Funky: Cloud-native FPGA Virtualization
and Orchestration

Atsushi Koshiba, Charalampos Mainas, Pramod Bhatotia

Systems Research Group at TU Munich
https://dse.in.tum.de/

ACM SoCC 2025

https://dse.in.tum.de/

Cloud-native environments TI.ITI

Cloud-native environments are a de-facto standard in a modern cloud

Cloud-native environments

deploy, scale,
submit migrate...

0e® — - | App | | App | | App | -
'.‘ }JSGI‘VICGLL % ~ maintain [H

Server nodes

Cloud users Orchestrator

[Cloud orchestrators facilitate application deployment and server management

Accelerators (FPGAs) for cloud workloads TUTI

Field Programmable Gate Arrays (FPGAs) promise accelerating cloud workloads

Application on CPUs

Cloud FPGA cards 10~100x speedups,
St (P s | energy-efficiency

g IA-860m Bittiiare

Custom logic |
(Kernel) |

FPGA promises accelerating cloud workloads }

Limited FPGA support in cloud-native environments TI.ITI

Cloud orchestrators do not natively support FPGAs

Worker nodes
deploy| | Containers
Application
r —————————— S |
» Container engine i___l_)_e__/i_c_g plugin
Orchestrator J’dynamic allocation [static binding
C.@ | T primary T Resources [oernal |
._monitor | . cpy || Memory |: | FPGAcards |
scheduling T SRR
high utilization, low utilization,
scalability, flexibility non-scalable, unfairness

Orchestrators need to adapt FPGAs as primary hardware resources }

Challenges TI.ITI

FPGA integration into cloud-native environments is hindered by:

No FPGA virtualization No FPGA preemption Limited FPGA orchestration

1111
Ll FPGA &)
1111

Containers/MicroVMs H

| Cloud-native apps |

_______________ |
. DirectaccessornolfF

8888 preemption —_____ |

=y iLogicB!

SRy - FHEY - Y-S ... 88808 checkpoint
SN RN CEN -

FPGAs unfit to lightweight Long-running apps can Open specifications (OCl, CRI)
sandboxes for cloud-native apps unfairly occupy FPGAs are only for CPU/memory
— Low FPGA utilization — Unfairness/data loss — Impractical

Research question TI.ITI

How do we adapt FPGAs into cloud-native environments to realize FPGA
orchestration services, including task preemption, migration, and checkpointing?

Our proposal

Funky: Cloud-native FPGA virtualization and orchestration
an end-to-end FPGA orchestration engine for cloud-native applications

Contributions:
e Lightweight FPGA virtualization
o Alightweight OS (unikernel) designed for FPGA applications
e FPGA state management
o Hypervisor-driven task preemption, migration, and checkpointing
e FPGA-aware orchestration
o CRI/OCl-compliant orchestrator extension

Outline

Meotivat
e Overview
e Implementation

e Evaluation

Funky overview TI.ITI

Worker node
Key system components: Orchestrator T
. Funky scheduler — ™ I
#1 Funky unikernel — 1) unky unikerne
— FPGAvitalzaton eavests| sopiy || [Goetoppletion
#2 Funky monitor Funky runtime ST
—————— Hypervisor isolation --
— FPGA state management
Funky monitor
#3 Funky orchestrator orchestration regs | Req. handler | | State mgmt. |
— FPGA-aware orchestration
Host OS (KVM, FPGA driver)

------- CPU/FPGA boundary {------

r——————" ———————|

—_—— e — —— I________

#1: Funky unikernel TI.ITI

Preserve advantages of lightweight sandboxes (unikernel)

:Iil_gh_t—‘f—\i—e_lg—lj—f—y:nﬂ—_ggg—k_—e_f_r—]fp:f e Thin FPGA virtualization stack
| Guest VM ill o Lightweight context (< 10MB)
| OpenCL application !

|

| it-
Sl e (L) h e Asynchronous, exit-less FPGA I/Os

T i o Low runtime overhead (= 0%)
------ Hypervisor isolation ---f<—----__

|I Funky monitor (hypervisor) Masyn’c /0 . .
o Strong isolation

e Hypervisor-driven isolation

Host FPGA library FPGA e OpenCL wrapper library (FunkyCL)
FPGA software runtime software o Application portability
Host FPGA driver stack
FPGA

[Funky unikernel enables FPGA virtualization suited for cloud-native applications}

10

#2: Funky monitor

Challenges
Ah ‘<or DI 1. Kernel can’t be suspended n
YPETVISOT PrOCE€SS €, £pGA states are unreadable g

Observations

1. Funky monitor can track enqueued cmds
2. FPGA kernels are stateless (e.g., OpenCL)

— tolerate waiting for all on-the-fly commands
Host CPU
Guest VM
| Orchestrator | | App | \ FPGA card
- ~ cmd queues o
requests \exec cmds ? suspend (sa%gCF)PGA — Kernel (FPGA logic) i
Funky monitor I_v(pending) A S R
Memory|FPGAT— v e o |_in_pmol_out |
states
| snapshots

Persistent storage

[Funky monitor can transparently/securely capture VM and FPGA contexts 1

11

#3: Funky orchestrator TI.ITI

CRI/OCl-compliant extension for Funky applications (green boxes)

Propagate FPGA metadata thr. Funky-specific OCl commands:]

Leader node | CRI msg structure ‘annotations’] Worker nodes \evict, resge, checkpoint, etc.

