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Quantum cloud computing paradigm
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Quantum cloud computing paradigm
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OptimizationSimulations Cryptography

< 100 QPUs online

100.000s

Obsolete model: Quantum applications require classical code & resources

Execution results



Quantum applications are hybrid, really
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Error mitigation Optimization

Pre-processing Compilation QPU execution Post-processing

Classical resources Classical resources

ReconstructionQPUs

Different:
- Technologies
- Architectures
- Noise models

Circuit Results



Quantum computers as HPC accelerators
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…
Hybrid application

Execution results

HPCQC: Tight integration of quantum computers in the HPC clusters



Our focus: Hybrid applications on HPCQC clusters

● Hybrid quantum-classical applications that require hybrid resources

● All types of resources are hosted on the cloud

● Quantum resources are scarce and heterogeneous
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This programming & execution setting presents unique challenges



The HPCQC cloud faces three challenges
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#1 Hybrid programming 
model

#2 Hybrid resource 
estimation

#3 Quantum cloud 
tradeoffs



Challenge #1: Hybrid programming model

● Ad-hoc stitching of quantum & classical tasks

● No standardization in creating workflows

●  Manual compute resource allocation
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Error mitigation

Optimization

Reconstruction

➕

➕

❓❓❓



Challenge #1: Hybrid programming model

● Ad-hoc stitching of quantum & classical tasks

● No standardization in creating workflows

●  Manual resource allocation
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Problem: Ad-hoc hybrid workflow development & execution

Key idea: Hardware-agnostic APIs & hybrid workflow programming tools   

Classical resources

QPUs

❓❓❓



Challenge #2: Hybrid resource estimation

● Error mitigation increases fidelity

● Typically, at a hybrid runtime cost

● The impact is (often) hard to compute
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2.5x
12x

450x

Problem: Classical and quantum runtime and fidelity tradeoff

Key idea: Hybrid resource and performance estimation  



Challenge #3: Quantum cloud tradeoffs

● Manual QPU selection access model

● Users want maximum fidelity

● High-fidelity QPUs become hotspots
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Problem: Fundamental tradeoff between fidelity and resource efficiency 

Key idea: Scheduling that optimizes both fidelity and resource efficiency  

100x



The need for a hybrid cloud orchestrator
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How to design an orchestrator for the hybrid quantum-classical cloud that is 
programmable, performant, and resource-efficient?

HPCQC application development and execution are hindered by programming 
complexity, hybrid resource management, and inherent quantum cloud tradeoffs 



Our proposal: Qonductor
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Core contributions:
● Hardware-agnostic APIs and hybrid workflow tools

● Hybrid resource estimation for resource allocation

● Hybrid scheduling that manages cloud tradeoffs 

circuits results

QPUs

Qonductor: A Cloud Orchestrator For Quantum Computing

An orchestrator designed for hybrid applications running on hybrid resources

Qonductor

xPUs



Outline

● Introduction & motivation
● System design

○ System overview
○ System Components

● Evaluation
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High-level system overview
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QPUs Classical resources

Data plane Control plane

Worker node Worker node…

Qonductor



High-level system overview
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QPUs Classical resources

Data planeControl plane

Worker node Worker node…



System overview and workflow
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QPUs Classical resources

Data planeControl plane

Worker node Worker node

Workflow managerAPI server

Resource estimator

Job manager

Hybrid scheduler

Workflow 
registry

Device manager Device manager

Quantum-classical libs

…

invoke

load image

request plans

schedule plan

run jobs

executeexecute

System 
monitor

update DB & 
return results



Qonductor data plane
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Data plane

Workflow manager

Workflow 
registry

Quantum-classical libs



Qonductor workflow registry

● Qonductor provides common libraries
○ Quantum: Algorithms, error mitigation, etc.
○ Classical: Simulation, post-processing, etc.

● Users can create, store, and reuse images
○ Example: Max-cut on bipartite graph QAOA

● Qonductor provides a workflow registry
○ Example: QFT w/ 50 qubits and circuit knitting
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Quantum Classical

VQE, QAOA MPS simulator

QFT, QPE REM

DD, ZNE Circuit knitting

qiskit-qaoa-em:latest

teleportation-dynamic:latest

Libraries and workflow registry enable faster hybrid workflow generation



Qonductor control plane
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Control plane

API server

Resource estimator

Job manager

Hybrid scheduler



Qonductor control plane

21

Control plane

API server

Resource estimator

Job manager

Hybrid scheduler



Qonductor resource estimator challenges
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✖ ✖

Challenge #1: Computational complexity and vast search space

Quantum circuits x QPUs x classical resources



Qonductor resource estimator challenges
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Challenge #2: Fidelity is mathematically hard to model

Formulas for estimating the error-mitigated observables

Hard to compute!

