of O(6𝑘 ) for 𝑘
virtual gates, both in quantum computation and in classical postprocessing (§ 2.3). This overhead
appears since we need to execute the fragments in O(6𝑘 ) instantiations, and then we need to
post-process all instantiation results to compute the final result. To maximize the possible gate
virtualizations, it is crucial to implement highly parallel computation on multiple QPUs and classical
processors.
Approach: A parallel scalable runtime: We present QVM Runtime, a scalable system for

executing virtual circuits. The runtime efficiently instantiates the high amount of fragments,
distributes them between available QPUs for parallel quantum processing, and uses a highly
scalable parallel process to post-process the fragment results.
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Dependency
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Code
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virtual
circuit
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available QPU-architectures

circuit-
fragment

Circuit Virtualizer

max. QPU-size
virtualization-budget

Qubit
Reuser

fragment transpilation
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Fig. 4. Overview of the QVM Compiler (§ 4). The QVM Compiler consists of three stages: the Transformer
(virtual circuit generation), Optimizer (a modular compiler optimization workflow), and Code Generator
(transpilation for target QPUs).

3.3 The QVM Framework
Based on the aforementioned key ideas, we propose the design of our Quantum Gate Virtualization
Machine (QVM) framework, an end-to-end system that exploits the full potential of gate virtu-
alization to achieve scalable execution of large circuit with high fidelity (see Fig. 3). The QVM
system builds on the abstraction of a virtual circuit to utilize gate virtualization. It consists of two
main components: the QVM Compiler (§ 4) and the QVM Runtime (§ 5). As QVM operates at the
circuit-level abstraction, it is entirely hardware-independent and compatible with any QPU type.
QVM Virtual circuit IR (VC-IR). The virtual circuit (VC) abstraction extends the traditional
quantum circuit abstraction (§ 4.2). For this, it incorporates the abstraction of virtual gates and
views the circuit as a collection of circuit fragments, where each fragment is a circuit acting on a
subset of qubits of the original circuit.
QVM compiler. The QVM compiler (Fig. 3, top) is responsible for compiling a quantum circuit
efficiently to a set of smaller circuit fragments by using gate virtualization. The compiler operates
in three stages: (1) the frontend converts the circuit into the VC-IR, (2) the virtual circuit optimizer
applies gate virtualization to reduce circuit depth, width, and/or intra-circuit dependencies, and (3)
the code generator prepares the circuit fragments for execution on a set of QPUs. For the virtual
circuit optimizer, we describe the implementation of three optimization passes of the circuit cutter,
the dependency reducer, and the qubit reuser, which are designed to optimize arbitrary virtual
circuits. Additionally, users can easily plug in their own optimization passes, which modify a virtual
circuit, e.g., to efficiently optimize specific circuits of a known structure.
QVM runtime. The QVM runtime (Fig. 3, bottom) is the system responsible for the scalable
execution of virtual circuits. The runtime consists of two components: the virtualizer and the
scheduler. The virtualizer is responsible for implementing the gate virtualizations according to
Fig. 1, using fragment instantiation and parallel post-processing. The QPU manager is responsible
for the parallel execution of the fragments on a set of QPUs.

4 The QVM Compiler
We now describe the design and implementation of our QVM compiler. The QVM compiler is
an extensible pipeline for the efficient virtualization of gates and to prepare a large circuit for
executing a set of small QPUs.

4.1 Workflow of the QVM Compiler
Fig. 4 shows the workflow of the QVM compiler. First, the frontend of our compiler takes a (large)
quantum circuit and converts the circuit into the virtual circuit IR (VC-IR) (Fig. 5).
Then, the VC-IR is optimized using the optimizer. Each compiler optimization pass receives

two inputs: the maximum fragment size 𝑠 , which specifies the maximum width each fragment must
have, and a virtualization budget 𝑏, which constrains the number of allowed gate virtualizations
to limit the maximum virtualization overhead. Typically, we choose 𝑠 as the size of the largest
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virtual circuit (VC)

virtual gate

operation graph qubit graph virtual circuit (VC)

Fig. 5. Virtual Circuit IR (VC-IR) (§ 4.2). A virtual circuit (VC) extends a quantum circuit by incorporating
virtual gates and managing the qubits in sets of fragments. The VC-IR manages the operation graph 𝐺𝑜𝑝 and
the qubit graph 𝐺𝑞 for efficient analysis and manipulation with the VC-IR API to apply GV.

available QPU to ensure every fragment is executable by at least one QPU. For our optimizer, we
design a pipeline of the following three generic optimization passes:
#1: Circuit cutter (CC): First, the circuit cutter (CC) pass (§ 4.3) aims to decompose the VC into
fragments smaller than 𝑠 , using 𝑣 ≤ 𝑏 virtual gates, and reduces the budget to 𝑏 = 𝑏 − 𝑣 . If CC fails
to decompose the circuit within the given budget, no gate is virtualized.
#2: Dependency reducer (DR): In the case where the budget 𝑏 is not yet exhausted by the circuit
cutter pass, the dependency reducer (DR) (§ 4.4) applies at most the remaining virtualization budget
of 𝑏 gate virtualizations to reduce the dependencies between qubits and operations within the VC
to reduce noise propagation and depth.
#3: Qubit reuser (QR): Lastly, the qubit reuser (§ 4.5) reuses qubits within individual fragments to
further reduce circuit width if the CC fails to reduce the fragment sizes sufficiently. If the qubit
reuser fails to reduce the width of any fragment to 𝑠 , the optimization pipeline fails.

After the optimization phase, the code generator (CG) acts as the backend of our compiler (§4.6)
by extracting the fragments as parameterized circuits, optimizing the circuits and generating the
inputs for the instantiation of each fragment.

Next, we describe the QVM compiler stages in detail.

4.2 Virtual Circuit IR and Frontend
To enable easy integration and a simple workflow for gate virtualization during compilation and
runtime, QVM provides the virtual circuit IR (VC-IR) (Fig. 5). In total, the VC-IR provides three
main data structures: (1) A virtual circuit (VC), which can contain virtual gates and consists of
several fragments, (2) an operation graph 𝐺𝑜𝑝 and (3) a qubit graph 𝐺𝑞 , as described below:
Virtual circuit and virtual gates. A VC extends the traditional abstraction of a quantum circuit
by additionally incorporating the functionality of consisting of a set of fragments and allowing
virtual gates to be part of its instructions.

