
Qonductor
A Cloud Orchestrator for Quantum Computing

Emmanouil (Manos) Giortamis, Francisco Romão,
Nathaniel Tornow, Dmitry Lugovoy, Pramod Bhatotia

ACM/IEEE SC’25, St. Louis, USA

Technical University of Munich

Quantum cloud computing paradigm

2

Execution results

OptimizationSimulations Cryptography

Quantum cloud computing paradigm

3

OptimizationSimulations Cryptography

< 100 QPUs online

100.000s

Obsolete model: Quantum applications require classical code & resources

Execution results

Quantum applications are hybrid, really

4

Error mitigation Optimization

Pre-processing Compilation QPU execution Post-processing

Classical resources Classical resources

ReconstructionQPUs

Different:
- Technologies
- Architectures
- Noise models

Circuit Results

Quantum computers as HPC accelerators

5

…
Hybrid application

Execution results

HPCQC: Tight integration of quantum computers in the HPC clusters

Our focus: Hybrid applications on HPCQC clusters

● Hybrid quantum-classical applications that require hybrid resources

● All types of resources are hosted on the cloud

● Quantum resources are scarce and heterogeneous

6

This programming & execution setting presents unique challenges

The HPCQC cloud faces three challenges

7

#1 Hybrid programming
model

#2 Hybrid resource
estimation

#3 Quantum cloud
tradeoffs

Challenge #1: Hybrid programming model

● Ad-hoc stitching of quantum & classical tasks

● No standardization in creating workflows

● Manual compute resource allocation

8

Error mitigation

Optimization

Reconstruction

➕

➕

❓❓❓

Challenge #1: Hybrid programming model

● Ad-hoc stitching of quantum & classical tasks

● No standardization in creating workflows

● Manual resource allocation

9

Problem: Ad-hoc hybrid workflow development & execution

Key idea: Hardware-agnostic APIs & hybrid workflow programming tools

Classical resources

QPUs

❓❓❓

Challenge #2: Hybrid resource estimation

● Error mitigation increases fidelity

● Typically, at a hybrid runtime cost

● The impact is (often) hard to compute

10

2.5x
12x

450x

Problem: Classical and quantum runtime and fidelity tradeoff

Key idea: Hybrid resource and performance estimation

Challenge #3: Quantum cloud tradeoffs

● Manual QPU selection access model

● Users want maximum fidelity

● High-fidelity QPUs become hotspots

11

Problem: Fundamental tradeoff between fidelity and resource efficiency

Key idea: Scheduling that optimizes both fidelity and resource efficiency

100x

The need for a hybrid cloud orchestrator

12

How to design an orchestrator for the hybrid quantum-classical cloud that is
programmable, performant, and resource-efficient?

HPCQC application development and execution are hindered by programming
complexity, hybrid resource management, and inherent quantum cloud tradeoffs

Our proposal: Qonductor

13

Core contributions:
● Hardware-agnostic APIs and hybrid workflow tools

● Hybrid resource estimation for resource allocation

● Hybrid scheduling that manages cloud tradeoffs

circuits results

QPUs

Qonductor: A Cloud Orchestrator For Quantum Computing

An orchestrator designed for hybrid applications running on hybrid resources

Qonductor

xPUs

Outline

● Introduction & motivation
● System design

○ System overview
○ System Components

● Evaluation

14

High-level system overview

15

QPUs Classical resources

Data plane Control plane

Worker node Worker node…

Qonductor

High-level system overview

16

QPUs Classical resources

Data planeControl plane

Worker node Worker node…

System overview and workflow

17

QPUs Classical resources

Data planeControl plane

Worker node Worker node

Workflow managerAPI server

Resource estimator

Job manager

Hybrid scheduler

Workflow
registry

Device manager Device manager

Quantum-classical libs

…

invoke

load image

request plans

schedule plan

run jobs

executeexecute

System
monitor

update DB &
return results

Qonductor data plane

18

Data plane

Workflow manager

Workflow
registry

Quantum-classical libs

Qonductor workflow registry

● Qonductor provides common libraries
○ Quantum: Algorithms, error mitigation, etc.
○ Classical: Simulation, post-processing, etc.

● Users can create, store, and reuse images
○ Example: Max-cut on bipartite graph QAOA

● Qonductor provides a workflow registry
○ Example: QFT w/ 50 qubits and circuit knitting

19

Quantum Classical

VQE, QAOA MPS simulator

QFT, QPE REM

DD, ZNE Circuit knitting

qiskit-qaoa-em:latest

teleportation-dynamic:latest

Libraries and workflow registry enable faster hybrid workflow generation

Qonductor control plane

20

Control plane

API server

Resource estimator

Job manager

Hybrid scheduler

Qonductor control plane

21

Control plane

API server

Resource estimator

Job manager

Hybrid scheduler

Qonductor resource estimator challenges

22

✖ ✖

Challenge #1: Computational complexity and vast search space

Quantum circuits x QPUs x classical resources

Qonductor resource estimator challenges

23

Challenge #2: Fidelity is mathematically hard to model

Formulas for estimating the error-mitigated observables

Hard to compute!

