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Abstract
Quantum computers face challenges due to hardware

constraints, noise errors, and heterogeneity, and face
fundamental design tradeoffs between key performance
metrics such as quantum fidelity and system utilization. This
substantially complicates managing quantum resources to
scale the size and number of quantum algorithms that can
be executed reliably in a given time.
We introduce QOS, a modular quantum operating system

that holistically addresses the challenges of quantum resource
managementby systematically exploring keydesign tradeoffs
across the stack. QOS exposes a hardware-agnostic API for
transparent quantum job execution, mitigates hardware
errors, and systematically multi-programs and schedules
the jobs across space and time to achieve high quantum
fidelity in a resource-efficientmanner. QOS’smodular design
enables synergistic cross- and intra-layer optimizations,
while introducing new concepts such as compatibility-based
multi-programming and effective utilization.

We evaluate QOS on real quantum devices hosted by IBM,
using 7000 real quantum runs ofmore than 70.000 benchmark
instances. We show that the QOS achieves 2.6–456.5× higher
fidelity, increases resource utilization by up to 9.6×, and
reduces waiting times by up to 5× while sacrificing only
1–3% fidelity, on average, compared to the baselines.

1 Introduction

Quantum computing promises to solve computationally
intractable problems with classical computers [2, 12, 25, 68].
Thanks to remarkable technological advances inmaterials sci-
enceandengineering,quantumhardwarehasbecomeareality
in the formof quantumprocessing units (QPUs) [19,27,69]. In-
terestingly,QPUs are nowreadily available in a quantum-as-a-
service fashionofferedbyallmajorcloudproviders [3,5,24,32].
However, QPUs present fundamentally unique hardware-

level challenges that cannot be directly mapped to classical
accelerator-oriented computing (we empirically detail these
hardware challenges in § 3). In particular, QPUs operate in
the NISQ-fashion (Noisy Intermediate-Scale Quantum [57]),
leading to strict hardware constraints and a non-deterministic
computing platform [50, 61].

More specifically, QPUs are inherently noisy and small in
computational capacity, which limits the size of the problems
they can solve [57]. Second, the degree of noise differs across
QPUs and time, even of identical architecture and model,
making it difficult to decide which QPUs should execute a
quantum programwith good performance [61]. In addition,
we can not trivially multi-programmultiple quantum jobs on
the sameQPU to increase utilizationwithout them interfering
with each other in undesirable and unpredictable ways [45],
severely degrading performance [40]. Last, scheduling
quantum jobs on heterogeneous noisy QPUs exhibits a
fundamental tension between quantum performance metrics,
such as fidelity [21], and classical performance metrics, such
as utilization and load balance (i.e., resource efficiency).

Unfortunately, these problems are amplified by the current
state of software,whereQPUs aremanaged through rudimen-
tary interfaces, despite the ever-increasing demand for these
scarce resources [1, 50, 61]. Researchers have proposed spe-
cializedapproaches to address someof the aforementionedOS
andQPUchallenges individually, for instance,fidelitywithout
runtime support [4],basicmulti-programmingviaFIFOorran-
domjobselection [16],orheuristics-basedscheduling [62].Un-
fortunately, these systems are designed in isolation,are tightly
coupled to specific policies, and lack the architectural flexibil-
ity and interoperability needed for cross-stack coordination.

At the same time, in industry platforms like IBMCloud [32]
and AWS Braket [3], multi-programming is not supported,
and users must improve fidelity and select QPUsmanually.
However, the noisy, scarce, and heterogeneous nature of
QPUs naturally motivates users to select the best-performing
QPUs, further amplifying the already high QPU load
imbalance and queue waiting times [50, 61].
In total, there is still no operating system that addresses

quantum job and resource management in a unified and
systematic way, i.e., an architecture that supports com-
posable, cross-layer mechanisms designed specifically for
the constraints of quantum computing. Such a system
must integrate error mitigation techniques to improve
fidelity, fidelity-aware performance estimation to handle the
spatiotemporal variability of QPUs, multi-programming to
increase utilization through compatibility-aware co-location
of quantum jobs, and a scheduler that balances QPU load and
reduces queue times—all under a single, unified stack.
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Figure 1: Foundational example (§ 2.1). (a) Input graph
to max-cut. (b) A quantum circuit encoding the max-cut
formulation for the graph. (c) The execution result is a
probability distribution of bitstrings. (d) The result is
interpreted as amax-cut between vertices {a,d} and {b,c,e}.

To fill this gap, we propose QOS, a quantum operating sys-
tem for holistically tackling quantum computing challenges
through a modular, cross-layer architecture. At the core of
QOS lies theQernel abstraction—the common denominator
that enables the seamless composition of diverse system
mechanisms and facilitates cross-layer optimizations.
QOS abstracts away the underlying complexity of quan-

tum resource management and systematically explores the
associated tradeoffs of quantum computing. To achieve this,
QOS exposes hardware-agnostic APIs and comprises four
main components: (1) the error mitigator, a component that
composes complementary techniques to increase fidelity by
mitigating hardware noise, (2) the estimator, which predicts
fidelity performance across heterogeneous QPUs to guide
scheduling decisions, (3) themulti-programmer that bundles
compatible jobs on the same QPU to improve QPU utilization
while minimizing fidelity loss, and (4), the scheduler, which
performs fidelity-aware, multi-objective job scheduling to
reduce queueing latency and balance QPU load.
We implement QOS in Python by building on the Qiskit

framework [33]. We evaluate QOS on IBM’s 27-qubit
QPUs [32], using a dataset of more than 7000 quantum runs
and 70.000 state-of-the-art quantum benchmark instances
used in popular quantum algorithms [38, 60, 76]. Our
evaluation shows that the errormitigator improves execution
fidelity by 2.6–456.5× on average, depending on the problem
size (§ 9.2), the estimator correctly identifies high-fidelity
QPUs (§ 9.3), themulti-programmerfidelity by1.15–9.6× for a
target utilization (§ 9.4), and the scheduler reduces thewaiting
times by 5×while sacrificing at most 3% of fidelity (§ 9.6).
Contributions.Our main contributions include:
1. QOS is the first quantumoperating system to holistically

address the challenges of quantum computing. Its
modular architecture and the introduction of the Qernel
abstraction enable a clean separation of mechanism
and policy, enabling flexible integration of evolving
techniques without modifying system interfaces.

2. QOS enables both cross-layer and intra-layer op-
timizations through its end-to-end system design.
QOS’s components synergistically optimize fidelity
and resource efficiency while supporting composable
techniques within individual layers.

3. QOS systematically explores and manages key quantum
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Figure 2: Technical Foundations (§ 2.2). (a) The quantum
circuit of Figure 1. (b) The physical layout of an IBM Falcon
QPU. (c) The transpiled circuit with the QPU’s noise sources.

computing tradeoffs, including: (i) fidelity vs. runtime
overheads in error mitigation and performance estima-
tion; and (ii) fidelity vs. QPU utilization, as well as job
waiting times, in multi-programming and scheduling.

4. QOS introduces technical novelties across the quantum
software stack: (i) the Qernel abstraction as a unifying
execution unit, (ii) the composable error mitigation
pipeline that is the first to combine circuit cutting,
qubit reuse, and qubit freezing—techniques that
amplify each other when composed non-trivially, (iii) a
multi-programming model introducing the concepts of
compatibility scoring and effective utilization, enabling
higher-fidelity circuit co-location, and (iv) the first
multi-objective, fidelity-aware scheduler that jointly
considers fidelity and waiting times.

Artifact availability. QOS is publicly available at
https://github.com/TUM-DSE/QOS.

