
QOS
Quantum Operating System

Emmanouil (Manos) Giortamis, Francisco Romão, 
Nathaniel Tornow, Pramod Bhatotia

USENIX OSDI 2025, Boston, USA

Technical University of Munich



Towards a quantum computing era

2

Industry R&D and adoption

Chemistry Machine learning

Cryptography Material science

Promising applications



Quantum computers are a reality

3Time

Ca
pa

bi
lit

ie
s

2023 2025 2027+

● IBM Falcon (27 qubits)
● Quantinuum H2 (56 qubits)

● Google Willow (105 qubits)
● IBM Heron (156 qubits)

● IBM Nighthawk (360+ qubits)
● Quantinuum Sol (192 qubits)

QOS is evaluated on IBM Falcon!

Quantum cloud with 100.000s users

Distributed architectures

There exists no OS support for quantum architectures!



How to manage quantum computers?

4

Classical cloud Quantum cloud

Can we use existing cloud OSes for 
quantum computers?

Unfortunately, no!

Quantum computers are fundamentally different compared to classical computers



Quantum 101: Programs are represented as circuits

qreg q[3];

5

h q[0];

cx q[0], q[1];

cx q[0], q[2];

creg c[3];

measure q -> c; qubit initialization

unary gate binary 
gates

measurements

width

depth / time

both 0 and 1!



An example: Max-cut on a graph 

6

graph to max-cut quantum circuit
Quantum 

Processing Unit 
(QPU)

0

1 2

p(011) = 0.71
p(001) = 0.04
p(111) = 0.01
      …

execution result

0

1 2

max-cut solution

run 1000s of times



Quantum circuit execution

7

quantum circuit QPU



Quantum circuit execution

8

quantum circuit

#1 Fidelity #2 Utilization #3 Heterogeneity #4 Load imbalance

Qo Q1 Q2

Q3

Q4 Q5 Q6

physical QPU layout 
(IBM Falcon)

Qo Q1 Q2



Challenge #1: Fidelity

● QPUs are susceptible to noise errors

● Circuit operations add noise errors

● The execution results are noisy

9

Qo Q1 Q2

Q3

Q4 Q5 Q6

physical QPU layout 
(IBM Falcon)



Challenge #1: Fidelity

● QPUs are susceptible to noise errors

● Circuit operations add noise errors

● The execution results are noisy

10

Problem: Large circuits suffer from low execution fidelity

98.9% drop

Key idea: Optimize the circuits to be smaller in width and depth

Executed on IBM Kolkata, a 27-qubit Falcon QPU



Challenge #2: Utilization

● Large circuits → low fidelity (#1)

● Small circuits → low utilization

● Circuits cannot be preempted

11

Qo Q1 Q2

Q3

Q4 Q5 Q6

physical QPU layout 
(IBM Falcon)

quantum circuit

42% utilization!

Qo Q1 Q2



Challenge #2: Utilization

● Large circuits → low fidelity (#1)

● Small circuits → low utilization

● Circuits cannot be preempted

12

Problem: Solo circuit execution sacrifices either fidelity or QPU utilization

Key idea: Multi-program small circuits on a QPU to increase utilization

~27%

Executed on IBM Kolkata, a 27-qubit Falcon QPU



Challenge #3: Heterogeneity

● QPU qubits have different error rates

● QPUs have different error rates

● QPU error rates change over time

13

Qo Q1 Q2

Q3

Q4 Q5 Q6

IBM Falcon: Perth

0.1% 0.2% 0.14%

0.08%0.1%0.22%

0.07%

1% 1.3%

2.1%

1.1%

0.9%1.6%

IBM Falcon: Lagos

Qo Q1 Q2

Q3

Q4 Q5 Q6

0.9%

1.1%

1.4%

0.6%2%

1.2%



Challenge #3: Heterogeneity

● QPU qubits have different error rates

● QPUs have different error rates

● QPU error rates change over time

14

Problem: QPU fidelity varies across space and time

Kea idea: We can estimate the execution fidelity of a circuit a priori



Challenge #4: Load imbalance

● QPUs are vastly heterogeneous

● Users want high fidelity

● Providers want resource efficiency

15

Problem: Tradeoff between high fidelity and high resource efficiency

✕57

Key idea: Scheduling that optimizes both fidelity and resource efficiency  



The need for a quantum operating system

16

How to design a unified operating system that manages heterogeneous QPUs 
with high fidelity and high resource efficiency?

QPUs suffer from low fidelity performance, low utilization,                      
spatio-temporal heterogeneity, and vast load imbalance 



Our proposal: QOS

17

Core contributions:
● High fidelity and high resource efficiency

● Systematic trade-off management

● Intra- and cross-stack optimizations

circuits results

QPUs

Quantum Operating System (QOS)

The first unified system stack for managing QPUs while mitigating their limitations