A fragment describes subcircuit consisting of a subset of the operations of the original circuit that
operate on a subset of qubits that are not connected to other qubits in the VC via a real two-qubit
gate. We implement fragments by using a separate qubit register for each fragment.
A virtual gate expresses the notion of the virtualization of a two-qubit quantum gate (§ 2.3).

A virtual gate is a two-qubit gate that does not require a real connection between its two qubits.
Therefore, a conventional transpiler or circuit optimizer would treat a virtual gate as two one-qubit
gates. Hence, a virtual gate has no influence on, e.g., the assignment and routing of qubits. A virtual
gate can be split into two one-qubit gates, whose instantiations are inserted during execution (§ 5.2).
Operation graph. The operation graph𝐺𝑜𝑝 expresses the gate dependencies of the VC as a directed
acyclic graph (DAG). 𝐺𝑜𝑝 is a graph in which the vertices are the two-qubit gates of the circuits,
and the edges represent the direct dependencies between the respective operations via a qubit wire.
Therefore, each edge contains the respective qubit as an attribute.
Qubit graph. To efficiently represent the connections between qubits of a VC, we utilize the
representation of a qubit graph𝐺𝑞 , where the qubits are the vertices. An edge exists between two
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(c) optimized VC(b) graph partitioning(a) virtual circuit (VC)

Fig. 6. Circuit Cutter (CC) (§ 4.3). The CC receives a large virtual circuit (VC) with 𝑛𝑞 = 6 qubits and performs
a graph partitioning on the qubit graph 𝐺𝑞 to dissect the VC into fragments of size 𝑠 = 3 by inserting virtual
gates between the partitions.

qubits when the qubits are connected with at least one two-qubit gate. So, the connected subgraphs
of 𝐺𝑞 directly correspond to the VC’s fragments. Each edge holds a weight with the number of
two-qubit gates between the two qubits.
Gate virtualization API. To efficiently virtualize gates, the VC-IR exposes two main functions:

• virt_gate(𝑔𝑥 ): Virtualizes the gate 𝑔𝑥 , removes 𝑔𝑥 from 𝐺𝑜𝑝 and adds single-qubit gates
instead. Decrements the weight on the edge (𝑞𝑖 , 𝑞 𝑗 ) in 𝐺𝑞 , where 𝑔𝑥 acts on 𝑞𝑖 and 𝑞 𝑗 .

• virt_between(𝑞𝑖 , 𝑞 𝑗 ): Virtualizes every gate which acts on the qubits 𝑞𝑖 and 𝑞 𝑗 . Removes the
edge (𝑞𝑖 , 𝑞 𝑗 ) from 𝐺𝑞 , and updates 𝐺𝑜𝑝 accordingly.

Fig. 5 shows an example of calling virt_between(𝑞𝑖 , 𝑞 𝑗 ).
Compositionality. The VC-IR abstraction allows for full composition. By simply adding more
fragments to the circuit, two VCs can be combined, either connected via an explicit virtual gate
or completely independent from one another. The QVM compiler and runtime would handle this
composed circuit as a single, larger VC.
Frontend: Virtual circuit generation. The frontend of the QVM compiler generates the VC-IR
from an input circuit. The VC is initially a copy of the original circuit, i.e. a VC that consists of one
fragment and no virtual gates. We generate 𝐺𝑜𝑝 and 𝐺𝑞 by traversing the operations of the circuit.
To enable efficient transpilation and execution of virtual circuits, the virtual circuit allows

fragments to be easily extracted and replaced (Figure 5 (b)). To extract a fragment as a circuit,
the virtual gates acting on the qubits of the respective fragment are decomposed into one-qubit
placeholder gates, and the circuit consisting of the gates acting on the qubits of the fragment
is returned. The gates of the fragment can then be modified (e.g., optimized) and the respective
fragment can be replaced in the virtual circuit. In this way, it is possible, for example, to transpile
the individual fragments for certain QPUs only once (§ 4.6) and insert the various instantiations
of the virtual gates only shortly before execution, without the need for additional and repeated
transpilation of the fragment circuits (§ 5.3).

4.3 Circuit Cutter (CC)
The aim of the Circuit Cutter (CC) optimization pass is to split the VC into several fragments so that
each fragment has 𝑠 or fewer qubits, while using as minimal virtual gates as possible to minimize
the computational overhead (Fig. 6). For this purpose, the CC performs a graph partitioning on the
qubit-graph 𝐺𝑞 as follows:
Circuit cutter model.We assign the vertices 𝑞𝑥 ∈ 𝑉𝑞 of the qubit graph𝐺𝑞 = (𝑉𝑞, 𝐸𝑞) into at least
𝑓 = ⌈𝑛𝑞/𝑠⌉ subsets 𝐹 𝑗 . According to this mapping, 𝐸𝑐𝑢𝑡 = {(𝑞𝑥 , 𝑞𝑦) : 𝑞𝑥 ∈ 𝐹 𝑗 , 𝑞𝑦 ∈ 𝐹𝑖 , 𝐹 𝑗 ≠ 𝐹𝑖 }
is the set of all edges that need to be removed to decompose the 𝐺𝑞 into independent subgraphs.
In our cutting model, we find a solution that minimizes

∑
(𝑞𝑥 ,𝑞𝑦 ) ∈𝐸𝑐𝑢𝑡 𝑤 (𝑞𝑥 , 𝑞𝑦), where𝑤 (𝑞𝑥 , 𝑞𝑦)

is the weight of the respective edge (𝑞𝑥 , 𝑞𝑦) ∈ 𝐸𝑐𝑢𝑡 . Amongst all possible optimal solutions that
amount to the weight, we choose a solution that minimizes

∑
𝑗 |𝐹 𝑗 |2, such that we favor the solution

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 187. Publication date: June 2025.