2 Background

2.1 QuantumComputing 101
Quantum computers solve specific computationally hard
problems exponentially faster than classical computers by
leveraging the quantummechanics principles of superposition
and entanglement. Specifically, the basic units of quantum
computation are qubits, which during quantum computation
are both 0 and 1 at the same time (recall Schrodinger’s cat
experiment [65]), and when entangled, they can interact with
each other even over large distances [41].
To solve NP-hard problems (e.g., maximum-cut) with

quantum computers, we use algorithms such as the Quantum
Approximate Optimization Algorithm (QAOA) [20]. This
algorithm is considered practical for today’s quantum
hardware capabilities and influential towards achieving
quantum advantage [63].
Foundational example. Figure 1 shows howQAOA solves
an example max-cut problem for an input graph (a). First,
the graph is encoded as a quantum circuit. Quantum circuits
comprise qubits and quantum gates, akin to logical gates in
classical circuits (e.g. NOT, XOR), which are applied over time
(from left to right). In the max-cut case, each graph vertex
corresponds to a qubit and each edge to a 2-qubit gate in the
circuit (b). At the end of the circuit, we measure each qubit
to read its value, which gives bitstrings as output. Notably,
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Figure 3: (a) Challenge #1, Fidelity (§ 3.1). Impact of the number of qubits (circuit size) on fidelity. There is an average 98.9%
reduction in fidelity from 4 to 24 qubits. (b) Challenge #2, Spatial heterogeneity (§ 3.2). Fidelity of a 12-qubit GHZ circuit on
different IBM QPUs. There is a 38% fidelity difference from best to worst QPU.

measurements collapse the superposition state to a definite
binary value.
Since quantummechanics is inherently probabilistic, the

bitstring we get is truly random, but due to the algorithm
structure, it follows a probability distribution, which ulti-
mately renders quantum computers useful. Thus, we execute
the circuit in many trials (“shots” ), with each trial providing
a specific bitstring from the qubit measurements. The
solution of the quantum calculation is, therefore, a probability
distribution over all possible bitstrings of the measured
qubits, where high probability maps to the solution, while
low (∼ 0) does not represent a solution (c). In our example,
the bitstring 10001 represents the max-cut solution that
contains the partitions {a, d} and {b, c, e} (d).

2.2 Technical Foundations

ExecutionModel.The technology and engineering required
to build QPUs renders them an expensive resource, i.e., there
are less than 100 QPUs globally offered in the cloud in a
quantum-as-a-service fashion [3, 5, 24, 32]. To run quantum
programs, users typically write circuit-level code (Figure 2
(a)), which then transpile on the QPU to make it executable,
send it to the cloud for execution, and finally get the results
back. Specifically, the transpilation process performs three
key steps: (1) converting the gates of the circuit to the native
gate set of the QPU, (2) mapping the logical qubits of the
circuit to the physical qubits of the QPU, (3) routing the
qubits to the physical qubits with restrictive connectivity
by inserting additional costly gates. Figure 2 (b) shows the
physical layout of an IBM Falcon QPU. Vertices are the
physical qubits, and the edges capture their connectivity, i.e.,
between which qubits we can apply 2-qubit gates. Figure 2 (c)
shows the physical circuit after transpilation with the QPU’s
noise characteristics, which we detail next.
QPU characteristics. Today’s QPUs are described as
noisy intermediate-scale quantum (NISQ) devices [57] since
they exhibit low qubit numbers (e.g., up to a few 100s [32])
and are susceptible to hardware and environmental noise.
Specifically, when measuring a qubit, there is a chance to
read the opposite value, and when applying gates, there is

a chance the gate performs a wrong operation [23]. On top of
that, when qubits are left idle (no gates applied) formore than
a few hundred microseconds, the superposition decoheres to
the |0⟩ state [35], similar to resetting a register to 0. Lastly,
qubits destructively interfere with each other via crosstalk
effects [45]. Figure 2 (c) shows qubitsQ0 andQ3 that influence
each other via crosstalk, noisy gates, qubit Q0 that is left idle
for long enough to decohere, and noisy measurements.
QPU heterogeneity. Additionally, QPUs are vastly
heterogeneous across space and time, unlike classical
accelerators. Across space, QPUs vary in terms of technology,
e.g., superconducting qubits [19, 69] or trapped ions [30],
architectures of the same technology, e.g., Falcon or Osprey
superconducting QPUs [32], and noise properties (formally
called noisemodel) even for the same architecture [23],
e.g., two identical QPUs exhibit different noise errors, etc.
Across time, the QPUs are calibrated regularly to maintain
their performance [31, 77, 82], a process that generates
calibration data. These data quantify the noise errors and
change unpredictably after each calibration cycle.
Performancemetric. To measure the quality of a circuit ex-
ecution onNISQQPUs,we use thefidelitymetric [21],which
measures the similarity between the noisy probability dis-
tribution and the ideal probability distribution that noiseless,
ideal QPUs can obtain. Given two probability distributions
over measurement outcomes, the ideal Pideal and the noisy
Pnoisy distributions, fidelity is computed as: F(Pideal ,Pnoisy)=

(∑i
√

Pideal(i)·Pnoisy(i))2. Fidelity is a number in the [0, 1]
range, where a higher fidelity means a better quality result.
Circuit properties. Execution fidelity is impacted by the
aforementioned QPU noise model and the circuit properties
that describe the circuit’s complexity and, thus, susceptibility
to errors. Circuitwidth refers to the number of logical qubits
involved in the circuit and typically also the physical (H/W)
qubits required to execute it. Circuit depth denotes the largest
number of layers of gates applied to the qubits and quantifies
the circuit runtime. A larger depth typically indicates a higher
chance for decoherence errors. Last, the number of non-local
gates refers to the gates that act on non-adjacent qubits,
which are particularly susceptible to errors in NISQ devices.
Generally, larger circuits (larger width, depth, or number of
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Figure 4: (a) Challenge #2, Temporal variance (§ 3.2). Fidelity of a 6-qubit GHZ circuit on IBM Perth, across 120 calibration days.
There are 20 pairs of days with more than 5% difference in fidelity. (b) Challenge #3, Utilization (§ 3.3).Maximum utilization
achieved on a 27-qubit QPU for nine benchmarks while maintaining at least 0.75 fidelity. The average utilization is 26.3%, and
the max is 29.6%. (c) Challenge #4, QPU Load (§ 3.4). Number of pending jobs on different IBM QPUs. The groups separated
by vertical red lines indicate QPUs of the same size. There is up to 57× difference in number of jobs between QPUs of the same size.

non-local gates) equals lower fidelity.
Circuit feature vectors. While circuit properties are
useful, sometimes they fail to characterize the structural
and computational properties of quantum circuits. Thus,
we can use the Supermarq feature vectors, a set of six
metrics proposed by Tomesh et al. [76] with the initial
goal of quantifying quantum benchmark coverage. These
features quantify the parallelism and speedup potential, the
lower bound on execution time, QPU connectivity require-
ments, entanglement (i.e. complexity), and susceptibility to
decoherence and measurement errors.

3 Motivation and Key Ideas

Tomotivate QOS, we present a set of unique challenges that
distinguish QPUs from classical accelerators. We categorize
our findings into four challenges that must be addressed
to improve the practicality of quantum computing: fidelity,
utilization, spatial and temporal heterogeneities, and load im-
balance. The experimental methodology used is the same for
the final system evaluation and is explained in detail in § 9.1.

3.1 Fidelity

Executingquantumprogramswithhighfidelity is challenging
since QPUs are characterized by relatively small numbers of
qubits and noise,which leads to computation errors (§ 2.2). As
the number of qubits and gates in a quantum circuit increases,
the noise errors accumulate and the overall fidelity decreases.
Results.Our results are highlighted in Figure 3 (a). The x axis
shows the circuit size as the number of qubits while the y axis
shows the fidelity, where higher is better. The experiment
is run on the IBM Kolkata 27-qubit QPU. For each increase in
qubits, the average fidelity decreases, up to 98.9% from 4 to
24 qubits. Moreover, it is physically impossible to run circuits
with a size larger than 27 qubits, since we cannot map them.
Implication.NISQ devices are limited due to size and noise
and, therefore, cannot be practically used for large quantum
circuits, either logically because the circuit doesn’t fit in

the device or the execution results would be degraded from
noise-induced errors, which translates to low fidelity.

