QOS

Quantum Operating System

Emmanouil (Manos) Giortamis, Francisco Romao,
Nathaniel Tornow, Pramod Bhatotia

Technical University of Munich

TUTi

USENIX OSDI 2025, Boston, USA

Towards a quantum computing era

. @ . Google Al
.(oMo I B M Q Quantum
¢ @ iy

o -0

Chemistry Machine learning T

[Q)
(=
Lvn

._L L Amazon Braket
r c‘\:
o L.
T C. Q ‘ﬁl Azure Quantum
Cryptography Material science e

QUANTINUUM

Promising applications Industry R&D and adoption

TUTI

Quantum computers are a reality

There exists no OS support for quantum architectures!

A
Distributed architectures
Quantum cloud with 100.000s users
QOS is evaluated on IBM Falcon!
e IBM Nighthawk (360+ qubits)

e Quantinuum Sol (192 qubits)

Capabilities

e Google Willow (105 qubits)
e IBM Heron (156 qubits)

e |BM Falcon (27 qubits)

e Quantinuum H2 (56 qubits)
>
2027+

2023 2025
Time

How to manage quantum computers? TI.ITI

Classical cloud

Quantum cloud

kubernetes

£

Can we use existing cloud OSes for
quantum computers?

Unfortunately, no!

Quantum computers are fundamentally different compared to classical computers

Quantum 101: Programs are represented as circuits TI.ITI

qreg q[31; unary gate binary
both o and 1!
gates o

h q[0]; Al90
cx g[0], glll;

width di
cx g[0], gl2];

q2
creg c[3]; v
qubit initialization measurements

measure g —-> C;
-

depth [time

An example: Max-cut on a graph TI.ITI

run 1000s of times

0 o« =

Q0 1111 p(011) =
— | = plon -
o 9 Q2 TTTT1

p(ll1l) =
Quantum
graph to max-cut quantum circuit Processing Unit execution result max-cut solution

(QPU)

Quantum circuit execution

qo [
Q1 M
q2

quantum circuit

QPU

Quantum circuit execution

q0
q1
q2

[

ot

et

-0

quantum circuit

physical QPU layout
(IBM Falcon)

#1 Fidelity

Py

#2 Utilization

2N

#3 Heterogeneity

00A
00
wOA

#4 Load imbalance

é[°

Challenge #: Fidelity [TUTI

e QPUs are susceptible to noise errors

e (ircuit operations add noise errors

® The execution results are noisy

physical QPU layout I_‘ wiN ’_| ,

000 001 010 OI1 ---
(IBM Falcon)

Challenge #1: Fidelity |y TUTI

| Higher is better I I

0.96 0.12 0.01

e QPUs are susceptible to noise errors

-
=

o
[«

e (ircuit operations add noise errors

o
o

98.9% drop

Fidelity

o
~

® The execution results are noisy

=
N

o
=]

4 16 24
Circuit Width [Number of Qubits]

Executed on IBM Kolkata, a 27-qubit Falcon QPU

Problem: Large circuits suffer from low execution fidelity

Key idea: Optimize the circuits to be smaller in width and depth

A |

10

Challenge #2: Utilization 2\

Large circuits — low fidelity (#1)
Small circuits — low utilization

Circuits cannot be preempted

42% utilization!

q0

q2

quantum circuit

physical QPU layout
(IBM Falcon)

11

Challenge #2: Utilization 2N\ TUT

e large circuits — low fidelity (#1)

|Higher is better TI

O
(=]

~
(&3]

e Small circuits — low utilization

D
o

Utilization [%]

e (ircuits cannot be preempted

w N~
S [&
3
/
i
/
i
1
1
1
1
1
1
1
1
1
I
]
1
[
1
|
1
'
!
i
1
1
!
1
I
1
2 4
1
1
1
7
1
1
’
’
/
1

