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Abstract
The adoption of FPGAs in cloud-native environments is facing im-
pediments due to FPGA limitations and CPU-oriented design of
orchestrators, as they lack virtualization, isolation, and preemption
support for FPGAs. Consequently, cloud providers offer no orches-
tration services for FPGAs, leading to low scalability, flexibility, and
resiliency.

This paper presents Funky, a full-stack FPGA-aware orchestra-
tion engine for cloud-native applications. Funky offers primary
orchestration services for FPGA workloads to achieve high perfor-
mance, utilization, scalability, and fault tolerance, accomplished by
three contributions: (1) FPGA virtualization for lightweight sand-
boxes, (2) FPGA state management enabling task preemption and
checkpointing, and (3) FPGA-aware orchestration components fol-
lowing the industry-standard CRI/OCI specifications.

We implement and evaluate Funky using four x86 servers with
Alveo U50 FPGA cards. Our evaluation highlights that Funky al-
lows us to port 23 OpenCL applications from the Xilinx Vitis and
Rosetta benchmark suites by modifying 3.4% of the source code
while keeping the OCI image sizes 28.7× smaller than AMD’s FPGA-
accessible Docker containers. In addition, Funky incurs only 7.4%
performance overheads compared to native execution, while pro-
viding virtualization support with strong hypervisor-enforced iso-
lation and cloud-native orchestration for a set of distributed FPGAs.
Lastly, we evaluate Funky’s orchestration services in a large-scale
cluster using Google production traces, showing its scalability, fault
tolerance, and scheduling efficiency.
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1 Introduction
Cloud-native architectures are a promising trend in the cloud, where
various workloads designed as collections of small services, i.e., mi-
croservices [12, 59], are deployed across server nodes by an orches-
trator (e.g., Kubernetes [73], Mesos [53], Swarm [45], YARN [52])
on behalf of users. The orchestrators play an important role in
efficient cloud resource management, including resource provision-
ing, workload scaling [114], scheduling [23, 135, 137, 140], migra-
tion [15, 126, 129, 159], and fault tolerance [1, 120, 138].

In the meantime, hardware accelerators are rapidly adopted by
major cloud providers, such as GPUs [29, 35], TPUs [62], and FP-
GAs [6, 28, 113], to meet the computational demands of modern
cloud workloads. Despite their promising performance benefits,
existing cloud orchestrators are natively designed to manage only
CPU and memory resources [42] and lack comprehensive support
for these accelerators. Because accelerators are more limited and
expensive than CPUs due to a small number of PCIe slots per server
node [6, 35, 103], orchestration support for accelerators is crucial
to efficiently share them across millions of services running in a
multi-tenant cloud.

Although various hardware accelerators are available in mod-
ern cloud environments, we primarily focus on FPGAs because
of their flexibility and customizability. FPGAs are programmable
hardware where users can configure custom logic specialized to
a specific computation, making them attractive for ever-changing
cloud workloads. As a result, FPGAs are widely offered by all ma-
jor cloud providers [6, 28, 113], and are shown to be effective for
machine learning [128, 162], databases [20], distributed applica-
tions [61], storage stack [90], and graph processing [8, 37, 109].

Despite FPGAs’ promise to accelerate various cloud workloads
in an energy-efficient manner, there is currently no orchestration
engine for FPGAs [42, 115, 139]. We identify three key challenges
that hinder FPGA orchestration, which are not fully addressed by
existing industry practices [56, 152] and academic solutions [38, 47].

First, no lightweight sandboxes for FPGA applications exist.
An execution sandbox (e.g., VM) is paramount to virtualizing and
sharing cloud resources across multi-tenant applications. Cloud-
native environments adopt lightweight sandboxes such as contain-
ers [132, 160] and lightweight VMs [4, 100, 118, 133] for small perfor-
mance penalties [123] and low start-up latencies [48, 88]. However,
FPGA virtualization on these sandboxes has not yet been explored.
While FPGA vendors offer pre-built Docker containers [155], they
not only lack FPGA virtualization but also need a large portion of
FPGA system stacks installed, sacrificing their lightweight nature.

Second, FPGA-accelerated workloads are not preemptible/re-
coverable. Cloud-native environments deploy not only stateless
workloads (e.g., serverless functions), to which prior studies [38, 47]
adapt FPGAs, but also long-running stateful microservices [30,
110, 131] that keep alive and repeatedly handle incoming requests.
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Stateful workloads are also primary targets for FPGA acceleration,
such as databases [39, 51, 144], machine learning [122, 142], and
search engines [113]. However, the lack of FPGA state management
(e.g., context switch) complicates FPGA sharing across them. For
instance, once such workloads get and initialize any FPGA, they
want to keep it ‘warmed up’ to avoid paying high bootup costs
again (e.g., FPGA reconfiguration, input data initialization) for low
latencies [112]. Allowing long-running services to occupy FPGAs
without preemption leads to severe resource underutilization and
also data loss by system failures [138].

Third, existing orchestrators are unaware of FPGA resources.
Existing cloud orchestrators offer limited FPGA support due to the
lack of virtualization mechanisms. Device plugins [56, 152] do not
support FPGA sharing across multi-tenant containers. Extending
orchestrators for FPGA support is challenging because they follow
open specifications such as Container Runtime Interface (CRI) [31]
and Open Container Initiative (OCI) [33], which are not designed
for accelerator management. Any extension must not violate these
specifications to guarantee system compatibility.

To overcome them, we propose Funky, an FPGA orchestration
engine for cloud-native applications. Funky is the first system
that tackles an end-to-end orchestration support for cloud FPGAs,
achieving three contributions:
(1) Lightweight FPGA virtualization (§ 3.2, § 3.3). We design a

unikernel-based lightweight sandbox for FPGA virtualization.
Unikernels [87, 89, 98, 100, 104] are specialized OSes designed
to execute a single, specific application. Our unikernel is de-
signed for FPGA applications, which encapsulates individual
CPU applications using FPGAs and isolates them from underly-
ing FPGA system stacks [54, 85, 157]. It is not only suitable for
cloud-native applications but also allows the orchestrator to
transparently allocate/deallocate FPGAs to tasks on demand.

(2) FPGA statemanagement (§ 3.4). We design a task state man-
agement mechanism to suspend and resume FPGA workloads.
It enables evicting, migrating, and checkpointing tasks whose
states are distributed across CPU and FPGA devices. Uniker-
nel’s simplified state and single-process basis facilitate the
underlying hypervisor in tracing FPGA I/O requests from each
guest sandbox and saving/loading CPU and FPGA states.

(3) FPGA-aware orchestration (§ 3.5). We demonstrate an end-
to-end design integration of Funky’s virtualization and state
management mechanisms into industry-standard orchestra-
tors without violating the CRI/OCI specifications [31, 33]. It
provides three primary FPGA orchestration services: preemp-
tive scheduling, checkpointing, and workload scaling.

We implement the Funky framework for Alveo U50 FPGA with
the Vitis Shell [157]. We extend IncludeOS [17] and Solo5 [147] to
implement the unikernel sandbox and dedicated hypervisor. We
also implement a prototype of our orchestrator and container run-
time, offering high-level orchestration services for FPGAworkloads
in cooperation with the sandbox.

We evaluate Funky across two dimensions. First, we evaluate
Funky’s virtualization overheads, portability, and statemanagement
using two FPGA benchmark suites, i.e., Vitis benchmarks [153]
and Rosetta’s real-world applications [164], on a real four-node
FPGA cluster. The results highlight that Funky allows us to port
23 OpenCL applications by modifying 3.4% of the source code

with 28.7× smaller image size on average than Docker containers
maintained by an FPGA vendor (AMD) [155]. Funky imposes per-
formance overheads of 7.4% compared to the native execution, only
0.6% higher than AMD’s containers that do not virtualize FPGAs.
Second, we evaluate Funky using Google production traces [137] to
showcase its orchestration effectiveness for a large-scale cluster.