3.2 Spatial and Temporal Heterogeneity
In the classical domain, two identical CPUs perform similarly
for all applications at each point in time. In contrast,
QPUs exhibit differences in the layout and connectivity of
qubits [26] and variations in noise errors even for QPUs of
the same model, which leads to spatial performance variance.
Moreover, QPUs are calibrated regularly (§ 2.2), and after
each calibration, the noise properties change [61]. As a result,
the execution fidelity can vary across different calibration
cycles, leading to temporal performance variance.
Results. Figure 3 (b) shows a 12-qubit GHZ circuit’s fidelity
on different IBM QPUs. Fidelity varies across the QPUs, with
a maximum difference of 38% from best to worst. Notably,
all six QPUs are of the same model (Falcon r5.11).
Figure 4 (a) shows a 6-qubit GHZ circuit’s fidelity over

120 calibration days executed on the IBM Perth 7-qubit QPU,
where each data point represents a single day’s fidelity. The
largest single-day difference in fidelity is 96.5%, and there
are 20 instances of a single-day fidelity drop of more than
5%. Note that there is no way to predict a QPU’s future
calibration data to expect such performance differences.
Implications. Due to structural differences across QPUs,
quantum circuits perform differently across them. Addi-
tionally, there is a high degree of temporal performance
variance across calibration cycles, as the fidelitymight change
significantly from day to day with no discernible pattern.

3.3 Utilization
The fidelity of circuits decreases as their size increases (§ 3.1),
and as a result, it becomes more challenging to utilize a
QPU effectively. In contrast to the classical domain, where
a CPU can be fully utilized, to get high-fidelity results in the
quantum domain, we necessarily under-utilize QPUs.
Results. Figure 4 (b) shows the maximum utilization of
the IBM Kolkata 27-qubit QPU for nine benchmarks while
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targeting at least 0.75 fidelity. No benchmark exceeds 30%
utilization, while the average is 26.3%. Higher fidelity targets
would yield even lower utilization and vice-versa.
Implications. There is a tradeoff between QPU utilization
and fidelity. In general, the lower utilization, the higher
fidelity, and vice-versa. In contrast to the classical domain,
the tension between these metrics is vastly larger.

3.4 QPU Load Imbalance

The quantum cloud faces QPU load imbalance. The root
cause is spatiotemporal heterogeneity (§ 3.2), combined with
the manual QPU selection offered by the current quantum
cloud model [32]. These naturally motivate users to select
the highest fidelity QPU(s) for that calibration cycle [61].
Results. Figure 4 (c) shows the average number of pending
jobs for different IBM QPUs across October 2023. The groups
of QPUs (separated by the red dashed line) have a size of 7, 27,
and 127 qubits, respectively. There is a 49×, 57×, and 5.7×
maximum load difference across the groups, respectively.
Implications. Load imbalance leads to long waiting times
for the users and thus, low quality of service. However, the
performance difference does not always justify the load
differences between QPUs. For instance, the 12-qubit GHZ
circuit in Figure 3 (b) performs 1.1× better on IBM Hanoi
than IBM Cairo, yet the former exhibits 57× higher load.

4 Overview

We propose QOS, an operating system for quantum com-
puting. In this context, we define a quantum operating
system as a software layer that transparently manages
quantum jobs and resources efficiently with respect to job
fidelity and waiting times (user’s goals) and QPU utilization
and load-balance (cloud operator’s goals). Therefore, QOS
strives for three design goals: (1) QOS’s architecture should
be general and modular, cleanly separating mechanism
from policy while enabling both cross-layer coordination
and within-layer optimizations. (2) QOS should enable the
execution of large quantum jobs with high fidelity. (3) QOS
should be resource efficient by achieving highQPUutilization
and balancing QPU load to minimize queue waiting times.

4.1 The QOS Architecture

Figure 5 shows the overview of our system’s design. QOS
comprises a layered architecture that consists of an API and
four main components: the error mitigator, the estimator, the
multi-programmer, and the scheduler, which we detail next.
Qernel abstraction. QOS implements a wide range of
mechanisms with different abstraction requirements,
from error mitigation to scheduling level. To enable the
composability of these mechanisms in a unified architecture,

post-processed
results

large circuit

error-mitigated Qernels

Multi-programmer

fidelity
estimations

bundled Qernels

schedule & run

bundled
results

Estimator

6

1
2

4

5
7

9

Quantum Operating System (QOS)

QPUs Classical nodes

...

Scheduler

Error Mitigator
Pre-processor Post-processor

QOS API
Qernels

3
8
unbundled

results

Figure 5: QOS overview (§ 4):QOS consists of fourmain com-
ponents: the error mitigator, estimator, multi-programmer,
and scheduler.

we propose the Qernel abstraction that acts as a common
denominator for the QOS mechanisms to apply their policies.
QOSAPI. The QOS API abstracts away the underlying com-
plexity of the noisy and heterogeneous quantum resources
by exposing hardware-agnostic functions for configurable
quantum job execution. The API transforms the user’s input
circuits into Qernels for QOS to apply its mechanisms.
Error mitigator. To increase the fidelity of quantum pro-
grams, the error mitigator applies pre- and post-processing
error mitigation techniques. However, there exists an
abundance of such techniques, and they typically incur
high runtime overheads that scale with the amount of error
mitigation used. Thus, the error mitigator automatically
selects and composes a subset of techniques given budget
constraints to limit the associated runtime costs.
Estimator. To make informed scheduling decisions in the
landscape of QPU spatiotemporal performance variance, we
require accurate fidelity estimations that do not depend on
expensive simulations or trial runs. The estimator leverages
analytical models to predict the execution fidelity on the
underlying QPUs in a scalable manner.
Multi-programmer. There is an inherent tradeoff between
QPU utilization (proxy of program size) and fidelity. To
increase QPU utilization without significantly compromis-
ing fidelity, the multi-programmer spatially multiplexes
multiple quantum programs on a single QPU with careful
consideration for fidelity performance loss.
Scheduler. There is a fundamental tradeoff between job
waiting times and fidelity that arises from the underlying
spatial performance variance. The scheduler trades mini-
mal fidelity for significant waiting time improvement by
optimizing for this conflicting objective.
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Table 1: QOS programming API.

QOSAPI Description
run(circ, cnfgs) Run circuit with config. options.
results(jID) Retrieve the job results.
status(jID) Retrieve the job status.
backends() Retrieve the available backends.

backend_props(bID) Retrieve the backend properties.

4.2 QOS ProgrammingModel

We introduce the QOS programming model designed to
abstract away the underlying complexity of managing
heterogeneous and noisy quantum resources. QOS exposes
hardware-agnostic APIs and leverages the Qernel unified
abstraction that acts as a commondenominator across its com-
ponents to enable the application of its diverse mechanisms.

QOSAPIs. Table 1 shows the QOS APIs that abstract away
quantum job execution and resource management. To run
a quantum circuit, users simply call runwith the circuit and
configuration options, such as the error mitigation budget,
which controls the runtime overheads and thus cost (in $).
This function returns a unique job id, jID. Users can call
result and status with the returned jID to retrieve
the execution results and status, respectively. Last, users
call backends and backend_props to retrieve the
available QPUs and their properties.

The Qernel abstraction. The Qernel implements data
structures that store the static and dynamic properties of
the quantum job. Specifically, to apply error mitigation
techniques optimally, we must leverage the characteristics
of the quantum circuit, such as the circuit’s size (number
of qubits), depth, number and types of 2-qubit gates, the
number of measurements, etc. Additionally, we include the
six Supermarq features vectors [76] since they are potentially
useful for heuristic-based optimizations or regression-based
prediction models [59]. This information is described as
the static properties of the Qernel. The dynamic properties
include the Qernel’s execution status (done,failed,
running,scheduled), the estimator’s output, i.e.,
fidelity estimations (§ 6), and the final post-processed results.