QOS



Outline

● Introduction & motivation
● System design

○ System overview
○ System Components

● Evaluation

18



System overview

19

quantum circuits

QPUs

users

execution results

QOS



System overview

20

quantum circuits

QOS Compiler

QPUs

QOS Runtime

users

Optimizes circuits to increase 
execution fidelity

Multiplexes circuits across space 
and time to increase resource 

efficiency

execution results

Qernel abstraction

circuit analysis properties



System overview and workflow

21

Compiler

Estimator

users

(3) Estimates fidelity 
performance

(2) Optimizes circuits and 
outputs Qernels

(1) quantum circuits

QPUs

Runtime



System overview and workflow

22

Compiler

Estimator

Multi-programmer

Scheduler

users

execution results

(3) Estimates fidelity 
performance

(4) Bundles Qernels to increase 
QPU utilization

(2) Optimizes circuits and 
outputs Qernels

(5) Schedules the bundles to 
balance fidelity and QPU load 

(1) quantum circuits

(6) Fetches bundled results

(7) Unbundles the results

QPUs



4.7

System overview

23

Compiler

Estimator

Multi-programmer

Scheduler

QPUs Classical nodes

users

execution results (1) quantum circuits



Compiler

● How to increase the execution fidelity on noisy QPUs?
○ Compose complementary optimization techniques in a compilation pipeline

● Challenge: How to compose techniques that work on different abstractions?
● Approach: LLVM-like design with IR, analysis, and transformation passes 

24

(large)
circuit

Frontend Middle-end Backend

analysis 
passes

transformation 
passesIR

properties

optimized IR

updated 
properties

Qernel



Compiler: Middle-end

● Challenge: Which optimization techniques to apply and in what order?
● Approach: Identify hotspot operations that impact fidelity the most 

○ Greedy algorithm that applies techniques in order of hotspot elimination efficiency 

25

Middle-end

Directed Acyclic Graph
IR

pass 0 IR’ pass 1 pass n

hotspot analysis updated hotspots

…
final IR

minimized hotspots



4.7

System overview

26

quantum circuits

Compiler

Estimator

Multi-programmer

Scheduler

QPUs Classical nodes

users

execution results



Multi-programmer

27

Qo Q1 Q2

Q3

Q4 Q5 Q6

physical QPU layout 
(IBM Falcon)

Q0 Q1 Q2

Q3

Q4 Q5 Q6

● How to increase QPU utilization?
○ Bundle multiple Qernels on the same QPU

● Challenge #1: Temporal utilization
○ Unequal Qernel runtimes reduce temporal QPU utilization

longer runtime

idle qubits



Multi-programmer

28

Qo Q1 Q2

Q3

Q4 Q5 Q6

physical QPU layout 
(IBM Falcon)

Q0 Q1 Q2

Q3

Q4 Q5 Q6

crosstalk!

● Challenge #2: Destructive interference due to co-location
○ Crosstalk noise across Qernels lowers fidelity
○ Crosstalk depends on the physical distance



Multi-programmer

● Approach: Compatibility score & buffer zone
○ Effective utilization: Spatial + temporal utilization
○ Compatibility score: Quantifies crosstalk chance
○ Buffer zone: Unallocated qubits between Qernels

29

Qo Q1 Q2

Q3

Q4 Q5 Q6

Q0 Q1 Q2

Q4 Q5 Q6

buffer zoneQ3
negligible 
crosstalk

similar runtimes

compatibility 
score: > Δ



4.7

System overview

30

quantum circuits

Compiler

Estimator

Multi-programmer

Scheduler

QPUs Classical nodes

users

execution results



Scheduler

● How to balance QPU load?
○ Evenly distribute Qernels across QPUs

● Challenge: Fidelity-load balance tradeoff
○ Reason: QPU heterogeneity

● Approach: Multi-objective optimization
○ Criteria: fidelity or load balance

31

40 s 10 s

Scheduler

x4 lower

3% lower fidelity



Outline

● Introduction & Motivation
● System Design

○ System Overview
○ System Components

● Evaluation

32



Evaluation

● Implemented in Python based on the Qiskit quantum SDK

● Main research questions (RQs):
○ RQ1: What is the compiler’s impact on fidelity?

○ RQ2: What is the multi-programmer’s impact on fidelity with increasing utilization?

33

Many more results in the paper!



Evaluation methodology

● Setup: IBM 27-qubit Falcon QPUs, 64-core AMD EPYC 7713P
● Benchmarks: State-of-the-art quantum applications
● Baselines 

○ IBM’s Qiskit compiler, CutQC [1], A Case for Multi-programming [2] 
● Metrics

○ Fidelity (Higher is better)
○ Utilization (Higher is better)

34

[1] CutQC: using small Quantum computers for large Quantum circuit evaluations, ASPLOS ‘21
[2] A Case for Multi-Programming Quantum Computers, MICRO ‘19



RQ #1: Compiler performance

35

QOS achieves 2.5x and 430x higher fidelity compared to CutQC and Qiskit

Executed on IBM 
Kolkata, a 27-qubit 

Falcon QPU



RQ #2: Multi-programmer performance

36

QOS achieves 9.6x and 15% higher fidelity than solo execution and the baseline

Executed on IBM 
Kolkata, a 27-qubit 

Falcon QPU



Conclusion

● Quantum computers face unique challenges:
○ Low fidelity performance
○ Low utilization
○ Vast heterogeneity
○ Vast load imbalance
○

● Quantum Operating System (QOS): 
○ Improved fidelity with complementary compilation passes
○ Improved resource efficiency with multi-programming and scheduling

37

emmanouil.giortamis@tum.de

github.com/TUM-DSE/QOS

mailto:emmanouil.giortamis@tum.de
https://github.com/TUM-DSE/QOS