2 Background andMotivation
2.1 FPGAs in Cloud Environments
This paper targets cloud-native environments, where applications
consist of multiple small tasks (e.g., microservices) that are sched-
uled and deployed by a cloud orchestrator (e.g., Kubernetes [73])
across distributed nodes. Deployed tasks running on CPUs are iso-
lated by guest sandboxes (VMs [4, 100], containers [34, 160]) and
can be dynamically evicted, resumed, and migrated by the orches-
trator for load balancing and auto-scaling. Each task is built as an
OCI image [32] containing its executable and guest sandbox image.

FPGA architecture. In cloud infrastructures, FPGAs serve as stan-
dalone PCIe devices connected to each machine node [6, 28, 103].
The device contains FPGA fabric and onboard peripherals such
as DDR memory, network ports, and a PCIe slot. A portion of the
FPGA fabric is statically configured as a Shell [54, 157], which offers
glue logic to connect to the onboard peripherals, such as a PCIe
bridge, DMA, and network controller. The rest serves as a dynamic
region for runtime custom logic reconfiguration.

FPGA applications. Like other accelerators, FPGAs are mainly
used as coprocessors, where CPU applications offload their compute-
intensive part and receive results after completion. Such FPGA
applications consist of two parts: the offloaded computation part
called kernel code and the main CPU application called host code.

The kernel code represents custom logic (or user logic) that ex-
ecutes the offloaded task. The kernel code can be written in any
language supported by the underlying FPGAs (e.g., HDL [16, 136],
HLS [10, 66, 83, 92, 119], and DSLs [11, 26, 84, 93]). The code is
compiled using FPGA vendors’ IDEs (e.g., Vivado [154]), which
generate bitstreams. The bitstream is programmed to the FPGA’s
dynamic region to instantiate user logic there.

The host code is responsible for FPGA device management (e.g.,
reconfiguration) and task offloading via various vendor-provided
APIs [55, 66, 158]. We primarily target the OpenCL API [66] because
it is widely adopted by FPGA vendors [57, 157], and other APIs
(e.g., XRT ([158]), OneAPI ([55])) inherit its programming model.

2.2 Design Challenges and Key Ideas
FPGA adoption in cloud-native ecosystems has not been fully ex-
plored by existing studies targeting traditional cloud instances [97,
161] or serverless platforms [38, 47]. We identify three key features
to realize successful FPGA integration into cloud-native architec-
tures, filling a gap in prior studies. First, a lightweight FPGA virtu-
alization mechanism is essential, which abstracts physical FPGA
devices from guest cloud-native applications (host code) running
inside CPU sandboxes without compromising their lightweight-
ness. This feature facilitates sharing limited FPGA resources among
multi-tenant applications and also enables the orchestrator to trans-
parently allocate/deallocate FPGA resources. Second, an FPGA state
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Figure 1: The Funky architecture for cloud-native FPGA orchestration. The key components are highlighted as green boxes.

managementmechanism is critical for core orchestration operations
such as preemptive scheduling, checkpointing, and load balanc-
ing. This feature must allow the orchestrator to safely save and
restore application contexts residing in both CPU and FPGA de-
vices. Lastly, we need an end-to-end FPGA orchestration mechanism
that can be integrated into industry-standard orchestrators such as
Kubernetes. This demonstrates the compatibility and applicability
of our solutions within modern cloud-native ecosystems.

The FPGA-aware orchestration ecosystem must overcome de-
sign challenges related to FPGA constraints and prior solutions’
limitations. We present four core challenges and Funky approach.

#1: Lightweight FPGA virtualization. Existing lightweight sand-
boxes [4, 87, 100, 160] only support virtualization for legacy de-
vices such as disk and network, and FPGA support is missing.
Prior studies propose FPGA virtualization for traditional cloud
instances [97, 161], which are impractical for cloud-native environ-
ments due to a lack of reconfiguration support [97] or the com-
plexity of the guest sandbox/API layer [161]. While rich sandboxes
ensure system compatibility, their layered stacks obscure the in-
teraction between guest applications and FPGAs, complicating or-
chestration services depending on their states, e.g., preemption.
Key idea. We design a new unikernel architecture virtualizing FP-
GAs for cloud-native applications, ensuring the lightweight context,
near-zero overhead, and hypervisor-enforced isolation (see § 3.2).

#2: Application portability. Packaging FPGA applications as
unikernel images imposes another challenge because of the lack
of programmability. To address this issue, we aim to support a
modern programming API for FPGAs, i.e., OpenCL, to retain ap-
plication portability. Standard VMs or containers are capable of
porting the entire FPGA software stacks to virtualized environ-
ments [97, 152]. However, porting the vendor OpenCL stack to
the unikernel enlarges application contexts and undermines its
lightweight architecture.
Keyidea.We introduce FunkyCL, a lightweight OpenCL-compatible
library that gains programmability for OpenCL execution work-
flows with minimal code changes (see § 3.3).

#3: FPGA task preemption and statemanagement. Although
cloud service preemption, migration, and checkpointing are active

research areas [1, 36, 41, 79, 80, 120, 125, 138], they do not take accel-
erator device states (FPGAs, GPUs) into account. Prior studies pro-
pose hardware-assisted checkpoints for FPGA preemption [82, 105,
124], which integrate monitoring circuits into user logic to capture
the FPGA’s internal states. However, saving only the logic states is
insufficient because the context of FPGA applications is distributed
across CPUs, FPGAs, and their memories. This state distribution
and FPGA’s asynchronous executionmodel [66, 158] complicates or-
chestrators’ ability to maintain the entire state of FPGA workloads.
Key idea.We propose an end-to-end state management mechanism
for FPGA task preemption and checkpointing. The thin hypervisor
transparently maintains both VM and FPGA contexts (see § 3.4).
#4:FPGA-awareorchestration. Integrating Funky’s FPGA virtual-
ization and preemption mechanisms into cloud-native orchestrators
poses two design challenges. First, industry-standard orchestrators,
e.g., Kubernetes, do not support checkpoint and restore operations
even without FPGAs. Although the Kubernetes scheduler supports
preemption and eviction for a group of containers (i.e., pods) [74],
these functions terminate the containers and abandon their con-
texts. Second, the preemption requests must be propagated from
the orchestrator to worker-node components while following the
CRI/OCI specifications [31, 33] for system compatibility.
Key idea. We design CRI/OCI-compatible orchestration system
components that leverage the proposed FPGA virtualization and
state management mechanisms (see § 3.5).

3 Design
3.1 SystemOverview
Cloud-native architecture. Figure 1 illustrates the Funky’s cloud-
native ecosystem. We target an industry-standard cloud-native
system stack following the CRI and OCI specifications [31, 33]. The
cloud orchestrator runs on the leader node, whereas per-node sys-
tem components and user applications run on the worker nodes.
Every worker node is equipped with one or more PCIe-connected
FPGAs, and each FPGA offers a dedicated Shell, onboard memory,
and one or more reconfigurable slots (vFPGAs) where user logic
is programmed. The orchestrator is responsible for deploying ap-
plications, managing the entire cluster, and enforcing scheduling
policies. The cloud users push OCI images of applications to the
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image registry before sending deployment requests to the orches-
trator. The node agent runs on every worker node and forwards
requests from the orchestrator to the container engine through
CRI APIs. Upon API calls from the agent, the engine invokes the
corresponding commands of the OCI runtime.

We highlight three system components extended/added to re-
alize FPGA-aware orchestration. Funky scheduler is the extended
scheduler component, which selects a worker node appropriate
for deploying/migrating applications based on the applied policy.
Funky runtime is an OCI-compatible runtime responsible for deploy-
ing, evicting, resuming, and migrating applications in response to
orchestration requests. Funkymonitor is a thin hypervisor layer that
virtualizes FPGAs on worker nodes from unikernel applications.