System workflow. Users submit a large circuit using the
QOS API 1 . Then, QOS transforms the circuit into a Qernel,
the common denominator of QOS, and submits it to the
error mitigator 2 . This component outputs error-mitigated
Qernels and submits them to the estimator 3 . The estimator
predicts the fidelity of running the Qernel(s) on the QPUs
to guide scheduling 4 . Next, the multi-programmer bundles
Qernels with low utilization and sends them to the scheduler
6 , who schedules and runs the bundled Qernels, optimizing
for maximal fidelity and minimal waiting times 6 . After the
execution, the bundled results are unbundled by the multi-
programmer into separate results and are sent to the error
mitigator for post-processing 8 . Finally, the post-processor
synthesizes the final results and returns them to the user 9 .

5 ErrorMitigator

Quantum computers are characterized by hardware and
environmental noise errors, which hinder their practicality
and scalability (§ 3). The error mitigator applies pre- and
post-processing to the Qernels and execution results,
respectively, to mitigate these noise errors.
Challenges. Currently, there is a plethora of individual error
mitigation techniques that require their own sub-systems
to operate, with no common infrastructure to compose them.
However, composability is essential for fidelity improvement
since errormitigation techniques can complement each other,
if stacked together in the correct order, to further improve
performance [9, 11]. Additionally, some techniques spawn
an exponential number of sub-circuits and, after execution,
require post-processing using classical resources [44, 55].
There are two main challenges in efficiently leveraging error
mitigation: (1) Which error mitigation techniques must be
used and in which order? (2) How to balance the tradeoff
between fidelity improvement and exponential overheads
with respect to runtime and resources?
Key ideas. The error mitigator automatically applies error
mitigation techniques, abstracting this complexity away
from the user. The key idea is that not all gates and qubits are
equal; some of them are noise hotspots, lowering the fidelity
significantly more than others. We constrain the exponential
overheads by (1) setting an error mitigation budget b
to be spent, and (2) greedily applying error mitigation
techniques on the hotspots in the order that maximizes
fidelity improvement with the least added overheads.

5.1 Pre-Processor

The pre-processor first analyzes theQernel to generate impor-
tant metadata, identifies the error mitigation opportunities,
and then prepares the Qernel for the respective techniques.
Qernel analysis.Qernel analysis generates two main pieces
of information that guide the application of error mitigation
techniques: (1) Qernel metadata and (2) optimization
opportunities such as hotspot qubits or gates, i.e., qubits and
gates that can be removed to reduce noise errors significantly.
Specifically, we generate the key Qernel static properties and
the six SupermarQ feature vectors as stated in § 4.2.
Error mitigation techniques. We focus on two existing
error mitigation techniques: circuit divide-and-conquer and
qubit reuse, since these techniques increase fidelity and
enable the execution of large quantum jobs on small(er)
QPUs. However, QOS supports any technique that achieves
the same goals [10, 15, 43, 75].
At a high level, techniques in the former category divide

(large) circuits into smaller fragments that can be executed
on small QPUs, and the fragmented execution results are
post-processed back to a single value. The advantages
are two-fold: (1) We can scale the size of circuits that are
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Figure 6: Error mitigator pre-processor workflow (§ 5.1). The initial Qernel has 7 qubits and 12 gates, and budget b=3. (a)We
identify q3 as a hotspot node with a degree of 6. (b)We remove this node, which reduces the qubit and gate counts to 6. (c)We remove
two gates, giving two fragments of 3 qubits each. (d) The budget is depleted, so we use qubit reuse to further reduce the qubits by two.

executable on the current small QPUs beyond the H/W
qubit limit, and (2) we can improve fidelity since smaller
and less complex circuits achieve higher fidelity (§ 2.2, § 3.1).
Unfortunately, these techniques incur exponential quantum
and/or classical overheads with respect to the number of
divisions; therefore, they must be used conservatively.
More specifically, circuit divide-and-conquer comprises

circuit cutting and knitting [44, 55] and qubit freezing [4].
Circuit cutting can simplify the circuit’s structure by
virtualizing noisy non-local gates into (less noisy) local
gates [44] or cutting a qubit (wire) in the temporal dimension
to shorten its runtime [55]. Thus, circuit cutting can improve
the circuit’s width, depth, and number of non-local gates at
once (§ 2.2). During knitting, the original (full) circuit results
are reconstructed through classical post-processing of the
subcircuit results. We refer interested readers to CutQC [73]
and QVM [78] for details on how circuit cutting works in
practice. Comparably, qubit freezing identifies qubits with
significantly more connections to other qubits (hotspots) and
partitions the circuit by replacing the hotspot qubits with
binary values, effectively dropping their noisy non-local
gates. Since every qubit can be replaced by a binary value,
this process generates 2m smaller circuits form frozen qubits.
In both cases, we automatically find the cut locations that

achieve the smallest sub-circuits possible with the fewest cuts
possible. To maximize the synergy between techniques, we
first apply qubit freezing to remove multiple non-local gates
at once with a relatively small cost, and then we greedily
apply circuit cutting. To restrict the exponential overheads
that scale exponentially with the number of cuts, we use the
budget b to cut up to b times. Typically, we set the budget
b = 3 by default, and the overheads scale as O(2b)−O(8b),
depending on the divide-and-conquer technique.

On the otherhand,qubit reuse (also referred to as recycling)
reduces qubit requirements by reusing physical qubits after
resetting them [18, 29, 34]. Once a qubit’s role in computation
is complete, it is measured, reset to a known state (typically
|0⟩), and reassigned to another logical qubit later in the
circuit. This approach enables more efficient use of limited
hardware resources and allows execution of larger circuits
than the QPU’s qubit limit. This method, however, increases
the circuit depth (i.e., execution duration), which can lead to
quantum decoherence errors (§ 2.2); therefore, the tradeoff, in

this case, is between circuit size and runtime. To restrict the
runtime increase, we use qubit reuse as a last resort to render
the Qernel executable by at least one QPU in the system (i.e.,
the optimized Qernel fits at least one QPU’s size constraints).
Workflow example. Figure 6 shows the pre-processing
workflow for a QAOA circuit (§ 2.1) with 7 qubits and 12
gates. The pre-processor aims to achieve a maximumQernel
size of two qubits with a budget of b= 3. To achieve this, it
takes the following steps:
Step 1: The pre-processor applies analysis to identify a
hotspot node; in this case, q3 is a hotspot with a degree of
6 gates (Figure 6, (a)).
Step 2: Then, the pre-processor removes q3 and its gates with
qubit freezing. The new Qernel size is 6 qubits with 6 gates.
Then, it updates the budget to b=b−m, where m=1 is the
number of qubits frozen (Figure 6, (b)).
Step 3: Next, the pre-processor applies circuit cutting on
two gates and updates the budget to b=0. The new Qernel
consists of two fragments, each with a size of 3 qubits and
4 gates (Figure 6, (c)).
Step 4: Since b = 0, the pre-processor applies qubit reuse
to achieve a size of 2 qubits and identifies qubits q0,q1 as
reusable. Here, M|0⟩ denotes measurement and reset to the
|0⟩ state. The final Qernel now has two fragments of 2 qubits
and 4 gates (Figure 6, (d)).
The final output is a Qernel with a 42.8% smaller size and

66% less noisy gates. Notably, this result is only attainable
through the synergy of techniques, as no individual method
alone can achieve comparable improvements.

5.2 Post-Processor

The post-processor reconstructs the final error-mitigated re-
sults by classically stitching together intermediate outcomes
from sub-Qernel executions. In circuit knitting, each virtu-
alized gate (i.e., cut) is expanded into a linear combination of
basis gates with associated coefficients. When multiple such
gates are virtualized, the global coefficient vector becomes the
tensor product of the individual gate vectors, resulting in an
exponentially large space of up to8k bitstring-weight pairs for
k virtualized gates. The post-processing then requires com-
puting a weighted sum over all 8k combinations, with each
term involving a product of subcircuit results. As such, this
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process requires a scalable post-processing infrastructure.
Themap phase. To efficiently process the large number of
results, we follow a divide-and-conquer approach. Specifi-
cally,we split the results into k equal sizes and distribute them
to k classical nodes to be processed in parallel. We parallelize
across k to increase data locality and reduce communication
overheads since all results for each of the k cuts will be in the
memory of the same node. Locally, each node performs tensor
product (

⊗
) operations on the probability distributions,

which are parallelizable across the node’s threads. If available
in the node, QOS leverages GPUs or TPUs to accelerate the
tensor products. Following this process, the k nodes output k
intermediate results, ready to be reduced into a single result.
The reducephase.QOS selects any of the k nodes to perform
the reduce step. The rest of the nodes send the intermediate
results to this node, which performs a thread-parallel sum
of k results. Equivalent to the map phase, the parallel sum
can also be executed on GPUs. This produces the final output
to be returned to the user.

