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Towards a quantum computing era
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Quantum computers are a reality

There exists no OS support for quantum architectures!

A
Distributed architectures
Quantum cloud with 100.000s users
QOS is evaluated on IBM Falcon!
e IBM Nighthawk (360+ qubits)

e Quantinuum Sol (192 qubits)

Capabilities

e Google Willow (105 qubits)
e IBM Heron (156 qubits)

e |BM Falcon (27 qubits)

e Quantinuum H2 (56 qubits)
>
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How to manage quantum computers? TI.ITI

Classical cloud

Quantum cloud

kubernetes

£

Can we use existing cloud OSes for
quantum computers?

Unfortunately, no!

Quantum computers are fundamentally different compared to classical computers



Quantum 101: Programs are represented as circuits TI.ITI
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An example: Max-cut on a graph TI.ITI

run 1000s of times
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Quantum circuit execution
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Quantum circuit execution
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Challenge #: Fidelity [ TUTI

e QPUs are susceptible to noise errors

e (ircuit operations add noise errors

® The execution results are noisy

physical QPU layout I_‘ wiN ’_| ,

000 001 010 OI1 ---
(IBM Falcon)




Challenge #1: Fidelity |y TUTI

| Higher is better I I
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e QPUs are susceptible to noise errors
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e (ircuit operations add noise errors
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® The execution results are noisy
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Circuit Width [Number of Qubits]

Executed on IBM Kolkata, a 27-qubit Falcon QPU

Problem: Large circuits suffer from low execution fidelity

Key idea: Optimize the circuits to be smaller in width and depth
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Challenge #2: Utilization 2\

Large circuits — low fidelity (#1)
Small circuits — low utilization

Circuits cannot be preempted

42% utilization!

q0

q2

quantum circuit

physical QPU layout
(IBM Falcon)
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Challenge #2: Utilization 2N\ TUT

e large circuits — low fidelity (#1)

|Higher is better TI
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e Small circuits — low utilization
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e (ircuits cannot be preempted
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Executed on IBM Kolkata, a 27-qubit Falcon QPU

Problem: Solo circuit execution sacrifices either fidelity or QPU utilization

Key idea: Multi-program small circuits on a QPU to increase utilization
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Challenge #3: Heterogeneity 9@

e QPU qubits have different error rates

e QPUs have different error rates

e QPU error rates change over time

IBM Falcon: Perth IBM Falcon: Lagos
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Challenge #3: Heterogeneity 80% TUTI
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Problem: QPU fidelity varies across space and time

Kea idea: We can estimate the execution fidelity of a circuit a priori
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Challenge #4: Load imbalance 616 T”Tl

® QPUs are vastly heterogeneous s | Equal means load balance
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e Users want high fidelity
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® Providers want resource efficiency

Problem: Tradeoff between high fidelity and high resource efficiency

Key idea: Scheduling that optimizes both fidelity and resource efficiency
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The need for a quantum operating system TI.ITI

QPUs suffer from low fidelity performance, low utilization,
spatio-temporal heterogeneity, and vast load imbalance

How to design a unified operating system that manages heterogeneous QPUs
with high fidelity and high resource efficiency?
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Our proposal: QOS TI.ITI

Quantum Operating System (QOS)

The first unified system stack for managing QPUs while mitigating their limitations

Core contributions:

e High fidelity and high resource efficiency cireuts ﬂ U results

QOS
I L
fef e 1o
QPUs

e Systematic trade-off management

® Intra- and cross-stack optimizations (

e}
folk

[TTT]
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Outline

e duetion-Scrretivati

e System design
o System overview
o System Components
e Evaluation
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System overview

users

execution results ﬁﬂ quantum circuits

QOS

R
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System overview TI.ITI

users
Y
execution results ﬁﬂ quantum circuits
N QOS Compiler Optimizes circuits to increase
. { ! execution fidelity
Qernel abstraction
:/_ . . .
E— Multiplexes circuits across space
o ) . QOS Runtime and time to increase resource
circuit analysis properties .
efficiency
NV
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System overview and workflow

users

TUTI

ﬂ (1) quantum circuits

Compiler

(2) Optimizes circuits and
outputs Qernels
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(3) Estimates fidelity
performance
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System overview and workflow TUTI

users
D
Y
— execution results ﬁﬂ (1) quantum circuits
(7) Unbundles the results Compiler (2) Optimizes circuits and
¥ outputs Qernels
| . | (3) Estimates fidelity
: ESt"Iator performance
| . (4) Bundles Qernels to increase
B MUIt"proframmer | QPU utilization
| i (5) Schedules the bundles to
(6) Fetches bundled results Scheduler balance fidelity and QPU load
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System overview

users

execution results ﬁﬂ quantum circuits

I Compiler I
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Compiler TI_ITI

e How toincrease the execution fidelity on noisy QPUs?