Build process and tool chain. Figure 1 also illustrates a workflow
of packaging applications as deployable images on the Funky archi-
tecture. Cloud users prepare an application binary and correspond-
ing FPGA bitstreams. The binary is generated by compiling the host
code statically linked with the Funky unikernel library, which ex-
poses guest APIs for FPGA control to applications. The bitstream is
generated from the kernel code with FPGA development tools such
as Vivado [154]. The kernel code does not change because Funky
runs upon the original vendor-provided FPGA platform [157].

3.2 Lightweight FPGAVirtualization
We design the Funky unikernel, a lightweight, isolated guest sand-
box virtualizing distributed FPGAs. The Funky unikernel virtualizes
distributed FPGAs in an orchestrator-friendly manner. First, the
lightweight state of a unikernel mitigates start-up latencies and vir-
tualization overheads. Second, its simplified state and single-process
basis facilitate FPGA task preemption and migration across dis-
tributed nodes. The underlying hypervisor can easily trace memory
transfers and operations among the guest application and FPGAs.

The Funky unikernel delegatesmost FPGA-related jobs requested
by applications to a host-side hypervisor layer. This approach is sim-
ilar to API remoting [150, 161]. However, the Funky unikernel does
not directly delegate APIs but converts them tominimal I/O requests
essential for FPGA task offloading (e.g., data copy and synchroniza-
tion) to securely isolate guest applications and the host system stack.

Funky’s FPGA virtualization mechanism is technically applicable
to other hypervisor-based sandboxes, e.g., standard full-blown VMs
and Firecracker’s microVMs [4]. Funky adopts a unikernel as a guest
sandbox because of increasing security concerns in cloud-native
environments, given that even containers are running inside VMs
(e.g., Kata container [108]). We strive to design the unikernel-based
virtualization mechanism without losing the security properties of
hypervisor-enforced isolation.

Unikernel design. Figure 2 shows the Funky unikernel architec-
ture. The Funky unikernel virtualizes reconfigurable FPGA slots
as vFPGAs and allows applications to request managing vFPGAs
through guest APIs. The unikernel exposes vFPGA layer to a guest
application and library, virtualizing the host FPGA and offering ab-
stracted interfaces: hypercalls and exitless I/O [44, 134]. The guest
FPGA library converts API calls from the guest application to ei-
ther the hypercalls or exitless I/O requests. In this work, we design
FunkyCL, a lightweight OpenCL-compatible guest library (§ 3.3).
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Figure 2: Funky’s unikernel architecture.
The Funkymonitor is a host-side user process serving as a thin

hypervisor layer for each Funky unikernel, similar to QEMU [14].
The Funky monitor is responsible for launching the corresponding
unikernel and monitoring its states. It is also responsible for han-
dling requests from the guest application and the orchestrator while
ensuring host-side isolation among multiple Funky monitors. To
handle these asynchronous requests efficiently, the monitor creates
two threads: aworker thread andmonitor thread. The former handles
FPGA control requests from the guest and manages the underlying
FPGA via a host FPGA system stack (e.g., Xilinx Runtime [158]). The
latter handles migration/eviction requests from the orchestrator
and triggers saving/loading guest VM and FPGA contexts.

Hypercalls. The Funky unikernel offers only two hypercalls used
for vFPGA allocation. vfpga_init() requests the Funky monitor to
search for an available vFPGA and assigns it to the guest application.
The hypercall also transfers a bitstream to let the Funkymonitor re-
configure the vFPGA. Subsequently, the Funky monitor creates the
worker thread to asynchronously handle requests from the guest.
The requests are forwarded via lock-free message queues shared
between the unikernel and the monitor. The Funky unikernel ini-
tializes the queues in the guest memory space and notifies their
addresses to the monitor via the hypercall. Conversely, vfpga_exit()
releases the obtained vFPGA and deletes the worker thread.

Asynchronous I/Os. The Funky unikernel offers a fast, exitless I/O
interface for FPGAs to avoid frequent context switches. To realize
this, we design Funky requests, FPGA-related primitive operations
to be handled on the underlying FPGA platform. Table 2 shows
four primary Funky requests. A guest unikernel sends the Funky
requests to the worker thread via shared queues without invok-
ing VMEXIT. The worker thread securely validates the received
Funky requests and performs the delegated I/Os upon the requests.
We note that the Funky requests listed in Table 2 are designed
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OpenCLAPIs Standard OpenCL definition FunkyCL definition
clCreateProgramWithBinary() Creates a program object and loads bitstreams. Calls vfpga_init() to configure user logic.
clReleaseProgram() Decrements the program reference count. Calls vfpga_free() if the count gets zero.
clCreateBuffer() Creates an OpenCL buffer (memory) object. Sends a MEMORY() request.
clEnqueueKernel() Enqueues a command to execute a kernel. Sends an EXECUTE() request.
clEnqueueMigrateMemObjects() Enqueues a command to migrate memory objects. Sends a TRANSFER() request.
clFinish() Waits until all enqueued commands are complete. Sends a SYNC() request.

Table 1: Definitions and functional changes of important OpenCL host APIs [66]; other APIs are omitted for space.

Request type Description
MEMORY(buff_id, src, size) Allocates a buffer on FPGA.
TRANSFER(queue, buff_id, src,
size)

Invokes a data transfer between
Host & FPGA memories.

EXECUTE(queue, kernel, args) Invokes a kernel execution.
SYNC(queue, req_id) Awaits request completion.

Table 2: Funky requests for FPGA operations.

for OpenCL support (§ 3.3). Other Funky requests can be further
designed to support different programming models.

3.3 FunkyCL Library
We design FunkyCL, an OpenCL-compatible library that brings
application portability and compatibility for Funky unikernel ap-
plications. FunkyCL is designed to realize two key functionalities.
First, it is fully compatible with the native OpenCL specification
standardized by Khronos group [66]. Second, FunkyCLAPIs achieve
performance equivalent to the native execution of OpenCL APIs.

OpenCLAPIs. The FunkyCL library is part of the Funky unikernel
library and allows the guest application to control the assigned vF-
PGA via the standard OpenCL APIs. The API calls issue the Funky
requests described in Table 2. FunkyCL offers a library-level FPGA
abstraction to enable transparent use of the underlying FPGAs;
it exposes the Funky unikernel’s vFPGA layer as an OpenCL de-
vice named vFPGA. OpenCL host APIs issued to the device are
transparently converted to either hypercalls or Funky requests.

Table 1 lists important OpenCL APIs and functional changes in
FunkyCL. clCreateProgramWithBinary() and clReleaseProgram()
play an essential role: acquiring and releasing vFPGAs. Because
creating a program object triggers FPGA reconfiguration, FunkyCL
lets clCreateProgramWithBinary() invoke vfpga_init() to obtain
the vFPGA. The Funky monitor handles the hypercall and spawns
the worker thread if it finds an available vFPGA. Subsequently, the
worker thread reconfigures the slot with a bitstream. The other
OpenCL APIs in Table 1 send corresponding requests to the worker
thread until the vFPGA is released by clReleaseProgram().

Zero-copy host-device data transfers. As a guest application
runs in an isolated context in Funky, the host-device data trans-
fer is challenging; such data transfers typically induce redundant
data copies, such as shadow paging [2], to keep data consistent.
FunkyCL avoids the memory management overhead thanks to the
unikernel’s single address space. Specifically, when a guest appli-
cation calls any OpenCL API for data transfers, FunkyCL creates a
TRANSFER() request, which only contains the address and data size
of the guest memory buffer. The worker thread receives the request
and then translates the guest address to the host only once. Finally,
it transfers the buffer data to the FPGA memory or vice versa.