QVM:Quantum Gate Virtualization Machine 187:11

that distributes the number of qubits evenly across the fragments. The subsets 𝐹 𝑗 correspond to
fragments of the resulting optimized VC.
Algorithm. In Figure 6 we show an overview of the circuit cutter (CC). The CC inserts virtual
gates such that the fragments of the resulting virtual circuit can be executed on smaller QPUs with
at most 𝑠 qubits. In doing so, it aims to minimize the number of virtual gates to reduce the induced
overhead. To this end, CC takes the following steps:
Step 1: We convert the circuit into a representation of a qubit graph 𝐺𝑞 (Figure 6, middle). In
𝐺𝑞 , each node represents a qubit in the circuit and each edge represents a connection between
two qubits via two-qubit gates. Each edge has a weight indicating the number of two-qubit gates
between the two qubits.
Step 2: We partition 𝐺𝑞 into at least 𝑓 = ⌈𝑛𝑞/𝑠⌉ disjoint qubit sets 𝑃𝑥 , where 𝑛𝑞 is the number of
qubits in the circuit and each qubit set has at most 𝑠 qubits and the sum of the edge weights between
the sets is as few as possible. For this purpose, we can use any graph partitioning algorithm.
Step 3: For each qubit pair where the qubits are in different partitions 𝑃𝑥 ≠ 𝑃𝑦 , we virtualize every
two-qubit gate acting on that qubit pair. In this way, we can decompose the circuit into a set of
fragments according to the graph partitions of 𝐺𝑞 . If we cannot find a solution for partitioning the
circuit into fragments smaller than 𝑠 and requiring only 𝑏 virtual gates or less, CC does not modify
the original virtual circuit.

Within QVM, we implement two graph partitioning procedures for the CC: First, a greedy graph
partitioning using a recursive Kernighan-Lin bisection [37], is used for large circuits with an
arbitrarily large number of qubits. This procedure recursively bisects the current largest partition
until each partition has a size less than or equal to 𝑠𝑞𝑝𝑢 .
We implement the model with Answer Set Programming (ASP) using the Clingo solver to find

an optimal solution [24, 68]. For each (𝑞𝑥 , 𝑞𝑦) ∈ 𝐸𝑐𝑢𝑡 we call virt_between(𝑞𝑥 , 𝑞𝑦) to update the
VC-IR according to the solution of the model.
Greedy Circuit Cutter. In addition to the procedure that finds an optimal solution for our model,
we also implement a CC that uses an efficient heuristic approach based on the greedy Kernighan-Lin
bisection algorithm [37] to enable shorter compilation times for large circuits. To decompose a VC
into multiple fragments of size 𝑠 or less, we iteratively apply the Kernighan-Lin bisection to the
currently largest connected subgraph of 𝐺𝑞 . The bisection determines two distinct sets of vertices
𝑉1 and𝑉2 such that |𝑉1 | ≈ |𝑉2 |, and the sum of weights of the edges between the two sets of vertices
is as minimal as possible. Then we call virt_between(𝑞𝑥 , 𝑞𝑦) for each (𝑞𝑥 , 𝑞𝑦), where 𝑞𝑥 ∈ 𝑉1 and
𝑞𝑦 ∈ 𝑉2. We apply this iteration until each fragment of the VC has less than 𝑠 qubits.

Note that in the partitioning algorithms for gate virtualization, the search space scales only one-
dimensionally with the number of qubits in the circuit and not also with the number of two-qubit
gates in the circuit, as is the case with wire-cutting [83]. Since the number of two-qubit gates in a
circuit is typically much larger than the number of qubits, our gate-cutting techniques are generally
much more efficient than their wire-cutting counterparts. This makes optimal graph partitioning
for gate virtualization a suitable option for current quantum algorithms with hundreds of qubits
and few partitions, where the circuit cutting time is negligible compared to execution time.

4.4 Dependency Reducer (DR)
The Dependency Reducer (DR) reduces the number of circuit intra-dependencies by using as few
virtual gates as possible. The dependencies between qubits and operations are best illustrated with
the VC-IR’s operation graph 𝐺𝑜𝑝 . An example of a 𝐺𝑜𝑝 in the context of qubit dependencies is
shown in Fig. 7 (a). In this example, every qubit 𝑞𝑖 is dependent on every other qubit 𝑞 𝑗 , since some
gate 𝑔𝑥 acting on 𝑞𝑖 depends on a gate 𝑔𝑦 acting on 𝑞 𝑗 [31]. This means that noise occurring on
one qubit could also propagate to all other qubits in the circuit, amplifying overall errors.
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(a) Dependency Reducer (b) Qubit Reuser

Fig. 7. Dependency Reducer (DR) andQubit Reuser (QR) (§ 4.4-4.5). (a) The greedy DR iteratively virtualizes
gates to reduce the number of qubit-dependencies in a circuit. (b) Because of reduced qubit dependencies, the
QR can reuse qubits to reduce the circuit width.

As shown in Fig. 7, the DR can reduce the intra-dependency of the circuit by inserting virtual
gates into the circuit while being constrained by the budget 𝑏 of the maximum gate virtualizations.
To reduce the qubit-dependencies as efficiently as possible, we adhere to the following model:
Dependency reducer model.We aim to minimize the number of qubit-dependencies by virtualiz-
ing gates in the VC-IR. A qubit 𝑞𝑖 is dependent on another qubit 𝑞 𝑗 if there exists a path in 𝐺𝑜𝑝

from a gate 𝑔𝑥 acting on 𝑞 𝑗 to a gate 𝑔𝑦 acting on 𝑞𝑖 . Let 𝐷𝑞 = {(𝑞𝑖 , 𝑞 𝑗 ) : 𝑞𝑖 depends on 𝑞 𝑗 } be the
set of all qubit-dependencies. We need to find a set 𝐺𝑣𝑖𝑟𝑡 of gates that, when removed from 𝐺𝑜𝑝 ,
minimize the number of qubit dependencies |𝐷𝑞 | the most. If multiple optimal solutions exist, we
choose a solution that minimizes |𝐺𝑣𝑖𝑟𝑡 |. We implement this model using Answer Set Programming
(ASP) and use the Clingo solver to solve for an optimal solution [24, 68].
Greedy dependency reducer. For circuits with a large number of gates, we additionally design
an efficient greedy DR (G-DR) algorithm (Fig. 7). The algorithm works as follows:
First, we determine the most critical two-qubit gate in the circuit, i.e., the two-qubit gate that,

when virtualized, can reduce the most intra-circuit dependencies. For this, we label every two-qubit
gate 𝑔𝑥 in the circuit with cost 𝑑𝑖 . This cost is defined as 𝑑𝑖 = 𝑎𝑛𝑐 (𝑔𝑥 ) · 𝑑𝑒𝑠𝑐 (𝑔𝑥 ), where 𝑎𝑛𝑐 (𝑔𝑥 ) is
the number of ancestors, and 𝑑𝑒𝑠𝑐 (𝑔𝑥 ) is the number of descendants of 𝑔𝑥 . Therefore, the gate with
the highest cost depends on most other gates in the circuit and is, therefore, most likely responsible
for a large amount of qubit and gate dependencies. Then, we call virt_gate(𝑔𝑥 ) on the most-critical
gate 𝑔𝑥 to virtualize the gate in the VC and remove the two-qubit gate from 𝐺𝑜𝑝 . If two or more
gates have the same cost, we choose a gate randomly. We decrement the budget 𝑏, and repeat the
process until 𝑏 = 0.

