
Funky: Cloud-native FPGA Virtualization
and Orchestration

ACM SoCC 2025

Atsushi Koshiba, Charalampos Mainas, Pramod Bhatotia

Systems Research Group at TU Munich
https://dse.in.tum.de/

https://dse.in.tum.de/

Cloud-native environments

Server nodes

Orchestrator

maintain

Cloud-native environments

2

Cloud orchestrators facilitate application deployment and server management

Cloud-native environments are a de-facto standard in a modern cloud

App App App …
deploy, scale,

migrate…

µService

submitCloud users

FPGA

Reconfigurable region

Accelerators (FPGAs) for cloud workloads

Field Programmable Gate Arrays (FPGAs) promise accelerating cloud workloads

3

FPGA promises accelerating cloud workloads

Cloud FPGA cards

Custom logic
(Kernel)

Application on CPUs

10~100x speedups,
energy-efficiency

Worker nodes

Orchestrator

Resources

Limited FPGA support in cloud-native environments

Cloud orchestrators do not natively support FPGAs

4

Orchestrators need to adapt FPGAs as primary hardware resources

l0w utilization,
non-scalable, unfairness

external
FPGA cards

primary
CPU Memory

dynamic allocation
Device plugin

static binding

monitor
scheduling

Containers
Application

high utilization,
scalability, flexibility

deploy

Container engine

Challenges

FPGA integration into cloud-native environments is hindered by:

5

No FPGA virtualization No FPGA preemption Limited FPGA orchestration

→ Low FPGA utilization → Unfairness/data loss → Impractical

Long-running apps can
unfairly occupy FPGAs

FPGAs unfit to lightweight
sandboxes for cloud-native apps

Open specifications (OCI, CRI)
are only for CPU/memory

…

Containers/MicroVMs
Cloud-native apps

Direct access or no I/F Logic A
Logic B

snapshot

preemption

checkpoint

Research question

6

How do we adapt FPGAs into cloud-native environments to realize FPGA
orchestration services, including task preemption, migration, and checkpointing?

Our proposal

7

Contributions:
● Lightweight FPGA virtualization

○ A lightweight OS (unikernel) designed for FPGA applications
● FPGA state management

○ Hypervisor-driven task preemption, migration, and checkpointing
● FPGA-aware orchestration

○ CRI/OCI-compliant orchestrator extension

Funky: Cloud-native FPGA virtualization and orchestration
an end-to-end FPGA orchestration engine for cloud-native applications

● Motivation

● Overview

● Implementation

● Evaluation

Outline

8

Worker node

Funky overview

9

VM(s)
Funky unikernel

Guest FPGA lib (FunkyCL)
Guest application

Hypervisor isolation

Key system components:

orchestration reqs

deploy

Funky runtime

Orchestrator
Funky scheduler

requests

Funky monitor
Req. handler State mgmt.

#1 Funky unikernel
→ FPGA virtualization

#2 Funky monitor
→ FPGA state management

#3 Funky orchestrator
→ FPGA-aware orchestration

vFPGA #1 vFPGA #2

Host OS (KVM, FPGA driver)

CPU/FPGA boundary

FPGA(s)
…Kernel A Kernel B

#1: Funky unikernel

Preserve advantages of lightweight sandboxes (unikernel)

10

Funky unikernel enables FPGA virtualization suited for cloud-native applications

● Thin FPGA virtualization stack
○ Lightweight context (< 10MB)

async I/O

Guest VM

Hypervisor isolation

OpenCL application

FPGA

Funky monitor (hypervisor)

Host FPGA driver

Funky unikernel (FunkyCL)

FPGA software runtime
Host FPGA library

Lightweight VM (unikernel)

● Asynchronous, exit-less FPGA I/Os
○ Low runtime overhead (≈ 0%)

● Hypervisor-driven isolation
○ Strong isolation

● OpenCL wrapper library (FunkyCL)
○ Application portability

FPGA
software

stack

Memory

#2: Funky monitor

A hypervisor process enables evicting and resuming FPGA execution

11

Funky monitor can transparently/securely capture VM and FPGA contexts

FPGA card

Kernel (FPGA logic)

Memory

Guest VM
App

Funky monitor

in out

suspend

Host CPU

Persistent storage

sync FPGA
(pending)

FPGA save memory
states

Orchestrator

requests

Challenges
1. Kernel can’t be suspended
2. FPGA states are unreadable

exec cmds
cmd queues

(async.)