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

Executed on IBM Kolkata, a 27-qubit Falcon QPU

Problem: Solo circuit execution sacrifices either fidelity or QPU utilization

Key idea: Multi-program small circuits on a QPU to increase utilization

12

00A

Challenge #3: Heterogeneity 9@

e QPU qubits have different error rates

e QPUs have different error rates

e QPU error rates change over time

IBM Falcon: Perth IBM Falcon: Lagos

13

Challenge #3: Heterogeneity 80% TUTI
§€ #3: & Y %OA
e QPU qubits have different error rates [ow| [igher s better 1|
- Eroms o]
e QPUs have different error rates o N~ =~
Q 2084 \\',gj"’ \\ \
h £ 06 \\ g
° PU error rates change over time
Q g 0.80 / ~
0.78 o
_QF023-11-02 2023-11-03 2023-11-04 2023-11-05I
Date

Problem: QPU fidelity varies across space and time

Kea idea: We can estimate the execution fidelity of a circuit a priori

14

Challenge #4: Load imbalance 616 T”Tl

® QPUs are vastly heterogeneous s | Equal means load balance

o

[

Q <O)
‘ \>°\“\0<\ o @
2

IBM QPU

=y
o
(&

e Users want high fidelity

=y
o
N

umber of Pending Jobs

N
S, o

® Providers want resource efficiency

Problem: Tradeoff between high fidelity and high resource efficiency

Key idea: Scheduling that optimizes both fidelity and resource efficiency

15

The need for a quantum operating system TI.ITI

QPUs suffer from low fidelity performance, low utilization,
spatio-temporal heterogeneity, and vast load imbalance

How to design a unified operating system that manages heterogeneous QPUs
with high fidelity and high resource efficiency?

16

Our proposal: QOS TI.ITI

Quantum Operating System (QOS)

The first unified system stack for managing QPUs while mitigating their limitations

Core contributions:

e High fidelity and high resource efficiency cireuts ﬂ U results

QOS
I L
fef e 1o
QPUs

e Systematic trade-off management

® Intra- and cross-stack optimizations (

e}
folk

[TTT]

17

Outline

e duetion-Scrretivati

e System design
o System overview
o System Components
e Evaluation

18

System overview

users

execution results ﬁﬂ quantum circuits

QOS

R

19

System overview TI.ITI

users
Y
execution results ﬁﬂ quantum circuits
N QOS Compiler Optimizes circuits to increase
. { ! execution fidelity
Qernel abstraction
:/_ . . .
E— Multiplexes circuits across space
o) . QOS Runtime and time to increase resource
circuit analysis properties .
efficiency
NV

20

System overview and workflow

users

TUTI

ﬂ (1) quantum circuits

Compiler

(2) Optimizes circuits and
outputs Qernels

P * """""""""""" |

Estimator

(3) Estimates fidelity
performance

v

Runtime

18E

g

pUETEY

18

T

)
LLLLL

21

System overview and workflow TUTI

users
D
Y
— execution results ﬁﬂ (1) quantum circuits
(7) Unbundles the results Compiler (2) Optimizes circuits and
¥ outputs Qernels
| . | (3) Estimates fidelity
: ESt"Iator performance
| . (4) Bundles Qernels to increase
B MUIt"proframmer | QPU utilization
| i (5) Schedules the bundles to
(6) Fetches bundled results Scheduler balance fidelity and QPU load

22

System overview

users

execution results ﬁﬂ quantum circuits

I Compiler I
oottt TTTT T T T T T T * """""""""""" :

Estimator

l Multi-programmer I

i Scheduler |

Us Classical nodes
LLLLL L o A o Rl
of fof
BE 32 A T

23

Compiler TI_ITI

e How toincrease the execution fidelity on noisy QPUs?

o Compose complementary optimization techniques in a compilation pipeline
e Challenge: How to compose techniques that work on different abstractions?
e Approach: LLVM-like design with IR, analysis, and transformation passes

Qernel
analysis % transformation Z ZT ha
N anE i
a] M passes IR passes optimized IR @
- TIPS py D D) T >
(orze) L
circuit properties updated L/

properties

> Frontend > Middle-end > Backend >

24

Compiler: Middle-end TI_ITI

e Challenge: Which optimization techniques to apply and in what order?

e Approach: Identify hotspot operations that impact fidelity the most
o Greedy algorithm that applies techniques in order of hotspot elimination efficiency

G e io

Directed Acyclic Graph

IR pass o IR’ pass 1 passn final IR
hotspot analysis updated hotspots minimized hotspots