In the example from Fig. 7 (a), the G-DR would virtualize 𝑔3 first, since it has the highest single
cost of 𝑑3 = 𝑎𝑛𝑐 (𝑔3) ·𝑑𝑒𝑠𝑐 (𝑔3) = 3 ·2 = 6. In this single iteration of G-DR, we can reduce the number
of qubit dependencies from 12 to 11 since now 𝑞2 does not depend on 𝑞1 anymore. This means that
errors of 𝑞1 cannot propagate to 𝑞2. It also reduces the cost of all the gates in the circuit, meaning
that the gates depend on significantly fewer other gates and are less likely to amplify overall noise.

Note that our G-DR computes the number of ancestors for each node in a single traversal of 𝐺𝑔

in topological order. Similarly, the number of descendants of each node is computed in a single
traversal in reversed order. Therefore, the time complexity of G-DR is O(2 · 𝑛𝑣 · |𝑉𝑔 |), where |𝑉𝑔 | is
the set of nodes in 𝐺𝑔. Thus, the algorithm has linear time complexity in the number of gates.

4.5 Qubit Reuser (QR)
In the final pass of the optimizer, we apply the qubit reuser on individual fragments to reduce their
width further, in case their width still exceeds the maximal size 𝑠 . To this end, the qubit reuser
first checks whether each fragment in the VC has a width of 𝑠 or less. For each fragment with a
width greater than 𝑠 , the qubit reuser applies a qubit reuse procedure to reduce the width to 𝑠 to
ensure that each fragment can execute on the available QPUs. We can reuse a qubit 𝑞𝑖 for another
qubit 𝑞 𝑗 if 𝑞𝑖 does not depend on 𝑞 𝑗 by inserting a mid-circuit measurement and resetting the qubit
[31, 35]. Since the computation on qubit 𝑞𝑖 does not depend on qubit 𝑞 𝑗 , we can first complete all
operations involving 𝑞 𝑗 . After completion, we reset 𝑞 𝑗 and reuse it to perform the computation
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(a) virtual circuit (VC) (b) optimized fragments

Fig. 8. Code Generator (CG) (§ 4.6). The CG generates parallel virtualization code as parameterized fragments.

originally intended for 𝑞𝑖 . Fig. 7 (b) shows this qubit reuse pass, where we can reuse 𝑞2 for 𝑞1 since
𝑞2 does not depend on 𝑞1.

TheQR builds upon the foundations of qubit reuse [31] and recycling [35], as discussed extensively
in previous works. However, note that an appropriate level of qubit reuse may only be possible
through the preceding DR pass, which reduces the number of dependent qubit pairs as shown
by the example of Fig. 7. This ultimately enables us to combine both techniques, achieving better
results in circuit size reduction with lower overhead. Concretely, a similar reduction in width
by circuit cutting would have required two virtual gates (or two wire cuts [65, 83]). Therefore, in
our example, reducing dependencies and reusing qubits is the most efficient solution in terms of
virtualization overhead: we reduce the width to 𝑠 = 3 with a virtualization budget of only 𝑏 = 1.

4.6 Code Generator (CG)
The final step of the QVM compiler is generating the code in the form of circuits, which can be
executed by the QVM runtime (Fig. 8). To do so, we first extract each fragment as an individual
circuit from the VC by collecting all operations on the respective qubit register. In these extracted
circuits, we insert placeholder gates at the qubits of the virtual gates. The placeholder gates are
parameterized gates, which can be instantiated with the actual gates that we need to insert to
reconstruct the result (§ 2.3). For the instantiation, the CG creates a parameter vector for each
placeholder gate, which describes the gates to be inserted for the respective instance of the virtual
gate. Finally, the code-generator runs a set of standard circuit optimization passes to optimize the
individual circuits. This means the heavy optimization must be executed only once, reducing the
just-in-time transpilation time before instance execution.

5 The QVM Runtime
5.1 Workflow of the QVM Runtime
Fig. 9 shows the workflow of the QVM runtime. As the first step, we pass optimized fragment
circuits generated by the QVM compiler to the virtualizer. Here, the instantiator generates the
instances of each circuit and passes them together with the fragments to the QPUmanager. TheQPU
manager then executes the fragments with each given instantiation on the set of QPUs. The results
are returned to the knitter component of the virtualizer, where the final result is reconstructed
through parallel classical post-processing.

5.2 Virtualizer
The virtualizer implements the logic for executing virtual gates. For this purpose, the virtualizer
consists of two components, the instantiator (Fig. 9, Step 1) and the knitter (Fig. 9, Step 3).
Instantiator. The instantiator is responsible for creating instances of gates that must be inserted
into the fragment. For this purpose, the instantiator creates 6𝑘 𝑗 instances for each fragment 𝐹 𝑗 ,
where 𝑘 𝑗 is the number of virtual gates that act on the qubits of 𝐹 𝑗 . This is because we need to
execute all combinations of gates that need to be executed to do the gate-decomposition of the
gate virtualization (cf. § 2.3). The instances are described as assignments to the parameterized
gates and include every possible combination of the total 6𝑘 𝑗 combinations of each fragment. These
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Fig. 9. Workflow of the QVM Runtime (§ 5). (1) The instantiator generates the instantiations inserted into
the placeholder gates of the compiled fragments. (2) The QPU manager runs the instances on multiple QPUs in
parallel. (3) The knitter reconstructs the probability distribution of the original circuit by merging and then
knitting the instances in highly parallelizable steps.

