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Cloud-native environments TI.ITI

Cloud-native environments are a de-facto standard in a modern cloud

Cloud-native environments
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[ Cloud orchestrators facilitate application deployment and server management




Accelerators (FPGAs) for cloud workloads TUTI

Field Programmable Gate Arrays (FPGAs) promise accelerating cloud workloads

Application on CPUs
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FPGA promises accelerating cloud workloads }




Limited FPGA support in cloud-native environments TI.ITI

Cloud orchestrators do not natively support FPGAs
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Orchestrators need to adapt FPGAs as primary hardware resources }




Challenges TI.ITI

FPGA integration into cloud-native environments is hindered by:

No FPGA virtualization No FPGA preemption Limited FPGA orchestration
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FPGAs unfit to lightweight Long-running apps can Open specifications (OCl, CRI)
sandboxes for cloud-native apps unfairly occupy FPGAs are only for CPU/memory
— Low FPGA utilization — Unfairness/data loss — Impractical



Research question TI.ITI

How do we adapt FPGAs into cloud-native environments to realize FPGA
orchestration services, including task preemption, migration, and checkpointing?




Our proposal

Funky: Cloud-native FPGA virtualization and orchestration
an end-to-end FPGA orchestration engine for cloud-native applications

Contributions:
e Lightweight FPGA virtualization
o Alightweight OS (unikernel) designed for FPGA applications
e FPGA state management
o Hypervisor-driven task preemption, migration, and checkpointing
e FPGA-aware orchestration
o CRI/OCl-compliant orchestrator extension
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Funky overview TI.ITI
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#1: Funky unikernel TI.ITI

Preserve advantages of lightweight sandboxes (unikernel)
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|I Funky monitor (hypervisor) Masyn’c /0 . .
o Strong isolation

e Hypervisor-driven isolation
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[Funky unikernel enables FPGA virtualization suited for cloud-native applications}
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#2: Funky monitor

Challenges
Ah ‘<or DI 1. Kernel can’t be suspended n
YPETVISOT PrOCE€SS €, £pGA states are unreadable g

Observations

1. Funky monitor can track enqueued cmds
2. FPGA kernels are stateless (e.g., OpenCL)

— tolerate waiting for all on-the-fly commands
Host CPU
Guest VM
| Orchestrator | | App | \ FPGA card
- ~ cmd queues o
requests \exec cmds ? suspend (sa%gCF)PGA — Kernel (FPGA logic) i
Funky monitor I_v(pending) A S R
Memory|FPGAT— v e o |_in_pmol_out |
states
| snapshots

Persistent storage

[ Funky monitor can transparently/securely capture VM and FPGA contexts 1
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#3: Funky orchestrator TI.ITI

CRI/OCl-compliant extension for Funky applications (green boxes)

Propagate FPGA metadata thr. Funky-specific OCl commands:]
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[ Funky orchestrator transpantly enables orchestration services for FPGAs }
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Implementation

TUTI

An end-to-end prototype for AMD FPGAs

Funky orchestrator
Funky unikernel
Funky monitor

FunkyCL

FPGA backends

FPGA runtime
FPGA card
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Evaluation TI_ITI

Highlighted evaluations:

e End-to-end performance (virtualization overheads) See our paper

inti results!
e Fault tolerance (checkpointing) for more results

Experimental setup:
e C(luster :1xleader (Xeon G5317@3.0GHz), 3x workers (Xeon G6238R@2.2GHz)
e FPGA  :3xFPGAs (each worker node equipped with 1x Alveo U50)

Applications:
e 23 OpenCL applications ported from Vitis Accel Examples and Rosetta’

e Google production traces of Borg clusters? for large-scale simulation

'Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software Programmable FPGAs, FPGA'18. 16
*Borg: The Next Generation, EuroSys’20
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End-to-end performance (virtualization overheads) TI.ITI

Execution time against baselines w/o FPGA virtualization (native, AMD’s container)
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[ Funky enables FPGA virtualization with 0.6% higher overheads than containers }
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Fault tolerance (checkpointing overheads) TUTI

Execution time including recovery time in failure, simulated by Google job traces
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[ Funky mitigates 44.7% of recovery time at the cost of 2.0% overheads in success}
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Summary TI.ITI

Lack of FPGA virtualization and orchestration support for cloud-native applications
® Lack of FPGA virtualization suitable for cloud-native applications
® Lack of FPGA state management for orchestration services
e Limited orchestration support for FPGAs

Funky: an end-to-end FPGA orchestration engine
o Lightweight FPGA virtualization for unikernels
® FPGA state management driven by a hypervisor

® Orchestrator extension that is OCI/CRI-compatible
https://github.com/TUM-DSE/Funky

Contact : atsushi.koshiba@tum.de
Website : https://atsushikoshiba.github.io
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