
F3: An FPGA-accelerated FaaS Framework

HPDC 2025

Charalampos Mainas, Martin Lambeck, Bruno Scheufler,
Laurent Bindschaedler, Atsushi Koshiba, Pramod Bhatotia

FaaS platform

Function-as-a-Service (FaaS)

2

FaaS achieves easy deployment, high scalability, and low cost (pay as you go)

Function-as-a-Service (FaaS) simplifies the cloud computing model as serverless

Server nodes

Fn Fn Fn …deploy
Orchestrator

Func

uploadCloud user

manage

Performance limitations of FaaS platforms

Compute-intensive tasks are being deployed on FaaS platforms

3

Running compute-heavy workloads only on CPUs are not cost-/power-efficient

Machine learning Data analytics LLM

Compute-intensive workloads CPU-centric FaaS platforms

MicrosoftAmazon Google

Accelerators in the cloud

Various types of accelerators are being adopted in the cloud

4

Tensor Processing Units
(TPUs)

GPUs

Can we leverage these accelerators to accelerate serverless functions?

Our target

Field Programmable Gate Arrays
(FPGAs)

FPGAs

FPGAs for cloud workloads

FPGAs are a good fit to accelerate various, ever-changing cloud workloads
● Reconfigurability
● Optimizable for specific computations
● Potential performance benefits

5

Hyper-
LogLog

Needleman
Wunsch

Corner
Detection

FPGA promises accelerating cloud workloads, but…

10-100x speedups

FPGA and serverless model mismatches

There are hard-to-reconcile gaps between FPGA and serverless computing model

6

CPU sandbox
Watchdog

Minimal library/OS components

Orchestrator

#1 Easy-to-develop
#2 CPU isolation
#3 Low invocation latency
#4 CPU orchestration

Worker node

schedule
& deploy

request

Customers

invoke

FunctionFunction

Serverless benefits:
FPGA adoption may lose
serverless benefits:

#1 Easy-to-develop
#2 CPU isolation
#3 Low invocation latency
#4 CPU orchestration

Serverless benefits: CPU sandbox

Function

Watchdog

Worker node

request

Customers

Orchestrator

invoke

FPGA and serverless model mismatches

There are hard-to-reconcile gaps between FPGA and serverless computing model

7

Acquire ExecuteProgram

Low-level API (e.g., OpenCL)

#1 Development complexity
#2 Lack of isolation
#3 High invocation latency
#4 No orchestration for FPGAs

Reconfigurable region

FPGA card

Accelerator logic

FPGA adoption may lose
serverless benefits:

CPU/FPGA boundarybitstream

schedule
& deploy

Research question

8

How do we enable FPGA acceleration for serverless functions by reconciling
mismatches between the serverless computing model and FPGA execution model?

Our proposal

9

Properties:
● Programmability

○ High-level APIs for FPGA control
● Multi-tenancy

○ Hypervisor-enforced isolation
● Low latency

○ Fast FPGA reconfiguration & CPU-FPGA communication
● Resource efficiency

○ FPGA-aware orchestration

F3: FPGA-accelerated FaaS Framework
The first end-to-end FaaS framework for FPGA acceleration and orchestration

● Motivation

● Overview

● Evaluation

Outline

10

F3 overview

An end-to-end HW/SW co-design bridges
a gap between FPGA and serverless

11

vFPGA #1Acc. vFPGA #2 vFPGA #3

F3 Shell

vFPGA manager

F3 orchestrator

CPU/FPGA boundary

FPGA(s)

FPGA usage

deploy

…

VM(s)
F3 unikernel

F3 hypervisor
Guest/host isolation

High-level API (F3 API)
Function

Low-level device control

Key components:

#1 F3 API
#2 F3 unikernel & hypervisor
#3 F3 Shell & vFPGA manager
#4 F3 orchestrator

CPU sandbox
Function

Low-level API (e.g., OpenCL)

Acquire ExecuteProgram

#1: F3 API

Accelerator-agnostic API that delegates low-level jobs to the backend

12

F3 API abstracts the complex FPGA execution flow from cloud users

in = f3_alloc_buffer(INPUT_SIZE);
tmp = f3_alloc_buffer(INPUT_SIZE);
out = f3_alloc_buffer(OUTPUT_SIZE);
id1 = f3_call_fpga(‘gzip’, in, tmp);
id2 = f3_call_fpga(‘aes’, tmp, out);
f3_wait_fpga(id1, id2);