assignments are essentially the tensor-product of the parameter vectors of the generated code for
each fragment (Fig. 8).
Knitter. The knitter takes the approximate probability distributions based on the sampling results
of all fragment instances and calculates the final result of the original circuit by applying the
formulas for gate virtualization with highly parallel processing. (§ 2.3). The results are given as
vectors for each fragment 𝐹 𝑗 with entries ⟨𝑂 𝑗 ⟩𝑖 with 𝑖 = 1, ..., 6𝑘 𝑗 . To knit the results, the knitter
distributes the result vectors of each fragment to the available classical nodes, where each node is
given the task of computing a part of the global 6𝑘 instances. We determine this part by assigning
an equal part of the global coefficient vector C to each node (Eq. 2.3). In the example of Fig. 9, we
divide the coefficient vector C into two parts C1 and C2 and calculate the partial sum at each node
over the instances corresponding to each coefficient. Finally, we calculate the sum of the two partial
results to obtain the final result ⟨𝑂⟩. In this way, we are able to linearly scale the post-processing
of the circuit virtualization with respect to the number of cores used.
Extensibilty. We implement a virtualizer for gate virtualization as presented in [47]. However,
the design of our virtualizer also allows us to implement other divide-and-conquer techniques
effectively [6, 83]. Such techniques all follow the same workflow of our virtualizer and could,
therefore, be easily integrated into the QVM runtime.

5.3 QPU Manager
The QPUmanager is responsible for a scalable execution of the 6𝑘 𝑗 instances of each circuit fragment
𝐹 𝑗 on a set of individual QPUs, returning the result-vector for each fragment (Fig. 5, Step 2). For
this, the QPU manager receives an optimized circuit fragment (§ 4.6) and all instance combinations
generated by the instantiator.
Scheduling algorithm. To execute a fragment, the QPU-manager does the following steps:
Step 1: For each QPU 𝑄𝑃𝑈𝑖 with enough qubits to run the circuit, we transpile the circuit to,
including mapping and routing on the physical qubits of 𝑄𝑃𝑈𝑖 . Note that this has to be done only
once for each We then compute the estimated probability of success 𝑒𝑠𝑝 (𝑄𝑃𝑈𝑖 ) of executing the
circuit on that QPU. This is done by computing the cost of the errors induced by the gates and
measurements on the assigned physical qubits, as described in [53].
Step 2:We normalize the current job queue sizes of the QPUs by dividing the length of each job
queue by the length of the maximum job queue. This yields a relative waiting time as𝑤 (𝑄𝑃𝑈𝑖 ) ∈
[0, 1], where a higher value means a longer waiting time for the job.
Step 3: We compute the score 𝑠𝑖 for each QPU, where 𝑐𝑖 = 𝛼 · (1 −𝑤 (𝑄𝑃𝑈𝑖 )) + 𝛽 · 𝑒𝑠𝑝 (𝑄𝑃𝑈𝑖 ), and
choose the QPU with the highest score to execute the corresponding fragment. The user can choose
𝛼 and 𝛽 to provide either fast runtime or less noisy results.
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Fig. 10. Circuit Cutter (§ 6.1). Impact of QVM’s optimal circuit cutter on number of CNOTs and circuit depth.
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Fig. 11. Circuit Cutter (§ 6.1). Fidelity of running QVM with the circuit cutter on IBM Perth and IBM Kolkata.

Step 4: Finally, for each instance combination, we insert the instantiation into the transpiled
fragment for the selected QPU, resulting in a total of 6𝑘 𝑗 circuits when 𝑘 𝑗 gates act in the respective
fragment 𝐹 𝑗 . These circuits are then sent to the QPU as a job for execution.
Our strategy of incorporating queue times and estimated probabilities of success into the QPU

manager can be easily applied to the current cloud-centric quantum infrastructure, where our
QPU manager would be a client for some quantum resources offered by cloud providers [73]. Our
solution is currently the most efficient, as there is little control over the cloud’s internal queues.

6 Evaluation
Experimental setup.We conduct three types of experiments: (1) circuit transpilation with and
without QVM’s compiler to measure the circuit’s properties post-compilation, (2) runs on real QPUs
for measuring the circuit’s fidelity, and (3) classical simulation of large circuits cut into fragments of
different sizes. For (2) we conduct our experiments on Falcon r5.11H QPUs, namely the 7-qubit IBM
Perth and the 27-qubit IBMQ Kolkata. For (1) and (3) we use the Qiskit Transpiler and Qiskit Aer,
respectively, and run on our local classical machines. For classical post-processing and simulation
we use a server with a 64-core AMD EPYC 7713P processor and 512 GB ECC memory.
Framework and configuration. We use the Qiskit [70] Python SDK version 0.41.0 for quantum
circuits and simulations. We transpile any quantum circuit we run with the highest optimization
level O3 and run with 20, 000 shots. To get a meaningful measurement of the fidelity or circuit
properties on real QPUs, we run QVM only on a single QPU. When we benchmark the performance
of the QVM runtime with simulators, we utilize every system core.
Benchmarks. We study QVM on a set of circuits used in the state-of-the-art benchmark suits
Supermarq [88], MQT-Bench [71], and QASM-Bench [40]. These circuits can be scaled both in the
number of qubits and depth. Specifically, we study: W-State, Bernstein Vazirani (BV) , Quantum
Support Vector Machine (QSVM), Hamiltonian Simulation (HS-𝑡 ), Two Local Ansatz (TL-𝑛) with
circular entanglement, Variational Quantum Eigensolver (VQE-𝑛) with a Real-Amplitudes ansatz
of linear entanglement, Approximate Optimization Algorithm (QAOA-𝑑) with regular graphs of
degree 𝑑 and barbell graphs (QAOA-B). HS, VQE, and TL are scalable in their circuit layers 𝑡 or 𝑛.
Metrics.We evaluate the following metrics.

• Fidelity: We use the Hellinger fidelity
(
1 − 𝐻

(
𝑃𝑖𝑑𝑒𝑎𝑙 , 𝑃𝑛𝑜𝑖𝑠𝑦

)2)2 ∈ [0, 1] to measure how close
a noisy result is to the desired ground truth of a quantum circuit. Here, 𝐻 is the Hellinger
distance between two probability distributions [30].
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Fig. 12. Circuit Cutter vs. CutQC (§ 6.1). Relative number of CNOT gates and fragment depth after compiling
with QVM vs. compiling with CutQC on IBM Kolkata.
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Fig. 13. Circuit Cutter vs. CutQC (§ 6.1). Fidelities of running QVM vs. CutQC vs. Qiskit on IBM Kolkata.