> Middle-end >

25

System overview

users

execution resultsﬁﬂ quantum circuits

Compiler

P * """""""""""" |

Estimator

I Multi-programmer

Scheduler

Us Classical nodes
LLLLL L o A o Rl
of fof
BE 32 A T

Multi-programmer TI_ITI

e How toincrease QPU utilization?
o Bundle multiple Qernels on the same QPU
e Challenge #1: Temporal utilization
o Unequal Qernel runtimes reduce temporal QPU utilization

Z‘l) ; @ @ @ idle qubits

q2 _—

qo0
q1
q2
q3

Q)&

S physical QPU layout
longer runtime (IBM Falcon)

27

Multi-programmer

e Challenge #2: Destructive interference due to co-location
o Crosstalk noise across Qernels lowers fidelity
o Crosstalk depends on the physical distance

q0
q1 M
q2 e

physical QPU layout
(IBM Falcon)

28

Multi-programmer

e Approach: Compatibility score & buffer zone
o Effective utilization: Spatial + temporal utilization
o Compatibility score: Quantifies crosstalk chance
o Buffer zone: Unallocated qubits between Qernels

qo .

q1 M
compatibility e - negligible
score: > A - — crosstalk

q1 M

q2 —

similar runtimes

System overview

users

execution resultsﬁﬂ quantum circuits

Compiler

P * """""""""""" |

Estimator

Multi-programmer

i Scheduler |

Us Classical nodes
LLLLL L o A o Rl
of fof
BE 32 A T

30

Scheduler

e How to balance QPU load?
o Evenly distribute Qernels across QPUs

e Challenge: Fidelity-load balance tradeoff
o Reason: QPU heterogeneity

e Approach: Multi-objective optimization
o Criteria: fidelity or load balance

31

Outline

Lntroduetion-Sotivati

*+—System-besign
o—System-Overview
e—Systerm-components

e Evaluation

32

Evaluation TI_ITI

e Implemented in Python based on the Qiskit quantum SDK

e Main research questions (RQs):
o RQ1: What is the compiler’s impact on fidelity?

o RQ2: What is the multi-programmer’s impact on fidelity with increasing utilization?

Many more results in the paper!

33

Evaluation methodology

e Setup: IBM 27-qubit Falcon QPUs, 64-core AMD EPYC 7713P
e Benchmarks: State-of-the-art quantum applications
e Baselines
o IBM’s Qiskit compiler, CutQC[1], A Case for Multi-programming [2]
e Metrics

o Fidelity (Higher is better)
o Utilization (Higher is better)

[1] CutQC: using small Quantum computers for large Quantum circuit evaluations, ASPLOS ‘21
[2] A Case for Multi-Programming Quantum Computers, MICRO ‘19

34

RQ #1: Compiler performance TI.ITI

lmher is better 1

o | Hs- QSVM VQE-1 |
' E
/|
J Y v 1
0.8 e ; 2 J:/
.06 \é /1 \é Executed on IBM
3 N% ? \? Kolkata, a 27-qubit
i g4 \é ; % Falcon QPU
g 7 \//
0.2 N\ 1) /|
g 7 Ng
\7 A 7
ni%a% N A\
e [0 24 12 24 12 24
Circuit Width [Number of Qubits
QIskit utQC Q0S

QOS achieves 2.5x and 430x higher fidelity compared to CutQC and Qiskit

35

TUTI

RQ #2: Multi-programmer performance
| Higher is better 1 |

1.0

Bl
4

0.8 T
P |
7

200 T
© IN
i 0.4 / / Executed on IBM

' \/ Kolkata, a 27-qubit

/ / Falcon QPU

0.2 / i \ /

0.0 /
e 30 60 88

Utilization [%]
[Baseline M/P [ZZA QOS M/P

=Z3 No M/P

QOS achieves 9.6x and 15% higher fidelity than solo execution and the baseline

Conclusion

e Quantum computers face unique challenges:
Low fidelity performance

Low utilization

Vast heterogeneity

Vast load imbalance

O O O O

e Quantum Operating System (QOS):
o Improved fidelity with complementary compilation passes
o Improved resource efficiency with multi-programming and scheduling

emmanouil.giortamis@tum.de

github.com/TUM-DSE/QOS

37

mailto:emmanouil.giortamis@tum.de
https://github.com/TUM-DSE/QOS