Execution flow

gzip AESin out

vFPGA manager
Low-level device controlBitstream

registry
Bs

Accelerator’s execution flow

F3 API

Accelerator logic
FPGA

A lightweight isolation mechanism for latency-sensitive serverless functions

VM

#2: F3 unikernel and hypervisor

13

F3 guarantees multi-tenant isolation while retaining the lightweightness

F3 unikernel

F3 Hypervisor

vFPGA manager

F3 API library

● F3 unikernel
○ ensures isolation for CPU contexts Function

API handler Buffers

Guest/host isolation
● F3 hypervisor

○ bridges guest functions and FPGAs

● vFPGA manager
○ restricts access to FPGA resources

VM 1 VM 2
Function A Function B

FPGA
Free

Bitstream
registry

vFPGA manager

Free

F3 Shell

#3: F3 Shell and vFPGA manager

14

Low-level device management mitigating FPGA-related overheads

Accelerator reuse

AES accelerator

invoke AES invoke AES

reuse an acceleratorreconfigure
(>100 ms)

AES

[1] “Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider”, USENIX ATC’20

Non-trivial for serverless functions:
50% of them complete within 1 sec[1]

#3: F3 Shell and vFPGA manager

15

Low-level device management mitigating FPGA-related overheads

F3 leverages Shell features to reduce FPGA’s start-up/communication latencies

Accelerator chain
VM 3

Function C

FPGA

vFPGA manager

AES acceleratorgzip accelerator

F3 Shell

tmp buffer

invoke gzip+AES receive final results only

FPGA
Accelerator

Worker nodes

Orchestrator

Collecting FPGA-related metrics for FPGA-centric orchestration

#4: FPGA-aware orchestrator

16

F3 orchestrator achieves fair, resource-efficient function scheduling

VM
Function(3) deployment decisions

Metrics
collector

(1) FPGA metrics

(2) scheduling
(scoring

each node)

● FPGA occupation time (↓ is better)
● Reconfiguration frequency (↓ is better)
● Accelerator reuse flag

vFPGA manager

Outline

17

● Motivation

● Overview

● Evaluation

Evaluation

Questions:

● What is the end-to-end performance gain of F3?

● How effective is FPGA function (accelerator) chaining?

18

Experimental setup:

● F3 prototype built upon OpenFaaS, Kubernetes, containerd, and Kata-runc

● Cluster : 1x leader (Xeon G5317@3.0GHz), 3x workers (Xeon G6238R@2.2GHz)

● FPGA : each worker node equipped with 1x AMD FPGA (Alveo U50)

See our paper
for more results!

Evaluation

19

Applications:

● 10 compute-intensive workloads suitable for FPGA acceleration

○ Encryption (AES-128-ECB)

○ Hashing (SHA3-512, MD5)

○ Compression (GZIP)

○ Convolutional neural network (HLS4ML[2])

○ Data analytics (HyperLogLog)

○ Etc.

[2] HLS4ML: Ultra fast machine learning for FPGAs., https://opensource.web.cern.ch/HLS4ML

https://opensource.web.cern.ch/HLS4ML

End-to-end performance

20

F3 achieves 28.6x average speedups (up to 150.3x) over a CPU-only baseline

2.1X

0.2X
1.2X

3.3X

113.0X

6.4X 5.8X

2.3X 150.3X

1.6X

Lower is better ↓

Intel CPU’s AES-NI instructions is faster

FPGA accelerator chaining

21

F3 function chaining achieves 1.4x to 1.7x speedups against OpenFaaS baselines

←Lower is better

OpenFaaS’s baselines

Chaining GZIP and AES accelerators

Hard-to-reconcile differences between serverless and FPGA execution models
● Development complexity due to low-level device management
● Lack of isolation for user code/data distributed across CPU & FPGA
● High invocation latency due to FPGA reconfiguration & communication overheads
● No orchestration support for FPGAs

F3: FPGA-accelerated FaaS Framework
● High-level API for easy FPGA execution
● Multi-tenant isolation for CPU & FPGA contexts
● Low invocation latency assisted by the FPGA Shell
● FPGA-aware orchestration

Summary

22

Paper Code

https://github.com/TUM-DSE/F3

https://github.com/TUM-DSE/F3