• Circuit properties: Number of CNOT gates, depth and the number of qubit dependencies.
When a VC contains more than one fragment, we use the fragment with the worst property
(i.e., maximal depth, dependecies, number of CNOTs)

• Execution time: The execution time of a VC in seconds.
• Estimated success probability: We use the estimated success probability (ESP) metric to
measure the estimated fidelity on larger quantum systems. We define the ESP as

∏
𝑖 (1 − 𝑒𝑖 ),

where 𝑒𝑖 is the error of the 𝑖-th operation in the circuit [52]. If a VC has multiple fragments,
we report the minimum ESP.

Note that we report relative values as the ratio 𝑣QVM/𝑣baseline, where 𝑣QVM is the absolute value
from QVM and 𝑣baseline is the corresponding baseline value.
Baseline. We use the Qiskit transpiler with O3 [1] and CutQC [83] as our baselines for circuit
compilation and runtime evaluation. CutQC [83], building on the framework proposed by Peng
et al. [65], deals with another widely studied way of cutting circuits, namely wire cutting, which,
unlike cutting two-qubit gates, allows decomposing the time evolution of individual qubits. This
is achieved by cutting qubit wires to divide the circuit into several sub-circuits. To reconstruct
the result of the original circuit, the sliced qubit is measured and reinitialized in four different
computational bases, followed by classical post-processing with an exponential overhead [47, 65].

6.1 Circuit Cutter
RQ1: How well does QVM’s circuit cutter allow scaling of circuits that can run on noisy QPUs with
acceptable fidelity? We evaluate the impact of the circuit cutter on the CNOT count and depth of
transpiled circuits and the fidelity of running virtual circuits using our optimal graph partitioner.
Impact on number of CNOTs and circuit depth. In Fig. 10, we study the maximum number
of CNOTs and circuit depths of the fragments after compilation with our circuit cutter with a
maximum of three virtual gates. Each virtual circuit is decomposed into fragments of a maximum
of 13 qubits, and the fragments are transpiled for the 27-qubit IBMQ Kolkata QPU. The results in
Fig. 10 (a) show that the number of CNOTs decreases by 41% on average. Fig. 10 (b) shows that the
circuit depth decreases by 56% on average. This shows that it is possible to almost double the size
of the high-fidelity circuits since the number of CNOTs and circuit depth is approximately halved.
Impact on fidelity. The impact of using QVM on the fidelity of the execution is shown in Fig.
11. Here, the circuit cutter decomposes the circuits into fragments of maximally 7 qubits to fit the
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virtual gates to compile the circuit.
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Fig. 15. Dependency Reducer (§ 6.2). Fidelity of the greedy dependency reducer on IBM Kolkata.

small 7-qubit IBM QPUs. The fragments are run on both the 7-qubit IBM Perth and the 27-qubit
IBM Kolkata QPUs, and compared to the baseline fidelity of running the circuits on IBM Kolkata.
We run the experiment for various benchmarks with sizes of 10 and 14 qubits. We observe that the
fidelity of running the circuit on IBM Kolkata improves the fidelity by 4.7× on average and up to
33.6×. E.g. for the VQE-2 benchmark, the fidelity of the benchmark diminishes, while QVM can still
create higher fidelities. Compared to the baseline, running QVM on the IBM Perth improves the
fidelity by 2.1× on average and up to 10.6×. Therefore, we show that QVM can reliably simulate a
larger QPU using smaller noisy QPUs while producing higher fidelity. This is despite IBM Perth
having a median of 2.3× higher readout and 1.2× higher CNOT error during our experiments.
Comparison to CutQC. In Fig. 12 and 13 we compare the circuit cutter of QVM with CutQC
[83]. We run the QVM and CutQC circuit cutters with the same configuration to generate circuit
fragments of up to 7 qubits and compile and run the fragments on the IBM Kolkata QPU. We use
several benchmarks of sizes of 8-12 qubits. We find that, compared to CutQC, QVM only produces
70% of the CNOTs on average, since gate virtualization allows a reduction of the qubit connectivity
significantly compared to CutQC (Fig. 12 (a)). QVM achieves similar circuit depth reduction as
CutQC as both can cut the circuits into significantly smaller fragments (Fig. 12 (b)).
A look at the fidelity benchmark (Fig. 13) shows that CutQC and QVM achieve similar fidelity

and significantly outperform the Qiskit baseline, with QVM achieving on average 1% higher fidelity
than CutQC. We suspect the relatively small improvement despite the promising results in circuit
properties is due to the noisy mid-circuit measurements with an error of ≥ 10−2, which we need to
perform to virtualize gates. With less measurement noise, QVM will perform similarly to CutQC.

We conclude that both QVM and CutQC, with their different techniques, are efficient in-circuit
cutting and should ideally be used together in future work to take advantage of both methods with
their respective benefits [11], especially when we mitigate the mid-circuit measurement errors [29].
RQ1 takeaway: With the circuit cutter, we reliably scale the size of circuits that can be run
on noisy QPUs, up to 2×, improving the overall fidelity 4.7× on average and up to 33.6× due to
significant depth and CNOT gate reduction.
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Fig. 16. Qubit Reuser (§ 6.3). Depths of compiled circuits with a maximal fragment size of 5 transpiled for
IBM Perth. (a) Circuit cutter vs. qubit reuser. (b) Circuit cutter vs. dependency reducer and qubit reuser.

