F3: An FPGA-accelerated FaaS Framework

Charalampos Mainas, Martin Lambeck, Bruno Scheufler,
Laurent Bindschaedler, Atsushi Koshiba, Pramod Bhatotia

)
R & MAX PLANCK INSTITUTE
Minchon m " EOR SOFTWARE SYSTEMS

-————J

HPDC 2025

Function-as-a-Service (FaaS)

Function-as-a-Service (FaaS) simplifies the cloud computing model as serverless

Orchestrator deo|
eplo
POy > | Fn Fn Fno| ...
% manage -
> Server nodes

Cloud user upload

z — Func

FaaS platform

FaaS achieves easy deployment, high scalability, and low cost (pay as you go)

Performance limitations of FaaS platforms TI_ITI

Compute-intensive tasks are being deployed on FaaS platforms

Compute-intensive workloads CPU-centric FaaS platforms
Machine learning Data analytics Amazon Mlcrosoft Google

Running compute-heavy workloads only on CPUs are not cost-/power-efficient 1

Accelerators in the cloud TI_ITI

Various types of accelerators are being adopted in the cloud

Our target

GPUs Tensor Processing Units Field Programmable Gate Arrays
(TPUs) (FPGAS)

Can we leverage FPGAs to accelerate serverless functions?

FPGAs for cloud workloads

FPGAs are a good fit to accelerate various, ever-changing cloud workloads

Reconfigurability

! Lower is better

TUTI

Optimizable for specific computations 5 ;,, | =3 e I
. £ 1 fpga

Potential performance benefits v .

2 4

E | =

i S 50+ J. 1
!
10-100x speedups X 25
<1 <?2 <1lms
0 Do —
SHA3 Hyper- Corner Needleman

LoglLog Detection Wunsch

FPGA promises accelerating cloud workloads, but...

FPGA and serverless model mismatches

There are hard-to-reconcile gaps between FPGA and serverless computing model

Worker node
Customers o ________

FPGA adoption may lose

#4 CPU orchestration

&deploy

Minimal library/OS components

i 1
CPU sandbox i serverless benefits:
9o request i‘l | |
1 T i Watchdog | #1 Easy-to-develop
| , invoke | . .
| | #2 CPU isolation
|
Orchestrator schedule | Function | #3 Low invocation latency
| |
' |
l :

FPCA and serverless model mismatches TI_ITI

There are hard-to-reconcile gaps between FPGA and serverless computing model

Worker node FPGA adoption may lose

Customers _______________aB ___________ : | b fit
CPU sandbox serveriess penents:
9o request | |
1 T i Watchdog #1 Development complexity
{ invoke , .
#2 Lack of isolation

Orchestrator schedule

&deploy

#3 High invocation latency

[Acquire] [Program] [Execute]
| 1 | #4 No orchestration for FPGAs

| |
! |
' |
| |
| Function |
I |
: |
' |
| |

|

Low-level API (e.g., OpenCL)

————————— - CPU/Ibitstreamindary r--------

FPGI-} card

g |
! Accelerator logic |

L = -

Research question TI.ITI

How do we enable FPGA acceleration for serverless functions by reconciling
mismatches between the serverless computing model and FPGA execution model?

Our proposal TI.ITI

F3: FPGA-accelerated FaaS Framework
The first end-to-end FaaS framework for FPGA acceleration and orchestration

Properties:
e Programmability
o High-level APIs for FPGA control
e Multi-tenancy
o Hypervisor-enforced isolation
e Low latency
o Fast FPGA reconfiguration & CPU-FPGA communication
e Resource efficiency
o FPGA-aware orchestration

Outline

Meotivat
e Qverview

e Evaluation

10

F3 overview

An end-to-end HW/SW co-design bridges

a gap between FPGA and serverless

Key components:

#1
#2
#3
#4

F3 API

F3 unikernel & hypervisor

F3 Shell & vFPGA manager
F3 orchestrator

] High-level API (F3 API)

deploy

VM(s)
F3 unikernel
Function

-------- Guest/host isolation --------

F3 orchestrator

F3 hypervisor

\

FPGA usage

Y

VFPGA manager

| Low-level device control |
*

---------- CPU/FPGA boundary ---------

FPGA(s)
F3 Shell |

11

#1: F3 API

Accelerator-agnostic API that delegates low-level jobs to the backend

CPU sandbox

Function
[Accelerator’s execution flow)
1

| VFPGA manager
~ Low-level device control]

—_—_ - — — 4

in =f3_alloc_buffer(INPUT_SIZE);
tmp =f3_alloc_buffer(INPUT_SIZE);
out =f3 alloc_buffer(OUTPUT SIZE);
id1 =f3_call_fpga(‘gzip’, in, tmp);

id2 =f3_call fpga(‘aes’, tmp, out);

f3 wait_fpga(idi, id2);