6 Estimator

The estimator is responsible for predicting the fidelity
performance of a given Qernel on the underlying QPUs
without executing the Qernel, which would be extremely
costly. This prediction will be the leading decision factor for
the scheduler when assigning the Qernel to a QPU.
Challenges. Estimating fidelity a priori faces three key
challenges: (1) Fidelity is a non-deterministic metric affected
by the hardware’s probabilities of errors,which change across
QPUs and time unpredictably (§ 3). (2) Simulating a Qernel
to obtain fidelity estimates is intractable since the complexity
of simulating quantum systems scales exponentially with
the number of qubits [22]. (3) Fidelity can be approximated
numerically [47]; however, there is an accuracy-cost tradeoff.
The more complex the analytical model becomes, the higher
the runtime overhead of estimation.
Key idea. The estimator leverages analytical and regression
models that do not require real execution or simulation of the
Qernel. Specifically, the estimator’s models compute a score
for each Qernel-QPU assignment that captures the potential
fidelity of that assignment, and the estimator supports
configurable scoring policies with different runtime-cost
tradeoffs. These policies consider (1) the Qernels’ properties
generated from the error mitigator, (2) the QPUs’ calibration
data (i.e., noise model), which are available to quantum cloud
providers since they perform the calibration cycles.

For (1), important properties include the number and types
ofgates,depth,andthenumberofmeasurements (§4.2). For(2),
recall that QPUs are characterized by calibration data that de-
scribe theexacterrorratesof theQPUforthatcalibration cycle
(§ 2.2), specifically, the individualqubit readouterrors, the indi-
vidualgateerrors,andtheT 2coherence times. In thiswork,we
implement twoscoringpolicies: anumerical approach forfine-

grained control over the estimations and a regression model
approach for abstracting away the complexity of estimation.
Numerical cost policy. This policy estimates execution
fidelity by transpiling the circuit for the target QPU (§ 2.2).
Target transpilation enables fine-grained fidelity estimation
by producing the mapping between logical and physical
qubits and the gate (instruction) schedule. The mapping
captures the expected readout and gate errors, while the gate
schedule captures the order and exact timing that the gates
will be applied on the qubits, which reveals the hardware
decoherence and crosstalk errors, as explained in § 2.2. This
method has been explored before, and there are multiple
variants, but we base our implementation onMapomatic [47].

To compute the score, we need the following information:
(1) The readout/measurement error probabilities that describe
the probability of a bit-flip during measurement, (2) the
gate error probabilities, (3) the T2 time, which measures
for how long a qubit can stay in an excited state (i.e., |1⟩),
thus quantifying the decoherence error probability, and (4)
the crosstalk error which is measured through crosstalk
characterization [45]. With this information, we can multiply
the probabilities of the respective sources of errors to get an
estimate of the total error/fidelity.
Formally, for each qubit qi the readout error is er(i), for

each gate g j the error is eg( j), and the decoherence error is
ed(t)=1−e−t/T 2i , where t is the idle time of the qubit qi (no
gates act on it [14]) and T 2 is the decoherence time of qi. The
crosstalk error between gates gk and gl is ect(k,l). Putting it
all together, the final fidelity score is computed as follows:
f id = 1−∏

N
i=0 er(i)ed(i)∏

M
j=0 eg( j)∏

M×M
j=0,k=0 ect( j,k), where N

is the circuit’s number of qubits and M is the number of
gates. Since all hardware error information is known a priori,
and quantum errors accumulate multiplicatively, this policy
produces high-accuracy estimations, as we show in § 9.3.
Regressionmodelpolicy.Since the impactofnoiseerrorson
fidelity during quantumcomputation can be describednumer-
ically, we can train a regression model to predict the fidelity
of a transpiled Qernel on a possible QPU using the QPU’s
calibration data and the Qernel’s static properties as features.
Specifically, we use the aforementioned errors we defined in
the numerical cost policy as QPU features and the static prop-
erties (§4.2) asQernel features. Even simple regressionmodels
such as linear regression achieve high prediction accuracy, up
to 99%. Although this policy is simple to use without detailed
knowledge of the relationship between errors, in QOS,we use
the numerical cost policy by default for estimation to have a
clear understanding and full control of the process.

7 Multi-programmer

The size of quantum programs that run with high fidelity is
small, leading toQPUunderutilization (§3.3). To increaseQPU
utilization, QOSmulti-programs two or more Qernels, poten-
tially from different users, to run on the same QPU.We refer
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Figure 7: QOS multi-programmer example workflow (§ 7). (a)We use the estimator’s output to find Qernels with the same
best QPU. (b)We compute their independent utilization, and (c) their compatibility score. If compatible, (d)we check for layout
overlap, and (e) apply the appropriate multi-programming policy.

to this multi-programming as bundling the Qernels together.
Challenges.BundlingQernels faces threedistinct challenges:
(1) Trivially bundling Qernels together will deteriorate
fidelity because qubits interfere with each other via crosstalk
errors (§ 2.2). (2) On top of that, bundledQernelswith unequal
runtimes do not optimally increase utilization since effective
utilization is measured in space and time (number of QPU
qubits used and duration that they are non-idle). (3) Qernel
compilation involves several NP-hard processes [70], so we
need to minimize it.
Key ideas.To tackle these challenges,we introducenew ideas
unexplored by prior multi-programming work [16, 40]. First,
we define a newutilizationmetric, namely effective utilization,
that captures the temporal dimension of utilization, i.e., H/W
qubit usage during computation time. Next, we compute
Qernel compatibility functions that quantify howwell-suited
any two Qernels are to run together, to minimize fidelity
loss and re-compilation times. Last, we create buffer zones
between two bundled Qernels to minimize crosstalk errors.

7.1 Qernel Compatibility
Qernel compatibility quantifies crosstalk errors and the
effective utilization of bundled Qernels by considering the
Qernels’ static properties (§ 4.2).
Effective utilization. The trivial way to compute utilization
in the case of bundled Qernels is by dividing their total num-
ber of qubits over the QPU’s number of qubits, Ntotal/NQPU .
However, this is not accurate when the bundled Qernels have
unequal runtimes. In order to accurately quantify QPU usage
in the context of multi-programming, we define effective
utilization as spatial plus temporal utilization. To quantify
spatial utilization, it suffices to compute the ratio of allocated
QPU qubits (of the longest Qernel in terms of depth) over the
QPU’s number of qubits.
To quantify temporal utilization, we scale the spatial

utilization of each allocated Qernel with a weight that is
the ratio of the Qernel’s duration over the longest Qernel’s
duration. Recall that, to measure the Qernels’ durations, we
use the depth property that reflects the longest sequence of
gates the Qernel consists of (§ 2.2).
More technically, we define effective utilization as

ue f f =
NCmax
NQPU

·100+∑
n
k=1

Dk
Dmax

· NCk
NQPU

·100, where NCmax ,NQPU

are the number of qubits of the longest Qernel and the QPU,

respectively, k is the number bundled Qernels excluding the
longest Qernel, and D is the depth of the Qernel. The first
term, NCmax

NQPU
∗100, captures the spatial utilization. The right

term (sum) captures the temporal dimension, and Dn
Dmax

is the
relative depth of Qernel k compared to the longest Qernel,
and

NCk
NQPU

is the fraction of QPU qubits used by Qernel k.
For example, a 10-qubit Qernel Q0 spatially utilizes 50%

of a 20-qubit QPU. Now assume that Q0 runs 3× longer
than a 10-qubit Qernel Q1. During 2