6.2 Dependency Reducer
RQ2: By how much does the dependency reducer (DR) decrease the number of dependencies within the
circuit, improving the fidelity of running the circuit on noisy QPUs? For this experiment, we evaluate
DR with a maximum of three virtual gates on differently sized benchmarks on IBM Kolkata.
Impact on qubit dependencies and circuit depth. Fig. 14 (a) shows the effect of DR on the
number of qubit dependencies in the logical circuit, compared to the baseline of the circuit without
DR. On average, the number of qubit dependencies decreases by 58%. This shows that the DR can
effectively resolve the dependencies between qubits, reducing noise propagation through the circuit.
As Fig. 14 (b) shows, the depth of the circuits transpiled for IBM Kolkata decreases significantly
by 64% on average. This is due to the transpiler having fewer constraints on circuit mapping and
routing after applying DR, resulting in a transpiled circuit with less depth.
Impact on fidelity.We analyze the fidelity of our baseline and compared it to the DR in Fig. 15,
utilizing only one virtual gate. Our results indicate an average increase in fidelity of 36% and up to
5.2×. However, the noisy mid-circuit measurements needed for gate virtualization could limit the
improvement in fidelity. These measurements typically induce significant noise, which affects the
overall fidelity of virtual circuit execution [79, 95].
RQ2 takeaway: The DR decreases the dependencies between qubits by 58% and circuit depth by
64% using at most three virtual gates. This also leads to an average increase in fidelity by 36%
and up to 5.2×, using only one virtual gate.

6.3 Tradeoffs with theQubit Reuser
RQ3: What is the effect of using the qubit reuser (QR) to reduce the width of the circuit fragments
further? We show the trade-offs of using the CC alone against the DR and QR to reduce the width
of circuits to run on small QPUs. To show this tradeoff, we compile circuits with different optimizer
configurations, such that each fragment’s width is maximally five qubits. We select benchmarks
ensuring each technique can reduce the qubit count to the target of five.
Circuit-cutter vs. Qubit-reuse. In Fig. 16 (top), we compare the effects of using either the CC
or the QR to reduce the width of a virtual circuit on the circuit depth of the transpiled fragments.
Our results show that the CC compiles the circuits to only 37% compared to QR on average. This
is because the CC can break down the circuit into smaller fragments with reduced width while
only incurring a maximum of two virtual gates. The QR, however, increases the depth of the circuit
substantially while reusing qubits, which in turn will reduce overall fidelity. So, there is a tradeoff
between using gate virtualization to reduce the depth against using qubit reuse without overhead.
Combining dependency reducer and qubit-reuse. In Fig. 16 (bottom), we show how the CC
pass compares to the DR and QR passes to reduce circuit width. For this, we choose benchmarks
where, without our DR, qubit-reuse would be impossible since every qubit depends on every other
qubit in the circuit. We apply the QR on the reduced-dependency circuit produced by the DR. Like
before, we aim to reduce the circuit width to five qubits. The CC uses at most three, and the DR
uses one virtual gate, with a 36× lower virtualization overhead. Although using DR & QR incurs
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Fig. 17. QVM end-to-end runtime analysis (§ 6.4). (a) End-to-end runtime of 30-100 qubits with different
QPU sizes. (b) Runtime breakdown for 70 qubits with different QPU sizes. (c) Knit-time dependent on the
number of parallel threads for different numbers of virtual gates (vg). (d) Memory consumption (estimates) for
30-100 qubits compared to the Baseline (statevector simulator) and Full Definition Query CutQC [83] with 20
qubits QPU size. (e) Runtime Comparison against CutQC for 20-qubit circuits.

a low overhead, it also leads to a significantly higher depth than CC. This means that the virtual
circuit using DR & QR has 3.2× more depth, negatively impacting fidelity.
RQ3 takeaway:We find a trade-off between overhead and noise when using the CC or DR &
QR to reduce the width of quantum circuits. While the CC produces circuits with smaller depths,
combining DR and QR allows lower virtualization overhead.

6.4 QVM End-to-end Runtime Analysis
RQ4: How scalable is QVM’s runtime and how does QVM compare to classical simulations without
cutting & knitting and CutQC? We study the HS-1 benchmark and use the circuit cutter (CC) to
compile a VC for a QPU of up to 𝑠 qubits.
Fig. 17 (a) illustrates the end-to-end runtime needed to simulate HS-1 after cutting the circuit

into fragments that fit QPUs of sizes 𝑠 ∈ {15, 20, 25}. As the full circuit size increases, the runtime
also increases, but the growth rate varies among fragment sizes. The smallest fragment size is the
fastest, as the simulation overhead outweighs the knitting overhead, even if the circuit has 100
qubits and is cut with five virtual gates. This is evident in Fig. 17 (b) as well, which shows the
runtime breakdown for simulating the 70-qubit HS-1. As 𝑠 increases, there is a shift in the runtime
from knitting to simulation time. The compilation time remains relatively constant.
Fig. 17 (c) shows the scalability of the knitter (§ 5.2) with its parallelism. We generate knit

workloads for 1-4 virtual gates for the 70-qubit HS-1 benchmark and scale the number from 1 to
32 threads. We observe near-linear scalability with an increasing number of threads, allowing a
speedup of up to 25.6× for 32 threads.
We show the memory required to simulate HS-1 with a chosen QPU size of 20 qubits in Fig. 17

(d). While the baselines, Qiskit Aer statevector, and CutQC with full definition query [83], exhibit
exponentially growing memory for linearly increasing circuit sizes, QVM maintains a slightly
increasing memory requirement by utilizing sparse quasi-probability distributions. In contrast,
CutQC and simulations operate on tensors that need to cover the entire sample space.

Finally, in Fig. 17 (e), we compare the runtimes of QVM and CutQC. We are limited to comparing
on small examples, due to CutQC’s memory limitations. In particular, we perform 20-qubit circuits
for HS-1 with simulated QPUs of 8-12 qubits. We observe similar runtimes for the QPU size of 8
qubits, as QVM spends more time to simulate a larger number of circuits due to the higher circuit
cost [65, 83]. However, with a QPU size of 10 and 12 qubits, QVM clearly outperforms CutQC, as it
achieves a significant acceleration in knitting due to its more efficient memory utilization.
RQ4 takeaway: QVM enables simulating large circuits on classical simulators. It can handle
circuit sizes of up to 100 qubits or five virtualized gates while maintaining acceptable runtime (∼
1.5 hours) and very low memory consumption. QVM’s knitter allows it to scale linearly.
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Fig. 18. QVM at practical scale with 500 qubit VQE circuits (§ 6.5). (a) Relative number of CNOTs and circuit
depth of the compiled VQE-2 benchmark. (b) Estimated success probability (ESP) with VQE-1 and VQE-2. (c)
The overheads of circuit instances and classical postprocessing with and without parallel processing on 32 cores.