Probabilistic Error Cancellation

Zero-Noise Extrapolation



Resource estimator approaches

● For techniques that generate 100s of circuits, use the worst-case one
● For QPUs, use the models (e.g. IBM Falcon) as templates for 

compilation
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✖ ✖

Approach #1: Limit search space using templates



Resource estimator approaches

● For techniques that generate 100s of circuits, use the worst-case one
● For QPUs, use the models (e.g. IBM Falcon) as templates for 

compilation
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✖ ✖

Approach #1: Limit search space using templates



Resource estimator approaches
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depth: 20

#cnots: 15

#meas: 10

cnot_err: 0.1

meas_err: 0.3

T2: 200μs

Circuit QPU

➕ ZNE➕

Model
Error

mitigation

Approach #2: Use a machine learning model to predict performance

● Train the model with 1000s of runs, w/ and w/o error mitigation, extract metrics
● Use circuit & QPU properties and the error mitigation technique(s) as features



Resource estimator workflow
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Original circuit

Error mitigation QPU transpilation Fidelity estimation

Generated circuits
Template

QPUs Executables

fid: 0.35

fid: 0.50

fid: 0.78

{q: 2s, classical: 10s}

{q: 10s, classical: 20s}

{q: 20s, classical: 50s}

Exec. time estimation

Fidelities Execution times

The output fidelity & execution times are used by the scheduler!



Qonductor control plane
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Control plane

API server

Resource estimator

Job manager

Hybrid scheduler



Qonductor quantum scheduler challenges
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Schedule Fidelity JCT

schedule_0 0.54 55s

…

schedule_n 0.38 10s

Challenge #1: Large schedule exploration space to explore

Systematic exploration of schedule possibilities is NP-hard



Qonductor quantum scheduler challenges
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Challenge #2: Schedules can be equivalent and not better than others

Optimization problems with conflicting objectives are Pareto-optimal

fidelity

JC
T Pareto 

front



Quantum scheduler solutions
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Minimize waiting times Minimize error

Constraints

Approach #1: Multi-objective optimization with genetic algorithm

● Formulate optimization objectives, use NSGA-II to generate solutions
● NSGA-II explores the solution space in parallel and is robust against local optima



Quantum scheduler solutions
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Approach #2: Multiple-criteria decision making with pseudo-weights

● Users set the preference for fidelity, JCTs, or balanced
● Our pseudo-weights measure the relative importance within the Pareto front
● Select the solution w/ pseudo-weights closest to user’s preferences



Quantum scheduler workflow
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QPU0

…

QPUN

Job queue Q Job queue Q’

QPU0

…

QPUM

{ [ jo, QPU2 ]: 0.9 }

…

{ [ jn, QPU5 ]: 0.3 }

Fidelity estimations

{ [ jo, QPU2 ]: 3.1s }

…

{ [ jn, QPU5 ]: 4.6s }

N QPUs M QPUs

Exec. time estimations

filter fetch from DB

fidelity

JC
T Pareto front

multi-objective
optimization



Quantum scheduler workflow
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QPU0

…

QPUN

Job queue Q Job queue Q’

QPU0

…

QPUM

{ [ jo, QPU2 ]: 0.9 }

…

{ [ jn, QPU5 ]: 0.3 }

Fidelity estimations

{ [ jo, QPU2 ]: 3.1s }

…

{ [ jn, QPU5 ]: 4.6s }

N QPUs M QPUs

Exec. time estimations

filter fetch from DB

fidelity

JC
T

multi-objective
optimization

multi-criteria
decision making

Balanced

fidelity-JCTs

The scheduler balances the tradeoff between fidelity and JCTs



Outline

● Introduction & motivation
● System design

○ System overview
○ System Components

● Evaluation

35



Evaluation

● Implemented based on Kubernetes and the Qiskit quantum SDK

● Main research questions (RQs):
○ RQ1: What is the resource estimator’s accuracy in predicting performance?

○ RQ2: What is the quantum scheduler’s performance w.r.t. fidelity and JCTs?

○ RQ3: What is the quantum scheduler’s load-balancing performance?
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Many more results in the paper!



Evaluation methodology

● Setup: IBM 7-qubit and 27-qubit Falcon QPUs, 64-core AMD EPYC 7713P
● Benchmarks: SOTA quantum applications: QAOA, VQE, QFT, GHZ & W states, etc.
● Dataset: We collect over 70.000 circuits and ~7000 runs on the IBM cloud

○ We also monitor IBM job queues to simulate real arrival rates
● Cloud emulator: We simulate real cloud workloads based on our dataset 
● Baselines 

○ First-come-first serve (FCFS), numerical performance estimation methods
● Metrics

○ Fidelity (Higher is better)
○ JCT (Lower is better)
○ Utilization (Higher is better)
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RQ #1: Resource estimator accuracy
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Qonductor achieves 11-50% higher accuracy compared to ad-hoc methods



RQ #2: Quantum scheduler performance
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RQ #2: Quantum scheduler performance
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Qonductor achieves ~48% lower JCTs for ~3% fidelity loss



RQ #3: Quantum scheduler load balancing
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Qonductor achieves 66% higher QPU utilization with <16% load difference



Conclusion

● Hybrid application development & execution on the cloud face unique challenges:
○ Programming and execution complexity
○ Hybrid techniques and resources that affect classical and quantum performance
○ QPU load imbalance with high JCTs
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emmanouil.giortamis@tum.de

github.com/manosgior/Qonductor-SC25

● Qonductor: A Cloud Orchestrator For Quantum Computing
○ Hardware-agnostic APIs and hybrid workflow management
○ Hybrid resource estimation that predicts classical and quantum performances
○ Pareto-optimal multi-objective scheduling for QPU load balance and lower JCTs

mailto:emmanouil.giortamis@tum.de
https://github.com/manosgior/Qonductor-SC25