3.4 FPGA StateManagement
We design an FPGA state management mechanism, enabling task
preemption/migration and checkpointing to improve scheduling
fairness and fault tolerance. To maintain application contexts dis-
tributed across CPUs and FPGAs, Funky adopts a hypervisor-driven
approach, i.e., driven by the Funky monitor. Since the Funky moni-
tor is spawned per guest VM and handles delegated FPGA requests,
it can easily trace both guest VM (CPU) and FPGA states.

Funky supports three state management commands: checkpoint
that saves snapshots of the entire VM/FPGA contexts, evict that
only evicts the FPGA context in host memory, and resume that
resumes the task from either the saved snapshot or evicted context.
These commands are triggered by an extended container runtime,
i.e., Funky runtime (§3.5), in response to high-level orchestration
operations requested by the orchestrator. To enable this, the Funky
monitor spawns a monitor thread that exposes an inter-process
communication (IPC) interface to let the Funkymonitor issue these
commands. The monitor thread is also responsible for saving and
restoring the VM context and cooperating with the worker thread
to maintain an FPGA context.

FPGAarchitecture.We first describe our target FPGA architecture
and guest application states, illustrated in Figure 3. Funky primarily
targets vendor-provided Shells [7, 57, 75]. The FPGA device consists
of three hardware components: Shell, vFPGA(s), and off-chip FPGA
memory. The Shell offers the PCIe bridge IP that exposes memory-
mapped I/Os to host CPUs and the DMA controller for data transfers
between the host and FPGA memory. The vFPGAs configure user
logic, which could have control and status registers (CSRs) for the
execution invocation. The FPGA memory (HBM, DRAM) and its
controller are used as the main working memory, where we store
input/output data consumed/produced by the kernel. In the archi-
tecture, the states of FPGA applications can be classified into three
types: the FPGA logic (kernel), FPGA memory, and the guest VM.

FPGA synchronization.We next describe how these application
states are saved by Funky. Because FPGAs do not support context
switch mechanisms due to their complex and modular architec-
tures, we cannot suspend any operations running on the FPGA,
e.g., DMA transfers and kernel executions. Therefore, before saving
the FPGA states, Funky tolerates waiting for all on-the-fly FPGA
operations (i.e., Funky requests) to complete. Specifically, when the
monitor thread receives checkpointing or eviction requests, it asks
the worker thread to invoke the SYNC() request and makes the
FPGA state (both user logic and Shell) consistent. We note that such
synchronization operations do not increase the total execution time
of running applications because any computation requested by the
application is still running during the synchronization.
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While the synchronization operations do not incur performance
overheads, theymay delay invoking eviction andmigration requests
and affect the latency of orchestration operations, particularly for a
single, long-running request, e.g., processing a 1 GiB chunk. There-
fore, Funky supports a mechanism to mitigate the synchronization
time by splitting such a large request into multiple requests for
smaller chunks, particularly for streaming computation that repeats
the same operation for all inputs (e.g., FFT).

FPGA logic state. Following synchronization, the worker thread
saves the FPGA’s kernel and memory states. The logic state com-
prises CPU-readable control registers and temporal contents stored
in on-chip elements (flip-flops, BRAM). While the latter is not ac-
cessible from the host, these internal states are ignorable for most
of the state-of-the-art FPGA accelerators following the OpenCL ex-
ecution model [50, 96, 106, 128, 142, 144, 163] because their internal
states are flushed when the execution completes. Funky can techni-
cally support saving/restoring FPGA internal states by leveraging
hardware-assisted FPGA checkpointing [9, 91, 105, 124].

FPGAmemory state. Funky efficiently saves and restores FPGA
memory contexts depending on the states of each memory buffer,
via DMA data transfers. During the execution, the worker thread
tracesMEMORY() requests and reserves locations ofmemory buffers.
Then, upon TRANSFER() request, it updates their states as follows:
• init – the buffer has no data in the FPGA memory.
• sync – the buffer is synchronized with a host buffer.
• dirty – the buffer is not synchronized with a host buffer.

When saving FPGA contexts, Funky only records the states of dirty
memory buffers. Memory buffers whose state is either init or sync
are ignored to mitigate the total context size. The monitor thread
kills the worker thread after all the FPGA states are saved.

VM state. After saving FPGA contexts, the monitor thread option-
ally saves VM contexts. Funky adopts a simple hypervisor-driven
approach for saving and restoring VM states. When saving the
state as a snapshot, the monitor thread first triggers an interrupt
to the vCPU, causing VMEXIT. It then captures the context of the
vCPU (e.g., CPU registers) and dirty pages in guest memory. When
restoring the state, the thread initializes the vCPU and guest mem-
ory contexts with the selected snapshot and lets the vCPU invoke
VMENTER. The eviction process does not save the VM state to the
disk but keeps it in the host memory to mitigate the overhead.

Restoring states. There are two ways to restore the application
state from saved contexts and resume the execution. First, if only
the FPGA states are evicted, the monitor thread simply respawns
the worker thread with the saved context and lets it restore the
register and memory states of FPGA kernels via memory-mapped
I/O and DMA transfers. The worker thread then notifies the com-
pletion of a SYNC() request to the guest application to resume the
execution. Second, if the application is resumed from the entire
snapshot, the Funky monitor is spawned with the snapshot and
first restores the VM state in CPU memory, which includes some of
the FPGA contexts, e.g., contents of sync buffers. Then, it spawns
the worker thread and restores FPGA states as explained.

Memorymanagement and isolation. The Funky monitor guar-
antees FPGA memory isolation across guest VMs for multi-tenancy.
The Funky monitor restricts access to vFPGAs and FPGA memory
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Figure 3: Funky’s hardware architecture.
buffers that are allocated to other applications. To mitigate side-
channel risks, the Funky monitor zeros the memory buffers when
a guest application finishes.

3.5 FPGA-aware Orchestration
Lastly, we design an FPGA-aware orchestrator that leverages Funky’s
FPGA virtualization and state management mechanisms. Assuming
that the use of FPGAs is selective depending onworkloads, we strive
to achieve two design goals. First, our design can adapt existing
industry-standard orchestrators (e.g., Kubernetes) by reasonably ex-
tending them without violating CRI and OCI specifications. Second,
the extended orchestrator can distinguish between FPGA and CPU
workloads, applying Funky-specific features only to FPGA ones.
Orchestration Components. To integrate Funky features into
industry-standard orchestrators, we extend three system compo-
nents: the scheduler, node agent, and OCI runtime.

The Funky scheduler is an orchestration component for FPGA
task deployment and preemption. It adopts the same task eviction
mechanism as the Kubernetes scheduler [74], evicting running tasks
if they occupy resources (e.g., vFPGAs) requested by high-priority
tasks. However, unlike the Kubernetes scheduler that always termi-
nates evicted tasks, Funky keeps the context of evicted tasks and
transparently deallocates resources from them. The evicted tasks
can be either resumed on the same node ormigrated to another node.

Node agents propagate requests from the orchestrator to the
container engine through CRI APIs. To forward Funky-specific in-
formation, we leverage annotations, unstructured key-value pairs
defined in the CRI API’s message structure. The node agents attach
FPGA-specific metadata to annotations of primary CRI APIs, allow-
ing the container engine to invoke corresponding Funky runtime
commands without violating the CRI specification.