o Compose complementary optimization techniques in a compilation pipeline
e Challenge: How to compose techniques that work on different abstractions?
e Approach: LLVM-like design with IR, analysis, and transformation passes

Qernel
analysis % transformation Z ZT ha
N anE i
a ] M passes IR passes optimized IR @
- TIPS py D D) T >
(orze) L
circuit properties updated L/

properties

> Frontend > Middle-end > Backend >
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Compiler: Middle-end TI_ITI

e Challenge: Which optimization techniques to apply and in what order?

e Approach: Identify hotspot operations that impact fidelity the most
o  Greedy algorithm that applies techniques in order of hotspot elimination efficiency

G e io

Directed Acyclic Graph

IR pass o IR’ pass 1 passn  final IR
hotspot analysis updated hotspots minimized hotspots

> Middle-end >

25



System overview

users

execution resultsﬁﬂ quantum circuits

Compiler
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Multi-programmer TI_ITI

e How toincrease QPU utilization?
o  Bundle multiple Qernels on the same QPU
e Challenge #1: Temporal utilization
o Unequal Qernel runtimes reduce temporal QPU utilization

Z‘l) ; @ @ @ idle qubits
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Q)&

S physical QPU layout
longer runtime (IBM Falcon)
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Multi-programmer

e Challenge #2: Destructive interference due to co-location
o  Crosstalk noise across Qernels lowers fidelity
o  Crosstalk depends on the physical distance

q0
q1 M
q2 e

physical QPU layout
(IBM Falcon)
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Multi-programmer

e Approach: Compatibility score & buffer zone
o  Effective utilization: Spatial + temporal utilization
o Compatibility score: Quantifies crosstalk chance
o Buffer zone: Unallocated qubits between Qernels

qo .

q1 M
compatibility e - negligible
score: > A - — crosstalk

q1 M

q2 —

similar runtimes



System overview

users

execution resultsﬁﬂ quantum circuits
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Scheduler

e How to balance QPU load?
o Evenly distribute Qernels across QPUs

e Challenge: Fidelity-load balance tradeoff
o Reason: QPU heterogeneity

e Approach: Multi-objective optimization
o  Criteria: fidelity or load balance
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Outline

Lntroduetion-Sotivati

*+—System-besign
o—System-Overview
e—Systerm-components

e Evaluation
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Evaluation TI_ITI

e Implemented in Python based on the Qiskit quantum SDK

e Main research questions (RQs):
o RQ1: What is the compiler’s impact on fidelity?

o RQ2: What is the multi-programmer’s impact on fidelity with increasing utilization?

Many more results in the paper!
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Evaluation methodology

e Setup: IBM 27-qubit Falcon QPUs, 64-core AMD EPYC 7713P
e Benchmarks: State-of-the-art quantum applications
e Baselines
o IBM’s Qiskit compiler, CutQC[1], A Case for Multi-programming [2]
e Metrics

o  Fidelity (Higher is better)
o Utilization (Higher is better)

[1] CutQC: using small Quantum computers for large Quantum circuit evaluations, ASPLOS ‘21
[2] A Case for Multi-Programming Quantum Computers, MICRO ‘19
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RQ #1: Compiler performance TI.ITI
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QOS achieves 2.5x and 430x higher fidelity compared to CutQC and Qiskit
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RQ #2: Multi-programmer performance
| Higher is better 1 |
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QOS achieves 9.6x and 15% higher fidelity than solo execution and the baseline



Conclusion

e Quantum computers face unique challenges:
Low fidelity performance

Low utilization

Vast heterogeneity

Vast load imbalance

O O O O

e Quantum Operating System (QOS):
o Improved fidelity with complementary compilation passes
o Improved resource efficiency with multi-programming and scheduling

emmanouil.giortamis@tum.de

github.com/TUM-DSE/QOS
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