6.5 QVM at Practical Scale
RQ5: How does QVM behave on a practical scale with circuits of hundreds of qubits? We would need
hundreds to thousands of high-fidelity qubits to demonstrate quantum advantage. However, current
QPUs of any hardware type that have up to hundreds or thousands of qubits cannot reliably execute
circuits with tens of qubits and higher depth [4, 33, 34, 38]. To investigate how QVM would behave
on a practical scale, we evaluate the impact of QVM on 500-qubit VQE circuits on a heavy-hex
lattice QPU with 883 physical qubits, which is the typical chip layout for current IBM QPUs [33].
Impact on number of CNOTs and circuit depth. In Fig. 18 (a) we show the effects of the number
of CNOTs and the circuit depth of the VQE-2 benchmark. We see that using a budget of two virtual
gates reduces the number of CNOTs and the circuit depth by 2×, and using up to 10 virtual gates
reduces the numbers by 6×. We see a diminishing improving impact on higher budgets.
Impact on estimated success probability. Fig. 18 (b) shows the estimated success probability
(ESP) of the benchmarks VQE-1 and VQE-2. We find that the baseline without virtual gates (shown
with 0 virtual gates) achieves an ESP of only 30% and 16%, respectively, which leads to unusable
results. When using only two virtual gates, the ESP more than doubles and shows improvements,
reaching 90% and 74% with 10 virtual gates. This shows that with QVM, we only need a handful of
virtual gates to significantly improve the ESP, leading to usable results.
Impact on processing overheads. The virtualization costs incurred using virtual gates to improve
circuit fidelity are shown in Fig. 18 (c). The number of circuits that need to be instantiated and
executed increases exponentially with a small number of virtual gates but then only starts to grow
linearly with the number of fragments since we only instantiate as many circuits as correspond to
the number of gates in the respective fragment (§ 5.2). The classical post-processing overhead grows
exponentially with O(6𝑘 ), meaning that adding two more virtual gates in the same configuration
results in a runtime increase of 36×. Since the QVM runtime provides an almost linear speedup
(§ 6.4), we can distribute the knitting across dozens of cores, which significantly mitigates this
overhead for a small number of 4-6 virtual gates. This is shown in Fig. 18 (c) as an example of
(perfect) linear scaling in classical post-processing with 32 cores.
RQ5 takeaway: For large-scale algorithms, QVM achieves high ESP while using only a handful
of virtual gates for which our runtime can achieve significant speedups through parallelization.
We therefore find a trade-off between fidelity and quantum-classical co-processing resources.

7 Related Work
Quantum transpilers and error mitigation. We can categorize quantum circuit transpila-
tion techniques as (1) qubit mapping and routing [41, 49, 50, 60, 63, 80, 85, 87, 93, 96, 99], (2)
instruction/pulse scheduling [17, 27, 51, 77, 81, 90, 98] and (3) gate optimization/decomposition
[16, 43, 60, 64, 77, 94]. Finally, there is work on post-execution processing, readout improvement,
and error correction [12, 15, 18, 45, 46, 61, 62, 84, 86]. These proposals are orthogonal to our work
and can be integrated into QVM. This is especially the case for measurement error mitigation,
which can help to improve the fidelity of the mid-circuit measurements during execution [79, 95].
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Circuit cutting and knitting. Circuit cutting & knitting is the process of breaking down a
large quantum circuit into smaller sub-circuits that can be executed separately, then synthesizing
the results to obtain the result of the original circuit. Circuit cutting can be divided into gate
virtualization (§ 2.3) and wire cutting [13, 14, 65, 83, 91]. Wire cutting has been primarily explored
in CutQC [83], building on the work of Peng et al. [65], which provides a method for cutting
the time-evolution of larger circuits to decompose them into smaller subcircuits. We propose a
generic system for gate virtualization that not only enables circuit cutting but also reduces qubit
dependency, improving fidelity and facilitating qubit recycling. Ideally, these methods should be
combined in the future to further advance circuit cutting techniques.
Qubit reuse / recycling. Qubit reuse can be classified into two categories, namely ancilla reuse
using uncomputation [9] and reuse through dynamic circuits [3, 32]. Work such as [10, 21, 59] utilize
uncomputation to reclaim ancilla qubits. In contrast, work such as [20, 31, 58, 74] exploit the newly
supported dynamic circuits with mid-circuit measurements and mid-circuit reset operations to reuse
qubits. Jiang’s work [35] formalizes the qubit recycling problem using qubit-dependency graphs
and develops a heuristic solver and a verified qubit recycler. However, applying these techniques on
densely connected circuits can be impractical due to the large number of qubit dependencies [31, 88].
By first applying QVM’s DR pass (§ 4.4), qubit reuse can be practically applied with enhanced
efficiency. Therefore, our work highlights a promising approach to integrating gate virtualization
and qubit recycling, enabling circuit optimizations that neither technique could achieve alone.
Application-specific optimizations.Application-specific circuit optimizations go beyond generic
strategies and target the unique characteristics of a particular algorithm or circuit structure in
order to improve fidelity [5, 6, 25, 26, 39, 42, 82]. Our work tries to build a generic and extensible
framework to incorporate different application-specific optimizations.
Quantum cloud computing. This area addresses quantum circuit multi-programming [19, 44, 56,
57], quantum resource management/scheduling [72, 73, 92], and quantum serverless [23, 54]. Our
work is complimentary to these proposals, QVM proposes a scalable infrastructure for supporting
gate virtualization optimizations, which can be incorporated by quantum cloud environments.

8 Conclusion
We introduce the Quantum Gate Virtualization Machine (QVM), a generic system for the scalable,
high-fidelity execution of large circuits on noisy and small QPUs by leveraging gate virtualization
to enable the execution of circuits that neither QPUs nor classical computers could run alone. QVM
extends the quantum circuit abstraction with the virtual circuit IR, which forms the foundation for
the QVM Compiler—a modular compiler infrastructure for implementing a series of optimization
passes to generate smaller, optimized fragments. These fragments are virtualized and executed using
our QVM Runtime—a distributed and scalable system to execute and post-process the instantiated
circuit fragments in a highly parallel manner on a distributed set of QPUs. Our evaluation on IBM’s
7- and 27-qubit QPUs of QVM demonstrates practical scaling of circuits with sizes up to double the
QPU capacity while significantly improving fidelity.
Artifact. The artifact is publicly available at github.com/TUM-DSE/qvm [89].
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