Funky runtime is an OCI-compliant low-level container runtime
that maintains a lifecycle of Funky unikernels. In addition to com-
mands defined in the OCI specification [33], it supports five Funky-
specific commands: evict, resume, checkpoint, replicate, and update.
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Orchestration Services Operations CRI API (keymetadata) FunkyOCI runtime command
Preemptive scheduling Deploy CreateContainer (preemptible*) −→ StartContainer (cid) create <cid> −→ start <cid>

Evict StopContainer (cid) evict <cid>
Resume StartContainer (cid) resume <cid>
Migrate CreateContainer (cid*, node_id*) −→ StartContainer (cid) resume <cid, node_id>

Checkpoint & restore Checkpoint CheckpointContainer (cid) checkpoint <cid>
Restore CreateContainer (cid*, node_id*) −→ StartContainer (cid) resume <cid, node_id>

Workload scaling Horizontal CreateContainer (cid*, node_id*) −→ StartContainer (cid) replicate <cid, node_id>
Vertical UpdateContainerResources (cid, vfpga_num*) update <cid, vfpga_num>

Table 3: Funky’s orchestration services. cid abbreviates container id. * representsmetadata attached by annotations.

Algorithm 1: Funky’s preemptive task scheduling.
1 schedule(𝑤𝑎𝑖𝑡_𝑞𝑢𝑒𝑢𝑒, 𝑟𝑢𝑛_𝑞𝑢𝑒𝑢𝑒, 𝑛𝑜𝑑𝑒𝑠)
2 begin

/* Pick the most prioritized task */
3 task← pull(wait_queue);

/* Find the most suitable node for the task */
4 node← schedule(task, nodes);

/* Evict, resume, migrate, or deploy the task */
5 if node is occupied by other tasks then
6 evicted_task← evict_req(task, node, run_queue);
7 push(evicted_task, wait_queue);
8 deploy_req(task, node);
9 else if task is evicted and task is on node then
10 resume_req(task, node);
11 else if task is evicted and task is not on node then
12 migrate_req(task, node);
13 else
14 deploy_req(task, node);
15 push(task, run_queue);
16 end

Orchestration services. Table 3 summarizes Funky’s primary or-
chestration services and associated operations. To distinguish FPGA
and non-FPGA tasks, Funky attaches a preemptible flag to deployed
FPGA tasks. Any orchestration requests for preemptible tasks are
propagated to the Funky runtime to invoke Funky operations. The
node_id represents a worker node where the context of the target
task exists. When migrating, restoring, or replicating a task, the
Funky runtime communicates with the other runtime on a remote
node specified by node_id to obtain the task context. vfpga_num
represents the maximum number of vFPGAs allocatable to a task,
which is used for vertical scaling.

Preemptive task scheduling. Algorithm 1 details the workflow
of Funky’s preemptive task scheduling. The Funky scheduler has a
run queue holding running tasks and a wait queue holding submit-
ted/evicted tasks sorted by their priorities. The scheduler picks up
a task to schedule next from the wait queue and selects the most
suitable node to place the task (L3-4). The scheduler then evicts,
resumes, migrates, or deploys the task depending on its state. When
other running tasks occupy the selected node (L5-8), the scheduler
evicts any of them; it moves the task from the run queue to the wait
queue and sends the eviction request to the node agent. The evicted
task state is reserved on the same worker node until resumed or
migrated. When rescheduling an evicted task, depending on the
selected node, the scheduler either resumes the task on the same
node (L9-10) or migrates the task to the remote node (L11-12).

Checkpointandrestore. Funky supports both automatic andman-
ual checkpointing functions. In the former case, the orchestrator pe-
riodically takes snapshots of the target task, and if the orchestrator
detects task failures, it attempts to restore it from the latest snap-
shot. In the latter case, these operations are manually invoked upon
user requests on demand. The failed tasks can be restored on either
the current (local) node or any remote node. The execution flow
is the same as the evict and migrate of the preemptive scheduling.

Workload scaling. Funky supports both horizontal and vertical
scaling for FPGA workloads. For the horizontal scaling, Funky repli-
cates a running task by saving and copying its context. However,
if the target task is still alive and running, the container engine
invokes replicate operation to deploy the replicated task on the node
represented by node_id. For the vertical scaling, Funky increases
the task’s limit of allocatable vFPGAs given by vfpga_num.

4 Implementation
We build a prototype of the Funky framework targeting the AMD
Vitis platform [157] built upon the Alveo U50 FPGA [151] with the
XDMA Shell, which serves a single reconfigurable slot.

Funkyunikernel andFunkyCL.We implement the Funky uniker-
nel and FunkyCL library based on the IncludeOS unikernel [17].
We port open-sourced OpenCL headers [65] and C++ bindings [64]
to IncludeOS and implement their entities as a part of the static
unikernel library. Some FunkyCL APIs do not issue requests to the
backend to mitigate the communication overhead. For example,
kernel arguments set by clSetKernelArg() are transferred together
through the EXECUTE() request.

Funkymonitor.We implement the Funky monitor based on the
Solo5 [147] hypervisor, which consists of frontend bindings that of-
fer application binary interfaces (ABI) to the guest unikernel, and a
backend hypervisor layer (called ukvm) that acts as a vCPU thread.
We mainly extend ukvm to implement the core functionalities, in-
cluding the FPGA worker thread. The FPGA worker thread handles
Funky requests from the guest through APIs offered by Xilinx Run-
time (XRT) [158]. We also implement two hypercalls, vfpga_init()
and vfpga_free(), for obtaining and releasing FPGA slots.

Orchestrator andruntime.Our orchestrator prototype consists of
the API server handling orchestration service requests (e.g., Deploy,
Checkpoint) and the scheduler for preemptive scheduling. It prop-
agates the respective operations to the Funky runtime daemons
on worker nodes. The Funky runtime then issues corresponding
commands shown in Table 3.
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Figure 4: End-to-end application execution time for native execution, Xilinx Docker container [155], and Funky, with relative
gaps (%) to the native execution.
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5 Evaluation
We comprehensively evaluate Funky’s virtualization overheads
(§ 5.2), portability (§ 5.3), checkpointing (§ 5.4), task preemption
(§ 5.5), and end-to-end orchestration (§ 5.6).

5.1 Experimental Setup
Testbed.We set up four x86 servers, where three servers as worker
nodes are powered by an Intel Xeon Gold 6238R Processor running
at 2.2 GHz and one as a leader node powered by an Intel Xeon Gold
5317 Processor running at 3 GHz. All servers connect through a
100 Gbps switch. The worker nodes run Ubuntu 20.04, which are
equipped with 256 GiB DDR4 at 2933 MHz, a 960 GiB SATA SSD as
persistent storage, and an Alveo U50 FPGA via a PCIe Gen3 x16 bus.
Benchmark suites. Since Funky currently supports the OpenCL
programming model, we naturally use benchmark suites written
in OpenCL. We choose two benchmark suites: Vitis Accel Exam-
ples [153] and Rosetta [164]. Vitis Accel Examples is one of the most
suitable benchmark suites as it is officially maintained by AMD
and offers various applications to test a broad range of OpenCL
APIs. We particularly use cpp_kernels/ of Vitis Accel Examples,
containing a set of primary computation kernels, such as vector
add, matrix multiplication, and an FIR filter. Rosetta is a widely
used benchmark suite designed for AMD Xilinx FPGAs, offering
practical, real-world FPGAworkloads, including 3D rendering, digit
recognition, optical flow, and spam filtering.
Baselines. We compare Funky with two baseline setups: native
execution and an industry-standard Docker container. For the con-
tainer setup, we use Xilinx Base Runtime [155], an FPGA-accessible
container officially maintained by AMD. The container runs Ubuntu

20.04 and installs a full XRT package, which directly communicates
with the host-side FPGA device drivers.

5.2 Virtualization Overheads
Firstly, we clarify Funky’s FPGA virtualization overheads.

Methodology.We measure each application’s execution time in
Funky against the two baselines. In our experimental setup, we
allocate 1 GiB of memory for each unikernel. We also break down
Funky’s virtualization overheads to understand their source. Specif-
ically, we analyze the runtime overheads of OpenCL APIs, which
are core FPGA operations, and initial setup overheads to create and
destroy execution sandboxes, i.e., unikernels and containers. We
use wide_mem_rw for the microbenchmarking.