Users N f 17— N
| Node | CRIAPI |container|OCI cmds | Funky VM
Gateway g > . > -
T agent runtime runtime | App |
I
" deploy, kill > Funky monitor
evict, resume
Funky scheduler Preemptive scheduling that supports 3 FPCGA
\lFPGA eviction, resumption, migration | Kernel |
- J - J

[Funky orchestrator transpantly enables orchestration services for FPGAs }

12

Outline

Metivati
*—Overview
e Implementation

e Evaluation

13

Implementation

TUTI

An end-to-end prototype for AMD FPGAs

Funky orchestrator
Funky unikernel
Funky monitor

FunkyCL

FPGA backends

FPGA runtime
FPGA card

: Xilinx Runtime (XRT) 20212 AMDZU |

: AMD Alveo Us0 XILINX

: Full-scratch implementation I include QS

: IncludeOS vo0.13.1 I

L U \

N e

: Solo5 vo0.3.1 N N/

: Ported & tested 34 OpenCL APIs O,penEL

. w0 & AlVEO

14

Outline

Metivati
—OVerHew
o—impltementation

e FEvaluation

15

Evaluation TI_ITI

Highlighted evaluations:

e End-to-end performance (virtualization overheads) See our paper

inti results!
e Fault tolerance (checkpointing) for more results

Experimental setup:
e C(luster :1xleader (Xeon G5317@3.0GHz), 3x workers (Xeon G6238R@2.2GHz)
e FPGA :3xFPGAs (each worker node equipped with 1x Alveo U50)

Applications:
e 23 OpenCL applications ported from Vitis Accel Examples and Rosetta’

e Google production traces of Borg clusters? for large-scale simulation

'Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software Programmable FPGAs, FPGA'18. 16
*Borg: The Next Generation, EuroSys’20

Time [s]

End-to-end performance (virtualization overheads) TI.ITI

Execution time against baselines w/o FPGA virtualization (native, AMD’s container)

Lower is better | 52 mitigated for long-running
4o I Native PR e apps (0.7~2.2%)
ZZ Xilinx Docker | VM /hypervisor initialization e SR
1 Funky o VN 7] A <
30- overheads (~25.4%) 79 AT 5
i gel ¢x G
20 - St ;.‘. A :
5% of 2 ; 2 q 53
10- poRA O $5 R %585 5% £% 8% g3 M £ A1 Lo] o
‘_W o g9 nd Sa =3 n3 og3 83 S8 ag (] == 22 Va il g W
0 0 o7m eom o7 e ep oo e e e L e oo L [gl I
Q’é Q? ?oéo’ § Z\‘Q @67 \;'? *q? Q\S Q\Q "l’\g QQ\Q th Gﬁ/ &s‘s @Q’ Q?
o hory
é/ '5\— oQ/ < S S & P bQ' *(; \@/ < \00 Q’;’\/ oé,/ {,‘,é'/
Vitis Accel Examples

[Funky enables FPGA virtualization with 0.6% higher overheads than containers }

17

Fault tolerance (checkpointing overheads) TUTI

Execution time including recovery time in failure, simulated by Google job traces

=1 Nosnapshots [Everylm [Every 5m 1

A Every 30s 1 Every3m 23 Every 10m
Lower is better | 50 - .—50.1% increase (no snapshots)
= 2.0%inc. 5.3% inc.
E 40- !
GE)% - 7 — R S) - = +4 — =34 min (no failure)
SWHEY WP
g2 /] | % / 7
8 ZHy /| /
af 10 - / ; / /
NRYRNN /. /
Success Failure

[Funky mitigates 44.7% of recovery time at the cost of 2.0% overheads in success}

18

Summary TI.ITI

Lack of FPGA virtualization and orchestration support for cloud-native applications
® Lack of FPGA virtualization suitable for cloud-native applications
® Lack of FPGA state management for orchestration services
e Limited orchestration support for FPGAs

Funky: an end-to-end FPGA orchestration engine
o Lightweight FPGA virtualization for unikernels
® FPGA state management driven by a hypervisor

® Orchestrator extension that is OCI/CRI-compatible
https://github.com/TUM-DSE/Funky

Contact : atsushi.koshiba@tum.de
Website : https://atsushikoshiba.github.io

19

https://github.com/TUM-DSE/F3
mailto:atsushi.koshiba@tum.de
https://atsushikoshiba.github.io