3 of Q0’s runtime, the
qubits allocated to Q1 will be idle, decreasing the effective
utilization to only 66%.
Quantifying crosstalk. To quantify crosstalk without
running the bundled Qernels, we use the entanglement ratio
and parallelismQernel feature vectors of [76], where higher
values indicate a higher chance for crosstalk errors (§ 2.2).
Intuitively, the entanglement ratio captures the proportion
of 2-qubit gates over all gates, and parallelism captures how
many gates run in parallel per time unit. Thus, more parallel
2-qubit gates equal a higher chance of crosstalk errors [45].
Compatibility formula. To quantify the compatibility of
two candidate Qernels, we consider their effective utilization,
aswell as their joint entanglement ratio andparallelism scores.
This is because we ideally want high effective utilization (not
just higher spatial) and fewer crosstalk-induced errors.
Formally, we score a possible Qernel pair as follows:

qc = α ue f f +β ERb+γ PAb 7→ [0,1]. Higher score is better,
α+β+ γ = 1 (the weights add up to one), ue f f is effective
utilization, ER is entanglement ratio, PA is parallelism, and
b denotes bundled, i.e., Eb is the entanglement ratio of the
bundled Qernels. The four variables are tunable to give
priorities on different objectives, e.g., prioritize effective
utilization or minimize crosstalk. After experimenting and
fine-tuning, we found that α = 0.25,β = 0.25,γ = 0.5, and
qc≥0.75 gives balanced results, as we show in § 9.4.
Buffer zone. Crosstalk characterization studies on real
machines have shown that the probability of crosstalk errors
drops exponentially with the distance between any two
qubits [45]. We leverage this to minimize crosstalk errors by
creating a buffer zone between any two bundled Qernels, i.e.,
at least one hardware qubit between the two sets of allocated
qubits must be free. Given the hardware constraints and
limited number of available qubits, we limit the buffer size
to up to two qubits of distance.
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7.2 Multi-programming Policies

In this work, we implement twomulti-programming policies;
the first is the fast pathmulti-programming while the second
requires re-compilation and re-estimation.
Restrict policy. The restrict policy checks if there is no
overlap in the Qernel mappings on the QPU, including the
buffer zone. For example, in Figure 7 (d) in the left case, the
logical qubits of the Qernels are mapped to disjoint sets
of physical qubits on the QPU, and there is a buffer zone
between the two sets. In that case, the policy simply bundles
the Qernels together, and fidelity loss is minimized through
the aforementioned compatibility score.
Re-evaluation policy. This policy is the fallback of the
restrict policy. If the Qernel mappings overlap, the two
Qernels are transpiled again for the target QPU, and their new
fidelity is estimated. If the new fidelity is lower up to a fixed
ε>0 value compared to the original independent fidelities,
the bundling is kept. Otherwise, the multi-programmer
selects the next most compatible Qernel pair.
Example. Figure 7 shows an example where the multi-
programmer receives three Qernels with three estimations
each and identifies Qernel 0 and Qernel 2 as a possible pair
since their best QPU is the same (QPU5) (a). It computes
their independent utilization (31% and 37%, respectively), and
the combined utilization is under 100% (b). It computes the
compatibility score that surpasses the threshold (0.9>0.75)
(c). In (d), the right case shows an overlap in the buffer zone
(the red qubit), so we apply the re-evaluation policy.
Unbundling.Tounbundle the results, themulti-programmer
keeps a record that maps the initial (solo) Qernel IDs to
the new, bundled Qernel ID, as well as the Qernels’ sizes.
Therefore, when receiving a new result from aQernel with an
ID i, it scans the record to find an entry i, and if found, it splits
the probability distribution bitstrings (§ 2.1) into two parts:
the left-most and the right-most bits based on theQernel sizes.

8 Scheduler

Scheduling quantum programs involves fundamental
tradeoffs between conflicting objectives; specifically, users
ideally want the fidelity of the best fidelity QPU and the
waiting time of least busy QPU.
Challenges. Scheduling quantum tasks faces three key chal-
lenges: (1) Tomaximize fidelity,most programsmust be sched-
uledon the same subset of best-performingQPUs (§ 3.2), form-
ing hotspots andnecessarily increasing userwaiting times. (2)
The scheduler must at least know estimates of the quantum
task durations. However, similar to fidelity estimation (§ 6),
quantum execution time estimationmust be fast, without real
execution or simulation. (3) Job scheduling is a well-known
NP-hardproblem; therefore,everyheuristicorgreedysolution
will present a tradeoff between optimality and performance.
Key ideas. Our scheduler leverages an analytical model to

estimate the Qernel execution time quickly. Then, based on
the fidelity predictions from the estimator, it assigns and runs
Qernels across space (which QPUs) and time (when). Last,
our scheduler supports configurable policies for managing
the aforementioned tradeoffs, prioritizing maximal fidelity,
minimalwaiting times, or a balanced approach. Our twomain
policies are a fast heuristic algorithm, similar to [62], and the
first genetic-based multi-objective optimization algorithm.

Execution time estimation. To optimize for minimal
waiting times, the scheduler must first estimate each Qernel’s
execution time and then aggregate the execution time
estimations in eachQPU’s queue to compute the total waiting
times. To estimate the execution time, we iterate the longest
path (depth) of a Qernel (§ 4.2) that corresponds to the
longest-duration gate chain and thus defines the Qernel’s
execution time. By summing the gate durations of each node
in the longest path, we get the Qernel’s total execution time.

Formula-based policy. Optimizing for conflicting ob-
jectives involves comparing two possible solutions (e.g.,
maximal fidelity vs. minimal waiting times). In the formula-
based policy, we use the following scoring formula to
compare and select between two possible assignments:
score= c f2− f1

f1
−(1−c) t2−t1

t1
+β

u2−u2
u1

. This formula factors
fidelity, waiting time, and utilization to determine which
assignment is better, given priorities. The parameters are as
follows: fi: fidelity of the estimation result i, ti: waiting time
for theQPU from estimation result i,ui: utilization of theQPU
for estimation result i, c∈ (0,1): a system-defined constant
that weighs the fidelity difference between estimations and
finally, β: a system-defined constant acting as a weighting
factor for utilization difference, balancing system throughput
and fidelity. By selecting higher c, the system prioritizes
fidelity over waiting times, and vice versa, and by selecting
higher β the system prioritizes utilization over fidelity, and
vice versa. By default, c=β= 0.5, which aims for balanced
fidelity, waiting times, and utilization. Notably, prior work
does not include utilization in the scheduling decisions [62].

Genetic algorithm policy. Genetic algorithms excel at
optimizing for conflicting objectives by efficiently searching
over vast search spaces, and for that, they can be used in the
context of QOS. We formulate a multi-objective optimization
problem with the conflicting objectives of fidelity vs. waiting
times and use the NSGA-II genetic algorithm [17] to solve
it. The algorithm creates a Pareto front of possible solutions
(schedules), each achieving a different combination of average
fidelity and average waiting times. Then, to select one of
those schedules, we use the aforementioned formula to score
each schedule and select the schedule with the highest score.
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Figure8: Errormitigator(§9.2). Impactof theerrormitigatoron thecircuitdepthandthenumberofCNOTs. Thecircuitsareoptimized
using budget b=3, and we compare against Qiskit (red horizontal line), FrozenQubits [4] and CutQC [73]. There is an average
46%, 38.6%, and 29.4% reduction in circuit depth, and 70.5%, 66% and 56.6% reduction in the number of CNOTs, respectively.