Results. Figure 4 shows the end-to-end execution time of all the
applications. Figures 5 and 6 show the breakdown of OpenCL API
and initial setup overheads. As shown in Figure 4, Funky incurs
only a 7.4% overhead on average compared to native execution,
which is close to the container setups (6.8%). We highlight that
Funky does not incur additional overheads for FPGA operations
through OpenCL API calls as shown in Figure 5. The performance
gaps from the baselines come from the initial setup overheads of
execution sandboxes. In Figure 6, for the Xilinx containers, their
bootup/teardown latencies are the main factor of the performance
penalties, while Funky unikernels cut these overheads by 82.4%
and 83.6%. Although we observe other setup overheads specific
to Funky, the main factor is not related to FPGA operations but
heavy file I/O operations of IncludeOS’s filesystem, causing the
biggest slowdown for spam-filter (sp-fltr). Only the FunkyCL setup
time, 245.1 ms on average, stems from Funky’s extension, where
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Application Codebase OCI image [MiB]
LoC diff (fop) Funky Cont bs

array_partition 150 2 (1) 32.7 1131.8 29.6
axi_burst_performance 126 8 (7) 66.2 1165.5 62.9
bind_op_storage 77 2 (1) 32.7 1131.9 29.7
burst_rw 73 2 (1) 32.6 1131.7 29.5
critical_path 92 4 (3) 36.9 1136.2 29.9
custom_datatype 193 4 (3) 32.4 1131.7 29.1
dataflow_stream 75 2 (1) 32.3 1131.4 29.3
dataflow_stream_array 81 2 (1) 32.4 1131.6 29.4
dependence_inter 99 2 (1) 32.5 1131.6 29.4
kernel_chain 195 6 (5) 33.4 1132.6 30.3
lmem_2rw 76 2 (1) 32.6 1131.7 29.6
loop_pipeline 119 2 (1) 32.8 1131.9 29.7
loop_reorder 96 2 (1) 33.9 1133.0 30.8
partition_cyclicblock 152 2 (1) 33.6 1132.7 30.5
port_width_widening 175 2 (1) 34.5 1133.6 31.4
shift_register 152 5 (4) 32.9 1132.1 29.9
simple_vadd 109 18 (17) 32.5 1131.4 29.5
systolic_array 102 2 (1) 35.1 1134.2 32.0
wide_mem_rw 77 2 (1) 33.2 1132.2 30.0

Vi
tis
_A

cc
el
_E

xa
m
pl
es

common lib 754 95 (53) - - -
3d-rendering 3456 1 (0) 34.4 1132.3 29.6
digit-recognition 217 13 (12) 36.1 1134.8 32.5
optical-flow 1624 75 (74) 60.4 1146.6 31.4
spam-filter 387 26 (25) 114.0 1213.8 30.7Ro

se
tta

common lib 475 31 (31) - - -
Average - 3.4% (2.7%) 39.6 1138.2 -

Table4:Portabilitystudy.diffis the total lineschangedfrom
the original code, and (fop) is only for file operations. com-
mon lib is code sets shared among each benchmark suite.
Funky and Cont are Funky unikernel and Xilinx Docker
container image sizes. bs is the total size of bitstreams.

Funky copies the bitstream data for eviction/migration requests
and spawns the FPGA worker thread.

In summary, Funky induces a modest one-time setup overhead
for FPGA virtualization and state management.

5.3 Application Portability
Secondly, we study Funky’s application portability, i.e., how much
effort developers require to port their FPGA applications.

Methodology. We compare the Line of Code (LoC) for each appli-
cation before and after porting to Funky. We also analyze the OCI
image sizes of Funky unikernels and Xilinx Docker containers.

Results. Table 4 shows the summary. The total code change is
just 3.4% on average. We note that developers need to add just
one line to the native code, #include <os>, to use the OpenCL
API. Most changes relate to modifying file API calls for IncludeOS,
2.7% in total. Although IncludeOS advertises traditional file API
support (e.g., fopen), we encounter various portability issues and re-
place file operations with the IncludeOS-specific file API (memdisk).
Other changes are due to omitting vendor-specific OpenCL exten-
sions [156].

RegardingOCI image sizes, Funky unikernel is drastically smaller
(28.7× on average) than the container. Funky’s OCI image only con-
tains the application binary, bitstream, input datasets, and minimal
unikernel components to execute the application (e.g., FunkyCL).
The bitstream and datasets are dominant in Funky’s image, and the

unikernel’s execution binary itself is only 3-4 MiB. In contrast, the
Xilinx Docker container significantly increases its image size due
to the XRT package and its dependent libraries.

In summary, Funky enables porting OpenCL applications with-
out changing FPGA-related code. Moreover, Funky’s OCI image
is substantially smaller than a vendor-provided container image,
which eases to maintain their instances across distributed nodes.

5.4 StateManagement
Thirdly, we evaluate Funky’s state management mechanisms.
Methodology. In this experiment, we use shift_register as a mi-
crobenchmark and measure the latency of each state management
operation: FPGA eviction, VM migration, and checkpointing, while
changing its input data size. Note that resuming/restoring tasks
triggers FPGA reconfiguration, which takes around 3.5 seconds. We
omit this overhead because it comes from a hardware limitation of
the underlying Shell (Vitis XDMA), e.g., Coyote [85] can shorten it
to 20 ms. Such hardware optimization is out of our paper’s scope.
FPGA state eviction. We first measure the time to evict and re-
sume FPGA states. We trigger the eviction requests just after the
kernel invocation is finished, ensuring that input and output (dirty)
buffers exist on the FPGA memory. We change the input dataset
size from 1 MB to 1000 MB.

Figure 7 shows the results, highlighting that FPGA eviction
and resumption take 177.2 and 340.8 ms for the biggest data size
(1000 MiB for each input/output). The eviction is significantly faster
for small datasets, i.e., 0.4 ms for 1 MB. For the eviction, Funky only
saves dirty buffers’ states, leading to less overhead than evicting all
buffers. FPGA resumption takes longer than the eviction due to (1)
a consistent overhead of the worker thread creation (97.6-158.0 ms)
and (2) transferring both input and output buffers.

In summary, Funky can reasonably evict and resume FPGA states
in the order of milliseconds, even for bigger datasets (1000 MiB).
VMmigration and checkpointing. Next, we evaluate the time
to save and load the entire VM state. We measure the VM saving
and restoring overheads in two cases: migration (VM save, VM
load), saving snapshots into host memory as a temporal cache, and
checkpointing (Checkpoint, Restore), saving them into persistent
storage (SSD).

Figure 8 shows the overhead breakdown. As input/output data
sizes increase, the snapshot sizes also increase (125.5 MiB to 2.1 GiB).
We observe that the overhead for each operation reasonably in-
creases along with increasing input data size. Checkpoint is slower
than Restore because it iterates over the whole guest memory to
find dirty pages and individually writes them to the disk, leading
to slower random accesses. Notably, FPGA-specific operations do
not increase the overall time of VM migration and checkpointing;
the FPGA eviction occupies 0.4-10.6% in VM save and 0.1-2.4% in
Checkpoint. While the FPGA resumption gets dominant for small
data sizes due to its static overheads, it gets amortized for large
applications.

In summary, Funky’s checkpoint mechanism induces reasonable
overheads to make a snapshot of FPGA workloads, which enables
fast recovery from system failures.
FPGA synchronization. Lastly, we evaluate the synchronization
overheads and our data splitting optimization to mitigate them



SoCC ’25, November 19–21, 2025, Online, USA Atsushi Koshiba et al.

1 50 100 200 400 600 800 1000
Input/output data on FPGA [MiB]

0.0

0.1

0.2

0.3

0.4

Ti
m

e 
[s

]

FPGA evict
Worker init

FPGA resume

Figure 7: FPGA evict/resume overheads.