Observations
1. Funky monitor can track enqueued cmds
2. FPGA kernels are stateless (e.g., OpenCL)
→ tolerate waiting for all on-the-fly commands

snapshots

Worker nodesLeader node
Users

#3: Funky orchestrator

CRI/OCI-compliant extension for Funky applications (green boxes)

12

Funky orchestrator transpantly enables orchestration services for FPGAs

Funky
runtime

OCI cmds

FPGA

VM

Funky monitor

Kernel

App

deploy, kill,
evict, resumeFunky scheduler

Gateway Container
runtime

Node
agent

CRI API

Preemptive scheduling that supports
FPGA eviction, resumption, migration

Propagate FPGA metadata thr.
CRI msg structure ‘annotations’

Funky-specific OCI commands:
evict, resume, checkpoint, etc.

Outline

13

● Motivation

● Overview

● Implementation

● Evaluation

Implementation

An end-to-end prototype for AMD FPGAs

14

● Funky orchestrator : Full-scratch implementation

● Funky unikernel : IncludeOS v0.13.1

● Funky monitor : Solo5 v0.3.1

● FunkyCL : Ported & tested 34 OpenCL APIs

● FPGA runtime : Xilinx Runtime (XRT) 2021.2

● FPGA card : AMD Alveo U50

FPGA backends

Outline

15

● Motivation

● Overview

● Implementation

● Evaluation

Evaluation

Highlighted evaluations:

● End-to-end performance (virtualization overheads)

● Fault tolerance (checkpointing)

16

Experimental setup:

● Cluster : 1x leader (Xeon G5317@3.0GHz), 3x workers (Xeon G6238R@2.2GHz)

● FPGA : 3x FPGAs (each worker node equipped with 1x Alveo U50)

See our paper
for more results!

Applications:

● 23 OpenCL applications ported from Vitis Accel Examples and Rosetta1

● Google production traces of Borg clusters2 for large-scale simulation
1Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software Programmable FPGAs, FPGA'18.
2Borg: The Next Generation, EuroSys’20

End-to-end performance (virtualization overheads)

17

Lower is better ↓

Funky enables FPGA virtualization with 0.6% higher overheads than containers

Execution time against baselines w/o FPGA virtualization (native, AMD’s container)

VM/hypervisor initialization
overheads (~25.4%)

mitigated for long-running
apps (0.7~2.2%)

Fault tolerance (checkpointing overheads)

18

Lower is better ↓

Funky mitigates 44.7% of recovery time at the cost of 2.0% overheads in success

Execution time including recovery time in failure, simulated by Google job traces

≈ 34 min (no failure)

5.3% inc.2.0% inc.

50.1% increase (no snapshots)

Lack of FPGA virtualization and orchestration support for cloud-native applications
● Lack of FPGA virtualization suitable for cloud-native applications
● Lack of FPGA state management for orchestration services
● Limited orchestration support for FPGAs

Funky: an end-to-end FPGA orchestration engine
● Lightweight FPGA virtualization for unikernels
● FPGA state management driven by a hypervisor
● Orchestrator extension that is OCI/CRI-compatible

Summary

19

Paper Code

https://github.com/TUM-DSE/Funky

Contact : atsushi.koshiba@tum.de
Website : https://atsushikoshiba.github.io

https://github.com/TUM-DSE/F3
mailto:atsushi.koshiba@tum.de
https://atsushikoshiba.github.io