Probabilistic Error Cancellation

Zero-Noise Extrapolation

Resource estimator approaches

● For techniques that generate 100s of circuits, use the worst-case one
● For QPUs, use the models (e.g. IBM Falcon) as templates for

compilation

24

✖ ✖

Approach #1: Limit search space using templates

Resource estimator approaches

● For techniques that generate 100s of circuits, use the worst-case one
● For QPUs, use the models (e.g. IBM Falcon) as templates for

compilation

25

✖ ✖

Approach #1: Limit search space using templates

Resource estimator approaches

26

depth: 20

#cnots: 15

#meas: 10

cnot_err: 0.1

meas_err: 0.3

T2: 200μs

Circuit QPU

➕ ZNE➕

Model
Error

mitigation

Approach #2: Use a machine learning model to predict performance

● Train the model with 1000s of runs, w/ and w/o error mitigation, extract metrics
● Use circuit & QPU properties and the error mitigation technique(s) as features

Resource estimator workflow

27

Original circuit

Error mitigation QPU transpilation Fidelity estimation

Generated circuits
Template

QPUs Executables

fid: 0.35

fid: 0.50

fid: 0.78

{q: 2s, classical: 10s}

{q: 10s, classical: 20s}

{q: 20s, classical: 50s}

Exec. time estimation

Fidelities Execution times

The output fidelity & execution times are used by the scheduler!

Qonductor control plane

28

Control plane

API server

Resource estimator

Job manager

Hybrid scheduler

Qonductor quantum scheduler challenges

29

Schedule Fidelity JCT

schedule_0 0.54 55s

…

schedule_n 0.38 10s

Challenge #1: Large schedule exploration space to explore

Systematic exploration of schedule possibilities is NP-hard

Qonductor quantum scheduler challenges

30

Challenge #2: Schedules can be equivalent and not better than others

Optimization problems with conflicting objectives are Pareto-optimal

fidelity

JC
T Pareto

front

Quantum scheduler solutions

31

Minimize waiting times Minimize error

Constraints

Approach #1: Multi-objective optimization with genetic algorithm

● Formulate optimization objectives, use NSGA-II to generate solutions
● NSGA-II explores the solution space in parallel and is robust against local optima

Quantum scheduler solutions

32

Approach #2: Multiple-criteria decision making with pseudo-weights

● Users set the preference for fidelity, JCTs, or balanced
● Our pseudo-weights measure the relative importance within the Pareto front
● Select the solution w/ pseudo-weights closest to user’s preferences

Quantum scheduler workflow

33

QPU0

…

QPUN

Job queue Q Job queue Q’

QPU0

…

QPUM

{ [jo, QPU2]: 0.9 }

…

{ [jn, QPU5]: 0.3 }

Fidelity estimations

{ [jo, QPU2]: 3.1s }

…

{ [jn, QPU5]: 4.6s }

N QPUs M QPUs

Exec. time estimations

filter fetch from DB

fidelity

JC
T Pareto front

multi-objective
optimization

Quantum scheduler workflow

34

QPU0

…

QPUN

Job queue Q Job queue Q’

QPU0

…

QPUM

{ [jo, QPU2]: 0.9 }

…

{ [jn, QPU5]: 0.3 }

Fidelity estimations

{ [jo, QPU2]: 3.1s }

…

{ [jn, QPU5]: 4.6s }

N QPUs M QPUs

Exec. time estimations

filter fetch from DB

fidelity

JC
T

multi-objective
optimization

multi-criteria
decision making

Balanced

fidelity-JCTs

The scheduler balances the tradeoff between fidelity and JCTs

Outline

● Introduction & motivation
● System design

○ System overview
○ System Components

● Evaluation

35

Evaluation

● Implemented based on Kubernetes and the Qiskit quantum SDK

● Main research questions (RQs):
○ RQ1: What is the resource estimator’s accuracy in predicting performance?

○ RQ2: What is the quantum scheduler’s performance w.r.t. fidelity and JCTs?

○ RQ3: What is the quantum scheduler’s load-balancing performance?

36

Many more results in the paper!

Evaluation methodology

● Setup: IBM 7-qubit and 27-qubit Falcon QPUs, 64-core AMD EPYC 7713P
● Benchmarks: SOTA quantum applications: QAOA, VQE, QFT, GHZ & W states, etc.
● Dataset: We collect over 70.000 circuits and ~7000 runs on the IBM cloud

○ We also monitor IBM job queues to simulate real arrival rates
● Cloud emulator: We simulate real cloud workloads based on our dataset
● Baselines

○ First-come-first serve (FCFS), numerical performance estimation methods
● Metrics

○ Fidelity (Higher is better)
○ JCT (Lower is better)
○ Utilization (Higher is better)

37

RQ #1: Resource estimator accuracy

38

Qonductor achieves 11-50% higher accuracy compared to ad-hoc methods

RQ #2: Quantum scheduler performance

39

RQ #2: Quantum scheduler performance

40

Qonductor achieves ~48% lower JCTs for ~3% fidelity loss

RQ #3: Quantum scheduler load balancing

41

Qonductor achieves 66% higher QPU utilization with <16% load difference

Conclusion

● Hybrid application development & execution on the cloud face unique challenges:
○ Programming and execution complexity
○ Hybrid techniques and resources that affect classical and quantum performance
○ QPU load imbalance with high JCTs

42

emmanouil.giortamis@tum.de

github.com/manosgior/Qonductor-SC25

● Qonductor: A Cloud Orchestrator For Quantum Computing
○ Hardware-agnostic APIs and hybrid workflow management
○ Hybrid resource estimation that predicts classical and quantum performances
○ Pareto-optimal multi-objective scheduling for QPU load balance and lower JCTs

mailto:emmanouil.giortamis@tum.de
https://github.com/manosgior/Qonductor-SC25