9 Evaluation

9.1 Experimental Methodology

Experimental setup.We conduct two types of experiments:
(1) classical tasks, such as circuit transpilation and trace-based
simulations, and quantum tasks (2), which run on real QPUs
for measuring the circuits’ fidelities.
For (1), we use a server with a 64-core AMD EPYC 7713P

processor and 512 GB ECCmemory. For (2), we conduct our
experiments on IBM Falcon r5.11 QPUs. Unless otherwise
noted, we use the real Kolkata 27-qubit QPU hosted by IBM.
Framework and configuration. We use the Qiskit [33]
Python SDK for compiling quantum circuits and running
simulations. We compile quantum circuits with the highest
optimization level (3) and run with 8192 shots. Each data
point presented in the figures is the median of five runs.
Benchmarks. We study QOS on a set of circuits used
in state-of-the-art NISQ algorithms, adopted from the
3 benchmark suits of Supermarq [76], MQT-Bench [60]
and QASM-Bench [39]. The algorithms’ circuits can be
scaled by the number of qubits and depth. Specifically. We
study 9 benchmarks: GHZ, W-State, Bernstein Vazirani
(BV), Hamiltonian Simulation (HS-t), Quantum-enhanced
Support Vector Machine (QSVM), Two Local Ansatz (TL-n),
Variational Quantum Eigensolver (VQE-n), and Approximate
Optimization Algorithm (QAOA-R/P), these benchmarks
cover a wide range of relevant criteria for evaluating QOS.
For the TL and VQE circuits, we use circular and linear

entanglement, respectively. The HS, VQE, and TL bench-
marks are scalable by their circuit depth with the number
of time-steps t and layers in the ansatz n. The QAOA-R/P
circuits are initialized using regular/power-law graphs,
respectively, with degree d∈{1,3}.
Metrics.We evaluate the following metrics: (1) Hellinger
Fidelity. As defined in [21], where it ranges in [0, 1] and
higher is better. (2) Static Properties. Number of CNOT
gates and depth (§ 2.2). (3) Utilization. The effective QPU
utilization (§ 7). (4) Waiting Time. The time a Qernel
spends in a QPU’s queue, waiting for execution, in seconds.
(5) Classical Overhead. The error mitigation classical
overheads as a factor of runtime increase (×). (6) Quantum
Overhead. The error mitigation quantum overheads as a
factor of numbers of circuits increase (×).

Baselines. We evaluate the error mitigator against the
standalone fidelity-improving frameworks Qiskit v0.41,
CutQC [73] and FrozenQubits [4]. We evaluate QOS’s
multi-programmer against [16], and we evaluate the synergy
between theerrormitigator,estimator,andmulti-programmer
vs. CutQC and [16] as a single baseline. Regarding QOS
scheduler, to the best of your knowledge, [62] is the only peer-
reviewed quantum scheduler, but it doesn’t provide source
code or enough technical details to faithfully implement it.

9.2 ErrorMitigator

RQ1:How well does the error mitigator improve the fidelity of
circuits that run on NISQ QPUs? We evaluate the performance
of the error mitigator w.r.t the post-mitigation properties and
fidelity of the circuits while also analyzing the classical and
quantum costs of our approach.
Effect on the circuit depth and number of CNOTs. In
Figure 8, we show the performance of the error mitigator on
the circuits’ depth and number of CNOTs, where we plot the
relative difference in post-optimization circuit depth and the
number of CNOTs between Qiskit (the red horizontal line)
and FrozenQubits [4], CutQC [73], and our error mitigator.
Figures 8 (a) and (c) show that the circuit depth decreases by
46%, 38.6%, and 29.4%, respectively. Figures 8 (b) and (d)
show that the number of CNOTs decreases by 70.5%, 66%,
and 56.6%, respectively. The improvement in both metrics
against the baselines is attributed to the composability
of our error mitigator, where the combined techniques
achieve better results than any standalone technique. In
cases where QOS under-performs compared to the baselines
(e.g., BV benchmark for 24 qubits), it is because the error
mitigator achieved the desired circuit size with the qubit
reuse technique, which incurs additional costs (§5.1).
Impact on fidelity. Figure 9 shows the error-mitigated
circuits’ fidelity against Qiskit [58], CutQC [73], and Frozen-
Qubits [4]. The results show amean 2.6×, 1.6×, and 1.11×
improvement for 12-qubit circuits, respectively, and a 456.5×,
7.6×, and 1.67× improvement for circuits of 24 qubits,
respectively. The fidelity improvement is a consequence of
lower circuit depths and fewer CNOTs, as shown in Figure 8.
Classical and quantum overheads. Figure 10 (a) shows
the average classical and quantum overheads of the error
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FrozenQubits [4]. The circuits are optimized using budget b=3. There is a mean 2.6×, 1.6×, and 1.11× improvement for 12-qubit
circuits, respectively. There is a 456.5×, 7.6×, and 1.67× improvement for circuits of 24 qubits, respectively.
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Figure 10: Error mitigator (§ 9.2) and estimator (§9.3). (a) Error mitigator: classical and quantum overheads and fidelity
improvement as a relative factor to Qiskit. For 24 qubits, the improvement outweighs the overheads. (b) Error mitigator: scalability
to a large, hypothetical 1000-qubit QPU. Any budget b > 0 achieves higher quality results than using no optimizations. (c)
Estimator’s performance: fidelity of IBM Auckland vs. the QPU automatically selected by the estimator.

mitigator. The classical overhead is 16.6× and 2.5× for 12
and 24 qubits, respectively, and the quantum overhead is
31.3× and 12× for 12 and 24 qubits, respectively. However,
fidelity improves by 2.6× and 456.5× for 12 and 24 qubits,
respectively; therefore, for larger circuits, the fidelity
improvement is worth the cost.
Scalability. To demonstrate that the error mitigator is
scalable, we run the VQE-1 benchmark on a hypothetical
1000-qubit QPUwith one-qubit gate errors of 10−4, two-qubit
gate errors of 10−3, and measurement errors of 10−2. We
optimize with budget b∈{0,1,4,8} and report the estimated
fidelity. Figure 10 (b) shows that all budget b values improve
the estimated fidelity, where higher b equals higher fidelity.
RQ1 takeaway. The error mitigator improves the properties
of quantum circuits by 51% on average, leading to an
improvement in fidelity of 2.6–456.5×, while incurring
justifiable classical and quantum overheads.

9.3 Estimator

RQ2:How well does QOS’s estimator address spatial and tem-
poral heterogeneities? We evaluate the estimator’s precision
in selecting the top-performingQPU for each benchmark.We
establish a baseline using the on-average best-performing
machine every calibration day. On the day of the experiment,
IBMAuckland was the best-performing machine (also with
the highest number of pending jobs).
Estimator’s accuracy. Figure 10 (c) shows the fidelity of

the eight benchmarks when run on QPUs selected by the
estimator versus when run on the IBMAuckland QPU. The
QPU selected for the BV benchmark is Auckland; therefore,
we omit this result. For the rest of the benchmarks, the IBM
Sherbrooke and Brisbane QPUs were automatically selected.
Interestingly, the fidelity is on par or even higher than IBM
Auckland, except for only one benchmark, the QAOA-P1, pos-
sibly because of its unique, power-law connectivity structure.
RQ2 takeaway. QOS’s estimator automatically identifies
QPUs with higher fidelity than the current standard practice.