__

[F3 APl abstracts the complex FPGA execution flow from cloud users

12

#2: F3 unikernel and hypervisor TI.ITI

A lightweight isolation mechanism for latency-sensitive serverless functions

e F3hypervisor . ¥
o bridges guest functions and FPGAs T Guest/host isolation --------

|
| F3 Hypervisor
|
e VvFPGA manager | LAPIhandler | Buffers

O restricts access to FPGA resources et

A

F3 unikernel | e :

® 3 unikerne | F3 unikernel |
o ensures isolation for CPU contexts | Function |

i F3 API library i

I |

VFPGA manager

[F3 guarantees multi-tenant isolation while retaining the lightweightness 1

#3: F3 Shell and vFPGA manager

Low-level device management mitigating FPGA-related overheads

Accelerator reuse

VM 1 VM 2
[Function A] [Function B]
- iinvoke AES iinvoke AES
B;';St;i?m AES ___ VFPGAmanager |
gistry reconfigure ; R RRREEETEEEETEEEE PR 'reuse an accelerator

(>100 ms) " F3shel]

| A Y. .

| AES accelerator | L Free :

FPGA

N
Non-trivial for serverless functions:
50% of them complete within 1 sec!?

[1] “Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider”, USENIX ATC’20

#3: F3 Shell and vFPGA manager

Low-level device management mitigating FPGA-related overheads

Accelerator chain

VM 3

{ Function C]*
invoke gzip+AES

' receive final results only

vitmp bufferfer
T [

[

F3Shell | E]

v

[gzip acceleratbr]

FPGA

|
Y

[AES accelerator]

[F3 leverages Shell features to reduce FPGA’s start-up/communication latencies 1

15

#4: FPGA-aware orchestrator

Collecting FPGA-related metrics for FPGA-centric orchestration

® FPGA occupation time (| is better) Worker nodes

e Reconfiguration frequency (| is better) >

® Accelerator reuse flag (IV

(3) deployment decisions [Function]

(2) scheduling |
(scoring
each node) (1) FPGA metrics Metrics vk PG'IA:‘:;Znager

collector v

{ [Accelerator]

\

[F3 orchestrator achieves fair, resource-efficient function scheduling

Outline
Mot
—Overvew

e FEvaluation

17

Evaluation TUTI

Questions:

e Whatis the end-to-end performance gain of F3? See our paper

e How effective is FPGA function (accelerator) chaining? for more results!

Experimental setup:

e F3 prototype built upon OpenFaa$S, Kubernetes, containerd, and Kata-runc
e C(luster :1xleader (Xeon G5317@3.0GHz), 3x workers (Xeon G6238R@2.2GHz)
e FPGA :eachworkernode equipped with 1x AMD FPGA (Alveo U50)

18

Evaluation

Applications:
e 10 compute-intensive workloads suitable for FPGA acceleration

o Encryption (AES-128-ECB)
o Hashing (SHA3-512, MD5)
o Compression (GZIP)
o Convolutional neural network (HLS4ML[])
o Data analytics (HyperLogLog)
o Etc.

[2] HLS4ML: Ultra fast machine learning for FPGAs., https://opensource.web.cern.ch/HLS4ML

https://opensource.web.cern.ch/HLS4ML

Execution time (ms, log scale)

End-to-end performance TI_ITI

Lower is better |

10* - 3 OpenFaaS-CPU |
LRl Intel CPU’s AES-NI instructions is faster
103 -
' 2.1X 3.3X
) e 0.2X B 6.4X 5 8X
R R 1.2X o o R
107 i o o i i 2.3X 150.3X
100) b o o o] 113.0X R R 0 R 1-6>J<
3 e e e 0 00 e 0 e | (T
ADDMUL AES SHA3 GZIP NW HLS4ML HLL HCD MD5 FFT

[F3 achieves 28.6x average speedups (up to 150.3x) over a CPU-only baseline 1

20

FPGA accelerator chaining TUTI

Chaining GZIP and AES accelerators

rd

Client-side|_ ——

pIpIng
Server‘Side ©6 6 6 6 0 6 060 06 0 0 0 0 0 0 0 0 0 0 O

- —

piping © 6 06 6 06 6 0 0 0 00 0 00 0 0 O h

F3 4¢3 W W w w1
| | |
0 20 40 60
«—Lower is better Execution time (ms)

OpenFaaS’s baselines

[F3 function chaining achieves 1.4x to 1.7x speedups against OpenFaaS baselines 1

21

Summary TI.ITI

Hard-to-reconcile differences between serverless and FPGA execution models
Development complexity due to low-level device management

Lack of isolation for user code/data distributed across CPU & FPGA

High invocation latency due to FPGA reconfiguration & communication overheads

No orchestration support for FPGAs

F3: FPGA-accelerated FaaS Framework

e High-level API for easy FPGA execution

e Multi-tenant isolation for CPU & FPGA contexts
e Low invocation latency assisted by the FPGA Shell
[]

Code
ah" "

L] i
https://github.com/TUM-DSE/F3

FPGA-aware orchestration

22

https://github.com/TUM-DSE/F3