1 50 100 200 400 600 800 1000
Input/output data on FPGA [MiB]

0

2

4

6

Ti
m

e 
[s

]

FPGA evict
VM save (mig)
Checkpoint

FPGA resume
VM load (mig)
Restore

Figure 8: VMmigration/checkpointing.

1 2 4 8 16 32 64 128 256
The number of split chunks

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e 
[s

]

All-data processed FPGA sync

Figure 9: FPGA synchronization time.

Policy Description Evict Migrate
NO_PRE Reorder enqueued tasks.
PRE_EV Evict low-priority tasks. ✓
PRE_MG Migrate evicted tasks. ✓ ✓

Table 5: Scheduling policies.

App Time Type Priority per scenario
Short-HP Long-HP

shift_reg 36.0 s Long Low High
port_width 35.1 s Long Low High
loop_pipe 44.8 s Long Low High
burst_rw 3.5 s Short High Low
mem_rw 3.5 s Short High Low
sys_array 3.6 s Short High Low

Table 6: Execution time and priority in
each scenario.
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Figure 10: Task preemption effectiveness. FCFS shows the worst case when tasks
are deployed in the x-axis order, which lets low-priority tasks occupy FPGAs.

(§ 3.4). This experiment fixes the total input data at 1000 MiB and
splits it into 1 to 256 chunks, measuring the overhead as the kernel is
repeatedly invoked/synchronized until all the chunks are processed.

Figure 9 shows the total execution time (All-data processed) and
FPGA synchronization time (FPGA sync) in the worst-case scenario,
where the synchronization request is invoked immediately after
the kernel invocation. The results highlight that our optimization
can cut 96.9% of the overhead without any performance overheads
(<0.1%) in the case of 32 chunks, where each kernel invocation
processes 31.25 MiB data. We also observe that excessive data split-
ting increases the total time, e.g., 5.5% with 256 chunks. Funky can
prevent it by configuring the lower boundary of the chunk size.

In summary, the results demonstrate that our optimization can
effectively eliminate the waiting time for FPGA synchronization.

5.5 Task Preemption
Next, we examine how Funky’s state management mechanisms are
effective for preemptive task scheduling on our FPGA cluster.

Methodology. We execute our orchestrator’s prototype on the
leader node and the Funky runtime daemons in the other three
worker nodes. Table 5 shows the priority-based scheduling policies
we compare. Every policy deploys tasks in the scheduling queue in a
First-Come-First-Served (FCFS) manner as long as any FPGA is free.
If all the FPGAs are occupied by running tasks, NO_PRE sorts the
waiting queue based on the task’s priority. On the other hand, PRE_-
EV evicts a low-priority task when a higher-priority task comes.
PRE_MG performs both the eviction and migration; the migration
takes place when an evicted task can be resumed on a different node.

We create two scenarios where we assign priorities to each task
considering its execution time: 1. Short-HP prioritizes short-lived

tasks labeled as high priority (HP), and 2. Long-HP prioritizes
long-running tasks. We use a subset of Vitis Accel Examples, which
contains six applications with long and short execution times, as
shown in Table 6. We perform the batch execution in both scenar-
ios, repeatedly sending deployment requests of the six applications
while changing their orders to cover all possible deployment or-
ders of high- and low-priority tasks. We test 20 patterns of different
orders and measure the average execution time for each benchmark.

Results. Figure 10 (a) shows the behavior of the different poli-
cies in the Short-HP scenario, where PRE_MG is most effective
for high-priority tasks, reducing 16.7% of their average execution
time compared to NO_PRE. In the case of non-preemptive policies
(FCFS and NO_PRE), we observe that high-priority tasks (b_rw,
mem_rw, sys_ar) take longer execution time because they have
to wait for the completion of low-priority tasks when all three
FPGAs are in use. On the other hand, when preemption is enabled
(PRE_EV and PRE_MG), the long-running tasks get evicted in favor
of high-priority tasks. There is one edge case, sys_ar for PRE_EV,
whose deployment is impeded by long FPGA synchronization of
lp_pipe consisting of only two heavy FPGA operations. Such a case
can be mitigated by our optimization demonstrated in Figure 9.

Figure 10 (b) shows the Long-HP scenario, where PRE_EV is most
effective for high-priority tasks: 2.2% faster than NO_PRE. PRE_MG
is less effective because evicted low-priority tasks are sometimes
migrated before high-priority tasks arrive, slightly delaying their
deployment. This is a common issue of task preemption, which can
be mitigated by adapting better algorithms [25, 40, 60].

In summary, the evaluation demonstrates that Funky enables
FPGA task preemption across distributed FPGA nodes, leading to
shorter execution times than non-preemptive scheduling.
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5.6 End-to-end Orchestration
Lastly, we evaluate the effectiveness of Funky’s orchestration ser-
vices. Due to our limited number of FPGA resources, we simulate
a large-scale FPGA cluster using production traces from Google.

Methodology. We use production traces from the Google Clus-
terData 2019 dataset [63]. The dataset comprises one month of
real-world application traces (execution, failure, and eviction) from
eight Google Borg clusters [137, 140].

Because the traces only refer to CPU workloads, we strive for
trace modification to reasonably simulate the behavior of FPGA-
accelerated jobs. First, we manipulate the execution time of each
trace job based on the expected performance gains of FPGA accelera-
tion against CPUs. Specifically, we calculate the performance gains
by comparing the average execution time of Rosetta real-world
applications on the U50 FPGA and CPU, as Rosetta offers both
CPU-only and FPGA implementations. As a result, we observe that
FPGAs are 1.6× faster than CPUs on average. We apply this speedup
factor to the job’s execution time. Second, to simulate state manage-
ment operations, we estimate the FPGA memory usage of each job
based on its CPU memory usage. While CPU jobs can offload any
portion of their computation to FPGAs in theory, we assume the
worst-case scenario for Funky for fairness, where all computations
are offloaded to FPGAs, and all FPGA memory buffers need to be
saved/restored, leading to the biggest checkpointing overheads. As
input/output buffers are duplicated on both CPU and FPGA mem-
ory, we assume that FPGA memory usage is always the same as the
CPU but limited to its physical memory capacity, i.e., 8 GiB on U50.

Using the modified traces, we implement a full-system orchestra-
tion simulator written in Python. The simulator maintains the state
of an FPGA-equipped cluster that offers a fixed number of resources
(CPUs, memory, vFPGAs) and replays the execution of jobs as they
appear in the traces. During the simulation, the simulator parses the
traces to retrieve timestamps of scheduling events that happened to
tasks: task submission, execution, eviction, failure, and completion.
Whenever any events happen, the simulator updates the cluster
state and accordingly inserts the Funky-specific overheads, e.g.,
unikernel bootups.

Scalability.We first evaluate how Funky’s performance scales with
the number of vFPGAs in the cluster. Assuming that all types of
workloads cannot be fully accelerated by FPGAs, we define accelera-
tion rates, which indicate the duration tasks can be accelerated with
FPGAs during their execution periods. We increase the cluster size
from 1 to 128 vFPGAs for five different acceleration rates: 0% (no

FPGA acceleration), 25%, 50%, 75%, and 100% (fully accelerated). For
each cluster size, we simulate the execution of all tasks in the traces
and calculate the throughput, i.e., completed tasks per minute.

Figure 11 shows the results. We observe that an increasing num-
ber of vFPGAs and acceleration rates reasonably improve the sys-
tem throughput. We note that even a small acceleration rate (25%)
achieves 1.1× higher throughputs than no FPGA acceleration (0%),
indicating that Funky’s virtualization overheads are sufficiently
small to retain FPGA’s performance benefits for real-world traces.