9.4 Multi-programmer

RQ3:Howwell doesQOS’smulti-programmer increaseQPUuti-
lization with minimum fidelity penalties? We evaluate the im-
pact of the multi-programmer on the fidelity of co-scheduled
circuits for certain utilization thresholds.
Utilization vs. fidelity. Figure 11 (a) shows the average
fidelity of nine benchmarks with utilization of 30%, 60%, and
88%. The three bars represent: no multi-programming (No
M/P) refers to large circuits that run solo, baseline multi-
programming (Baseline M/P) refers to [16], and QOS’s multi-
programming approach (QOS M/P). There is an average 9.6×
improvement in fidelity compared to solo execution and an
average 15% (1.15×) improvement compared to the baseline.
Effective utilization. The results in Figure 11 (b) show that
QOS achieves, on average, a 7.2% higher effective utilization
(§ 7), with a maximum improvement of 10.1%. We attribute
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Figure 11: Multi-programmer (§ 9.4). (a) Impact of multi-programming on fidelity. There is a 9.6× and 1.15× improvement com-
pared to no multi-programming and the baseline, respectively. (b) Effective utilization. There is 7.2% higher effective utilization on
average. (c) Relative fidelity w.r.t. solo circuit execution. There is an average 9.6% drop in fidelity due to QOS’s multi-programming.
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Figure 12: QOS error mitigator, estimator, and multi-
programmer vs. CutQC [73] and the baseline multi-
programming framework [16]. QOS achieves 48% higher
fidelity for the same utilization, on average.

this improvement to the inclusion of temporal utilization.
Fidelity penalty vs. solo execution. In Figure 11 (c), we
evaluate the fidelity penalty of multiprogramming vs. solo
circuit execution for utilization of 30%, 60%, and 88%. The
fidelity loss is 2%, 9%, and 18%, respectively. The average
fidelity loss is 9.6% compared to solo execution, which is in
line with previous studies [16, 40]. In the worst case (18%),
the fidelity loss is caused by the restrictions in high-quality
qubit allocations and the crosstalk errors.
RQ3 takeaway. The QOS multi-programmer improves
fidelity by 1.15–9.6× and effective utilization by 7.2%
compared to the baselines while incurring an acceptable
fidelity penalty (<10%) compared to solo execution.

9.5 QOS vs. Combined Baseline

RQ4:What is the performance of the within- and cross-layer
optimizations of QOS’s error mitigator, estimator, and multi-
programmer? We evaluate the impact of QOS’s components
(without the scheduler) on the fidelity and utilization of the
co-scheduled circuits for certain utilization thresholds.
Figure 12 shows the fidelity performance of QOS vs.

CutQC [73] and the baseline multi-programming [16]. Here,
we use a 27-qubit QPU, and a workload of all nine evaluation
benchmarks with initial circuit sizes of 8-, 16-, and 24-qubits.
We configure the error mitigator and CutQC to achieve a

circuit size half of the original (i.e., 4, 8, and 12-qubit circuits).
QOS achieves 48% higher fidelity than the baselines for the
same utilization, on average. There are two main reasons for
this: (1) the QOS components perform better individually as
previously shown (§ 9.2, § 9.4) and (2) the synergybetween the
QOS components enables better (w.r.t. fidelity) co-scheduling
decisions compared to standalone systems [16].

9.6 Scheduler

RQ5:How well does QOS’s scheduler balance fidelity vs. wait-
ing times and balance the load across QPUs? We evaluate our
scheduler by generating a representativeworkload consisting
of a dataset we collected during the development of QOS.
Dataset collection.During our exploration of the motiva-
tional challenges (§ 3) and experimentation and evaluation
of the QOS components and their policies, we collected a
dataset of 70.000 benchmark circuits andmore than 7000 job
runs in the quantum cloud. We use this dataset to simulate
representative workloads, as we detail next.
Workload generation. To generate realistic workloads, we
monitored all availableQPUs on the IBMQuantumCloud [32]
for ten days in November 2023 to estimate the hourly job
arrival rate. The average hourly rate is 1500 jobs per hour
and is the baseline systemworkload for our evaluation.
Fidelity vs. waiting time. Figure 13 (a) shows the perfor-
mance of the formula-based scheduling policy. We show the
average fidelity and waiting time as the fidelity weight, c,
changes (§ 8). A weight of 0.7 achieves ∼5× lower waiting
times than full priority of fidelity while sacrificing only∼2%
fidelity. Figure13 (b) shows thePareto frontof scheduling solu-
tions generated by the genetic algorithm policy. A weight c=
0.5 achieves 2× lower waiting times with 4% lower fidelity.
QPU load balancing. Figure 13 (c) shows the QPU load as
the total runtime each QPU was active, in seconds, for the
formula-based policy. All QPUs handle similar loads, with
a maximum difference of 15.2%.
RQ5 takeaway. QOS scheduler balances the trade-off
between waiting times and fidelity by reducing them 5× and
only 2%, respectively while balancing the load across QPUs.
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Figure 13: Scheduler (§ 9.6). (a) Formula-based scheduling policy: Average fidelity vs. average waiting times. A fidelity weight
c= 0.7 achieves∼ 5× lower waiting time for only∼ 2% lower fidelity. (b) Genetic algorithm policy: it creates a Pareto front
of schedules, where a fidelity weight c= 0.5 achieves 2× lower waiting times for∼ 4% fidelity decrease. (c) QPU load as the
total runtime of each QPU for the formula-based policy. The maximum load difference between any two QPUs is 15.2%.

10 Related work

Quantum error mitigation. Error mitigation tech-
niques can be categorized as (1) execution pre- and
post-processing [13–15,42,51–54,71,74,75], (2) circuit divide-
and-conquer [4,6,54,73],and (3) qubit reuse [8,29,34,48,48,49].
Unfortunately, all these techniques are implemented stan-
dalone without any infrastructure to compose them. Instead,
QOS integrates and composes at least one technique per
category in a single software stack, achieving higher fidelity
and abstracting away the complexity from the programmer.
Quantum performance estimation. Prior work on
quantum performance estimation has focused on resource
estimation—predicting required physical qubits under fixed
fidelity assumptions [7, 59]—and fidelity estimation using
analytical models [47]. In contrast, QOS estimates fidelity
under hardware constraints and supports both analytical and
ML-based approaches.
Quantum multi-programming. Quantum multi-
programming work [16, 40] focuses solely on mapping two
circuits on a single QPU while providing similar fidelity to
both (allocation fairness). However, they lack a systematic
strategy for selecting compatible jobs to co-locate, and do
not consider temporal utilization. Furthermore, neither work
supports buffer zones to reduce crosstalk noise between
co-located circuits. The delayed instruction scheduling
optimization proposed by [16] is already available in the
Qiskit transpiler via the ALAP scheduling pass [58], and
thus is inherently used by QOS. Finally, [40] introduces a
cross-program SWAP optimization technique, which tightly
couples its multi-programming and scheduling logic; this
makes it incompatible with any separate, system-level
scheduler like QOS’s, as relocating the bundled circuits to
another QPU invalidates its core optimization technique.
Quantum job scheduling. Current quantum scheduling
methods [62, 64, 72, 81] are limited because they (1) only
perform single-to-many scheduling, (2) do not account for
QPU utilization, (3) lack fine control over the fundamental
design tradeoffs (§ 3.4), or (4) require manual input for final
scheduling decisions. In contrast, QOS multiplexes circuits
across space and time in a many-to-many fashion, increases
QPU utilization, balances the inherent tradeoffs of quantum,

and abstracts away the underlying resource management.
Cloud OSes, resourcemanagement, and job scheduling.
Classical cloud operating, resource management, and job
scheduling systems have been extensively researched in the
past decades [28, 36, 37, 46, 56, 66, 67, 79, 80, 83, 84]. However,
the classical domain, even when addressing accelerator
heterogeneity, does not face the unique challenges of
quantum computing (§ 3) and, as such, cannot be trivially
adapted to accommodate its needs.

11 Conclusion and Discussion

We presented QOS, the first quantum operating system to (1)
holistically address quantum computing challenges through
a modular, policy-mechanism-separated architecture, (2)
enable cross- and intra-layer optimizations via end-to-end
co-design, (3) systematically explore key tradeoffs between
fidelity, utilization, andwaiting times, and (4) introduce novel
abstractions and techniques across the stack, including the
Qernel, composable error mitigation, compatibility-based
multi-programming, and multi-objective scheduling.
QOS establishes foundational principles for quantum

operating systems that remain relevant as QPU technology
evolves. While hardware will improve, core challenges
like noise, heterogeneity, and resource scarcity will persist,
requiring tradeoffs between fidelity, utilization, and latency.
These principles naturally extend to fault-tolerant quantum
computing, where QOS’s fidelity-aware scheduler and
compatibility-based multi-programmer can guide logical
qubit placement and error-corrected resource allocation.
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