In summary, Funky scales effectively with cluster size on real-
world application traces, despite virtualization overheads.
Fault tolerance. We next evaluate the effectiveness of Funky’s
checkpointing mechanism for fault-tolerant execution. During the
simulation, the system periodically takes snapshots of running
tasks, while all the tasks fail at random points during their exe-
cution (1-99%). Under this setup, the failure events happen at 50%
of the total execution time on average, which roughly follows the
real-world scenario reported by a prior study [49], i.e., failed cluster
jobs run for roughly 40% of their total execution time before the
first task failure event. Whenever a task fails, the system resumes
the task from the latest snapshot or restarts from the beginning if
there are no snapshots. We also examine checkpointing overheads
by simulating the case where no failure happens (Success).

Figure 12 shows the average execution times for different check-
pointing durations. In any duration, checkpointing reduces the
execution time of failed tasks by recovering from the latest snap-
shot. Regarding the checkpointing duration, frequent checkpoint-
ing (e.g., every 30 seconds) increases the performance overheads,
while sparse checkpointing (e.g., every 10 minutes) mitigates the
overheads in success at the cost of longer recovery time in failure.

In summary, Funky recovers failed task performance using snap-
shots when the snapshot frequency is optimized.
Scheduling. Lastly, we examine the effectiveness of our preemptive
task scheduling for the trace jobs. We evaluate the same scheduling
policies used in § 5.5 with 32 vFPGAs.

Figure 13 shows the results, which represent the same trend as
Figure 10. Funky’s preemptive policies, PRE_EV and PRE_MG, re-
duce the execution time of high-priority tasks compared to NO_PRE,
5.3% and 4.5% shorter. PRE_MG also reduces 5.9% of the execution
time of low-priority tasks compared to PRE_EV because the FPGA is
more likely to be occupied for long-running jobs, and task eviction
and migration become more effective.

In summary, Funky’s preemption mechanism is effective for the
production traces as well as the real hardware evaluation.
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Solutions FPGA virtualization and isolation FPGA statemanagement Cloud-native orchestration
Guest sandbox FPGA fabric Guest Logic Memory OCI/CRI Scheduling Checkpoint Scaling

Industry practices
Cloud instance [6] VM (standard) N/A - - - - - - -
k8s plugin [56, 152] Container Vendor’s Shell∗ - - - ✓ ✓ - -

State-of-the-art research
AmorphOS [81] User process Own Shell - - - - - - -
Coyote [85] User process Own Shell - - - - - - -

SYNERGY [91] User process AmorphOS∗ - ✓ - - - - -
Optimus [97] VM (standard) Own Shell - - - - - - -
AvA [161] VM (standard) AmorphOS∗ ✓ ✓⋄ ✓⋄ - - - -

BlastFunction [38] Container Vendor’s Shell∗ - - - ✓ - - ✓

Funky VM (unikernel) Vendor’s Shell∗ ✓ (✓) ✓ ✓ ✓ ✓ ✓

∗: leverages existing FPGAOSes (Shells) to isolate FPGA fabrics. ⋄: adopts record-and-replay [102], which does not directly save the states.
Table 7: Comparison with the state-of-the-art approaches for leveraging FPGAs in cloud environments.

6 RelatedWork
We compare Funky with state-of-the-art research on cloud FPGA
management across three dimensions, summarized in Table 7.

FPGA virtualization and isolation. Vendor-provided FPGA plat-
forms adopt the PCIe passthrough that statically binds FPGA de-
vices to guest VMs [6, 103, 143]. While these dedicated instances
achieve near-zero FPGA control overheads, the lack of FPGA vir-
tualization leads to low resource utilization in a multi-tenant cloud.
FPGA virtualization based on FPGAOS applies the OS primitives to
hardware tasks on FPGAs [5, 18, 19, 46, 111]. Task schedulers [22, 58,
67, 127, 145], memory virtualization [3, 27, 148], security [76, 86],
communication layers [21, 70–72, 101] have been actively studied.
AmorphOS [81] and Coyote [85] aim to isolate and share FPGA
fabric on a single board rather than cloud-scale distributed FPGA or-
chestration. Funky leverages such FPGA OSes or vendor-provided
Shells [54, 157] to isolate the FPGA fabric and onboard devices (e.g.,
memory) while it strives to offer a hypervisor-level isolated sandbox
for guest CPU applications, which is crucial in a multi-tenant cloud.

Optimus [97] and AvA [161] offer hypervisor-level isolation for
standard VMs on traditional cloud FPGA platforms (e.g., Amazon
F2 [6]). Although they achieve Funky’s security level, they do not
consider integration with cloud-native orchestration. In addition,
large contexts of standard VMs do not fit cloud-native applications,
leading to slow boot time and performance penalties. While AvA
provides a VM migration mechanism, integrating it with orches-
trators is not its primary goal. In contrast, Funky is the first work
to leverage lightweight sandboxes (i.e., unikernels) for FPGA vir-
tualization and integrate the FPGA state management operations
into an industry-standard orchestrator, i.e., Kubernetes.

FPGA state management. FPGA context switching [78, 94, 95,
116] and checkpointing [68, 82, 105, 124, 141] have been mainly
exploited at the hardware level. They are either based on reading
back the state of FPGA logic (registers, BRAMs) or modifying the
hardware embedding scan chains to extract the state [68]. SYN-
ERGY [91] is a compiler-based approach that transforms the HDL
code of user logic into a preemptible design.While these approaches
focus on user logic states, Funky comprehensively breaks down
the FPGA workload states in the state-of-the-art architecture (logic,
memory, VM) and introduces an end-to-end flow to save and restore
them. AvA [161] adopts record-and-replay [102], which can induce
significant overheads for long-running services.

Cloud-native orchestration.Many orchestration engines have
been developed and studied for efficient resource management
in data centers and commercial clouds [43, 73, 140], offering pre-
emptive scheduling [24, 77, 121], checkpointing [13, 130], fault
tolerance [69], workload scaling [107, 117, 137]. However, they
target only CPU and memory resources. GPU orchestration is be-
ing rapidly exploited [135, 146, 149] due to the emergence of AI
workloads. Funky tackles the orchestration of FPGAs, given their
architectural difference from CPUs and GPUs.

There are a few projects to leverage FPGAs in cloud-native envi-
ronments, which partially address our goals. BlastFunction [38] and
F3 [99] integrate FPGAs into Kubernetes-based serverless frame-
works, while their functionality is restricted to workload scaling
and non-preemptive scheduling. Molecure [47] also supports FPGA
acceleration but lacks orchestration and state management support.
Unlike these serverless studies, Funky offers comprehensive FPGA
virtualization and state management, enabling broader orchestra-
tion services like migration, preemption, and checkpointing.

7 Conclusion
We present Funky, an FPGA orchestration engine for cloud-native
environments with the following contributions. First, we design
a unikernel architecture for FPGA virtualization that not only min-
imizes the performance penalties but also brings faster boot times
than containers. We also design a guest OpenCL-compatible library
for application portability. Second, we present a hypervisor-driven
FPGA state management. The thin hypervisor transparently traces
host-FPGA data transfers and enables saving and restoring uniker-
nel/FPGA contexts. Lastly, we present three orchestration services:
preemptive scheduling, checkpointing, and workload scaling. Our
orchestration mechanism is compatible with the industry-standard
CRI/OCI specifications. We implement and evaluate Funky on our
four-node FPGA cluster with three AMD Xilinx FPGAs. Our evalu-
ation demonstrates that Funky imposes virtualization overheads of
7.4% against native execution while enabling FPGA virtualization
and state management for orchestration operations.

Artifact availability. The Funky codebase is publicly available at
https://github.com/TUM-DSE/Funky.git.

Supplements. Our appendix includes a discussion about Funky’s
potential applicability for other applications and system domains.

https://github.com/TUM-DSE/Funky.git
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